3 GRAM-HD: 3D-Consistent Image Generation at High Resolution with Generative Radiance Manifolds Recent works have shown that 3D-aware GANs trained on unstructured single image collections can generate multiview images of novel instances. The key underpinnings to achieve this are a 3D radiance field generator and a volume rendering process. However, existing methods either cannot generate high-resolution images (e.g., up to 256X256) due to the high computation cost of neural volume rendering, or rely on 2D CNNs for image-space upsampling which jeopardizes the 3D consistency across different views. This paper proposes a novel 3D-aware GAN that can generate high resolution images (up to 1024X1024) while keeping strict 3D consistency as in volume rendering. Our motivation is to achieve super-resolution directly in the 3D space to preserve 3D consistency. We avoid the otherwise prohibitively-expensive computation cost by applying 2D convolutions on a set of 2D radiance manifolds defined in the recent generative radiance manifold (GRAM) approach, and apply dedicated loss functions for effective GAN training at high resolution. Experiments on FFHQ and AFHQv2 datasets show that our method can produce high-quality 3D-consistent results that significantly outperform existing methods. 4 authors · Jun 14, 2022
1 GRAM-R$^2$: Self-Training Generative Foundation Reward Models for Reward Reasoning Significant progress in reward modeling over recent years has been driven by a paradigm shift from task-specific designs towards generalist reward models. Despite this trend, developing effective reward models remains a fundamental challenge: the heavy reliance on large-scale labeled preference data. Pre-training on abundant unlabeled data offers a promising direction, but existing approaches fall short of instilling explicit reasoning into reward models. To bridge this gap, we propose a self-training approach that leverages unlabeled data to elicit reward reasoning in reward models. Based on this approach, we develop GRAM-R^2, a generative reward model trained to produce not only preference labels but also accompanying reward rationales. GRAM-R^2 can serve as a foundation model for reward reasoning and can be applied to a wide range of tasks with minimal or no additional fine-tuning. It can support downstream applications such as response ranking and task-specific reward tuning. Experiments on response ranking, task adaptation, and reinforcement learning from human feedback demonstrate that GRAM-R^2 consistently delivers strong performance, outperforming several strong discriminative and generative baselines. 13 authors · Sep 2
1 GRAM: A Generative Foundation Reward Model for Reward Generalization In aligning large language models (LLMs), reward models have played an important role, but are standardly trained as discriminative models and rely only on labeled human preference data. In this paper, we explore methods that train reward models using both unlabeled and labeled data. Building on the generative models in LLMs, we develop a generative reward model that is first trained via large-scale unsupervised learning and then fine-tuned via supervised learning. We also show that by using label smoothing, we are in fact optimizing a regularized pairwise ranking loss. This result, in turn, provides a new view of training reward models, which links generative models and discriminative models under the same class of training objectives. The outcome of these techniques is a foundation reward model, which can be applied to a wide range of tasks with little or no further fine-tuning effort. Extensive experiments show that this model generalizes well across several tasks, including response ranking, reinforcement learning from human feedback, and task adaptation with fine-tuning, achieving significant performance improvements over several strong baseline models. 11 authors · Jun 17
- Gramian Multimodal Representation Learning and Alignment Human perception integrates multiple modalities, such as vision, hearing, and language, into a unified understanding of the surrounding reality. While recent multimodal models have achieved significant progress by aligning pairs of modalities via contrastive learning, their solutions are unsuitable when scaling to multiple modalities. These models typically align each modality to a designated anchor without ensuring the alignment of all modalities with each other, leading to suboptimal performance in tasks requiring a joint understanding of multiple modalities. In this paper, we structurally rethink the pairwise conventional approach to multimodal learning and we present the novel Gramian Representation Alignment Measure (GRAM), which overcomes the above-mentioned limitations. GRAM learns and then aligns n modalities directly in the higher-dimensional space in which modality embeddings lie by minimizing the Gramian volume of the k-dimensional parallelotope spanned by the modality vectors, ensuring the geometric alignment of all modalities simultaneously. GRAM can replace cosine similarity in any downstream method, holding for 2 to n modalities and providing more meaningful alignment with respect to previous similarity measures. The novel GRAM-based contrastive loss function enhances the alignment of multimodal models in the higher-dimensional embedding space, leading to new state-of-the-art performance in downstream tasks such as video-audio-text retrieval and audio-video classification. The project page, the code, and the pretrained models are available at https://ispamm.github.io/GRAM/. 4 authors · Dec 16, 2024
5 Grammar-Constrained Decoding for Structured NLP Tasks without Finetuning Despite their impressive performance, large language models (LMs) still struggle with reliably generating complex output structures when not finetuned to follow the required output format exactly. To address this issue, grammar-constrained decoding (GCD) can be used to control the generation of LMs, guaranteeing that the output follows a given structure. Most existing GCD methods are, however, limited to specific tasks, such as parsing or code generation. In this work, we demonstrate that formal grammars can describe the output space for a much wider range of tasks and argue that GCD can serve as a unified framework for structured NLP tasks in general. For increased flexibility, we introduce input-dependent grammars, which allow the grammar to depend on the input and thus enable the generation of different output structures for different inputs. We then empirically demonstrate the power and flexibility of GCD-enhanced LMs on (1) information extraction, (2) entity disambiguation, and (3) constituency parsing. Our results indicate that grammar-constrained LMs substantially outperform unconstrained LMs or even beat task-specific finetuned models. Grammar constraints thus hold great promise for harnessing off-the-shelf LMs for a wide range of structured NLP tasks, especially where training data is scarce or finetuning is expensive. Code and data: https://github.com/epfl-dlab/GCD. 4 authors · May 23, 2023
3 Grammars of Formal Uncertainty: When to Trust LLMs in Automated Reasoning Tasks Large language models (LLMs) show remarkable promise for democratizing automated reasoning by generating formal specifications. However, a fundamental tension exists: LLMs are probabilistic, while formal verification demands deterministic guarantees. This paper addresses this epistemological gap by comprehensively investigating failure modes and uncertainty quantification (UQ) in LLM-generated formal artifacts. Our systematic evaluation of five frontier LLMs reveals Satisfiability Modulo Theories (SMT) based autoformalization's domain-specific impact on accuracy (from +34.8% on logical tasks to -44.5% on factual ones), with known UQ techniques like the entropy of token probabilities failing to identify these errors. We introduce a probabilistic context-free grammar (PCFG) framework to model LLM outputs, yielding a refined uncertainty taxonomy. We find uncertainty signals are task-dependent (e.g., grammar entropy for logic, AUROC>0.93). Finally, a lightweight fusion of these signals enables selective verification, drastically reducing errors (14-100%) with minimal abstention, transforming LLM-driven formalization into a reliable engineering discipline. 10 authors · May 26 2
3 Grammar Prompting for Domain-Specific Language Generation with Large Language Models Large language models (LLMs) can learn to perform a wide range of natural language tasks from just a handful of in-context examples. However, for generating strings from highly structured languages (e.g., semantic parsing to complex domain-specific languages), it is challenging for the LLM to generalize from just a few exemplars. We explore grammar prompting as a simple approach for enabling LLMs to use external knowledge and domain-specific constraints, expressed through a grammar expressed in Backus--Naur Form (BNF), during in-context learning. Grammar prompting augments each demonstration example with a specialized grammar that is minimally sufficient for generating the particular output example, where the specialized grammar is a subset of the full DSL grammar. For inference, the LLM first predicts a BNF grammar given a test input, and then generates the output according to the rules of the grammar. Experiments demonstrate that grammar prompting can enable LLMs to perform competitively on a diverse set of DSL generation tasks, including semantic parsing (SMCalFlow, Overnight, GeoQuery), PDDL planning, and even molecule generation (SMILES). 6 authors · May 30, 2023 4
2 Zero-shot Cross-Lingual Transfer for Synthetic Data Generation in Grammatical Error Detection Grammatical Error Detection (GED) methods rely heavily on human annotated error corpora. However, these annotations are unavailable in many low-resource languages. In this paper, we investigate GED in this context. Leveraging the zero-shot cross-lingual transfer capabilities of multilingual pre-trained language models, we train a model using data from a diverse set of languages to generate synthetic errors in other languages. These synthetic error corpora are then used to train a GED model. Specifically we propose a two-stage fine-tuning pipeline where the GED model is first fine-tuned on multilingual synthetic data from target languages followed by fine-tuning on human-annotated GED corpora from source languages. This approach outperforms current state-of-the-art annotation-free GED methods. We also analyse the errors produced by our method and other strong baselines, finding that our approach produces errors that are more diverse and more similar to human errors. 3 authors · Jul 16, 2024 4
1 GrammarGPT: Exploring Open-Source LLMs for Native Chinese Grammatical Error Correction with Supervised Fine-Tuning Grammatical error correction aims to correct ungrammatical sentences automatically. Recently, some work has demonstrated the excellent capabilities of closed-source Large Language Models (LLMs, e.g., ChatGPT) in grammatical error correction. However, the potential of open-source LLMs remains unexplored. In this paper, we introduced GrammarGPT, an open-source LLM, to preliminary explore its potential for native Chinese grammatical error correction. The core recipe of GrammarGPT is to leverage the hybrid dataset of ChatGPT-generated and human-annotated. For grammatical errors with clues, we proposed a heuristic method to guide ChatGPT to generate ungrammatical sentences by providing those clues. For grammatical errors without clues, we collected ungrammatical sentences from publicly available websites and manually corrected them. In addition, we employed an error-invariant augmentation method to enhance the ability of the model to correct native Chinese grammatical errors. We ultimately constructed about 1k parallel data and utilized these data to fine-tune open-source LLMs (e.g., Phoenix, released by The Chinese University of Hong Kong, Shenzhen) with instruction tuning. The experimental results show that GrammarGPT outperforms the existing SOTA system significantly. Although model parameters are 20x larger than the SOTA baseline, the required amount of data for instruction tuning is 1200x smaller, illustrating the potential of open-source LLMs on native CGEC. Our GrammarGPT ranks 3^{rd} on NLPCC2023 SharedTask1, demonstrating our approach's effectiveness. The code and data are available at https://github.com/FreedomIntelligence/GrammarGPT. 4 authors · Jul 25, 2023 1
1 Advancements in Arabic Grammatical Error Detection and Correction: An Empirical Investigation Grammatical error correction (GEC) is a well-explored problem in English with many existing models and datasets. However, research on GEC in morphologically rich languages has been limited due to challenges such as data scarcity and language complexity. In this paper, we present the first results on Arabic GEC by using two newly developed Transformer-based pretrained sequence-to-sequence models. We address the task of multi-class Arabic grammatical error detection (GED) and present the first results on multi-class Arabic GED. We show that using GED information as auxiliary input in GEC models improves GEC performance across three datasets spanning different genres. Moreover, we also investigate the use of contextual morphological preprocessing in aiding GEC systems. Our models achieve state-of-the-art results on two Arabic GEC shared tasks datasets and establish a strong benchmark on a newly created dataset. 4 authors · May 24, 2023
- Grammar-Based Code Representation: Is It a Worthy Pursuit for LLMs? Grammar serves as a cornerstone in programming languages and software engineering, providing frameworks to define the syntactic space and program structure. Existing research demonstrates the effectiveness of grammar-based code representations in small-scale models, showing their ability to reduce syntax errors and enhance performance. However, as language models scale to the billion level or beyond, syntax-level errors become rare, making it unclear whether grammar information still provides performance benefits. To explore this, we develop a series of billion-scale GrammarCoder models, incorporating grammar rules in the code generation process. Experiments on HumanEval (+) and MBPP (+) demonstrate a notable improvement in code generation accuracy. Further analysis shows that grammar-based representations enhance LLMs' ability to discern subtle code differences, reducing semantic errors caused by minor variations. These findings suggest that grammar-based code representations remain valuable even in billion-scale models, not only by maintaining syntax correctness but also by improving semantic differentiation. 12 authors · Mar 7
- Flexible and Efficient Grammar-Constrained Decoding Large Language Models (LLMs) are often asked to generate structured outputs that obey precise syntactic rules, such as code snippets or formatted data. Grammar-constrained decoding (GCD) can guarantee that LLM outputs matches such rules by masking out tokens that will provably lead to outputs that do not belong to a specified context-free grammar (CFG). To guarantee soundness, GCD algorithms have to compute how a given LLM subword tokenizer can align with the tokens used by a given context-free grammar and compute token masks based on this information. Doing so efficiently is challenging and existing GCD algorithms require tens of minutes to preprocess common grammars. We present a new GCD algorithm together with an implementation that offers 17.71x faster offline preprocessing than existing approaches while preserving state-of-the-art efficiency in online mask computation. 3 authors · Feb 7
- Grams: Gradient Descent with Adaptive Momentum Scaling We introduce Gradient Descent with Adaptive Momentum Scaling (Grams), a novel optimization algorithm that decouples the direction and magnitude of parameter updates in deep learning. Unlike traditional optimizers that directly integrate momentum into updates, Grams separates the update direction, derived from current gradients, from momentum, which is used solely for adaptive magnitude scaling. This approach enables Grams to achieve improved loss descent compared to state-of-the-art cautious and momentum-based optimizers. We establish a global convergence guarantee for Grams and validate its effectiveness through extensive empirical evaluations. The results demonstrate Grams' superior performance, including faster convergence and better generalization, compared to widely-used optimizers such as Adam, Lion, and their cautious variants. Our results highlight Grams' potential as a transformative approach for efficient optimization in large-scale machine learning. 3 authors · Dec 22, 2024
- GrammaMT: Improving Machine Translation with Grammar-Informed In-Context Learning We introduce GrammaMT, a grammatically-aware prompting approach for machine translation that uses Interlinear Glossed Text (IGT), a common form of linguistic description providing morphological and lexical annotations for source sentences. GrammaMT proposes three prompting strategies: gloss-shot, chain-gloss and model-gloss. All are training-free, requiring only a few examples that involve minimal effort to collect, and making them well-suited for low-resource setups. Experiments show that GrammaMT enhances translation performance on open-source instruction-tuned LLMs for various low- to high-resource languages across three benchmarks: (1) the largest IGT corpus, (2) the challenging 2023 SIGMORPHON Shared Task data over endangered languages, and (3) even in an out-of-domain setting with FLORES. Moreover, ablation studies reveal that leveraging gloss resources could substantially boost MT performance (by over 17 BLEU points) if LLMs accurately generate or access input sentence glosses. 4 authors · Oct 24, 2024
- Grammatical Error Correction for Low-Resource Languages: The Case of Zarma Grammatical error correction (GEC) aims to improve quality and readability of texts through accurate correction of linguistic mistakes. Previous work has focused on high-resource languages, while low-resource languages lack robust tools. However, low-resource languages often face problems such as: non-standard orthography, limited annotated corpora, and diverse dialects, which slows down the development of GEC tools. We present a study on GEC for Zarma, spoken by over five million in West Africa. We compare three approaches: rule-based methods, machine translation (MT) models, and large language models (LLMs). We evaluated them using a dataset of more than 250,000 examples, including synthetic and human-annotated data. Our results showed that the MT-based approach using M2M100 outperforms others, with a detection rate of 95. 82% and a suggestion accuracy of 78. 90% in automatic evaluations (AE) and an average score of 3.0 out of 5.0 in manual evaluation (ME) from native speakers for grammar and logical corrections. The rule-based method was effective for spelling errors but failed on complex context-level errors. LLMs -- MT5-small -- showed moderate performance. Our work supports use of MT models to enhance GEC in low-resource settings, and we validated these results with Bambara, another West African language. 7 authors · Oct 20, 2024
- Grammar-Aligned Decoding Large Language Models (LLMs) struggle with reliably generating highly structured outputs, such as program code, mathematical formulas, or well-formed markup. Constrained decoding approaches mitigate this problem by greedily restricting what tokens an LLM can output at each step to guarantee that the output matches a given constraint. Specifically, in grammar-constrained decoding (GCD), the LLM's output must follow a given grammar. In this paper, we demonstrate that GCD techniques (and in general constrained decoding techniques) can distort the LLM's distribution, leading to outputs that are grammatical but appear with likelihoods that are not proportional to the ones given by the LLM, and so ultimately are low-quality. We call the problem of aligning sampling with a grammar constraint, grammar-aligned decoding (GAD), and propose adaptive sampling with approximate expected futures (ASAp), a decoding algorithm that guarantees the output to be grammatical while provably producing outputs that match the conditional probability of the LLM's distribution conditioned on the given grammar constraint. Our algorithm uses prior sample outputs to soundly overapproximate the future grammaticality of different output prefixes. Our evaluation on code generation and structured NLP tasks shows how ASAp often produces outputs with higher likelihood (according to the LLM's distribution) than existing GCD techniques, while still enforcing the desired grammatical constraints. 5 authors · May 31, 2024
- Organic Data-Driven Approach for Turkish Grammatical Error Correction and LLMs Grammatical Error Correction has seen significant progress with the recent advancements in deep learning. As those methods require huge amounts of data, synthetic datasets are being built to fill this gap. Unfortunately, synthetic datasets are not organic enough in some cases and even require clean data to start with. Furthermore, most of the work that has been done is focused mostly on English. In this work, we introduce a new organic data-driven approach, clean insertions, to build parallel Turkish Grammatical Error Correction datasets from any organic data, and to clean the data used for training Large Language Models. We achieve state-of-the-art results on two Turkish Grammatical Error Correction test sets out of the three publicly available ones. We also show the effectiveness of our method on the training losses of training language models. 2 authors · May 24, 2024
- Grammatical Error Correction for Code-Switched Sentences by Learners of English Code-switching (CSW) is a common phenomenon among multilingual speakers where multiple languages are used in a single discourse or utterance. Mixed language utterances may still contain grammatical errors however, yet most existing Grammar Error Correction (GEC) systems have been trained on monolingual data and not developed with CSW in mind. In this work, we conduct the first exploration into the use of GEC systems on CSW text. Through this exploration, we propose a novel method of generating synthetic CSW GEC datasets by translating different spans of text within existing GEC corpora. We then investigate different methods of selecting these spans based on CSW ratio, switch-point factor and linguistic constraints, and identify how they affect the performance of GEC systems on CSW text. Our best model achieves an average increase of 1.57 F_{0.5} across 3 CSW test sets (English-Chinese, English-Korean and English-Japanese) without affecting the model's performance on a monolingual dataset. We furthermore discovered that models trained on one CSW language generalise relatively well to other typologically similar CSW languages. 5 authors · Apr 18, 2024
- Gramian Attention Heads are Strong yet Efficient Vision Learners We introduce a novel architecture design that enhances expressiveness by incorporating multiple head classifiers (\ie, classification heads) instead of relying on channel expansion or additional building blocks. Our approach employs attention-based aggregation, utilizing pairwise feature similarity to enhance multiple lightweight heads with minimal resource overhead. We compute the Gramian matrices to reinforce class tokens in an attention layer for each head. This enables the heads to learn more discriminative representations, enhancing their aggregation capabilities. Furthermore, we propose a learning algorithm that encourages heads to complement each other by reducing correlation for aggregation. Our models eventually surpass state-of-the-art CNNs and ViTs regarding the accuracy-throughput trade-off on ImageNet-1K and deliver remarkable performance across various downstream tasks, such as COCO object instance segmentation, ADE20k semantic segmentation, and fine-grained visual classification datasets. The effectiveness of our framework is substantiated by practical experimental results and further underpinned by generalization error bound. We release the code publicly at: https://github.com/Lab-LVM/imagenet-models. 3 authors · Oct 25, 2023
- GECTurk: Grammatical Error Correction and Detection Dataset for Turkish Grammatical Error Detection and Correction (GEC) tools have proven useful for native speakers and second language learners. Developing such tools requires a large amount of parallel, annotated data, which is unavailable for most languages. Synthetic data generation is a common practice to overcome the scarcity of such data. However, it is not straightforward for morphologically rich languages like Turkish due to complex writing rules that require phonological, morphological, and syntactic information. In this work, we present a flexible and extensible synthetic data generation pipeline for Turkish covering more than 20 expert-curated grammar and spelling rules (a.k.a., writing rules) implemented through complex transformation functions. Using this pipeline, we derive 130,000 high-quality parallel sentences from professionally edited articles. Additionally, we create a more realistic test set by manually annotating a set of movie reviews. We implement three baselines formulating the task as i) neural machine translation, ii) sequence tagging, and iii) prefix tuning with a pretrained decoder-only model, achieving strong results. Furthermore, we perform exhaustive experiments on out-of-domain datasets to gain insights on the transferability and robustness of the proposed approaches. Our results suggest that our corpus, GECTurk, is high-quality and allows knowledge transfer for the out-of-domain setting. To encourage further research on Turkish GEC, we release our datasets, baseline models, and the synthetic data generation pipeline at https://github.com/GGLAB-KU/gecturk. 4 authors · Sep 20, 2023 1
- Automatic Design of Semantic Similarity Ensembles Using Grammatical Evolution Semantic similarity measures are widely used in natural language processing to catalyze various computer-related tasks. However, no single semantic similarity measure is the most appropriate for all tasks, and researchers often use ensemble strategies to ensure performance. This research work proposes a method for automatically designing semantic similarity ensembles. In fact, our proposed method uses grammatical evolution, for the first time, to automatically select and aggregate measures from a pool of candidates to create an ensemble that maximizes correlation to human judgment. The method is evaluated on several benchmark datasets and compared to state-of-the-art ensembles, showing that it can significantly improve similarity assessment accuracy and outperform existing methods in some cases. As a result, our research demonstrates the potential of using grammatical evolution to automatically compare text and prove the benefits of using ensembles for semantic similarity tasks. The source code that illustrates our approach can be downloaded from https://github.com/jorge-martinez-gil/sesige. 1 authors · Jul 3, 2023
- Byte-Level Grammatical Error Correction Using Synthetic and Curated Corpora Grammatical error correction (GEC) is the task of correcting typos, spelling, punctuation and grammatical issues in text. Approaching the problem as a sequence-to-sequence task, we compare the use of a common subword unit vocabulary and byte-level encoding. Initial synthetic training data is created using an error-generating pipeline, and used for finetuning two subword-level models and one byte-level model. Models are then finetuned further on hand-corrected error corpora, including texts written by children, university students, dyslexic and second-language writers, and evaluated over different error types and origins. We show that a byte-level model enables higher correction quality than a subword approach, not only for simple spelling errors, but also for more complex semantic, stylistic and grammatical issues. In particular, initial training on synthetic corpora followed by finetuning on a relatively small parallel corpus of real-world errors helps the byte-level model correct a wide range of commonly occurring errors. Our experiments are run for the Icelandic language but should hold for other similar languages, particularly morphologically rich ones. 6 authors · May 29, 2023
- FCGEC: Fine-Grained Corpus for Chinese Grammatical Error Correction Grammatical Error Correction (GEC) has been broadly applied in automatic correction and proofreading system recently. However, it is still immature in Chinese GEC due to limited high-quality data from native speakers in terms of category and scale. In this paper, we present FCGEC, a fine-grained corpus to detect, identify and correct the grammatical errors. FCGEC is a human-annotated corpus with multiple references, consisting of 41,340 sentences collected mainly from multi-choice questions in public school Chinese examinations. Furthermore, we propose a Switch-Tagger-Generator (STG) baseline model to correct the grammatical errors in low-resource settings. Compared to other GEC benchmark models, experimental results illustrate that STG outperforms them on our FCGEC. However, there exists a significant gap between benchmark models and humans that encourages future models to bridge it. 5 authors · Oct 22, 2022
37 Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens Are n-gram language models still relevant in this era of neural large language models (LLMs)? Our answer is yes, and we show their values in both text analysis and improving neural LLMs. Yet this necessitates modernizing n-gram models in two aspects. First, we train them at the same data scale as neural LLMs -- 1.4 trillion tokens. This is the largest n-gram model ever built. Second, existing n-gram models use small n which hinders their performance; we instead allow n to be arbitrarily large, by introducing a new infty-gram LM with backoff. Instead of pre-computing n-gram count tables (which would be very expensive), we develop an engine named infini-gram -- powered by suffix arrays -- that can compute infty-gram (as well as n-gram with arbitrary n) probabilities with millisecond-level latency. The infty-gram framework and infini-gram engine enable us to conduct many novel and interesting analyses of human-written and machine-generated text: we find that the infty-gram LM has fairly high accuracy for next-token prediction (47%), and can complement neural LLMs to greatly reduce their language modeling perplexities. When analyzing machine-generated text, we also observe irregularities in the machine--infty-gram agreement level with respect to the suffix length, which indicates deficiencies in neural LLM pretraining and the positional embeddings of Transformers. We open-source our infini-gram engine in the hopes of enabling more study on how to best use verbatim information retrieved from large text corpora. 5 authors · Jan 30, 2024 2
2 The Surprising Effectiveness of Membership Inference with Simple N-Gram Coverage Membership inference attacks serves as useful tool for fair use of language models, such as detecting potential copyright infringement and auditing data leakage. However, many current state-of-the-art attacks require access to models' hidden states or probability distribution, which prevents investigation into more widely-used, API-access only models like GPT-4. In this work, we introduce N-Gram Coverage Attack, a membership inference attack that relies solely on text outputs from the target model, enabling attacks on completely black-box models. We leverage the observation that models are more likely to memorize and subsequently generate text patterns that were commonly observed in their training data. Specifically, to make a prediction on a candidate member, N-Gram Coverage Attack first obtains multiple model generations conditioned on a prefix of the candidate. It then uses n-gram overlap metrics to compute and aggregate the similarities of these outputs with the ground truth suffix; high similarities indicate likely membership. We first demonstrate on a diverse set of existing benchmarks that N-Gram Coverage Attack outperforms other black-box methods while also impressively achieving comparable or even better performance to state-of-the-art white-box attacks - despite having access to only text outputs. Interestingly, we find that the success rate of our method scales with the attack compute budget - as we increase the number of sequences generated from the target model conditioned on the prefix, attack performance tends to improve. Having verified the accuracy of our method, we use it to investigate previously unstudied closed OpenAI models on multiple domains. We find that more recent models, such as GPT-4o, exhibit increased robustness to membership inference, suggesting an evolving trend toward improved privacy protections. 10 authors · Aug 13 1
2 Infini-gram mini: Exact n-gram Search at the Internet Scale with FM-Index Language models are trained mainly on massive text data from the Internet, and it becomes increasingly important to understand this data source. Exact-match search engines enable searching in large text corpora -- counting string appearances and retrieving the enclosing documents -- yet the high storage overhead hinders their application on Internet-scale data. We present Infini-gram mini, an efficient and scalable system that can make petabyte-level text corpora searchable. Based on the FM-index data structure (Ferragina and Manzini, 2000), which simultaneously indexes and compresses text, our system creates indexes with size only 44% of the corpus. Infini-gram mini greatly improves upon the best existing implementation of FM-index in terms of indexing speed (18times) and memory use during both indexing (3.2times reduction) and querying (down to a negligible amount). We index 46TB of Internet text in 50 days with a single 128-core CPU node (or 19 hours if using 75 such nodes). We show one important use case of Infini-gram mini in a large-scale analysis of benchmark contamination. We find several core LM evaluation benchmarks to be heavily contaminated in Internet crawls (up to 40% in SQuAD), which could lead to overestimating the capabilities of language models if trained on such data. We host a benchmark contamination bulletin to share the contamination rate of many core and community-contributed benchmarks. We also release a web interface and an API endpoint to serve general search queries on Infini-gram mini indexes. 5 authors · Jun 13 2
2 Skip-gram Language Modeling Using Sparse Non-negative Matrix Probability Estimation We present a novel family of language model (LM) estimation techniques named Sparse Non-negative Matrix (SNM) estimation. A first set of experiments empirically evaluating it on the One Billion Word Benchmark shows that SNM n-gram LMs perform almost as well as the well-established Kneser-Ney (KN) models. When using skip-gram features the models are able to match the state-of-the-art recurrent neural network (RNN) LMs; combining the two modeling techniques yields the best known result on the benchmark. The computational advantages of SNM over both maximum entropy and RNN LM estimation are probably its main strength, promising an approach that has the same flexibility in combining arbitrary features effectively and yet should scale to very large amounts of data as gracefully as n-gram LMs do. 3 authors · Dec 3, 2014
- Efficient Bound of Lipschitz Constant for Convolutional Layers by Gram Iteration Since the control of the Lipschitz constant has a great impact on the training stability, generalization, and robustness of neural networks, the estimation of this value is nowadays a real scientific challenge. In this paper we introduce a precise, fast, and differentiable upper bound for the spectral norm of convolutional layers using circulant matrix theory and a new alternative to the Power iteration. Called the Gram iteration, our approach exhibits a superlinear convergence. First, we show through a comprehensive set of experiments that our approach outperforms other state-of-the-art methods in terms of precision, computational cost, and scalability. Then, it proves highly effective for the Lipschitz regularization of convolutional neural networks, with competitive results against concurrent approaches. Code is available at https://github.com/blaisedelattre/lip4conv. 4 authors · May 25, 2023
- ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding Coarse-grained linguistic information, such as named entities or phrases, facilitates adequately representation learning in pre-training. Previous works mainly focus on extending the objective of BERT's Masked Language Modeling (MLM) from masking individual tokens to contiguous sequences of n tokens. We argue that such contiguously masking method neglects to model the intra-dependencies and inter-relation of coarse-grained linguistic information. As an alternative, we propose ERNIE-Gram, an explicitly n-gram masking method to enhance the integration of coarse-grained information into pre-training. In ERNIE-Gram, n-grams are masked and predicted directly using explicit n-gram identities rather than contiguous sequences of n tokens. Furthermore, ERNIE-Gram employs a generator model to sample plausible n-gram identities as optional n-gram masks and predict them in both coarse-grained and fine-grained manners to enable comprehensive n-gram prediction and relation modeling. We pre-train ERNIE-Gram on English and Chinese text corpora and fine-tune on 19 downstream tasks. Experimental results show that ERNIE-Gram outperforms previous pre-training models like XLNet and RoBERTa by a large margin, and achieves comparable results with state-of-the-art methods. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE. 7 authors · Oct 22, 2020
1 Controlled Generation with Prompt Insertion for Natural Language Explanations in Grammatical Error Correction In Grammatical Error Correction (GEC), it is crucial to ensure the user's comprehension of a reason for correction. Existing studies present tokens, examples, and hints as to the basis for correction but do not directly explain the reasons for corrections. Although methods that use Large Language Models (LLMs) to provide direct explanations in natural language have been proposed for various tasks, no such method exists for GEC. Generating explanations for GEC corrections involves aligning input and output tokens, identifying correction points, and presenting corresponding explanations consistently. However, it is not straightforward to specify a complex format to generate explanations, because explicit control of generation is difficult with prompts. This study introduces a method called controlled generation with Prompt Insertion (PI) so that LLMs can explain the reasons for corrections in natural language. In PI, LLMs first correct the input text, and then we automatically extract the correction points based on the rules. The extracted correction points are sequentially inserted into the LLM's explanation output as prompts, guiding the LLMs to generate explanations for the correction points. We also create an Explainable GEC (XGEC) dataset of correction reasons by annotating NUCLE, CoNLL2013, and CoNLL2014. Although generations from GPT-3 and ChatGPT using original prompts miss some correction points, the generation control using PI can explicitly guide to describe explanations for all correction points, contributing to improved performance in generating correction reasons. 2 authors · Sep 20, 2023
- Chinese Grammatical Error Correction: A Survey Chinese Grammatical Error Correction (CGEC) is a critical task in Natural Language Processing, addressing the growing demand for automated writing assistance in both second-language (L2) and native (L1) Chinese writing. While L2 learners struggle with mastering complex grammatical structures, L1 users also benefit from CGEC in academic, professional, and formal contexts where writing precision is essential. This survey provides a comprehensive review of CGEC research, covering datasets, annotation schemes, evaluation methodologies, and system advancements. We examine widely used CGEC datasets, highlighting their characteristics, limitations, and the need for improved standardization. We also analyze error annotation frameworks, discussing challenges such as word segmentation ambiguity and the classification of Chinese-specific error types. Furthermore, we review evaluation metrics, focusing on their adaptation from English GEC to Chinese, including character-level scoring and the use of multiple references. In terms of system development, we trace the evolution from rule-based and statistical approaches to neural architectures, including Transformer-based models and the integration of large pre-trained language models. By consolidating existing research and identifying key challenges, this survey provides insights into the current state of CGEC and outlines future directions, including refining annotation standards to address segmentation challenges, and leveraging multilingual approaches to enhance CGEC. 7 authors · Apr 1
- Enhancing Grammatical Error Detection using BERT with Cleaned Lang-8 Dataset This paper presents an improved LLM based model for Grammatical Error Detection (GED), which is a very challenging and equally important problem for many applications. The traditional approach to GED involved hand-designed features, but recently, Neural Networks (NN) have automated the discovery of these features, improving performance in GED. Traditional rule-based systems have an F1 score of 0.50-0.60 and earlier machine learning models give an F1 score of 0.65-0.75, including decision trees and simple neural networks. Previous deep learning models, for example, Bi-LSTM, have reported F1 scores within the range from 0.80 to 0.90. In our study, we have fine-tuned various transformer models using the Lang8 dataset rigorously cleaned by us. In our experiments, the BERT-base-uncased model gave an impressive performance with an F1 score of 0.91 and accuracy of 98.49% on training data and 90.53% on testing data, also showcasing the importance of data cleaning. Increasing model size using BERT-large-uncased or RoBERTa-large did not give any noticeable improvements in performance or advantage for this task, underscoring that larger models are not always better. Our results clearly show how far rigorous data cleaning and simple transformer-based models can go toward significantly improving the quality of GED. 2 authors · Nov 23, 2024
- Structural Priming Demonstrates Abstract Grammatical Representations in Multilingual Language Models Abstract grammatical knowledge - of parts of speech and grammatical patterns - is key to the capacity for linguistic generalization in humans. But how abstract is grammatical knowledge in large language models? In the human literature, compelling evidence for grammatical abstraction comes from structural priming. A sentence that shares the same grammatical structure as a preceding sentence is processed and produced more readily. Because confounds exist when using stimuli in a single language, evidence of abstraction is even more compelling from crosslingual structural priming, where use of a syntactic structure in one language primes an analogous structure in another language. We measure crosslingual structural priming in large language models, comparing model behavior to human experimental results from eight crosslingual experiments covering six languages, and four monolingual structural priming experiments in three non-English languages. We find evidence for abstract monolingual and crosslingual grammatical representations in the models that function similarly to those found in humans. These results demonstrate that grammatical representations in multilingual language models are not only similar across languages, but they can causally influence text produced in different languages. 4 authors · Nov 15, 2023
- GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing We present GraPPa, an effective pre-training approach for table semantic parsing that learns a compositional inductive bias in the joint representations of textual and tabular data. We construct synthetic question-SQL pairs over high-quality tables via a synchronous context-free grammar (SCFG) induced from existing text-to-SQL datasets. We pre-train our model on the synthetic data using a novel text-schema linking objective that predicts the syntactic role of a table field in the SQL for each question-SQL pair. To maintain the model's ability to represent real-world data, we also include masked language modeling (MLM) over several existing table-and-language datasets to regularize the pre-training process. On four popular fully supervised and weakly supervised table semantic parsing benchmarks, GraPPa significantly outperforms RoBERTa-large as the feature representation layers and establishes new state-of-the-art results on all of them. 9 authors · Sep 29, 2020
- GECToR -- Grammatical Error Correction: Tag, Not Rewrite In this paper, we present a simple and efficient GEC sequence tagger using a Transformer encoder. Our system is pre-trained on synthetic data and then fine-tuned in two stages: first on errorful corpora, and second on a combination of errorful and error-free parallel corpora. We design custom token-level transformations to map input tokens to target corrections. Our best single-model/ensemble GEC tagger achieves an F_{0.5} of 65.3/66.5 on CoNLL-2014 (test) and F_{0.5} of 72.4/73.6 on BEA-2019 (test). Its inference speed is up to 10 times as fast as a Transformer-based seq2seq GEC system. The code and trained models are publicly available. 4 authors · May 26, 2020
- R-grams: Unsupervised Learning of Semantic Units in Natural Language This paper investigates data-driven segmentation using Re-Pair or Byte Pair Encoding-techniques. In contrast to previous work which has primarily been focused on subword units for machine translation, we are interested in the general properties of such segments above the word level. We call these segments r-grams, and discuss their properties and the effect they have on the token frequency distribution. The proposed approach is evaluated by demonstrating its viability in embedding techniques, both in monolingual and multilingual test settings. We also provide a number of qualitative examples of the proposed methodology, demonstrating its viability as a language-invariant segmentation procedure. 3 authors · Aug 14, 2018
21 Transformers Can Represent $n$-gram Language Models Plenty of existing work has analyzed the abilities of the transformer architecture by describing its representational capacity with formal models of computation. However, the focus so far has been on analyzing the architecture in terms of language acceptance. We contend that this is an ill-suited problem in the study of language models (LMs), which are definitionally probability distributions over strings. In this paper, we focus on the relationship between transformer LMs and n-gram LMs, a simple and historically relevant class of language models. We show that transformer LMs using the hard or sparse attention mechanisms can exactly represent any n-gram LM, giving us a concrete lower bound on their probabilistic representational capacity. This provides a first step towards understanding the mechanisms that transformer LMs can use to represent probability distributions over strings. 2 authors · Apr 23, 2024 1
1 DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of GPT-Generated Text Large language models (LLMs) have notably enhanced the fluency and diversity of machine-generated text. However, this progress also presents a significant challenge in detecting the origin of a given text, and current research on detection methods lags behind the rapid evolution of LLMs. Conventional training-based methods have limitations in flexibility, particularly when adapting to new domains, and they often lack explanatory power. To address this gap, we propose a novel training-free detection strategy called Divergent N-Gram Analysis (DNA-GPT). Given a text, we first truncate it in the middle and then use only the preceding portion as input to the LLMs to regenerate the new remaining parts. By analyzing the differences between the original and new remaining parts through N-gram analysis in black-box or probability divergence in white-box, we can clearly illustrate significant discrepancies between machine-generated and human-written text. We conducted extensive experiments on the most advanced LLMs from OpenAI, including text-davinci-003, GPT-3.5-turbo, and GPT-4, as well as open-source models such as GPT-NeoX-20B and LLaMa-13B. Results show that our zero-shot approach exhibits state-of-the-art performance in distinguishing between human and GPT-generated text on four English and one German dataset, outperforming OpenAI's own classifier, which is trained on millions of text. Additionally, our methods provide reasonable explanations and evidence to support our claim, which is a unique feature of explainable detection. Our method is also robust under the revised text attack and can additionally solve model sourcing. Codes are available at https://github.com/Xianjun-Yang/DNA-GPT. 5 authors · May 26, 2023
- Rethinking Evaluation Metrics for Grammatical Error Correction: Why Use a Different Evaluation Process than Human? One of the goals of automatic evaluation metrics in grammatical error correction (GEC) is to rank GEC systems such that it matches human preferences. However, current automatic evaluations are based on procedures that diverge from human evaluation. Specifically, human evaluation derives rankings by aggregating sentence-level relative evaluation results, e.g., pairwise comparisons, using a rating algorithm, whereas automatic evaluation averages sentence-level absolute scores to obtain corpus-level scores, which are then sorted to determine rankings. In this study, we propose an aggregation method for existing automatic evaluation metrics which aligns with human evaluation methods to bridge this gap. We conducted experiments using various metrics, including edit-based metrics, n-gram based metrics, and sentence-level metrics, and show that resolving the gap improves results for the most of metrics on the SEEDA benchmark. We also found that even BERT-based metrics sometimes outperform the metrics of GPT-4. The proposed ranking method is integrated gec-metrics. 3 authors · Feb 13
- From N-grams to Pre-trained Multilingual Models For Language Identification In this paper, we investigate the use of N-gram models and Large Pre-trained Multilingual models for Language Identification (LID) across 11 South African languages. For N-gram models, this study shows that effective data size selection remains crucial for establishing effective frequency distributions of the target languages, that efficiently model each language, thus, improving language ranking. For pre-trained multilingual models, we conduct extensive experiments covering a diverse set of massively pre-trained multilingual (PLM) models -- mBERT, RemBERT, XLM-r, and Afri-centric multilingual models -- AfriBERTa, Afro-XLMr, AfroLM, and Serengeti. We further compare these models with available large-scale Language Identification tools: Compact Language Detector v3 (CLD V3), AfroLID, GlotLID, and OpenLID to highlight the importance of focused-based LID. From these, we show that Serengeti is a superior model across models: N-grams to Transformers on average. Moreover, we propose a lightweight BERT-based LID model (za_BERT_lid) trained with NHCLT + Vukzenzele corpus, which performs on par with our best-performing Afri-centric models. 2 authors · Oct 11, 2024
- Lossless Acceleration of Large Language Model via Adaptive N-gram Parallel Decoding While Large Language Models (LLMs) have shown remarkable abilities, they are hindered by significant resource consumption and considerable latency due to autoregressive processing. In this study, we introduce Adaptive N-gram Parallel Decoding (ANPD), an innovative and lossless approach that accelerates inference by allowing the simultaneous generation of multiple tokens. ANPD incorporates a two-stage approach: it begins with a rapid drafting phase that employs an N-gram module, which adapts based on the current interactive context, followed by a verification phase, during which the original LLM assesses and confirms the proposed tokens. Consequently, ANPD preserves the integrity of the LLM's original output while enhancing processing speed. We further leverage a multi-level architecture for the N-gram module to enhance the precision of the initial draft, consequently reducing inference latency. ANPD eliminates the need for retraining or extra GPU memory, making it an efficient and plug-and-play enhancement. In our experiments, models such as LLaMA and its fine-tuned variants have shown speed improvements up to 3.67x, validating the effectiveness of our proposed ANPD. 3 authors · Apr 10, 2024 3
- ZEN 2.0: Continue Training and Adaption for N-gram Enhanced Text Encoders Pre-trained text encoders have drawn sustaining attention in natural language processing (NLP) and shown their capability in obtaining promising results in different tasks. Recent studies illustrated that external self-supervised signals (or knowledge extracted by unsupervised learning, such as n-grams) are beneficial to provide useful semantic evidence for understanding languages such as Chinese, so as to improve the performance on various downstream tasks accordingly. To further enhance the encoders, in this paper, we propose to pre-train n-gram-enhanced encoders with a large volume of data and advanced techniques for training. Moreover, we try to extend the encoder to different languages as well as different domains, where it is confirmed that the same architecture is applicable to these varying circumstances and new state-of-the-art performance is observed from a long list of NLP tasks across languages and domains. 4 authors · May 4, 2021
- Real-Time Optimized N-gram For Mobile Devices With the increasing number of mobile devices, there has been continuous research on generating optimized Language Models (LMs) for soft keyboard. In spite of advances in this domain, building a single LM for low-end feature phones as well as high-end smartphones is still a pressing need. Hence, we propose a novel technique, Optimized N-gram (Op-Ngram), an end-to-end N-gram pipeline that utilises mobile resources efficiently for faster Word Completion (WC) and Next Word Prediction (NWP). Op-Ngram applies Stupid Backoff and pruning strategies to generate a light-weight model. The LM loading time on mobile is linear with respect to model size. We observed that Op-Ngram gives 37% improvement in Language Model (LM)-ROM size, 76% in LM-RAM size, 88% in loading time and 89% in average suggestion time as compared to SORTED array variant of BerkeleyLM. Moreover, our method shows significant performance improvement over KenLM as well. 7 authors · Jan 7, 2021
- ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training This paper presents a new sequence-to-sequence pre-training model called ProphetNet, which introduces a novel self-supervised objective named future n-gram prediction and the proposed n-stream self-attention mechanism. Instead of optimizing one-step-ahead prediction in the traditional sequence-to-sequence model, the ProphetNet is optimized by n-step ahead prediction that predicts the next n tokens simultaneously based on previous context tokens at each time step. The future n-gram prediction explicitly encourages the model to plan for the future tokens and prevent overfitting on strong local correlations. We pre-train ProphetNet using a base scale dataset (16GB) and a large-scale dataset (160GB), respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for abstractive summarization and question generation tasks. Experimental results show that ProphetNet achieves new state-of-the-art results on all these datasets compared to the models using the same scale pre-training corpus. 8 authors · Jan 13, 2020
2 From Grunts to Grammar: Emergent Language from Cooperative Foraging Early cavemen relied on gestures, vocalizations, and simple signals to coordinate, plan, avoid predators, and share resources. Today, humans collaborate using complex languages to achieve remarkable results. What drives this evolution in communication? How does language emerge, adapt, and become vital for teamwork? Understanding the origins of language remains a challenge. A leading hypothesis in linguistics and anthropology posits that language evolved to meet the ecological and social demands of early human cooperation. Language did not arise in isolation, but through shared survival goals. Inspired by this view, we investigate the emergence of language in multi-agent Foraging Games. These environments are designed to reflect the cognitive and ecological constraints believed to have influenced the evolution of communication. Agents operate in a shared grid world with only partial knowledge about other agents and the environment, and must coordinate to complete games like picking up high-value targets or executing temporally ordered actions. Using end-to-end deep reinforcement learning, agents learn both actions and communication strategies from scratch. We find that agents develop communication protocols with hallmark features of natural language: arbitrariness, interchangeability, displacement, cultural transmission, and compositionality. We quantify each property and analyze how different factors, such as population size and temporal dependencies, shape specific aspects of the emergent language. Our framework serves as a platform for studying how language can evolve from partial observability, temporal reasoning, and cooperative goals in embodied multi-agent settings. We will release all data, code, and models publicly. 7 authors · May 19 2
1 Layer-wise Minimal Pair Probing Reveals Contextual Grammatical-Conceptual Hierarchy in Speech Representations Transformer-based speech language models (SLMs) have significantly improved neural speech recognition and understanding. While existing research has examined how well SLMs encode shallow acoustic and phonetic features, the extent to which SLMs encode nuanced syntactic and conceptual features remains unclear. By drawing parallels with linguistic competence assessments for large language models, this study is the first to systematically evaluate the presence of contextual syntactic and semantic features across SLMs for self-supervised learning (S3M), automatic speech recognition (ASR), speech compression (codec), and as the encoder for auditory large language models (AudioLLMs). Through minimal pair designs and diagnostic feature analysis across 71 tasks spanning diverse linguistic levels, our layer-wise and time-resolved analysis uncovers that 1) all speech encode grammatical features more robustly than conceptual ones. 4 authors · Sep 19
1 ChatGPT for Arabic Grammatical Error Correction Recently, large language models (LLMs) fine-tuned to follow human instruction have exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC) tasks, particularly in non-English languages, remains significantly unexplored. In this paper, we delve into abilities of instruction fine-tuned LLMs in Arabic GEC, a task made complex due to Arabic's rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F1 score under expert prompting (approximately 5 points higher than our established baseline). This highlights the potential of LLMs in low-resource settings, offering a viable approach for generating useful synthetic data for model training. Despite these positive results, we find that instruction fine-tuned models, regardless of their size, significantly underperform compared to fully fine-tuned models of significantly smaller sizes. This disparity highlights a substantial room for improvements for LLMs. Inspired by methods from low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our work sets new SoTA for Arabic GEC, with 72.19% and 73.26 F_{1} on the 2014 and 2015 QALB datasets, respectively. 4 authors · Aug 8, 2023
- IMPARA-GED: Grammatical Error Detection is Boosting Reference-free Grammatical Error Quality Estimator We propose IMPARA-GED, a novel reference-free automatic grammatical error correction (GEC) evaluation method with grammatical error detection (GED) capabilities. We focus on the quality estimator of IMPARA, an existing automatic GEC evaluation method, and construct that of IMPARA-GED using a pre-trained language model with enhanced GED capabilities. Experimental results on SEEDA, a meta-evaluation dataset for automatic GEC evaluation methods, demonstrate that IMPARA-GED achieves the highest correlation with human sentence-level evaluations. 3 authors · Jun 3
- Detecting Spelling and Grammatical Anomalies in Russian Poetry Texts The quality of natural language texts in fine-tuning datasets plays a critical role in the performance of generative models, particularly in computational creativity tasks such as poem or song lyric generation. Fluency defects in generated poems significantly reduce their value. However, training texts are often sourced from internet-based platforms without stringent quality control, posing a challenge for data engineers to manage defect levels effectively. To address this issue, we propose the use of automated linguistic anomaly detection to identify and filter out low-quality texts from training datasets for creative models. In this paper, we present a comprehensive comparison of unsupervised and supervised text anomaly detection approaches, utilizing both synthetic and human-labeled datasets. We also introduce the RUPOR dataset, a collection of Russian-language human-labeled poems designed for cross-sentence grammatical error detection, and provide the full evaluation code. Our work aims to empower the community with tools and insights to improve the quality of training datasets for generative models in creative domains. 1 authors · May 7
- Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study Text editing frames grammatical error correction (GEC) as a sequence tagging problem, where edit tags are assigned to input tokens, and applying these edits results in the corrected text. This approach has gained attention for its efficiency and interpretability. However, while extensively explored for English, text editing remains largely underexplored for morphologically rich languages like Arabic. In this paper, we introduce a text editing approach that derives edit tags directly from data, eliminating the need for language-specific edits. We demonstrate its effectiveness on Arabic, a diglossic and morphologically rich language, and investigate the impact of different edit representations on model performance. Our approach achieves SOTA results on two Arabic GEC benchmarks and performs on par with SOTA on two others. Additionally, our models are over six times faster than existing Arabic GEC systems, making our approach more practical for real-world applications. Finally, we explore ensemble models, demonstrating how combining different models leads to further performance improvements. We make our code, data, and pretrained models publicly available. 2 authors · Mar 2
- DSGram: Dynamic Weighting Sub-Metrics for Grammatical Error Correction in the Era of Large Language Models Evaluating the performance of Grammatical Error Correction (GEC) models has become increasingly challenging, as large language model (LLM)-based GEC systems often produce corrections that diverge from provided gold references. This discrepancy undermines the reliability of traditional reference-based evaluation metrics. In this study, we propose a novel evaluation framework for GEC models, DSGram, integrating Semantic Coherence, Edit Level, and Fluency, and utilizing a dynamic weighting mechanism. Our framework employs the Analytic Hierarchy Process (AHP) in conjunction with large language models to ascertain the relative importance of various evaluation criteria. Additionally, we develop a dataset incorporating human annotations and LLM-simulated sentences to validate our algorithms and fine-tune more cost-effective models. Experimental results indicate that our proposed approach enhances the effectiveness of GEC model evaluations. 4 authors · Dec 17, 2024
- ECHOPulse: ECG controlled echocardio-grams video generation Echocardiography (ECHO) is essential for cardiac assessments, but its video quality and interpretation heavily relies on manual expertise, leading to inconsistent results from clinical and portable devices. ECHO video generation offers a solution by improving automated monitoring through synthetic data and generating high-quality videos from routine health data. However, existing models often face high computational costs, slow inference, and rely on complex conditional prompts that require experts' annotations. To address these challenges, we propose ECHOPULSE, an ECG-conditioned ECHO video generation model. ECHOPULSE introduces two key advancements: (1) it accelerates ECHO video generation by leveraging VQ-VAE tokenization and masked visual token modeling for fast decoding, and (2) it conditions on readily accessible ECG signals, which are highly coherent with ECHO videos, bypassing complex conditional prompts. To the best of our knowledge, this is the first work to use time-series prompts like ECG signals for ECHO video generation. ECHOPULSE not only enables controllable synthetic ECHO data generation but also provides updated cardiac function information for disease monitoring and prediction beyond ECG alone. Evaluations on three public and private datasets demonstrate state-of-the-art performance in ECHO video generation across both qualitative and quantitative measures. Additionally, ECHOPULSE can be easily generalized to other modality generation tasks, such as cardiac MRI, fMRI, and 3D CT generation. Demo can seen from https://github.com/levyisthebest/ECHOPulse_Prelease. 12 authors · Oct 4, 2024
- Can LLMs Really Learn to Translate a Low-Resource Language from One Grammar Book? Extremely low-resource (XLR) languages lack substantial corpora for training NLP models, motivating the use of all available resources such as dictionaries and grammar books. Machine Translation from One Book (Tanzer et al., 2024) suggests that prompting long-context LLMs with one grammar book enables English-Kalamang translation, an XLR language unseen by LLMs - a noteworthy case of linguistics helping an NLP task. We investigate the source of this translation ability, finding almost all improvements stem from the book's parallel examples rather than its grammatical explanations. We find similar results for Nepali and Guarani, seen low-resource languages, and we achieve performance comparable to an LLM with a grammar book by simply fine-tuning an encoder-decoder translation model. We then investigate where grammar books help by testing two linguistic tasks, grammaticality judgment and gloss prediction, and we explore what kind of grammatical knowledge helps by introducing a typological feature prompt that achieves leading results on these more relevant tasks. We thus emphasise the importance of task-appropriate data for XLR languages: parallel examples for translation, and grammatical data for linguistic tasks. As we find no evidence that long-context LLMs can make effective use of grammatical explanations for XLR translation, we conclude data collection for multilingual XLR tasks such as translation is best focused on parallel data over linguistic description. 5 authors · Sep 27, 2024
- SynCode: LLM Generation with Grammar Augmentation LLMs are widely used in complex AI applications. These applications underscore the need for LLM outputs to adhere to a specific format, for their integration with other components in the systems. Typically the format rules e.g., for data serialization formats such as JSON, YAML, or Code in Programming Language are expressed as context-free grammar (CFG). Due to the hallucinations and unreliability of LLMs, instructing LLMs to adhere to specified syntax becomes an increasingly important challenge. We present SynCode, a novel framework for efficient and general syntactical decoding with LLMs, to address this challenge. SynCode leverages the CFG of a formal language, utilizing an offline-constructed efficient lookup table called DFA mask store based on the discrete finite automaton (DFA) of the language grammar terminals. We demonstrate SynCode's soundness and completeness given the CFG of the formal language, presenting its ability to retain syntactically valid tokens while rejecting invalid ones. SynCode seamlessly integrates with any language defined by CFG, as evidenced by experiments focusing on generating JSON, Python, and Go outputs. Our experiments evaluating the effectiveness of SynCode for JSON generation demonstrate that SynCode eliminates all syntax errors and significantly outperforms state-of-the-art baselines. Furthermore, our results underscore how SynCode significantly reduces 96.07% of syntax errors in generated Python and Go code, showcasing its substantial impact on enhancing syntactical precision in LLM generation. Our code is available at https://github.com/uiuc-focal-lab/syncode 5 authors · Mar 3, 2024
- Rethinking the Roles of Large Language Models in Chinese Grammatical Error Correction Recently, Large Language Models (LLMs) have been widely studied by researchers for their roles in various downstream NLP tasks. As a fundamental task in the NLP field, Chinese Grammatical Error Correction (CGEC) aims to correct all potential grammatical errors in the input sentences. Previous studies have shown that LLMs' performance as correctors on CGEC remains unsatisfactory due to its challenging task focus. To promote the CGEC field to better adapt to the era of LLMs, we rethink the roles of LLMs in the CGEC task so that they can be better utilized and explored in CGEC. Considering the rich grammatical knowledge stored in LLMs and their powerful semantic understanding capabilities, we utilize LLMs as explainers to provide explanation information for the CGEC small models during error correction to enhance performance. We also use LLMs as evaluators to bring more reasonable CGEC evaluations, thus alleviating the troubles caused by the subjectivity of the CGEC task. In particular, our work is also an active exploration of how LLMs and small models better collaborate in downstream tasks. Extensive experiments and detailed analyses on widely used datasets verify the effectiveness of our thinking intuition and the proposed methods. 10 authors · Feb 17, 2024
- ToddlerBERTa: Exploiting BabyBERTa for Grammar Learning and Language Understanding We present ToddlerBERTa, a BabyBERTa-like language model, exploring its capabilities through five different models with varied hyperparameters. Evaluating on BLiMP, SuperGLUE, MSGS, and a Supplement benchmark from the BabyLM challenge, we find that smaller models can excel in specific tasks, while larger models perform well with substantial data. Despite training on a smaller dataset, ToddlerBERTa demonstrates commendable performance, rivalling the state-of-the-art RoBERTa-base. The model showcases robust language understanding, even with single-sentence pretraining, and competes with baselines that leverage broader contextual information. Our work provides insights into hyperparameter choices, and data utilization, contributing to the advancement of language models. 1 authors · Aug 30, 2023 2
- Knowledge-driven Subword Grammar Modeling for Automatic Speech Recognition in Tamil and Kannada In this paper, we present specially designed automatic speech recognition (ASR) systems for the highly agglutinative and inflective languages of Tamil and Kannada that can recognize unlimited vocabulary of words. We use subwords as the basic lexical units for recognition and construct subword grammar weighted finite state transducer (SG-WFST) graphs for word segmentation that captures most of the complex word formation rules of the languages. We have identified the following category of words (i) verbs, (ii) nouns, (ii) pronouns, and (iv) numbers. The prefix, infix and suffix lists of subwords are created for each of these categories and are used to design the SG-WFST graphs. We also present a heuristic segmentation algorithm that can even segment exceptional words that do not follow the rules encapsulated in the SG-WFST graph. Most of the data-driven subword dictionary creation algorithms are computation driven, and hence do not guarantee morpheme-like units and so we have used the linguistic knowledge of the languages and manually created the subword dictionaries and the graphs. Finally, we train a deep neural network acoustic model and combine it with the pronunciation lexicon of the subword dictionary and the SG-WFST graph to build the subword-ASR systems. Since the subword-ASR produces subword sequences as output for a given test speech, we post-process its output to get the final word sequence, so that the actual number of words that can be recognized is much higher. Upon experimenting the subword-ASR system with the IISc-MILE Tamil and Kannada ASR corpora, we observe an absolute word error rate reduction of 12.39% and 13.56% over the baseline word-based ASR systems for Tamil and Kannada, respectively. 3 authors · Jul 27, 2022
- Sequence-to-Action: Grammatical Error Correction with Action Guided Sequence Generation The task of Grammatical Error Correction (GEC) has received remarkable attention with wide applications in Natural Language Processing (NLP) in recent years. While one of the key principles of GEC is to keep the correct parts unchanged and avoid over-correction, previous sequence-to-sequence (seq2seq) models generate results from scratch, which are not guaranteed to follow the original sentence structure and may suffer from the over-correction problem. In the meantime, the recently proposed sequence tagging models can overcome the over-correction problem by only generating edit operations, but are conditioned on human designed language-specific tagging labels. In this paper, we combine the pros and alleviate the cons of both models by proposing a novel Sequence-to-Action~(S2A) module. The S2A module jointly takes the source and target sentences as input, and is able to automatically generate a token-level action sequence before predicting each token, where each action is generated from three choices named SKIP, COPY and GENerate. Then the actions are fused with the basic seq2seq framework to provide final predictions. We conduct experiments on the benchmark datasets of both English and Chinese GEC tasks. Our model consistently outperforms the seq2seq baselines, while being able to significantly alleviate the over-correction problem as well as holding better generality and diversity in the generation results compared to the sequence tagging models. 7 authors · May 22, 2022
- ErAConD : Error Annotated Conversational Dialog Dataset for Grammatical Error Correction Currently available grammatical error correction (GEC) datasets are compiled using well-formed written text, limiting the applicability of these datasets to other domains such as informal writing and dialog. In this paper, we present a novel parallel GEC dataset drawn from open-domain chatbot conversations; this dataset is, to our knowledge, the first GEC dataset targeted to a conversational setting. To demonstrate the utility of the dataset, we use our annotated data to fine-tune a state-of-the-art GEC model, resulting in a 16 point increase in model precision. This is of particular importance in a GEC model, as model precision is considered more important than recall in GEC tasks since false positives could lead to serious confusion in language learners. We also present a detailed annotation scheme which ranks errors by perceived impact on comprehensibility, making our dataset both reproducible and extensible. Experimental results show the effectiveness of our data in improving GEC model performance in conversational scenario. 4 authors · Dec 15, 2021
- Natural Answer Generation: From Factoid Answer to Full-length Answer using Grammar Correction Question Answering systems these days typically use template-based language generation. Though adequate for a domain-specific task, these systems are too restrictive and predefined for domain-independent systems. This paper proposes a system that outputs a full-length answer given a question and the extracted factoid answer (short spans such as named entities) as the input. Our system uses constituency and dependency parse trees of questions. A transformer-based Grammar Error Correction model GECToR (2020), is used as a post-processing step for better fluency. We compare our system with (i) Modified Pointer Generator (SOTA) and (ii) Fine-tuned DialoGPT for factoid questions. We also test our approach on existential (yes-no) questions with better results. Our model generates accurate and fluent answers than the state-of-the-art (SOTA) approaches. The evaluation is done on NewsQA and SqUAD datasets with an increment of 0.4 and 0.9 percentage points in ROUGE-1 score respectively. Also the inference time is reduced by 85\% as compared to the SOTA. The improved datasets used for our evaluation will be released as part of the research contribution. 5 authors · Dec 7, 2021
- LM-Critic: Language Models for Unsupervised Grammatical Error Correction Training a model for grammatical error correction (GEC) requires a set of labeled ungrammatical / grammatical sentence pairs, but manually annotating such pairs can be expensive. Recently, the Break-It-Fix-It (BIFI) framework has demonstrated strong results on learning to repair a broken program without any labeled examples, but this relies on a perfect critic (e.g., a compiler) that returns whether an example is valid or not, which does not exist for the GEC task. In this work, we show how to leverage a pretrained language model (LM) in defining an LM-Critic, which judges a sentence to be grammatical if the LM assigns it a higher probability than its local perturbations. We apply this LM-Critic and BIFI along with a large set of unlabeled sentences to bootstrap realistic ungrammatical / grammatical pairs for training a corrector. We evaluate our approach on GEC datasets across multiple domains (CoNLL-2014, BEA-2019, GMEG-wiki and GMEG-yahoo) and show that it outperforms existing methods in both the unsupervised setting (+7.7 F0.5) and the supervised setting (+0.5 F0.5). 3 authors · Sep 14, 2021
- A Simple Recipe for Multilingual Grammatical Error Correction This paper presents a simple recipe to train state-of-the-art multilingual Grammatical Error Correction (GEC) models. We achieve this by first proposing a language-agnostic method to generate a large number of synthetic examples. The second ingredient is to use large-scale multilingual language models (up to 11B parameters). Once fine-tuned on language-specific supervised sets we surpass the previous state-of-the-art results on GEC benchmarks in four languages: English, Czech, German and Russian. Having established a new set of baselines for GEC, we make our results easily reproducible and accessible by releasing a cLang-8 dataset. It is produced by using our best model, which we call gT5, to clean the targets of a widely used yet noisy lang-8 dataset. cLang-8 greatly simplifies typical GEC training pipelines composed of multiple fine-tuning stages -- we demonstrate that performing a single fine-tuning step on cLang-8 with the off-the-shelf language models yields further accuracy improvements over an already top-performing gT5 model for English. 5 authors · Jun 7, 2021
- UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language We present a corpus professionally annotated for grammatical error correction (GEC) and fluency edits in the Ukrainian language. To the best of our knowledge, this is the first GEC corpus for the Ukrainian language. We collected texts with errors (20,715 sentences) from a diverse pool of contributors, including both native and non-native speakers. The data cover a wide variety of writing domains, from text chats and essays to formal writing. Professional proofreaders corrected and annotated the corpus for errors relating to fluency, grammar, punctuation, and spelling. This corpus can be used for developing and evaluating GEC systems in Ukrainian. More generally, it can be used for researching multilingual and low-resource NLP, morphologically rich languages, document-level GEC, and fluency correction. The corpus is publicly available at https://github.com/grammarly/ua-gec 2 authors · Mar 31, 2021
- A Probabilistic Generative Grammar for Semantic Parsing Domain-general semantic parsing is a long-standing goal in natural language processing, where the semantic parser is capable of robustly parsing sentences from domains outside of which it was trained. Current approaches largely rely on additional supervision from new domains in order to generalize to those domains. We present a generative model of natural language utterances and logical forms and demonstrate its application to semantic parsing. Our approach relies on domain-independent supervision to generalize to new domains. We derive and implement efficient algorithms for training, parsing, and sentence generation. The work relies on a novel application of hierarchical Dirichlet processes (HDPs) for structured prediction, which we also present in this manuscript. This manuscript is an excerpt of chapter 4 from the Ph.D. thesis of Saparov (2022), where the model plays a central role in a larger natural language understanding system. This manuscript provides a new simplified and more complete presentation of the work first introduced in Saparov, Saraswat, and Mitchell (2017). The description and proofs of correctness of the training algorithm, parsing algorithm, and sentence generation algorithm are much simplified in this new presentation. We also describe the novel application of hierarchical Dirichlet processes for structured prediction. In addition, we extend the earlier work with a new model of word morphology, which utilizes the comprehensive morphological data from Wiktionary. 1 authors · Jun 20, 2016
- byteSteady: Fast Classification Using Byte-Level n-Gram Embeddings This article introduces byteSteady -- a fast model for classification using byte-level n-gram embeddings. byteSteady assumes that each input comes as a sequence of bytes. A representation vector is produced using the averaged embedding vectors of byte-level n-grams, with a pre-defined set of n. The hashing trick is used to reduce the number of embedding vectors. This input representation vector is then fed into a linear classifier. A straightforward application of byteSteady is text classification. We also apply byteSteady to one type of non-language data -- DNA sequences for gene classification. For both problems we achieved competitive classification results against strong baselines, suggesting that byteSteady can be applied to both language and non-language data. Furthermore, we find that simple compression using Huffman coding does not significantly impact the results, which offers an accuracy-speed trade-off previously unexplored in machine learning. 3 authors · Jun 24, 2021 2
- Corrected CBOW Performs as well as Skip-gram Mikolov et al. (2013a) observed that continuous bag-of-words (CBOW) word embeddings tend to underperform Skip-gram (SG) embeddings, and this finding has been reported in subsequent works. We find that these observations are driven not by fundamental differences in their training objectives, but more likely on faulty negative sampling CBOW implementations in popular libraries such as the official implementation, word2vec.c, and Gensim. We show that after correcting a bug in the CBOW gradient update, one can learn CBOW word embeddings that are fully competitive with SG on various intrinsic and extrinsic tasks, while being many times faster to train. 3 authors · Dec 30, 2020
4 On the Acquisition of Shared Grammatical Representations in Bilingual Language Models While crosslingual transfer is crucial to contemporary language models' multilingual capabilities, how it occurs is not well understood. In this paper, we ask what happens to a monolingual language model when it begins to be trained on a second language. Specifically, we train small bilingual models for which we control the amount of data for each language and the order of language exposure. To find evidence of shared multilingual representations, we turn to structural priming, a method used to study grammatical representations in humans. We first replicate previous crosslingual structural priming results and find that after controlling for training data quantity and language exposure, there are asymmetrical effects across language pairs and directions. We argue that this asymmetry may shape hypotheses about human structural priming effects. We also find that structural priming effects are less robust for less similar language pairs, highlighting potential limitations of crosslingual transfer learning and shared representations for typologically diverse languages. 4 authors · Mar 5 1
3 LIDA: A Tool for Automatic Generation of Grammar-Agnostic Visualizations and Infographics using Large Language Models Systems that support users in the automatic creation of visualizations must address several subtasks - understand the semantics of data, enumerate relevant visualization goals and generate visualization specifications. In this work, we pose visualization generation as a multi-stage generation problem and argue that well-orchestrated pipelines based on large language models (LLMs) such as ChatGPT/GPT-4 and image generation models (IGMs) are suitable to addressing these tasks. We present LIDA, a novel tool for generating grammar-agnostic visualizations and infographics. LIDA comprises of 4 modules - A SUMMARIZER that converts data into a rich but compact natural language summary, a GOAL EXPLORER that enumerates visualization goals given the data, a VISGENERATOR that generates, refines, executes and filters visualization code and an INFOGRAPHER module that yields data-faithful stylized graphics using IGMs. LIDA provides a python api, and a hybrid user interface (direct manipulation and multilingual natural language) for interactive chart, infographics and data story generation. Learn more about the project here - https://microsoft.github.io/lida/ 1 authors · Mar 6, 2023
2 Evaluating GPT-3.5 and GPT-4 on Grammatical Error Correction for Brazilian Portuguese We investigate the effectiveness of GPT-3.5 and GPT-4, two large language models, as Grammatical Error Correction (GEC) tools for Brazilian Portuguese and compare their performance against Microsoft Word and Google Docs. We introduce a GEC dataset for Brazilian Portuguese with four categories: Grammar, Spelling, Internet, and Fast typing. Our results show that while GPT-4 has higher recall than other methods, LLMs tend to have lower precision, leading to overcorrection. This study demonstrates the potential of LLMs as practical GEC tools for Brazilian Portuguese and encourages further exploration of LLMs for non-English languages and other educational settings. 2 authors · Jun 27, 2023
1 Large Language Models Share Representations of Latent Grammatical Concepts Across Typologically Diverse Languages Human bilinguals often use similar brain regions to process multiple languages, depending on when they learned their second language and their proficiency. In large language models (LLMs), how are multiple languages learned and encoded? In this work, we explore the extent to which LLMs share representations of morphosyntactic concepts such as grammatical number, gender, and tense across languages. We train sparse autoencoders on Llama-3-8B and Aya-23-8B, and demonstrate that abstract grammatical concepts are often encoded in feature directions shared across many languages. We use causal interventions to verify the multilingual nature of these representations; specifically, we show that ablating only multilingual features decreases classifier performance to near-chance across languages. We then use these features to precisely modify model behavior in a machine translation task; this demonstrates both the generality and selectivity of these feature's roles in the network. Our findings suggest that even models trained predominantly on English data can develop robust, cross-lingual abstractions of morphosyntactic concepts. 4 authors · Jan 10
1 Beyond English: Evaluating LLMs for Arabic Grammatical Error Correction Large language models (LLMs) finetuned to follow human instruction have recently exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC), especially on languages other than English, remains significantly unexplored. In this work, we evaluate the abilities of instruction finetuned LLMs in Arabic GEC, a complex task due to Arabic's rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F_{1} score under expert prompting (approximately 5 points higher than our established baseline). Despite these positive results, we find that instruction finetuned models, regardless of their size, are still outperformed by fully finetuned ones, even if they are significantly smaller in size. This disparity highlights substantial room for improvements for LLMs. Inspired by methods used in low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our best model achieves a new SOTA on Arabic GEC, with 73.29 and 73.26 F_{1} on the 2014 and 2015 QALB datasets, respectively, compared to peer-reviewed published baselines. 4 authors · Dec 13, 2023 2
1 Evaluating the Capability of Large-scale Language Models on Chinese Grammatical Error Correction Task Large-scale language models (LLMs) has shown remarkable capability in various of Natural Language Processing (NLP) tasks and attracted lots of attention recently. However, some studies indicated that large language models fail to achieve promising result beyond the state-of-the-art models in English grammatical error correction (GEC) tasks. In this report, we aim to explore the how large language models perform on Chinese grammatical error correction tasks and provide guidance for future work. We conduct experiments with 3 different LLMs of different model scale on 4 Chinese GEC dataset. Our experimental results indicate that the performances of LLMs on automatic evaluation metrics falls short of the previous sota models because of the problem of over-correction. Furthermore, we also discover notable variations in the performance of LLMs when evaluated on different data distributions. Our findings demonstrates that further investigation is required for the application of LLMs on Chinese GEC task. 2 authors · Jul 8, 2023
- Reliability Crisis of Reference-free Metrics for Grammatical Error Correction Reference-free evaluation metrics for grammatical error correction (GEC) have achieved high correlation with human judgments. However, these metrics are not designed to evaluate adversarial systems that aim to obtain unjustifiably high scores. The existence of such systems undermines the reliability of automatic evaluation, as it can mislead users in selecting appropriate GEC systems. In this study, we propose adversarial attack strategies for four reference-free metrics: SOME, Scribendi, IMPARA, and LLM-based metrics, and demonstrate that our adversarial systems outperform the current state-of-the-art. These findings highlight the need for more robust evaluation methods. 3 authors · Sep 30
- Introducing OmniGEC: A Silver Multilingual Dataset for Grammatical Error Correction In this paper, we introduce OmniGEC, a collection of multilingual silver-standard datasets for the task of Grammatical Error Correction (GEC), covering eleven languages: Czech, English, Estonian, German, Greek, Icelandic, Italian, Latvian, Slovene, Swedish, and Ukrainian. These datasets facilitate the development of multilingual GEC solutions and help bridge the data gap in adapting English GEC solutions to multilingual GEC. The texts in the datasets originate from three sources: Wikipedia edits for the eleven target languages, subreddits from Reddit in the eleven target languages, and the Ukrainian-only UberText 2.0 social media corpus. While Wikipedia edits were derived from human-made corrections, the Reddit and UberText 2.0 data were automatically corrected with the GPT-4o-mini model. The quality of the corrections in the datasets was evaluated both automatically and manually. Finally, we fine-tune two open-source large language models - Aya-Expanse (8B) and Gemma-3 (12B) - on the multilingual OmniGEC corpora and achieve state-of-the-art (SOTA) results for paragraph-level multilingual GEC. The dataset collection and the best-performing models are available on Hugging Face. 3 authors · Sep 17
- APIO: Automatic Prompt Induction and Optimization for Grammatical Error Correction and Text Simplification Recent advancements in large language models (LLMs) have enabled a wide range of natural language processing (NLP) tasks to be performed through simple prompt-based interactions. Consequently, several approaches have been proposed to engineer prompts that most effectively enable LLMs to perform a given task (e.g., chain-of-thought prompting). In settings with a well-defined metric to optimize model performance, automatic prompt optimization (APO) methods have been developed to refine a seed prompt. Advancing this line of research, we propose APIO, a simple but effective prompt induction and optimization approach for the tasks of Grammatical Error Correction (GEC) and Text Simplification, without relying on manually specified seed prompts. APIO achieves a new state-of-the-art performance for purely LLM-based prompting methods on these tasks. We make our data, code, prompts, and outputs publicly available. 5 authors · Aug 12
- gec-metrics: A Unified Library for Grammatical Error Correction Evaluation We introduce gec-metrics, a library for using and developing grammatical error correction (GEC) evaluation metrics through a unified interface. Our library enables fair system comparisons by ensuring that everyone conducts evaluations using a consistent implementation. Moreover, it is designed with a strong focus on API usage, making it highly extensible. It also includes meta-evaluation functionalities and provides analysis and visualization scripts, contributing to developing GEC evaluation metrics. Our code is released under the MIT license and is also distributed as an installable package. The video is available on YouTube. 3 authors · May 25
- Improving Explainability of Sentence-level Metrics via Edit-level Attribution for Grammatical Error Correction Various evaluation metrics have been proposed for Grammatical Error Correction (GEC), but many, particularly reference-free metrics, lack explainability. This lack of explainability hinders researchers from analyzing the strengths and weaknesses of GEC models and limits the ability to provide detailed feedback for users. To address this issue, we propose attributing sentence-level scores to individual edits, providing insight into how specific corrections contribute to the overall performance. For the attribution method, we use Shapley values, from cooperative game theory, to compute the contribution of each edit. Experiments with existing sentence-level metrics demonstrate high consistency across different edit granularities and show approximately 70\% alignment with human evaluations. In addition, we analyze biases in the metrics based on the attribution results, revealing trends such as the tendency to ignore orthographic edits. Our implementation is available at https://github.com/naist-nlp/gec-attribute. 3 authors · Dec 17, 2024
- Gender Inflected or Bias Inflicted: On Using Grammatical Gender Cues for Bias Evaluation in Machine Translation Neural Machine Translation (NMT) models are state-of-the-art for machine translation. However, these models are known to have various social biases, especially gender bias. Most of the work on evaluating gender bias in NMT has focused primarily on English as the source language. For source languages different from English, most of the studies use gender-neutral sentences to evaluate gender bias. However, practically, many sentences that we encounter do have gender information. Therefore, it makes more sense to evaluate for bias using such sentences. This allows us to determine if NMT models can identify the correct gender based on the grammatical gender cues in the source sentence rather than relying on biased correlations with, say, occupation terms. To demonstrate our point, in this work, we use Hindi as the source language and construct two sets of gender-specific sentences: OTSC-Hindi and WinoMT-Hindi that we use to evaluate different Hindi-English (HI-EN) NMT systems automatically for gender bias. Our work highlights the importance of considering the nature of language when designing such extrinsic bias evaluation datasets. 1 authors · Nov 7, 2023
- System Combination via Quality Estimation for Grammatical Error Correction Quality estimation models have been developed to assess the corrections made by grammatical error correction (GEC) models when the reference or gold-standard corrections are not available. An ideal quality estimator can be utilized to combine the outputs of multiple GEC systems by choosing the best subset of edits from the union of all edits proposed by the GEC base systems. However, we found that existing GEC quality estimation models are not good enough in differentiating good corrections from bad ones, resulting in a low F0.5 score when used for system combination. In this paper, we propose GRECO, a new state-of-the-art quality estimation model that gives a better estimate of the quality of a corrected sentence, as indicated by having a higher correlation to the F0.5 score of a corrected sentence. It results in a combined GEC system with a higher F0.5 score. We also propose three methods for utilizing GEC quality estimation models for system combination with varying generality: model-agnostic, model-agnostic with voting bias, and model-dependent method. The combined GEC system outperforms the state of the art on the CoNLL-2014 test set and the BEA-2019 test set, achieving the highest F0.5 scores published to date. 2 authors · Oct 23, 2023
- MHG-GNN: Combination of Molecular Hypergraph Grammar with Graph Neural Network Property prediction plays an important role in material discovery. As an initial step to eventually develop a foundation model for material science, we introduce a new autoencoder called the MHG-GNN, which combines graph neural network (GNN) with Molecular Hypergraph Grammar (MHG). Results on a variety of property prediction tasks with diverse materials show that MHG-GNN is promising. 9 authors · Sep 28, 2023
- NaSGEC: a Multi-Domain Chinese Grammatical Error Correction Dataset from Native Speaker Texts We introduce NaSGEC, a new dataset to facilitate research on Chinese grammatical error correction (CGEC) for native speaker texts from multiple domains. Previous CGEC research primarily focuses on correcting texts from a single domain, especially learner essays. To broaden the target domain, we annotate multiple references for 12,500 sentences from three native domains, i.e., social media, scientific writing, and examination. We provide solid benchmark results for NaSGEC by employing cutting-edge CGEC models and different training data. We further perform detailed analyses of the connections and gaps between our domains from both empirical and statistical views. We hope this work can inspire future studies on an important but under-explored direction--cross-domain GEC. 7 authors · May 25, 2023
- JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction We present a new parallel corpus, JHU FLuency-Extended GUG corpus (JFLEG) for developing and evaluating grammatical error correction (GEC). Unlike other corpora, it represents a broad range of language proficiency levels and uses holistic fluency edits to not only correct grammatical errors but also make the original text more native sounding. We describe the types of corrections made and benchmark four leading GEC systems on this corpus, identifying specific areas in which they do well and how they can improve. JFLEG fulfills the need for a new gold standard to properly assess the current state of GEC. 3 authors · Feb 13, 2017