Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGalaxy Zoo: Kinematics of strongly and weakly barred galaxies
We study the bar pattern speeds and corotation radii of 225 barred galaxies, using IFU data from MaNGA and the Tremaine-Weinberg method. Our sample, which is divided between strongly and weakly barred galaxies identified via Galaxy Zoo, is the largest that this method has been applied to. We find lower pattern speeds for strongly barred galaxies than for weakly barred galaxies. As simulations show that the pattern speed decreases as the bar exchanges angular momentum with its host, these results suggest that strong bars are more evolved than weak bars. Interestingly, the corotation radius is not different between weakly and strongly barred galaxies, despite being proportional to bar length. We also find that the corotation radius is significantly different between quenching and star forming galaxies. Additionally, we find that strongly barred galaxies have significantly lower values for R, the ratio between the corotation radius and the bar radius, than weakly barred galaxies, despite a big overlap in both distributions. This ratio classifies bars into ultrafast bars (R < 1.0; 11% of our sample), fast bars (1.0 < R < 1.4; 27%) and slow bars (R > 1.4; 62%). Simulations show that R is correlated with the bar formation mechanism, so our results suggest that strong bars are more likely to be formed by different mechanisms than weak bars. Finally, we find a lower fraction of ultrafast bars than most other studies, which decreases the recently claimed tension with {\Lambda}CDM. However, the median value of R is still lower than what is predicted by simulations.
Galaxy Zoo: Clump Scout -- Design and first application of a two-dimensional aggregation tool for citizen science
Galaxy Zoo: Clump Scout is a web-based citizen science project designed to identify and spatially locate giant star forming clumps in galaxies that were imaged by the Sloan Digital Sky Survey Legacy Survey. We present a statistically driven software framework that is designed to aggregate two-dimensional annotations of clump locations provided by multiple independent Galaxy Zoo: Clump Scout volunteers and generate a consensus label that identifies the locations of probable clumps within each galaxy. The statistical model our framework is based on allows us to assign false-positive probabilities to each of the clumps we identify, to estimate the skill levels of each of the volunteers who contribute to Galaxy Zoo: Clump Scout and also to quantitatively assess the reliability of the consensus labels that are derived for each subject. We apply our framework to a dataset containing 3,561,454 two-dimensional points, which constitute 1,739,259 annotations of 85,286 distinct subjects provided by 20,999 volunteers. Using this dataset, we identify 128,100 potential clumps distributed among 44,126 galaxies. This dataset can be used to study the prevalence and demographics of giant star forming clumps in low-redshift galaxies. The code for our aggregation software framework is publicly available at: https://github.com/ou-astrophysics/BoxAggregator
Galaxy Zoo DECaLS: Detailed Visual Morphology Measurements from Volunteers and Deep Learning for 314,000 Galaxies
We present Galaxy Zoo DECaLS: detailed visual morphological classifications for Dark Energy Camera Legacy Survey images of galaxies within the SDSS DR8 footprint. Deeper DECaLS images (r=23.6 vs. r=22.2 from SDSS) reveal spiral arms, weak bars, and tidal features not previously visible in SDSS imaging. To best exploit the greater depth of DECaLS images, volunteers select from a new set of answers designed to improve our sensitivity to mergers and bars. Galaxy Zoo volunteers provide 7.5 million individual classifications over 314,000 galaxies. 140,000 galaxies receive at least 30 classifications, sufficient to accurately measure detailed morphology like bars, and the remainder receive approximately 5. All classifications are used to train an ensemble of Bayesian convolutional neural networks (a state-of-the-art deep learning method) to predict posteriors for the detailed morphology of all 314,000 galaxies. When measured against confident volunteer classifications, the networks are approximately 99% accurate on every question. Morphology is a fundamental feature of every galaxy; our human and machine classifications are an accurate and detailed resource for understanding how galaxies evolve.
Galaxy Zoo: Probabilistic Morphology through Bayesian CNNs and Active Learning
We use Bayesian convolutional neural networks and a novel generative model of Galaxy Zoo volunteer responses to infer posteriors for the visual morphology of galaxies. Bayesian CNN can learn from galaxy images with uncertain labels and then, for previously unlabelled galaxies, predict the probability of each possible label. Our posteriors are well-calibrated (e.g. for predicting bars, we achieve coverage errors of 11.8% within a vote fraction deviation of 0.2) and hence are reliable for practical use. Further, using our posteriors, we apply the active learning strategy BALD to request volunteer responses for the subset of galaxies which, if labelled, would be most informative for training our network. We show that training our Bayesian CNNs using active learning requires up to 35-60% fewer labelled galaxies, depending on the morphological feature being classified. By combining human and machine intelligence, Galaxy Zoo will be able to classify surveys of any conceivable scale on a timescale of weeks, providing massive and detailed morphology catalogues to support research into galaxy evolution.
Radio Galaxy Zoo: Using semi-supervised learning to leverage large unlabelled data-sets for radio galaxy classification under data-set shift
In this work we examine the classification accuracy and robustness of a state-of-the-art semi-supervised learning (SSL) algorithm applied to the morphological classification of radio galaxies. We test if SSL with fewer labels can achieve test accuracies comparable to the supervised state-of-the-art and whether this holds when incorporating previously unseen data. We find that for the radio galaxy classification problem considered, SSL provides additional regularisation and outperforms the baseline test accuracy. However, in contrast to model performance metrics reported on computer science benchmarking data-sets, we find that improvement is limited to a narrow range of label volumes, with performance falling off rapidly at low label volumes. Additionally, we show that SSL does not improve model calibration, regardless of whether classification is improved. Moreover, we find that when different underlying catalogues drawn from the same radio survey are used to provide the labelled and unlabelled data-sets required for SSL, a significant drop in classification performance is observered, highlighting the difficulty of applying SSL techniques under dataset shift. We show that a class-imbalanced unlabelled data pool negatively affects performance through prior probability shift, which we suggest may explain this performance drop, and that using the Frechet Distance between labelled and unlabelled data-sets as a measure of data-set shift can provide a prediction of model performance, but that for typical radio galaxy data-sets with labelled sample volumes of O(1000), the sample variance associated with this technique is high and the technique is in general not sufficiently robust to replace a train-test cycle.
Modeling with the Crowd: Optimizing the Human-Machine Partnership with Zooniverse
LSST and Euclid must address the daunting challenge of analyzing the unprecedented volumes of imaging and spectroscopic data that these next-generation instruments will generate. A promising approach to overcoming this challenge involves rapid, automatic image processing using appropriately trained Deep Learning (DL) algorithms. However, reliable application of DL requires large, accurately labeled samples of training data. Galaxy Zoo Express (GZX) is a recent experiment that simulated using Bayesian inference to dynamically aggregate binary responses provided by citizen scientists via the Zooniverse crowd-sourcing platform in real time. The GZX approach enables collaboration between human and machine classifiers and provides rapidly generated, reliably labeled datasets, thereby enabling online training of accurate machine classifiers. We present selected results from GZX and show how the Bayesian aggregation engine it uses can be extended to efficiently provide object-localization and bounding-box annotations of two-dimensional data with quantified reliability. DL algorithms that are trained using these annotations will facilitate numerous panchromatic data modeling tasks including morphological classification and substructure detection in direct imaging, as well as decontamination and emission line identification for slitless spectroscopy. Effectively combining the speed of modern computational analyses with the human capacity to extrapolate from few examples will be critical if the potential of forthcoming large-scale surveys is to be realized.
Rotation-invariant convolutional neural networks for galaxy morphology prediction
Measuring the morphological parameters of galaxies is a key requirement for studying their formation and evolution. Surveys such as the Sloan Digital Sky Survey (SDSS) have resulted in the availability of very large collections of images, which have permitted population-wide analyses of galaxy morphology. Morphological analysis has traditionally been carried out mostly via visual inspection by trained experts, which is time-consuming and does not scale to large (gtrsim10^4) numbers of images. Although attempts have been made to build automated classification systems, these have not been able to achieve the desired level of accuracy. The Galaxy Zoo project successfully applied a crowdsourcing strategy, inviting online users to classify images by answering a series of questions. Unfortunately, even this approach does not scale well enough to keep up with the increasing availability of galaxy images. We present a deep neural network model for galaxy morphology classification which exploits translational and rotational symmetry. It was developed in the context of the Galaxy Challenge, an international competition to build the best model for morphology classification based on annotated images from the Galaxy Zoo project. For images with high agreement among the Galaxy Zoo participants, our model is able to reproduce their consensus with near-perfect accuracy (> 99%) for most questions. Confident model predictions are highly accurate, which makes the model suitable for filtering large collections of images and forwarding challenging images to experts for manual annotation. This approach greatly reduces the experts' workload without affecting accuracy. The application of these algorithms to larger sets of training data will be critical for analysing results from future surveys such as the LSST.
Can AI Dream of Unseen Galaxies? Conditional Diffusion Model for Galaxy Morphology Augmentation
Observational astronomy relies on visual feature identification to detect critical astrophysical phenomena. While machine learning (ML) increasingly automates this process, models often struggle with generalization in large-scale surveys due to the limited representativeness of labeled datasets -- whether from simulations or human annotation -- a challenge pronounced for rare yet scientifically valuable objects. To address this, we propose a conditional diffusion model to synthesize realistic galaxy images for augmenting ML training data. Leveraging the Galaxy Zoo 2 dataset which contains visual feature -- galaxy image pairs from volunteer annotation, we demonstrate that our model generates diverse, high-fidelity galaxy images closely adhere to the specified morphological feature conditions. Moreover, this model enables generative extrapolation to project well-annotated data into unseen domains and advancing rare object detection. Integrating synthesized images into ML pipelines improves performance in standard morphology classification, boosting completeness and purity by up to 30\% across key metrics. For rare object detection, using early-type galaxies with prominent dust lane features ( sim0.1\% in GZ2 dataset) as a test case, our approach doubled the number of detected instances from 352 to 872, compared to previous studies based on visual inspection. This study highlights the power of generative models to bridge gaps between scarce labeled data and the vast, uncharted parameter space of observational astronomy and sheds insight for future astrophysical foundation model developments. Our project homepage is available at https://galaxysd-webpage.streamlit.app/.
Practical Galaxy Morphology Tools from Deep Supervised Representation Learning
Astronomers have typically set out to solve supervised machine learning problems by creating their own representations from scratch. We show that deep learning models trained to answer every Galaxy Zoo DECaLS question learn meaningful semantic representations of galaxies that are useful for new tasks on which the models were never trained. We exploit these representations to outperform several recent approaches at practical tasks crucial for investigating large galaxy samples. The first task is identifying galaxies of similar morphology to a query galaxy. Given a single galaxy assigned a free text tag by humans (e.g. "#diffuse"), we can find galaxies matching that tag for most tags. The second task is identifying the most interesting anomalies to a particular researcher. Our approach is 100% accurate at identifying the most interesting 100 anomalies (as judged by Galaxy Zoo 2 volunteers). The third task is adapting a model to solve a new task using only a small number of newly-labelled galaxies. Models fine-tuned from our representation are better able to identify ring galaxies than models fine-tuned from terrestrial images (ImageNet) or trained from scratch. We solve each task with very few new labels; either one (for the similarity search) or several hundred (for anomaly detection or fine-tuning). This challenges the longstanding view that deep supervised methods require new large labelled datasets for practical use in astronomy. To help the community benefit from our pretrained models, we release our fine-tuning code Zoobot. Zoobot is accessible to researchers with no prior experience in deep learning.
Scaling Laws for Galaxy Images
We present the first systematic investigation of supervised scaling laws outside of an ImageNet-like context - on images of galaxies. We use 840k galaxy images and over 100M annotations by Galaxy Zoo volunteers, comparable in scale to Imagenet-1K. We find that adding annotated galaxy images provides a power law improvement in performance across all architectures and all tasks, while adding trainable parameters is effective only for some (typically more subjectively challenging) tasks. We then compare the downstream performance of finetuned models pretrained on either ImageNet-12k alone vs. additionally pretrained on our galaxy images. We achieve an average relative error rate reduction of 31% across 5 downstream tasks of scientific interest. Our finetuned models are more label-efficient and, unlike their ImageNet-12k-pretrained equivalents, often achieve linear transfer performance equal to that of end-to-end finetuning. We find relatively modest additional downstream benefits from scaling model size, implying that scaling alone is not sufficient to address our domain gap, and suggest that practitioners with qualitatively different images might benefit more from in-domain adaption followed by targeted downstream labelling.
Transfer learning for galaxy feature detection: Finding Giant Star-forming Clumps in low redshift galaxies using Faster R-CNN
Giant Star-forming Clumps (GSFCs) are areas of intensive star-formation that are commonly observed in high-redshift (z>1) galaxies but their formation and role in galaxy evolution remain unclear. High-resolution observations of low-redshift clumpy galaxy analogues are rare and restricted to a limited set of galaxies but the increasing availability of wide-field galaxy survey data makes the detection of large clumpy galaxy samples increasingly feasible. Deep Learning, and in particular CNNs, have been successfully applied to image classification tasks in astrophysical data analysis. However, one application of DL that remains relatively unexplored is that of automatically identifying and localising specific objects or features in astrophysical imaging data. In this paper we demonstrate the feasibility of using Deep learning-based object detection models to localise GSFCs in astrophysical imaging data. We apply the Faster R-CNN object detection framework (FRCNN) to identify GSFCs in low redshift (z<0.3) galaxies. Unlike other studies, we train different FRCNN models not on simulated images with known labels but on real observational data that was collected by the Sloan Digital Sky Survey Legacy Survey and labelled by volunteers from the citizen science project `Galaxy Zoo: Clump Scout'. The FRCNN model relies on a CNN component as a `backbone' feature extractor. We show that CNNs, that have been pre-trained for image classification using astrophysical images, outperform those that have been pre-trained on terrestrial images. In particular, we compare a domain-specific CNN -`Zoobot' - with a generic classification backbone and find that Zoobot achieves higher detection performance and also requires smaller training data sets to do so. Our final model is capable of producing GSFC detections with a completeness and purity of >=0.8 while only being trained on ~5,000 galaxy images.
Quantifying the Poor Purity and Completeness of Morphological Samples Selected by Galaxy Colour
The galaxy population is strongly bimodal in both colour and morphology, and the two measures correlate strongly, with most blue galaxies being late-types (spirals) and most early-types, typically ellipticals, being red. This observation has led to the use of colour as a convenient selection criteria to make samples which are then labelled by morphology. Such use of colour as a proxy for morphology results in necessarily impure and incomplete samples. In this paper, we make use of the morphological labels produced by Galaxy Zoo to measure how incomplete and impure such samples are, considering optical (ugriz), NUV and NIR (JHK) bands. The best single colour optical selection is found using a threshold of g-r = 0.742, but this still results in a sample where only 56% of red galaxies are smooth and 56% of smooth galaxies are red. Use of the NUV gives some improvement over purely optical bands, particularly for late-types, but still results in low purity/completeness for early-types. No significant improvement is found by adding NIR bands. With any two bands, including NUV, a sample of early-types with greater than two-thirds purity cannot be constructed. Advances in quantitative galaxy morphologies have made colour-morphology proxy selections largely unnecessary going forward; where such assumptions are still required, we recommend studies carefully consider the implications of sample incompleteness/impurity.
Euclid Quick Data Release (Q1): First visual morphology catalogue
We present a detailed visual morphology catalogue for Euclid's Quick Release 1 (Q1). Our catalogue includes galaxy features such as bars, spiral arms, and ongoing mergers, for the 378000 bright (IE < 20.5) or extended (area geq 700,pixels) galaxies in Q1. The catalogue was created by finetuning the Zoobot galaxy foundation models on annotations from an intensive one month campaign by Galaxy Zoo volunteers. Our measurements are fully automated and hence fully scaleable. This catalogue is the first 0.4% of the approximately 100 million galaxies where Euclid will ultimately resolve detailed morphology.