new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 8

Holmes: Towards Distributed Training Across Clusters with Heterogeneous NIC Environment

Large language models (LLMs) such as GPT-3, OPT, and LLaMA have demonstrated remarkable accuracy in a wide range of tasks. However, training these models can incur significant expenses, often requiring tens of thousands of GPUs for months of continuous operation. Typically, this training is carried out in specialized GPU clusters equipped with homogeneous high-speed Remote Direct Memory Access (RDMA) network interface cards (NICs). The acquisition and maintenance of such dedicated clusters is challenging. Current LLM training frameworks, like Megatron-LM and Megatron-DeepSpeed, focus primarily on optimizing training within homogeneous cluster settings. In this paper, we introduce Holmes, a training framework for LLMs that employs thoughtfully crafted data and model parallelism strategies over the heterogeneous NIC environment. Our primary technical contribution lies in a novel scheduling method that intelligently allocates distinct computational tasklets in LLM training to specific groups of GPU devices based on the characteristics of their connected NICs. Furthermore, our proposed framework, utilizing pipeline parallel techniques, demonstrates scalability to multiple GPU clusters, even in scenarios without high-speed interconnects between nodes in distinct clusters. We conducted comprehensive experiments that involved various scenarios in the heterogeneous NIC environment. In most cases, our framework achieves performance levels close to those achievable with homogeneous RDMA-capable networks (InfiniBand or RoCE), significantly exceeding training efficiency within the pure Ethernet environment. Additionally, we verified that our framework outperforms other mainstream LLM frameworks under heterogeneous NIC environment in terms of training efficiency and can be seamlessly integrated with them.

MoETuner: Optimized Mixture of Expert Serving with Balanced Expert Placement and Token Routing

Mixture-of-Experts (MoE) model architecture has emerged as a promising solution for scaling transformer models efficiently, offering sparse activation that reduces computational costs while increasing model capacity. However, as MoE models scale, they need to be distributed across GPU devices, thus face critical performance bottlenecks due to their large memory footprint. Expert parallelism distributes experts across GPUs, however, faces key challenges including an unbalanced token routing and expert activation, resulting in communication tail latency and processing inefficiencies. While existing solutions address some of these issues, they fail to resolve the dual challenges of load imbalance and communication skew. The imbalance in token processing load across experts causes uneven processing times on different GPUs, while communication skew between GPUs leads to unbalanced inter-GPU data transfers. These factors degrade the performance of MoE models by increasing tail latency and reducing overall throughput. To address these limitations, we propose an Integer Linear Programming (ILP) formulation to optimize expert placement by jointly considering token load, communication, and computation costs. We exploit the property that there is a token routing dependency across layers, where tokens routed to a specific expert in one layer are likely to be routed to a limited set of experts in the subsequent layer. Our solution, MoETuner, offers an optimal expert-to-GPU assignment that minimizes inter-GPU token routing costs and balances token processing across devices, thereby reducing tail latency and end-to-end execution time. Experimental results demonstrate 9.3% and 17.5% of end-to-end speedups for single-node and multi-node inference respectively, showcasing the potential of our ILP-based optimization for offering expert parallel solutions for next-generation MoEs.

Slimmable Encoders for Flexible Split DNNs in Bandwidth and Resource Constrained IoT Systems

The execution of large deep neural networks (DNN) at mobile edge devices requires considerable consumption of critical resources, such as energy, while imposing demands on hardware capabilities. In approaches based on edge computing the execution of the models is offloaded to a compute-capable device positioned at the edge of 5G infrastructures. The main issue of the latter class of approaches is the need to transport information-rich signals over wireless links with limited and time-varying capacity. The recent split computing paradigm attempts to resolve this impasse by distributing the execution of DNN models across the layers of the systems to reduce the amount of data to be transmitted while imposing minimal computing load on mobile devices. In this context, we propose a novel split computing approach based on slimmable ensemble encoders. The key advantage of our design is the ability to adapt computational load and transmitted data size in real-time with minimal overhead and time. This is in contrast with existing approaches, where the same adaptation requires costly context switching and model loading. Moreover, our model outperforms existing solutions in terms of compression efficacy and execution time, especially in the context of weak mobile devices. We present a comprehensive comparison with the most advanced split computing solutions, as well as an experimental evaluation on GPU-less devices.

Dovetail: A CPU/GPU Heterogeneous Speculative Decoding for LLM inference

Due to the high resource demands of Large Language Models (LLMs), achieving widespread deployment on consumer-grade devices presents significant challenges. Typically, personal or consumer-grade devices, including servers configured prior to the era of large-scale models, generally have relatively weak GPUs and relatively strong CPUs. However, most current methods primarily depend on GPUs for computation. Therefore, we propose Dovetail, an approach that deploys the draft model on the GPU to generate draft tokens while allowing the target model to perform parallel verification on the CPU, thereby improving the utilization of all available hardware resources and occupying less inter-device communication bandwidth. Accordingly, we have redesigned the draft model to better align with heterogeneous hardware characteristics. To this end, we implemented several optimizations: reducing the number of draft tokens to mitigate latency in parallel verification, increasing the depth of the draft model to enhance its predictive capacity, and introducing DGF (Dynamic Gating Fusion) to improve the integration of features and token embeddings. In the HumanEval benchmark, Dovetail achieved an inference speed of 5.86 tokens per second for LLaMA2-Chat-7B using 3GB of VRAM, representing an approximately 2.77x improvement over CPU-only inference. Furthermore, the inference speed was increased to 8 tokens per second when utilizing 7GB of VRAM.

HopTrack: A Real-time Multi-Object Tracking System for Embedded Devices

Multi-Object Tracking (MOT) poses significant challenges in computer vision. Despite its wide application in robotics, autonomous driving, and smart manufacturing, there is limited literature addressing the specific challenges of running MOT on embedded devices. State-of-the-art MOT trackers designed for high-end GPUs often experience low processing rates (<11fps) when deployed on embedded devices. Existing MOT frameworks for embedded devices proposed strategies such as fusing the detector model with the feature embedding model to reduce inference latency or combining different trackers to improve tracking accuracy, but tend to compromise one for the other. This paper introduces HopTrack, a real-time multi-object tracking system tailored for embedded devices. Our system employs a novel discretized static and dynamic matching approach along with an innovative content-aware dynamic sampling technique to enhance tracking accuracy while meeting the real-time requirement. Compared with the best high-end GPU modified baseline Byte (Embed) and the best existing baseline on embedded devices MobileNet-JDE, HopTrack achieves a processing speed of up to 39.29 fps on NVIDIA AGX Xavier with a multi-object tracking accuracy (MOTA) of up to 63.12% on the MOT16 benchmark, outperforming both counterparts by 2.15% and 4.82%, respectively. Additionally, the accuracy improvement is coupled with the reduction in energy consumption (20.8%), power (5%), and memory usage (8%), which are crucial resources on embedded devices. HopTrack is also detector agnostic allowing the flexibility of plug-and-play.

Real-Time Neural Light Field on Mobile Devices

Recent efforts in Neural Rendering Fields (NeRF) have shown impressive results on novel view synthesis by utilizing implicit neural representation to represent 3D scenes. Due to the process of volumetric rendering, the inference speed for NeRF is extremely slow, limiting the application scenarios of utilizing NeRF on resource-constrained hardware, such as mobile devices. Many works have been conducted to reduce the latency of running NeRF models. However, most of them still require high-end GPU for acceleration or extra storage memory, which is all unavailable on mobile devices. Another emerging direction utilizes the neural light field (NeLF) for speedup, as only one forward pass is performed on a ray to predict the pixel color. Nevertheless, to reach a similar rendering quality as NeRF, the network in NeLF is designed with intensive computation, which is not mobile-friendly. In this work, we propose an efficient network that runs in real-time on mobile devices for neural rendering. We follow the setting of NeLF to train our network. Unlike existing works, we introduce a novel network architecture that runs efficiently on mobile devices with low latency and small size, i.e., saving 15times sim 24times storage compared with MobileNeRF. Our model achieves high-resolution generation while maintaining real-time inference for both synthetic and real-world scenes on mobile devices, e.g., 18.04ms (iPhone 13) for rendering one 1008times756 image of real 3D scenes. Additionally, we achieve similar image quality as NeRF and better quality than MobileNeRF (PSNR 26.15 vs. 25.91 on the real-world forward-facing dataset).

Bridging Evolutionary Multiobjective Optimization and GPU Acceleration via Tensorization

Evolutionary multiobjective optimization (EMO) has made significant strides over the past two decades. However, as problem scales and complexities increase, traditional EMO algorithms face substantial performance limitations due to insufficient parallelism and scalability. While most work has focused on algorithm design to address these challenges, little attention has been given to hardware acceleration, thereby leaving a clear gap between EMO algorithms and advanced computing devices, such as GPUs. To bridge the gap, we propose to parallelize EMO algorithms on GPUs via the tensorization methodology. By employing tensorization, the data structures and operations of EMO algorithms are transformed into concise tensor representations, which seamlessly enables automatic utilization of GPU computing. We demonstrate the effectiveness of our approach by applying it to three representative EMO algorithms: NSGA-III, MOEA/D, and HypE. To comprehensively assess our methodology, we introduce a multiobjective robot control benchmark using a GPU-accelerated physics engine. Our experiments show that the tensorized EMO algorithms achieve speedups of up to 1113x compared to their CPU-based counterparts, while maintaining solution quality and effectively scaling population sizes to hundreds of thousands. Furthermore, the tensorized EMO algorithms efficiently tackle complex multiobjective robot control tasks, producing high-quality solutions with diverse behaviors. Source codes are available at https://github.com/EMI-Group/evomo.

EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction on Mobile Devices

Reconstructing real-world 3D objects has numerous applications in computer vision, such as virtual reality, video games, and animations. Ideally, 3D reconstruction methods should generate high-fidelity results with 3D consistency in real-time. Traditional methods match pixels between images using photo-consistency constraints or learned features, while differentiable rendering methods like Neural Radiance Fields (NeRF) use differentiable volume rendering or surface-based representation to generate high-fidelity scenes. However, these methods require excessive runtime for rendering, making them impractical for daily applications. To address these challenges, we present EvaSurf, an Efficient View-Aware implicit textured Surface reconstruction method on mobile devices. In our method, we first employ an efficient surface-based model with a multi-view supervision module to ensure accurate mesh reconstruction. To enable high-fidelity rendering, we learn an implicit texture embedded with a set of Gaussian lobes to capture view-dependent information. Furthermore, with the explicit geometry and the implicit texture, we can employ a lightweight neural shader to reduce the expense of computation and further support real-time rendering on common mobile devices. Extensive experiments demonstrate that our method can reconstruct high-quality appearance and accurate mesh on both synthetic and real-world datasets. Moreover, our method can be trained in just 1-2 hours using a single GPU and run on mobile devices at over 40 FPS (Frames Per Second), with a final package required for rendering taking up only 40-50 MB.

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM

Large language models have led to state-of-the-art accuracies across a range of tasks. However, training these models efficiently is challenging for two reasons: a) GPU memory capacity is limited, making it impossible to fit large models on even a multi-GPU server, and b) the number of compute operations required to train these models can result in unrealistically long training times. Consequently, new methods of model parallelism such as tensor and pipeline parallelism have been proposed. Unfortunately, naive usage of these methods leads to fundamental scaling issues at thousands of GPUs, e.g., due to expensive cross-node communication or devices spending significant time waiting on other devices to make progress. In this paper, we show how different types of parallelism methods (tensor, pipeline, and data parallelism) can be composed to scale to thousands of GPUs and models with trillions of parameters. We survey techniques for pipeline parallelism and propose a novel interleaved pipeline parallelism schedule that can improve throughput by 10+% with memory footprint comparable to existing approaches. We quantitatively study the trade-offs between tensor, pipeline, and data parallelism, and provide intuition as to how to configure distributed training of a large model. Our approach allows us to perform training iterations on a model with 1 trillion parameters at 502 petaFLOP/s on 3072 GPUs with achieved per-GPU throughput of 52% of theoretical peak. Our code is open sourced at https://github.com/nvidia/megatron-lm.

LSM-GNN: Large-scale Storage-based Multi-GPU GNN Training by Optimizing Data Transfer Scheme

Graph Neural Networks (GNNs) are widely used today in recommendation systems, fraud detection, and node/link classification tasks. Real world GNNs continue to scale in size and require a large memory footprint for storing graphs and embeddings that often exceed the memory capacities of the target GPUs used for training. To address limited memory capacities, traditional GNN training approaches use graph partitioning and sharding techniques to scale up across multiple GPUs within a node and/or scale out across multiple nodes. However, this approach suffers from the high computational costs of graph partitioning algorithms and inefficient communication across GPUs. To address these overheads, we propose Large-scale Storage-based Multi-GPU GNN framework (LSM-GNN), a storagebased approach to train GNN models that utilizes a novel communication layer enabling GPU software caches to function as a system-wide shared cache with low overheads.LSM-GNN incorporates a hybrid eviction policy that intelligently manages cache space by using both static and dynamic node information to significantly enhance cache performance. Furthermore, we introduce the Preemptive Victim-buffer Prefetcher (PVP), a mechanism for prefetching node feature data from a Victim Buffer located in CPU pinned-memory to further reduce the pressure on the storage devices. Experimental results show that despite the lower compute capabilities and memory capacities, LSM-GNN in a single node with two GPUs offers superior performance over two-node-four-GPU Dist-DGL baseline and provides up to 3.75x speed up on end-to-end epoch time while running large-scale GNN training

EasySpec: Layer-Parallel Speculative Decoding for Efficient Multi-GPU Utilization

Speculative decoding is an effective and lossless method for Large Language Model (LLM) inference acceleration. It employs a smaller model to generate a draft token sequence, which is then verified by the original base model. In multi-GPU systems, inference latency can be further reduced through tensor parallelism (TP), while the optimal TP size of the draft model is typically smaller than that of the base model, leading to GPU idling during the drafting stage. To solve this problem, we propose EasySpec, a layer-parallel speculation strategy that optimizes the efficiency of multi-GPU utilization.EasySpec breaks the sequential execution order of layers in the drafting model, enabling multi-layer parallelization across devices, albeit with some induced approximation errors. After each drafting-and-verification iteration, the draft model's key-value (KV) cache is calibrated in a single forward pass, preventing long-term error accumulation at minimal additional latency. We evaluated EasySpec on several mainstream open-source LLMs, using smaller versions of models from the same series as drafters. The results demonstrate that EasySpec can achieve a peak speedup of 4.17x compared to vanilla decoding, while preserving the original distribution of the base LLMs. Specifically, the drafting stage can be accelerated by up to 1.62x with a maximum accuracy drop of only 7%, requiring no training or fine-tuning on the draft models.

Are We There Yet? A Measurement Study of Efficiency for LLM Applications on Mobile Devices

Recent advancements in large language models (LLMs) have prompted interest in deploying these models on mobile devices to enable new applications without relying on cloud connectivity. However, the efficiency constraints of deploying LLMs on resource-limited devices present significant challenges. In this paper, we conduct a comprehensive measurement study to evaluate the efficiency tradeoffs between mobile-based, edge-based, and cloud-based deployments for LLM applications. We implement AutoLife-Lite, a simplified LLM-based application that analyzes smartphone sensor data to infer user location and activity contexts. Our experiments reveal that: (1) Only small-size LLMs (<4B parameters) can run successfully on powerful mobile devices, though they exhibit quality limitations compared to larger models; (2) Model compression is effective in lower the hardware requirement, but may lead to significant performance degradation; (3) The latency to run LLMs on mobile devices with meaningful output is significant (>30 seconds), while cloud services demonstrate better time efficiency (<10 seconds); (4) Edge deployments offer intermediate tradeoffs between latency and model capabilities, with different results on CPU-based and GPU-based settings. These findings provide valuable insights for system designers on the current limitations and future directions for on-device LLM applications.

Ladder-residual: parallelism-aware architecture for accelerating large model inference with communication overlapping

Large language model inference is both memory-intensive and time-consuming, often requiring distributed algorithms to efficiently scale. Various model parallelism strategies are used in multi-gpu training and inference to partition computation across multiple devices, reducing memory load and computation time. However, using model parallelism necessitates communication of information between GPUs, which has been a major bottleneck and limits the gains obtained by scaling up the number of devices. We introduce Ladder Residual, a simple architectural modification applicable to all residual-based models that enables straightforward overlapping that effectively hides the latency of communication. Our insight is that in addition to systems optimization, one can also redesign the model architecture to decouple communication from computation. While Ladder Residual can allow communication-computation decoupling in conventional parallelism patterns, we focus on Tensor Parallelism in this paper, which is particularly bottlenecked by its heavy communication. For a Transformer model with 70B parameters, applying Ladder Residual to all its layers can achieve 30% end-to-end wall clock speed up at inference time with TP sharding over 8 devices. We refer the resulting Transformer model as the Ladder Transformer. We train a 1B and 3B Ladder Transformer from scratch and observe comparable performance to a standard dense transformer baseline. We also show that it is possible to convert parts of the Llama-3.1 8B model to our Ladder Residual architecture with minimal accuracy degradation by only retraining for 3B tokens.

Once-for-All: Train One Network and Specialize it for Efficient Deployment

We address the challenging problem of efficient inference across many devices and resource constraints, especially on edge devices. Conventional approaches either manually design or use neural architecture search (NAS) to find a specialized neural network and train it from scratch for each case, which is computationally prohibitive (causing CO_2 emission as much as 5 cars' lifetime) thus unscalable. In this work, we propose to train a once-for-all (OFA) network that supports diverse architectural settings by decoupling training and search, to reduce the cost. We can quickly get a specialized sub-network by selecting from the OFA network without additional training. To efficiently train OFA networks, we also propose a novel progressive shrinking algorithm, a generalized pruning method that reduces the model size across many more dimensions than pruning (depth, width, kernel size, and resolution). It can obtain a surprisingly large number of sub-networks (> 10^{19}) that can fit different hardware platforms and latency constraints while maintaining the same level of accuracy as training independently. On diverse edge devices, OFA consistently outperforms state-of-the-art (SOTA) NAS methods (up to 4.0% ImageNet top1 accuracy improvement over MobileNetV3, or same accuracy but 1.5x faster than MobileNetV3, 2.6x faster than EfficientNet w.r.t measured latency) while reducing many orders of magnitude GPU hours and CO_2 emission. In particular, OFA achieves a new SOTA 80.0% ImageNet top-1 accuracy under the mobile setting (<600M MACs). OFA is the winning solution for the 3rd Low Power Computer Vision Challenge (LPCVC), DSP classification track and the 4th LPCVC, both classification track and detection track. Code and 50 pre-trained models (for many devices & many latency constraints) are released at https://github.com/mit-han-lab/once-for-all.

MobileSpeech: A Fast and High-Fidelity Framework for Mobile Zero-Shot Text-to-Speech

Zero-shot text-to-speech (TTS) has gained significant attention due to its powerful voice cloning capabilities, requiring only a few seconds of unseen speaker voice prompts. However, all previous work has been developed for cloud-based systems. Taking autoregressive models as an example, although these approaches achieve high-fidelity voice cloning, they fall short in terms of inference speed, model size, and robustness. Therefore, we propose MobileSpeech, which is a fast, lightweight, and robust zero-shot text-to-speech system based on mobile devices for the first time. Specifically: 1) leveraging discrete codec, we design a parallel speech mask decoder module called SMD, which incorporates hierarchical information from the speech codec and weight mechanisms across different codec layers during the generation process. Moreover, to bridge the gap between text and speech, we introduce a high-level probabilistic mask that simulates the progression of information flow from less to more during speech generation. 2) For speaker prompts, we extract fine-grained prompt duration from the prompt speech and incorporate text, prompt speech by cross attention in SMD. We demonstrate the effectiveness of MobileSpeech on multilingual datasets at different levels, achieving state-of-the-art results in terms of generating speed and speech quality. MobileSpeech achieves RTF of 0.09 on a single A100 GPU and we have successfully deployed MobileSpeech on mobile devices. Audio samples are available at https://mobilespeech.github.io/ .

No Time to Waste: Squeeze Time into Channel for Mobile Video Understanding

Current architectures for video understanding mainly build upon 3D convolutional blocks or 2D convolutions with additional operations for temporal modeling. However, these methods all regard the temporal axis as a separate dimension of the video sequence, which requires large computation and memory budgets and thus limits their usage on mobile devices. In this paper, we propose to squeeze the time axis of a video sequence into the channel dimension and present a lightweight video recognition network, term as SqueezeTime, for mobile video understanding. To enhance the temporal modeling capability of the proposed network, we design a Channel-Time Learning (CTL) Block to capture temporal dynamics of the sequence. This module has two complementary branches, in which one branch is for temporal importance learning and another branch with temporal position restoring capability is to enhance inter-temporal object modeling ability. The proposed SqueezeTime is much lightweight and fast with high accuracies for mobile video understanding. Extensive experiments on various video recognition and action detection benchmarks, i.e., Kinetics400, Kinetics600, HMDB51, AVA2.1 and THUMOS14, demonstrate the superiority of our model. For example, our SqueezeTime achieves +1.2% accuracy and +80% GPU throughput gain on Kinetics400 than prior methods. Codes are publicly available at https://github.com/xinghaochen/SqueezeTime and https://github.com/mindspore-lab/models/tree/master/research/huawei-noah/SqueezeTime.

MemAscend: System Memory Optimization for SSD-Offloaded LLM Fine-Tuning

Owing to the huge success of generative artificial intelligence (AI), large language models (LLMs) have emerged as a core subclass, underpinning applications such as question answering, text generation, and code completion. While fine-tuning these models on domain-specific data can yield significant performance gains, it also poses daunting computational challenges, especially for researchers and small organizations with limited hardware resources. Although SSD offloading (i.e., ZeRO-Infinity) has emerged as a viable strategy to overcome the GPU memory barrier via leveraging both system memory (i.e., CPU DRAM) and storage space (i.e., solid-state devices, SSDs), its design primarily targets model-centric performance issues. As a result, key system-level issues, including system memory fragmentation, inefficient pinned buffer allocation, peak CPU usage spikes, and file system overhead, remain unaddressed, stifling scalability and inflating costs. Such an observation motivates this paper to introduce MemAscend, a framework that systematically tackles the underexplored system memory bottlenecks in SSD-offloaded LLM training, with a focus on resource-constrained environments. By streamlining pinned-memory allocation, eradicating fragmentation, and mitigating peak overhead, MemAscend reclaims a substantial system memory budget, enabling larger models, longer context windows, and higher batch sizes without exceeding modest hardware limits. Across diverse LLM benchmarks, MemAscend reduces peak system-memory consumption by an average of 55.7% compared with standard SSD offloading techniques, lowering the hardware barrier for fine-tuning and unlocking new possibilities for cost-effective large-scale training on limited-resource machines.

Return of the Encoder: Maximizing Parameter Efficiency for SLMs

The dominance of large decoder-only language models has overshadowed encoder-decoder architectures, despite their fundamental efficiency advantages in sequence processing. For small language models (SLMs) - those with 1 billion parameters or fewer - our systematic analysis across GPU, CPU, and NPU platforms reveals that encoder-decoder architectures achieve 47% lower first-token latency and 4.7x higher throughput compared to decoder-only models on edge devices. These gains may be attributed to encoder-decoder's one-time input processing and efficient separation of understanding and generation phases. We introduce a novel knowledge distillation framework that enables encoder-decoder models to leverage capabilities from large scalable decoder-only teachers while preserving their architectural advantages, achieving up to 6 average performance points improvement across diverse tasks, with significant gains in asymmetric sequence tasks where input and output distributions can benefit from different processing approaches. When combined with modern advances like Rotary Positional Embeddings (RoPE) and Vision encoders, our systematic investigation demonstrates that encoder-decoder architectures provide a more practical path toward deploying capable language models in resource-constrained environments. Our findings challenge the prevailing trend toward decoder-only scaling, showing that architectural choices become increasingly crucial as parameter budgets decrease, particularly for on-device and edge deployments where computational efficiency is paramount.

InstInfer: In-Storage Attention Offloading for Cost-Effective Long-Context LLM Inference

The widespread of Large Language Models (LLMs) marks a significant milestone in generative AI. Nevertheless, the increasing context length and batch size in offline LLM inference escalate the memory requirement of the key-value (KV) cache, which imposes a huge burden on the GPU VRAM, especially for resource-constraint scenarios (e.g., edge computing and personal devices). Several cost-effective solutions leverage host memory or SSDs to reduce storage costs for offline inference scenarios and improve the throughput. Nevertheless, they suffer from significant performance penalties imposed by intensive KV cache accesses due to limited PCIe bandwidth. To address these issues, we propose InstInfer, a novel LLM inference system that offloads the most performance-critical computation (i.e., attention in decoding phase) and data (i.e., KV cache) parts to Computational Storage Drives (CSDs), which minimize the enormous KV transfer overheads. InstInfer designs a dedicated flash-aware in-storage attention engine with KV cache management mechanisms to exploit the high internal bandwidths of CSDs instead of being limited by the PCIe bandwidth. The optimized P2P transmission between GPU and CSDs further reduces data migration overheads. Experimental results demonstrate that for a 13B model using an NVIDIA A6000 GPU, InstInfer improves throughput for long-sequence inference by up to 11.1times, compared to existing SSD-based solutions such as FlexGen.

LlamaRL: A Distributed Asynchronous Reinforcement Learning Framework for Efficient Large-scale LLM Training

Reinforcement Learning (RL) has become the most effective post-training approach for improving the capabilities of Large Language Models (LLMs). In practice, because of the high demands on latency and memory, it is particularly challenging to develop an efficient RL framework that reliably manages policy models with hundreds to thousands of billions of parameters. In this paper, we present LlamaRL, a fully distributed, asynchronous RL framework optimized for efficient training of large-scale LLMs with various model sizes (8B, 70B, and 405B parameters) on GPU clusters ranging from a handful to thousands of devices. LlamaRL introduces a streamlined, single-controller architecture built entirely on native PyTorch, enabling modularity, ease of use, and seamless scalability to thousands of GPUs. We also provide a theoretical analysis of LlamaRL's efficiency, including a formal proof that its asynchronous design leads to strict RL speed-up. Empirically during the Llama 3 post-training, by leveraging best practices such as colocated model offloading, asynchronous off-policy training, and distributed direct memory access for weight synchronization, LlamaRL achieves significant efficiency gains -- up to 10.7x speed-up compared to DeepSpeed-Chat-like systems on a 405B-parameter policy model. Furthermore, the efficiency advantage continues to grow with increasing model scale, demonstrating the framework's suitability for future large-scale RL training.