Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeNatural Answer Generation: From Factoid Answer to Full-length Answer using Grammar Correction
Question Answering systems these days typically use template-based language generation. Though adequate for a domain-specific task, these systems are too restrictive and predefined for domain-independent systems. This paper proposes a system that outputs a full-length answer given a question and the extracted factoid answer (short spans such as named entities) as the input. Our system uses constituency and dependency parse trees of questions. A transformer-based Grammar Error Correction model GECToR (2020), is used as a post-processing step for better fluency. We compare our system with (i) Modified Pointer Generator (SOTA) and (ii) Fine-tuned DialoGPT for factoid questions. We also test our approach on existential (yes-no) questions with better results. Our model generates accurate and fluent answers than the state-of-the-art (SOTA) approaches. The evaluation is done on NewsQA and SqUAD datasets with an increment of 0.4 and 0.9 percentage points in ROUGE-1 score respectively. Also the inference time is reduced by 85\% as compared to the SOTA. The improved datasets used for our evaluation will be released as part of the research contribution.
A Simple Recipe for Multilingual Grammatical Error Correction
This paper presents a simple recipe to train state-of-the-art multilingual Grammatical Error Correction (GEC) models. We achieve this by first proposing a language-agnostic method to generate a large number of synthetic examples. The second ingredient is to use large-scale multilingual language models (up to 11B parameters). Once fine-tuned on language-specific supervised sets we surpass the previous state-of-the-art results on GEC benchmarks in four languages: English, Czech, German and Russian. Having established a new set of baselines for GEC, we make our results easily reproducible and accessible by releasing a cLang-8 dataset. It is produced by using our best model, which we call gT5, to clean the targets of a widely used yet noisy lang-8 dataset. cLang-8 greatly simplifies typical GEC training pipelines composed of multiple fine-tuning stages -- we demonstrate that performing a single fine-tuning step on cLang-8 with the off-the-shelf language models yields further accuracy improvements over an already top-performing gT5 model for English.
Refining Czech GEC: Insights from a Multi-Experiment Approach
We present a grammar error correction (GEC) system that achieves state of the art for the Czech language. Our system is based on a neural network translation approach with the Transformer architecture, and its key feature is its real-time synthetic generation pipeline, which dynamically augments sentences with artificial errors by introducing both language-agnostic and Czech-specific errors. We conduct a comprehensive series of experiments, investigating the Czech GEC corpora as bases for synthetic error introduction, several error generation strategies, domain balancing, tokenization granularity, model size, and data scaling during fine-tuning. Additionally, we evaluate the performance of large language models (LLMs) on Czech GEC in both end-user and expert fine-tuning scenarios. Our best-performing model is superior both in performance and computational efficiency. The source code and the trained model links are available on https://github.com/ufal/tsd2025-gec.
Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore
The efficacy of an large language model (LLM) generated text detector depends substantially on the availability of sizable training data. White-box zero-shot detectors, which require no such data, are nonetheless limited by the accessibility of the source model of the LLM-generated text. In this paper, we propose an simple but effective black-box zero-shot detection approach, predicated on the observation that human-written texts typically contain more grammatical errors than LLM-generated texts. This approach entails computing the Grammar Error Correction Score (GECScore) for the given text to distinguish between human-written and LLM-generated text. Extensive experimental results show that our method outperforms current state-of-the-art (SOTA) zero-shot and supervised methods, achieving an average AUROC of 98.7% and showing strong robustness against paraphrase and adversarial perturbation attacks.
Grammatical Error Correction for Low-Resource Languages: The Case of Zarma
Grammatical error correction (GEC) aims to improve quality and readability of texts through accurate correction of linguistic mistakes. Previous work has focused on high-resource languages, while low-resource languages lack robust tools. However, low-resource languages often face problems such as: non-standard orthography, limited annotated corpora, and diverse dialects, which slows down the development of GEC tools. We present a study on GEC for Zarma, spoken by over five million in West Africa. We compare three approaches: rule-based methods, machine translation (MT) models, and large language models (LLMs). We evaluated them using a dataset of more than 250,000 examples, including synthetic and human-annotated data. Our results showed that the MT-based approach using M2M100 outperforms others, with a detection rate of 95. 82% and a suggestion accuracy of 78. 90% in automatic evaluations (AE) and an average score of 3.0 out of 5.0 in manual evaluation (ME) from native speakers for grammar and logical corrections. The rule-based method was effective for spelling errors but failed on complex context-level errors. LLMs -- MT5-small -- showed moderate performance. Our work supports use of MT models to enhance GEC in low-resource settings, and we validated these results with Bambara, another West African language.
GECTurk: Grammatical Error Correction and Detection Dataset for Turkish
Grammatical Error Detection and Correction (GEC) tools have proven useful for native speakers and second language learners. Developing such tools requires a large amount of parallel, annotated data, which is unavailable for most languages. Synthetic data generation is a common practice to overcome the scarcity of such data. However, it is not straightforward for morphologically rich languages like Turkish due to complex writing rules that require phonological, morphological, and syntactic information. In this work, we present a flexible and extensible synthetic data generation pipeline for Turkish covering more than 20 expert-curated grammar and spelling rules (a.k.a., writing rules) implemented through complex transformation functions. Using this pipeline, we derive 130,000 high-quality parallel sentences from professionally edited articles. Additionally, we create a more realistic test set by manually annotating a set of movie reviews. We implement three baselines formulating the task as i) neural machine translation, ii) sequence tagging, and iii) prefix tuning with a pretrained decoder-only model, achieving strong results. Furthermore, we perform exhaustive experiments on out-of-domain datasets to gain insights on the transferability and robustness of the proposed approaches. Our results suggest that our corpus, GECTurk, is high-quality and allows knowledge transfer for the out-of-domain setting. To encourage further research on Turkish GEC, we release our datasets, baseline models, and the synthetic data generation pipeline at https://github.com/GGLAB-KU/gecturk.
Evaluating GPT-3.5 and GPT-4 on Grammatical Error Correction for Brazilian Portuguese
We investigate the effectiveness of GPT-3.5 and GPT-4, two large language models, as Grammatical Error Correction (GEC) tools for Brazilian Portuguese and compare their performance against Microsoft Word and Google Docs. We introduce a GEC dataset for Brazilian Portuguese with four categories: Grammar, Spelling, Internet, and Fast typing. Our results show that while GPT-4 has higher recall than other methods, LLMs tend to have lower precision, leading to overcorrection. This study demonstrates the potential of LLMs as practical GEC tools for Brazilian Portuguese and encourages further exploration of LLMs for non-English languages and other educational settings.
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language
We present a corpus professionally annotated for grammatical error correction (GEC) and fluency edits in the Ukrainian language. To the best of our knowledge, this is the first GEC corpus for the Ukrainian language. We collected texts with errors (20,715 sentences) from a diverse pool of contributors, including both native and non-native speakers. The data cover a wide variety of writing domains, from text chats and essays to formal writing. Professional proofreaders corrected and annotated the corpus for errors relating to fluency, grammar, punctuation, and spelling. This corpus can be used for developing and evaluating GEC systems in Ukrainian. More generally, it can be used for researching multilingual and low-resource NLP, morphologically rich languages, document-level GEC, and fluency correction. The corpus is publicly available at https://github.com/grammarly/ua-gec
ChatLang-8: An LLM-Based Synthetic Data Generation Framework for Grammatical Error Correction
We explore and improve the capabilities of LLMs to generate data for grammatical error correction (GEC). When merely producing parallel sentences, their patterns are too simplistic to be valuable as a corpus. To address this issue, we propose an automated framework that includes a Subject Selector, Grammar Selector, Prompt Manager, and Evaluator. Additionally, we introduce a new dataset for GEC tasks, named ChatLang-8, which encompasses eight types of subject nouns and 23 types of grammar. It consists of 1 million pairs featuring human-like grammatical errors. Our experiments reveal that ChatLang-8 exhibits a more uniform pattern composition compared to existing GEC datasets. Furthermore, we observe improved model performance when using ChatLang-8 instead of existing GEC datasets. The experimental results suggest that our framework and ChatLang-8 are valuable resources for enhancing ChatGPT's data generation capabilities.
GrammarGPT: Exploring Open-Source LLMs for Native Chinese Grammatical Error Correction with Supervised Fine-Tuning
Grammatical error correction aims to correct ungrammatical sentences automatically. Recently, some work has demonstrated the excellent capabilities of closed-source Large Language Models (LLMs, e.g., ChatGPT) in grammatical error correction. However, the potential of open-source LLMs remains unexplored. In this paper, we introduced GrammarGPT, an open-source LLM, to preliminary explore its potential for native Chinese grammatical error correction. The core recipe of GrammarGPT is to leverage the hybrid dataset of ChatGPT-generated and human-annotated. For grammatical errors with clues, we proposed a heuristic method to guide ChatGPT to generate ungrammatical sentences by providing those clues. For grammatical errors without clues, we collected ungrammatical sentences from publicly available websites and manually corrected them. In addition, we employed an error-invariant augmentation method to enhance the ability of the model to correct native Chinese grammatical errors. We ultimately constructed about 1k parallel data and utilized these data to fine-tune open-source LLMs (e.g., Phoenix, released by The Chinese University of Hong Kong, Shenzhen) with instruction tuning. The experimental results show that GrammarGPT outperforms the existing SOTA system significantly. Although model parameters are 20x larger than the SOTA baseline, the required amount of data for instruction tuning is 1200x smaller, illustrating the potential of open-source LLMs on native CGEC. Our GrammarGPT ranks 3^{rd} on NLPCC2023 SharedTask1, demonstrating our approach's effectiveness. The code and data are available at https://github.com/FreedomIntelligence/GrammarGPT.
Byte-Level Grammatical Error Correction Using Synthetic and Curated Corpora
Grammatical error correction (GEC) is the task of correcting typos, spelling, punctuation and grammatical issues in text. Approaching the problem as a sequence-to-sequence task, we compare the use of a common subword unit vocabulary and byte-level encoding. Initial synthetic training data is created using an error-generating pipeline, and used for finetuning two subword-level models and one byte-level model. Models are then finetuned further on hand-corrected error corpora, including texts written by children, university students, dyslexic and second-language writers, and evaluated over different error types and origins. We show that a byte-level model enables higher correction quality than a subword approach, not only for simple spelling errors, but also for more complex semantic, stylistic and grammatical issues. In particular, initial training on synthetic corpora followed by finetuning on a relatively small parallel corpus of real-world errors helps the byte-level model correct a wide range of commonly occurring errors. Our experiments are run for the Icelandic language but should hold for other similar languages, particularly morphologically rich ones.
GLEU Without Tuning
The GLEU metric was proposed for evaluating grammatical error corrections using n-gram overlap with a set of reference sentences, as opposed to precision/recall of specific annotated errors (Napoles et al., 2015). This paper describes improvements made to the GLEU metric that address problems that arise when using an increasing number of reference sets. Unlike the originally presented metric, the modified metric does not require tuning. We recommend that this version be used instead of the original version.
Organic Data-Driven Approach for Turkish Grammatical Error Correction and LLMs
Grammatical Error Correction has seen significant progress with the recent advancements in deep learning. As those methods require huge amounts of data, synthetic datasets are being built to fill this gap. Unfortunately, synthetic datasets are not organic enough in some cases and even require clean data to start with. Furthermore, most of the work that has been done is focused mostly on English. In this work, we introduce a new organic data-driven approach, clean insertions, to build parallel Turkish Grammatical Error Correction datasets from any organic data, and to clean the data used for training Large Language Models. We achieve state-of-the-art results on two Turkish Grammatical Error Correction test sets out of the three publicly available ones. We also show the effectiveness of our method on the training losses of training language models.
Advancements in Arabic Grammatical Error Detection and Correction: An Empirical Investigation
Grammatical error correction (GEC) is a well-explored problem in English with many existing models and datasets. However, research on GEC in morphologically rich languages has been limited due to challenges such as data scarcity and language complexity. In this paper, we present the first results on Arabic GEC by using two newly developed Transformer-based pretrained sequence-to-sequence models. We address the task of multi-class Arabic grammatical error detection (GED) and present the first results on multi-class Arabic GED. We show that using GED information as auxiliary input in GEC models improves GEC performance across three datasets spanning different genres. Moreover, we also investigate the use of contextual morphological preprocessing in aiding GEC systems. Our models achieve state-of-the-art results on two Arabic GEC shared tasks datasets and establish a strong benchmark on a newly created dataset.
To Err Is Human, but Llamas Can Learn It Too
This study explores enhancing grammatical error correction (GEC) through artificial error generation (AEG) using language models (LMs). Specifically, we fine-tune Llama 2-based LMs for error generation and find that this approach yields synthetic errors akin to human errors. Next, we train GEC Llama models with the help of these artificial errors and outperform previous state-of-the-art error correction models, with gains ranging between 0.8 and 6 F0.5 points across all tested languages (German, Ukrainian, and Estonian). Moreover, we demonstrate that generating errors by fine-tuning smaller sequence-to-sequence models and prompting large commercial LMs (GPT-3.5 and GPT-4) also results in synthetic errors beneficially affecting error generation models.
DSGram: Dynamic Weighting Sub-Metrics for Grammatical Error Correction in the Era of Large Language Models
Evaluating the performance of Grammatical Error Correction (GEC) models has become increasingly challenging, as large language model (LLM)-based GEC systems often produce corrections that diverge from provided gold references. This discrepancy undermines the reliability of traditional reference-based evaluation metrics. In this study, we propose a novel evaluation framework for GEC models, DSGram, integrating Semantic Coherence, Edit Level, and Fluency, and utilizing a dynamic weighting mechanism. Our framework employs the Analytic Hierarchy Process (AHP) in conjunction with large language models to ascertain the relative importance of various evaluation criteria. Additionally, we develop a dataset incorporating human annotations and LLM-simulated sentences to validate our algorithms and fine-tune more cost-effective models. Experimental results indicate that our proposed approach enhances the effectiveness of GEC model evaluations.
JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction
We present a new parallel corpus, JHU FLuency-Extended GUG corpus (JFLEG) for developing and evaluating grammatical error correction (GEC). Unlike other corpora, it represents a broad range of language proficiency levels and uses holistic fluency edits to not only correct grammatical errors but also make the original text more native sounding. We describe the types of corrections made and benchmark four leading GEC systems on this corpus, identifying specific areas in which they do well and how they can improve. JFLEG fulfills the need for a new gold standard to properly assess the current state of GEC.
Analyzing the Performance of GPT-3.5 and GPT-4 in Grammatical Error Correction
GPT-3 and GPT-4 models are powerful, achieving high performance on a variety of Natural Language Processing tasks. However, there is a relative lack of detailed published analysis of their performance on the task of grammatical error correction (GEC). To address this, we perform experiments testing the capabilities of a GPT-3.5 model (text-davinci-003) and a GPT-4 model (gpt-4-0314) on major GEC benchmarks. We compare the performance of different prompts in both zero-shot and few-shot settings, analyzing intriguing or problematic outputs encountered with different prompt formats. We report the performance of our best prompt on the BEA-2019 and JFLEG datasets, finding that the GPT models can perform well in a sentence-level revision setting, with GPT-4 achieving a new high score on the JFLEG benchmark. Through human evaluation experiments, we compare the GPT models' corrections to source, human reference, and baseline GEC system sentences and observe differences in editing strategies and how they are scored by human raters.
ErAConD : Error Annotated Conversational Dialog Dataset for Grammatical Error Correction
Currently available grammatical error correction (GEC) datasets are compiled using well-formed written text, limiting the applicability of these datasets to other domains such as informal writing and dialog. In this paper, we present a novel parallel GEC dataset drawn from open-domain chatbot conversations; this dataset is, to our knowledge, the first GEC dataset targeted to a conversational setting. To demonstrate the utility of the dataset, we use our annotated data to fine-tune a state-of-the-art GEC model, resulting in a 16 point increase in model precision. This is of particular importance in a GEC model, as model precision is considered more important than recall in GEC tasks since false positives could lead to serious confusion in language learners. We also present a detailed annotation scheme which ranks errors by perceived impact on comprehensibility, making our dataset both reproducible and extensible. Experimental results show the effectiveness of our data in improving GEC model performance in conversational scenario.
Introducing OmniGEC: A Silver Multilingual Dataset for Grammatical Error Correction
In this paper, we introduce OmniGEC, a collection of multilingual silver-standard datasets for the task of Grammatical Error Correction (GEC), covering eleven languages: Czech, English, Estonian, German, Greek, Icelandic, Italian, Latvian, Slovene, Swedish, and Ukrainian. These datasets facilitate the development of multilingual GEC solutions and help bridge the data gap in adapting English GEC solutions to multilingual GEC. The texts in the datasets originate from three sources: Wikipedia edits for the eleven target languages, subreddits from Reddit in the eleven target languages, and the Ukrainian-only UberText 2.0 social media corpus. While Wikipedia edits were derived from human-made corrections, the Reddit and UberText 2.0 data were automatically corrected with the GPT-4o-mini model. The quality of the corrections in the datasets was evaluated both automatically and manually. Finally, we fine-tune two open-source large language models - Aya-Expanse (8B) and Gemma-3 (12B) - on the multilingual OmniGEC corpora and achieve state-of-the-art (SOTA) results for paragraph-level multilingual GEC. The dataset collection and the best-performing models are available on Hugging Face.
Physics of Language Models: Part 2.2, How to Learn From Mistakes on Grade-School Math Problems
Language models have demonstrated remarkable performance in solving reasoning tasks; however, even the strongest models still occasionally make reasoning mistakes. Recently, there has been active research aimed at improving reasoning accuracy, particularly by using pretrained language models to "self-correct" their mistakes via multi-round prompting. In this paper, we follow this line of work but focus on understanding the usefulness of incorporating "error-correction" data directly into the pretraining stage. This data consists of erroneous solution steps immediately followed by their corrections. Using a synthetic math dataset, we show promising results: this type of pretrain data can help language models achieve higher reasoning accuracy directly (i.e., through simple auto-regression, without multi-round prompting) compared to pretraining on the same amount of error-free data. We also delve into many details, such as (1) how this approach differs from beam search, (2) how such data can be prepared, (3) whether masking is needed on the erroneous tokens, (4) the amount of error required, (5) whether such data can be deferred to the fine-tuning stage, and many others.
Tibyan Corpus: Balanced and Comprehensive Error Coverage Corpus Using ChatGPT for Arabic Grammatical Error Correction
Natural language processing (NLP) utilizes text data augmentation to overcome sample size constraints. Increasing the sample size is a natural and widely used strategy for alleviating these challenges. In this study, we chose Arabic to increase the sample size and correct grammatical errors. Arabic is considered one of the languages with limited resources for grammatical error correction (GEC). Furthermore, QALB-14 and QALB-15 are the only datasets used in most Arabic grammatical error correction research, with approximately 20,500 parallel examples, which is considered low compared with other languages. Therefore, this study aims to develop an Arabic corpus called "Tibyan" for grammatical error correction using ChatGPT. ChatGPT is used as a data augmenter tool based on a pair of Arabic sentences containing grammatical errors matched with a sentence free of errors extracted from Arabic books, called guide sentences. Multiple steps were involved in establishing our corpus, including the collection and pre-processing of a pair of Arabic texts from various sources, such as books and open-access corpora. We then used ChatGPT to generate a parallel corpus based on the text collected previously, as a guide for generating sentences with multiple types of errors. By engaging linguistic experts to review and validate the automatically generated sentences, we ensured that they were correct and error-free. The corpus was validated and refined iteratively based on feedback provided by linguistic experts to improve its accuracy. Finally, we used the Arabic Error Type Annotation tool (ARETA) to analyze the types of errors in the Tibyan corpus. Our corpus contained 49 of errors, including seven types: orthography, morphology, syntax, semantics, punctuation, merge, and split. The Tibyan corpus contains approximately 600 K tokens.
NaSGEC: a Multi-Domain Chinese Grammatical Error Correction Dataset from Native Speaker Texts
We introduce NaSGEC, a new dataset to facilitate research on Chinese grammatical error correction (CGEC) for native speaker texts from multiple domains. Previous CGEC research primarily focuses on correcting texts from a single domain, especially learner essays. To broaden the target domain, we annotate multiple references for 12,500 sentences from three native domains, i.e., social media, scientific writing, and examination. We provide solid benchmark results for NaSGEC by employing cutting-edge CGEC models and different training data. We further perform detailed analyses of the connections and gaps between our domains from both empirical and statistical views. We hope this work can inspire future studies on an important but under-explored direction--cross-domain GEC.
Chinese Grammatical Error Correction: A Survey
Chinese Grammatical Error Correction (CGEC) is a critical task in Natural Language Processing, addressing the growing demand for automated writing assistance in both second-language (L2) and native (L1) Chinese writing. While L2 learners struggle with mastering complex grammatical structures, L1 users also benefit from CGEC in academic, professional, and formal contexts where writing precision is essential. This survey provides a comprehensive review of CGEC research, covering datasets, annotation schemes, evaluation methodologies, and system advancements. We examine widely used CGEC datasets, highlighting their characteristics, limitations, and the need for improved standardization. We also analyze error annotation frameworks, discussing challenges such as word segmentation ambiguity and the classification of Chinese-specific error types. Furthermore, we review evaluation metrics, focusing on their adaptation from English GEC to Chinese, including character-level scoring and the use of multiple references. In terms of system development, we trace the evolution from rule-based and statistical approaches to neural architectures, including Transformer-based models and the integration of large pre-trained language models. By consolidating existing research and identifying key challenges, this survey provides insights into the current state of CGEC and outlines future directions, including refining annotation standards to address segmentation challenges, and leveraging multilingual approaches to enhance CGEC.
Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study
Text editing frames grammatical error correction (GEC) as a sequence tagging problem, where edit tags are assigned to input tokens, and applying these edits results in the corrected text. This approach has gained attention for its efficiency and interpretability. However, while extensively explored for English, text editing remains largely underexplored for morphologically rich languages like Arabic. In this paper, we introduce a text editing approach that derives edit tags directly from data, eliminating the need for language-specific edits. We demonstrate its effectiveness on Arabic, a diglossic and morphologically rich language, and investigate the impact of different edit representations on model performance. Our approach achieves SOTA results on two Arabic GEC benchmarks and performs on par with SOTA on two others. Additionally, our models are over six times faster than existing Arabic GEC systems, making our approach more practical for real-world applications. Finally, we explore ensemble models, demonstrating how combining different models leads to further performance improvements. We make our code, data, and pretrained models publicly available.
A Novel Approach for Automatic Program Repair using Round-Trip Translation with Large Language Models
Research shows that grammatical mistakes in a sentence can be corrected by translating it to another language and back using neural machine translation with language models. We investigate whether this correction capability of Large Language Models (LLMs) extends to Automatic Program Repair (APR). Current generative models for APR are pre-trained on source code and fine-tuned for repair. This paper proposes bypassing the fine-tuning step and using Round-Trip Translation (RTT): translation of code from one programming language to another programming or natural language, and back. We hypothesize that RTT with LLMs restores the most commonly seen patterns in code during pre-training, i.e., performs a regression toward the mean, which removes bugs as they are a form of noise w.r.t. the more frequent, natural, bug-free code in the training data. To test this hypothesis, we employ eight recent LLMs pre-trained on code, including the latest GPT versions, and four common program repair benchmarks in Java. We find that RTT with English as an intermediate language repaired 101 of 164 bugs with GPT-4 on the HumanEval-Java dataset. Moreover, 46 of these are unique bugs that are not repaired by other LLMs fine-tuned for APR. Our findings highlight the viability of round-trip translation with LLMs as a technique for automated program repair and its potential for research in software engineering. Keywords: automated program repair, large language model, machine translation
Zero-shot Cross-Lingual Transfer for Synthetic Data Generation in Grammatical Error Detection
Grammatical Error Detection (GED) methods rely heavily on human annotated error corpora. However, these annotations are unavailable in many low-resource languages. In this paper, we investigate GED in this context. Leveraging the zero-shot cross-lingual transfer capabilities of multilingual pre-trained language models, we train a model using data from a diverse set of languages to generate synthetic errors in other languages. These synthetic error corpora are then used to train a GED model. Specifically we propose a two-stage fine-tuning pipeline where the GED model is first fine-tuned on multilingual synthetic data from target languages followed by fine-tuning on human-annotated GED corpora from source languages. This approach outperforms current state-of-the-art annotation-free GED methods. We also analyse the errors produced by our method and other strong baselines, finding that our approach produces errors that are more diverse and more similar to human errors.
Rethinking the Roles of Large Language Models in Chinese Grammatical Error Correction
Recently, Large Language Models (LLMs) have been widely studied by researchers for their roles in various downstream NLP tasks. As a fundamental task in the NLP field, Chinese Grammatical Error Correction (CGEC) aims to correct all potential grammatical errors in the input sentences. Previous studies have shown that LLMs' performance as correctors on CGEC remains unsatisfactory due to its challenging task focus. To promote the CGEC field to better adapt to the era of LLMs, we rethink the roles of LLMs in the CGEC task so that they can be better utilized and explored in CGEC. Considering the rich grammatical knowledge stored in LLMs and their powerful semantic understanding capabilities, we utilize LLMs as explainers to provide explanation information for the CGEC small models during error correction to enhance performance. We also use LLMs as evaluators to bring more reasonable CGEC evaluations, thus alleviating the troubles caused by the subjectivity of the CGEC task. In particular, our work is also an active exploration of how LLMs and small models better collaborate in downstream tasks. Extensive experiments and detailed analyses on widely used datasets verify the effectiveness of our thinking intuition and the proposed methods.
CLSE: Corpus of Linguistically Significant Entities
One of the biggest challenges of natural language generation (NLG) is the proper handling of named entities. Named entities are a common source of grammar mistakes such as wrong prepositions, wrong article handling, or incorrect entity inflection. Without factoring linguistic representation, such errors are often underrepresented when evaluating on a small set of arbitrarily picked argument values, or when translating a dataset from a linguistically simpler language, like English, to a linguistically complex language, like Russian. However, for some applications, broadly precise grammatical correctness is critical -- native speakers may find entity-related grammar errors silly, jarring, or even offensive. To enable the creation of more linguistically diverse NLG datasets, we release a Corpus of Linguistically Significant Entities (CLSE) annotated by linguist experts. The corpus includes 34 languages and covers 74 different semantic types to support various applications from airline ticketing to video games. To demonstrate one possible use of CLSE, we produce an augmented version of the Schema-Guided Dialog Dataset, SGD-CLSE. Using the CLSE's entities and a small number of human translations, we create a linguistically representative NLG evaluation benchmark in three languages: French (high-resource), Marathi (low-resource), and Russian (highly inflected language). We establish quality baselines for neural, template-based, and hybrid NLG systems and discuss the strengths and weaknesses of each approach.
Controlled Generation with Prompt Insertion for Natural Language Explanations in Grammatical Error Correction
In Grammatical Error Correction (GEC), it is crucial to ensure the user's comprehension of a reason for correction. Existing studies present tokens, examples, and hints as to the basis for correction but do not directly explain the reasons for corrections. Although methods that use Large Language Models (LLMs) to provide direct explanations in natural language have been proposed for various tasks, no such method exists for GEC. Generating explanations for GEC corrections involves aligning input and output tokens, identifying correction points, and presenting corresponding explanations consistently. However, it is not straightforward to specify a complex format to generate explanations, because explicit control of generation is difficult with prompts. This study introduces a method called controlled generation with Prompt Insertion (PI) so that LLMs can explain the reasons for corrections in natural language. In PI, LLMs first correct the input text, and then we automatically extract the correction points based on the rules. The extracted correction points are sequentially inserted into the LLM's explanation output as prompts, guiding the LLMs to generate explanations for the correction points. We also create an Explainable GEC (XGEC) dataset of correction reasons by annotating NUCLE, CoNLL2013, and CoNLL2014. Although generations from GPT-3 and ChatGPT using original prompts miss some correction points, the generation control using PI can explicitly guide to describe explanations for all correction points, contributing to improved performance in generating correction reasons.
Open Challenge for Correcting Errors of Speech Recognition Systems
The paper announces the new long-term challenge for improving the performance of automatic speech recognition systems. The goal of the challenge is to investigate methods of correcting the recognition results on the basis of previously made errors by the speech processing system. The dataset prepared for the task is described and evaluation criteria are presented.
Misspelling Correction with Pre-trained Contextual Language Model
Spelling irregularities, known now as spelling mistakes, have been found for several centuries. As humans, we are able to understand most of the misspelled words based on their location in the sentence, perceived pronunciation, and context. Unlike humans, computer systems do not possess the convenient auto complete functionality of which human brains are capable. While many programs provide spelling correction functionality, many systems do not take context into account. Moreover, Artificial Intelligence systems function in the way they are trained on. With many current Natural Language Processing (NLP) systems trained on grammatically correct text data, many are vulnerable against adversarial examples, yet correctly spelled text processing is crucial for learning. In this paper, we investigate how spelling errors can be corrected in context, with a pre-trained language model BERT. We present two experiments, based on BERT and the edit distance algorithm, for ranking and selecting candidate corrections. The results of our experiments demonstrated that when combined properly, contextual word embeddings of BERT and edit distance are capable of effectively correcting spelling errors.
Sequence-to-Action: Grammatical Error Correction with Action Guided Sequence Generation
The task of Grammatical Error Correction (GEC) has received remarkable attention with wide applications in Natural Language Processing (NLP) in recent years. While one of the key principles of GEC is to keep the correct parts unchanged and avoid over-correction, previous sequence-to-sequence (seq2seq) models generate results from scratch, which are not guaranteed to follow the original sentence structure and may suffer from the over-correction problem. In the meantime, the recently proposed sequence tagging models can overcome the over-correction problem by only generating edit operations, but are conditioned on human designed language-specific tagging labels. In this paper, we combine the pros and alleviate the cons of both models by proposing a novel Sequence-to-Action~(S2A) module. The S2A module jointly takes the source and target sentences as input, and is able to automatically generate a token-level action sequence before predicting each token, where each action is generated from three choices named SKIP, COPY and GENerate. Then the actions are fused with the basic seq2seq framework to provide final predictions. We conduct experiments on the benchmark datasets of both English and Chinese GEC tasks. Our model consistently outperforms the seq2seq baselines, while being able to significantly alleviate the over-correction problem as well as holding better generality and diversity in the generation results compared to the sequence tagging models.
Improving Explainability of Sentence-level Metrics via Edit-level Attribution for Grammatical Error Correction
Various evaluation metrics have been proposed for Grammatical Error Correction (GEC), but many, particularly reference-free metrics, lack explainability. This lack of explainability hinders researchers from analyzing the strengths and weaknesses of GEC models and limits the ability to provide detailed feedback for users. To address this issue, we propose attributing sentence-level scores to individual edits, providing insight into how specific corrections contribute to the overall performance. For the attribution method, we use Shapley values, from cooperative game theory, to compute the contribution of each edit. Experiments with existing sentence-level metrics demonstrate high consistency across different edit granularities and show approximately 70\% alignment with human evaluations. In addition, we analyze biases in the metrics based on the attribution results, revealing trends such as the tendency to ignore orthographic edits. Our implementation is available at https://github.com/naist-nlp/gec-attribute.
Spelling Correction with Denoising Transformer
We present a novel method of performing spelling correction on short input strings, such as search queries or individual words. At its core lies a procedure for generating artificial typos which closely follow the error patterns manifested by humans. This procedure is used to train the production spelling correction model based on a transformer architecture. This model is currently served in the HubSpot product search. We show that our approach to typo generation is superior to the widespread practice of adding noise, which ignores human patterns. We also demonstrate how our approach may be extended to resource-scarce settings and train spelling correction models for Arabic, Greek, Russian, and Setswana languages, without using any labeled data.
System Combination via Quality Estimation for Grammatical Error Correction
Quality estimation models have been developed to assess the corrections made by grammatical error correction (GEC) models when the reference or gold-standard corrections are not available. An ideal quality estimator can be utilized to combine the outputs of multiple GEC systems by choosing the best subset of edits from the union of all edits proposed by the GEC base systems. However, we found that existing GEC quality estimation models are not good enough in differentiating good corrections from bad ones, resulting in a low F0.5 score when used for system combination. In this paper, we propose GRECO, a new state-of-the-art quality estimation model that gives a better estimate of the quality of a corrected sentence, as indicated by having a higher correlation to the F0.5 score of a corrected sentence. It results in a combined GEC system with a higher F0.5 score. We also propose three methods for utilizing GEC quality estimation models for system combination with varying generality: model-agnostic, model-agnostic with voting bias, and model-dependent method. The combined GEC system outperforms the state of the art on the CoNLL-2014 test set and the BEA-2019 test set, achieving the highest F0.5 scores published to date.
VSEC: Transformer-based Model for Vietnamese Spelling Correction
Spelling error correction is one of topics which have a long history in natural language processing. Although previous studies have achieved remarkable results, challenges still exist. In the Vietnamese language, a state-of-the-art method for the task infers a syllable's context from its adjacent syllables. The method's accuracy can be unsatisfactory, however, because the model may lose the context if two (or more) spelling mistakes stand near each other. In this paper, we propose a novel method to correct Vietnamese spelling errors. We tackle the problems of mistyped errors and misspelled errors by using a deep learning model. The embedding layer, in particular, is powered by the byte pair encoding technique. The sequence to sequence model based on the Transformer architecture makes our approach different from the previous works on the same problem. In the experiment, we train the model with a large synthetic dataset, which is randomly introduced spelling errors. We test the performance of the proposed method using a realistic dataset. This dataset contains 11,202 human-made misspellings in 9,341 different Vietnamese sentences. The experimental results show that our method achieves encouraging performance with 86.8% errors detected and 81.5% errors corrected, which improves the state-of-the-art approach 5.6% and 2.2%, respectively.
Evaluating the Capability of Large-scale Language Models on Chinese Grammatical Error Correction Task
Large-scale language models (LLMs) has shown remarkable capability in various of Natural Language Processing (NLP) tasks and attracted lots of attention recently. However, some studies indicated that large language models fail to achieve promising result beyond the state-of-the-art models in English grammatical error correction (GEC) tasks. In this report, we aim to explore the how large language models perform on Chinese grammatical error correction tasks and provide guidance for future work. We conduct experiments with 3 different LLMs of different model scale on 4 Chinese GEC dataset. Our experimental results indicate that the performances of LLMs on automatic evaluation metrics falls short of the previous sota models because of the problem of over-correction. Furthermore, we also discover notable variations in the performance of LLMs when evaluated on different data distributions. Our findings demonstrates that further investigation is required for the application of LLMs on Chinese GEC task.
IMPARA-GED: Grammatical Error Detection is Boosting Reference-free Grammatical Error Quality Estimator
We propose IMPARA-GED, a novel reference-free automatic grammatical error correction (GEC) evaluation method with grammatical error detection (GED) capabilities. We focus on the quality estimator of IMPARA, an existing automatic GEC evaluation method, and construct that of IMPARA-GED using a pre-trained language model with enhanced GED capabilities. Experimental results on SEEDA, a meta-evaluation dataset for automatic GEC evaluation methods, demonstrate that IMPARA-GED achieves the highest correlation with human sentence-level evaluations.
Rethinking Evaluation Metrics for Grammatical Error Correction: Why Use a Different Evaluation Process than Human?
One of the goals of automatic evaluation metrics in grammatical error correction (GEC) is to rank GEC systems such that it matches human preferences. However, current automatic evaluations are based on procedures that diverge from human evaluation. Specifically, human evaluation derives rankings by aggregating sentence-level relative evaluation results, e.g., pairwise comparisons, using a rating algorithm, whereas automatic evaluation averages sentence-level absolute scores to obtain corpus-level scores, which are then sorted to determine rankings. In this study, we propose an aggregation method for existing automatic evaluation metrics which aligns with human evaluation methods to bridge this gap. We conducted experiments using various metrics, including edit-based metrics, n-gram based metrics, and sentence-level metrics, and show that resolving the gap improves results for the most of metrics on the SEEDA benchmark. We also found that even BERT-based metrics sometimes outperform the metrics of GPT-4. The proposed ranking method is integrated gec-metrics.
Factual Error Correction for Abstractive Summaries Using Entity Retrieval
Despite the recent advancements in abstractive summarization systems leveraged from large-scale datasets and pre-trained language models, the factual correctness of the summary is still insufficient. One line of trials to mitigate this problem is to include a post-editing process that can detect and correct factual errors in the summary. In building such a post-editing system, it is strongly required that 1) the process has a high success rate and interpretability and 2) has a fast running time. Previous approaches focus on regeneration of the summary using the autoregressive models, which lack interpretability and require high computing resources. In this paper, we propose an efficient factual error correction system RFEC based on entities retrieval post-editing process. RFEC first retrieves the evidence sentences from the original document by comparing the sentences with the target summary. This approach greatly reduces the length of text for a system to analyze. Next, RFEC detects the entity-level errors in the summaries by considering the evidence sentences and substitutes the wrong entities with the accurate entities from the evidence sentences. Experimental results show that our proposed error correction system shows more competitive performance than baseline methods in correcting the factual errors with a much faster speed.
LEMMA: Learning from Errors for MatheMatical Advancement in LLMs
Large language models (LLMs) have demonstrated remarkable reasoning capability in solving mathematical problems. However, existing approaches primarily focus on improving the quality of correct training data, e.g., distilling high-quality correct solutions from advanced models, neglecting the value contained in error data, potentially hindering the model's reflective ability. Though some studies attempt to leverage error data, they often involve complex mechanisms, such as Monte Carlo Tree Search (MCTS) to explore error nodes. In this work, we propose to enhance LLMs' reasoning ability by Learning from Errors for Mathematical Advancement (LEMMA). LEMMA constructs data consisting of an incorrect solution with an erroneous step and a reflection connection to a correct solution for fine-tuning. Specifically, we systematically analyze the model-generated error types and introduce an error-type grounded mistake augmentation method to collect diverse and representative errors. Correct solutions are either from fixing the errors or generating a fresh start. Through a model-aware smooth reflection connection, the erroneous solution is transferred to the correct one. By fine-tuning on the constructed dataset, the model is able to self-correct errors autonomously within the generation process without relying on external critique models. Experimental results demonstrate that LEMMA achieves significant performance improvements over other strong baselines.
gec-metrics: A Unified Library for Grammatical Error Correction Evaluation
We introduce gec-metrics, a library for using and developing grammatical error correction (GEC) evaluation metrics through a unified interface. Our library enables fair system comparisons by ensuring that everyone conducts evaluations using a consistent implementation. Moreover, it is designed with a strong focus on API usage, making it highly extensible. It also includes meta-evaluation functionalities and provides analysis and visualization scripts, contributing to developing GEC evaluation metrics. Our code is released under the MIT license and is also distributed as an installable package. The video is available on YouTube.
On the application of Large Language Models for language teaching and assessment technology
The recent release of very large language models such as PaLM and GPT-4 has made an unprecedented impact in the popular media and public consciousness, giving rise to a mixture of excitement and fear as to their capabilities and potential uses, and shining a light on natural language processing research which had not previously received so much attention. The developments offer great promise for education technology, and in this paper we look specifically at the potential for incorporating large language models in AI-driven language teaching and assessment systems. We consider several research areas and also discuss the risks and ethical considerations surrounding generative AI in education technology for language learners. Overall we find that larger language models offer improvements over previous models in text generation, opening up routes toward content generation which had not previously been plausible. For text generation they must be prompted carefully and their outputs may need to be reshaped before they are ready for use. For automated grading and grammatical error correction, tasks whose progress is checked on well-known benchmarks, early investigations indicate that large language models on their own do not improve on state-of-the-art results according to standard evaluation metrics. For grading it appears that linguistic features established in the literature should still be used for best performance, and for error correction it may be that the models can offer alternative feedback styles which are not measured sensitively with existing methods. In all cases, there is work to be done to experiment with the inclusion of large language models in education technology for language learners, in order to properly understand and report on their capacities and limitations, and to ensure that foreseeable risks such as misinformation and harmful bias are mitigated.
Grammar-Based Code Representation: Is It a Worthy Pursuit for LLMs?
Grammar serves as a cornerstone in programming languages and software engineering, providing frameworks to define the syntactic space and program structure. Existing research demonstrates the effectiveness of grammar-based code representations in small-scale models, showing their ability to reduce syntax errors and enhance performance. However, as language models scale to the billion level or beyond, syntax-level errors become rare, making it unclear whether grammar information still provides performance benefits. To explore this, we develop a series of billion-scale GrammarCoder models, incorporating grammar rules in the code generation process. Experiments on HumanEval (+) and MBPP (+) demonstrate a notable improvement in code generation accuracy. Further analysis shows that grammar-based representations enhance LLMs' ability to discern subtle code differences, reducing semantic errors caused by minor variations. These findings suggest that grammar-based code representations remain valuable even in billion-scale models, not only by maintaining syntax correctness but also by improving semantic differentiation.
Subtle Errors Matter: Preference Learning via Error-injected Self-editing
Large Language Models (LLMs) have exhibited strong mathematical reasoning and computational prowess, tackling tasks ranging from basic arithmetic to advanced competition-level problems. However, frequently occurring subtle errors, such as miscalculations or incorrect substitutions, limit the models' full mathematical potential. Existing studies to improve mathematical ability typically involve distilling reasoning skills from stronger LLMs or applying preference learning to step-wise response pairs. Although these methods leverage samples of varying granularity to mitigate reasoning errors, they overlook the frequently occurring subtle errors. A major reason is that sampled preference pairs involve differences unrelated to the errors, which may distract the model from focusing on subtle errors. In this work, we propose a novel preference learning framework called eRror-Injected Self-Editing (RISE), which injects predefined subtle errors into partial tokens of correct solutions to construct hard pairs for error mitigation. In detail, RISE uses the model itself to edit a small number of tokens in the solution, injecting designed subtle errors. Then, pairs composed of self-edited solutions and their corresponding correct ones, along with pairs of correct and incorrect solutions obtained through sampling, are used together for subtle error-aware DPO training. Compared with other preference learning methods, RISE further refines the training objective to focus on predefined errors and their tokens, without requiring fine-grained sampling or preference annotation. Extensive experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH.
Improving Iterative Text Revision by Learning Where to Edit from Other Revision Tasks
Iterative text revision improves text quality by fixing grammatical errors, rephrasing for better readability or contextual appropriateness, or reorganizing sentence structures throughout a document. Most recent research has focused on understanding and classifying different types of edits in the iterative revision process from human-written text instead of building accurate and robust systems for iterative text revision. In this work, we aim to build an end-to-end text revision system that can iteratively generate helpful edits by explicitly detecting editable spans (where-to-edit) with their corresponding edit intents and then instructing a revision model to revise the detected edit spans. Leveraging datasets from other related text editing NLP tasks, combined with the specification of editable spans, leads our system to more accurately model the process of iterative text refinement, as evidenced by empirical results and human evaluations. Our system significantly outperforms previous baselines on our text revision tasks and other standard text revision tasks, including grammatical error correction, text simplification, sentence fusion, and style transfer. Through extensive qualitative and quantitative analysis, we make vital connections between edit intentions and writing quality, and better computational modeling of iterative text revisions.
Correcting diacritics and typos with a ByT5 transformer model
Due to the fast pace of life and online communications and the prevalence of English and the QWERTY keyboard, people tend to forgo using diacritics, make typographical errors (typos) when typing in other languages. Restoring diacritics and correcting spelling is important for proper language use and the disambiguation of texts for both humans and downstream algorithms. However, both of these problems are typically addressed separately: the state-of-the-art diacritics restoration methods do not tolerate other typos, but classical spellcheckers also cannot deal adequately with all the diacritics missing. In this work, we tackle both problems at once by employing the newly-developed universal ByT5 byte-level seq2seq transformer model that requires no language-specific model structures. For a comparison, we perform diacritics restoration on benchmark datasets of 12 languages, with the addition of Lithuanian. The experimental investigation proves that our approach is able to achieve results (> 98%) comparable to the previous state-of-the-art, despite being trained less and on fewer data. Our approach is also able to restore diacritics in words not seen during training with > 76% accuracy. Our simultaneous diacritics restoration and typos correction approach reaches > 94% alpha-word accuracy on the 13 languages. It has no direct competitors and strongly outperforms classical spell-checking or dictionary-based approaches. We also demonstrate all the accuracies to further improve with more training. Taken together, this shows the great real-world application potential of our suggested methods to more data, languages, and error classes.
LM-Critic: Language Models for Unsupervised Grammatical Error Correction
Training a model for grammatical error correction (GEC) requires a set of labeled ungrammatical / grammatical sentence pairs, but manually annotating such pairs can be expensive. Recently, the Break-It-Fix-It (BIFI) framework has demonstrated strong results on learning to repair a broken program without any labeled examples, but this relies on a perfect critic (e.g., a compiler) that returns whether an example is valid or not, which does not exist for the GEC task. In this work, we show how to leverage a pretrained language model (LM) in defining an LM-Critic, which judges a sentence to be grammatical if the LM assigns it a higher probability than its local perturbations. We apply this LM-Critic and BIFI along with a large set of unlabeled sentences to bootstrap realistic ungrammatical / grammatical pairs for training a corrector. We evaluate our approach on GEC datasets across multiple domains (CoNLL-2014, BEA-2019, GMEG-wiki and GMEG-yahoo) and show that it outperforms existing methods in both the unsupervised setting (+7.7 F0.5) and the supervised setting (+0.5 F0.5).
Are Pre-trained Language Models Useful for Model Ensemble in Chinese Grammatical Error Correction?
Model ensemble has been in widespread use for Grammatical Error Correction (GEC), boosting model performance. We hypothesize that model ensemble based on the perplexity (PPL) computed by pre-trained language models (PLMs) should benefit the GEC system. To this end, we explore several ensemble strategies based on strong PLMs with four sophisticated single models. However, the performance does not improve but even gets worse after the PLM-based ensemble. This surprising result sets us doing a detailed analysis on the data and coming up with some insights on GEC. The human references of correct sentences is far from sufficient in the test data, and the gap between a correct sentence and an idiomatic one is worth our attention. Moreover, the PLM-based ensemble strategies provide an effective way to extend and improve GEC benchmark data. Our source code is available at https://github.com/JamyDon/PLM-based-CGEC-Model-Ensemble.
Likelihood-based Mitigation of Evaluation Bias in Large Language Models
Large Language Models (LLMs) are widely used to evaluate natural language generation tasks as automated metrics. However, the likelihood, a measure of LLM's plausibility for a sentence, can vary due to superficial differences in sentences, such as word order and sentence structure. It is therefore possible that there might be a likelihood bias if LLMs are used for evaluation: they might overrate sentences with higher likelihoods while underrating those with lower likelihoods. In this paper, we investigate the presence and impact of likelihood bias in LLM-based evaluators. We also propose a method to mitigate the likelihood bias. Our method utilizes highly biased instances as few-shot examples for in-context learning. Our experiments in evaluating the data-to-text and grammatical error correction tasks reveal that several LLMs we test display a likelihood bias. Furthermore, our proposed method successfully mitigates this bias, also improving evaluation performance (in terms of correlation of models with human scores) significantly.
ASR-EC Benchmark: Evaluating Large Language Models on Chinese ASR Error Correction
Automatic speech Recognition (ASR) is a fundamental and important task in the field of speech and natural language processing. It is an inherent building block in many applications such as voice assistant, speech translation, etc. Despite the advancement of ASR technologies in recent years, it is still inevitable for modern ASR systems to have a substantial number of erroneous recognition due to environmental noise, ambiguity, etc. Therefore, the error correction in ASR is crucial. Motivated by this, this paper studies ASR error correction in the Chinese language, which is one of the most popular languages and enjoys a large number of users in the world. We first create a benchmark dataset named ASR-EC that contains a wide spectrum of ASR errors generated by industry-grade ASR systems. To the best of our knowledge, it is the first Chinese ASR error correction benchmark. Then, inspired by the recent advances in large language models (LLMs), we investigate how to harness the power of LLMs to correct ASR errors. We apply LLMs to ASR error correction in three paradigms. The first paradigm is prompting, which is further categorized as zero-shot, few-shot, and multi-step. The second paradigm is finetuning, which finetunes LLMs with ASR error correction data. The third paradigm is multi-modal augmentation, which collectively utilizes the audio and ASR transcripts for error correction. Extensive experiments reveal that prompting is not effective for ASR error correction. Finetuning is effective only for a portion of LLMs. Multi-modal augmentation is the most effective method for error correction and achieves state-of-the-art performance.
Beyond English: Evaluating LLMs for Arabic Grammatical Error Correction
Large language models (LLMs) finetuned to follow human instruction have recently exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC), especially on languages other than English, remains significantly unexplored. In this work, we evaluate the abilities of instruction finetuned LLMs in Arabic GEC, a complex task due to Arabic's rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F_{1} score under expert prompting (approximately 5 points higher than our established baseline). Despite these positive results, we find that instruction finetuned models, regardless of their size, are still outperformed by fully finetuned ones, even if they are significantly smaller in size. This disparity highlights substantial room for improvements for LLMs. Inspired by methods used in low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our best model achieves a new SOTA on Arabic GEC, with 73.29 and 73.26 F_{1} on the 2014 and 2015 QALB datasets, respectively, compared to peer-reviewed published baselines.
Trigger^3: Refining Query Correction via Adaptive Model Selector
In search scenarios, user experience can be hindered by erroneous queries due to typos, voice errors, or knowledge gaps. Therefore, query correction is crucial for search engines. Current correction models, usually small models trained on specific data, often struggle with queries beyond their training scope or those requiring contextual understanding. While the advent of Large Language Models (LLMs) offers a potential solution, they are still limited by their pre-training data and inference cost, particularly for complex queries, making them not always effective for query correction. To tackle these, we propose Trigger^3, a large-small model collaboration framework that integrates the traditional correction model and LLM for query correction, capable of adaptively choosing the appropriate correction method based on the query and the correction results from the traditional correction model and LLM. Trigger^3 first employs a correction trigger to filter out correct queries. Incorrect queries are then corrected by the traditional correction model. If this fails, an LLM trigger is activated to call the LLM for correction. Finally, for queries that no model can correct, a fallback trigger decides to return the original query. Extensive experiments demonstrate Trigger^3 outperforms correction baselines while maintaining efficiency.
Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake Analysis
The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges. This becomes particularly evident when LLMs inadvertently generate harmful or toxic content, either unintentionally or because of intentional inducement. Existing alignment methods usually direct LLMs toward the favorable outcomes by utilizing human-annotated, flawless instruction-response pairs. Conversely, this study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them. In this case, mistakes are repurposed into valuable data for alignment, effectively helping to avoid the production of erroneous responses. Without external models or human annotations, our method leverages a model's intrinsic ability to discern undesirable mistakes and improves the safety of its generated responses. Experimental results reveal that our method outperforms existing alignment approaches in enhancing model safety while maintaining the overall utility.
Large Language Models Cannot Self-Correct Reasoning Yet
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities across various applications. Nevertheless, concerns persist regarding the accuracy and appropriateness of their generated content. A contemporary methodology, self-correction, has been proposed as a remedy to these issues. Building upon this premise, this paper critically examines the role and efficacy of self-correction within LLMs, shedding light on its true potential and limitations. Central to our investigation is the notion of intrinsic self-correction, whereby an LLM attempts to correct its initial responses based solely on its inherent capabilities, without the crutch of external feedback. In the context of reasoning, our research indicates that LLMs struggle to self-correct their responses without external feedback, and at times, their performance might even degrade post self-correction. Drawing from these insights, we offer suggestions for future research and practical applications in this field.
Memory-assisted prompt editing to improve GPT-3 after deployment
Large LMs such as GPT-3 are powerful, but can commit mistakes that are obvious to humans. For example, GPT-3 would mistakenly interpret "What word is similar to good?" to mean a homophone, while the user intended a synonym. Our goal is to effectively correct such errors via user interactions with the system but without retraining, which will be prohibitively costly. We pair GPT-3 with a growing memory of recorded cases where the model misunderstood the user's intents, along with user feedback for clarification. Such a memory allows our system to produce enhanced prompts for any new query based on the user feedback for error correction on similar cases in the past. On four tasks (two lexical tasks, two advanced ethical reasoning tasks), we show how a (simulated) user can interactively teach a deployed GPT-3, substantially increasing its accuracy over the queries with different kinds of misunderstandings by the GPT-3. Our approach is a step towards the low-cost utility enhancement for very large pre-trained LMs. Code, data, and instructions to implement MEMPROMPT for a new task at https://www.memprompt.com/.
MALM: Mixing Augmented Language Modeling for Zero-Shot Machine Translation
Large pre-trained language models have brought remarkable progress in NLP. Pre-training and Fine-tuning have given state-of-art performance across tasks in text processing. Data Augmentation techniques have also helped build state-of-art models on low or zero resource tasks. Many works in the past have attempted at learning a single massively-multilingual machine translation model for zero-shot translation. Although those translation models are producing correct translations, the main challenge is those models are producing the wrong languages for zero-shot translation. This work and its results indicate that prompt conditioned large models do not suffer from off-target language errors i.e. errors arising due to translation to wrong languages. We empirically demonstrate the effectiveness of self-supervised pre-training and data augmentation for zero-shot multi-lingual machine translation.
Repair Is Nearly Generation: Multilingual Program Repair with LLMs
Most programmers make mistakes when writing code. Some of these mistakes are small and require few edits to the original program -- a class of errors recently termed last mile mistakes. These errors break the flow for experienced developers and can stump novice programmers. Existing automated repair techniques targeting this class of errors are language-specific and do not easily carry over to new languages. Transferring symbolic approaches requires substantial engineering and neural approaches require data and retraining. We introduce RING, a multilingual repair engine powered by a large language model trained on code (LLMC) such as Codex. Such a multilingual engine enables a flipped model for programming assistance, one where the programmer writes code and the AI assistance suggests fixes, compared to traditional code suggestion technology. Taking inspiration from the way programmers manually fix bugs, we show that a prompt-based strategy that conceptualizes repair as localization, transformation, and candidate ranking, can successfully repair programs in multiple languages with minimal effort. We present the first results for such a multilingual repair engine by evaluating on 6 different languages and comparing performance to language-specific repair engines. We show that RING can outperform language-specific repair engines for three of these languages.
DUnE: Dataset for Unified Editing
Even the most advanced language models remain susceptible to errors necessitating to modify these models without initiating a comprehensive retraining process. Model editing refers to the modification of a model's knowledge or representations in a manner that produces the desired outcomes. Prior research primarily centered around editing factual data e.g. "Messi plays for Inter Miami" confining the definition of an edit to a knowledge triplet i.e. (subject, object, relation). However, as the applications of language models expand, so do the diverse ways in which we wish to edit and refine their outputs. In this study, we broaden the scope of the editing problem to include an array of editing cases such as debiasing and rectifying reasoning errors and define an edit as any natural language expression that solicits a change in the model's outputs. We are introducing DUnE-an editing benchmark where edits are natural language sentences and propose that DUnE presents a challenging yet relevant task. To substantiate this claim, we conduct an extensive series of experiments testing various editing approaches to address DUnE, demonstrating their respective strengths and weaknesses. We show that retrieval-augmented language modeling can outperform specialized editing techniques and neither set of approaches has fully solved the generalized editing problem covered by our benchmark.
Self-Taught Self-Correction for Small Language Models
Although large language models (LLMs) have achieved remarkable performance across various tasks, they remain prone to errors. A key challenge is enabling them to self-correct. While prior research has relied on external tools or large proprietary models, this work explores self-correction in small language models (SLMs) through iterative fine-tuning using solely self-generated data. We introduce the Self-Taught Self-Correction (STaSC) algorithm, which incorporates multiple algorithmic design choices. Experimental results on a question-answering task demonstrate that STaSC effectively learns self-correction, leading to significant performance improvements. Our analysis further provides insights into the mechanisms of self-correction and the impact of different design choices on learning dynamics and overall performance. To support future research, we release our user-friendly codebase and lightweight models.
Full-text Error Correction for Chinese Speech Recognition with Large Language Model
Large Language Models (LLMs) have demonstrated substantial potential for error correction in Automatic Speech Recognition (ASR). However, most research focuses on utterances from short-duration speech recordings, which are the predominant form of speech data for supervised ASR training. This paper investigates the effectiveness of LLMs for error correction in full-text generated by ASR systems from longer speech recordings, such as transcripts from podcasts, news broadcasts, and meetings. First, we develop a Chinese dataset for full-text error correction, named ChFT, utilizing a pipeline that involves text-to-speech synthesis, ASR, and error-correction pair extractor. This dataset enables us to correct errors across contexts, including both full-text and segment, and to address a broader range of error types, such as punctuation restoration and inverse text normalization, thus making the correction process comprehensive. Second, we fine-tune a pre-trained LLM on the constructed dataset using a diverse set of prompts and target formats, and evaluate its performance on full-text error correction. Specifically, we design prompts based on full-text and segment, considering various output formats, such as directly corrected text and JSON-based error-correction pairs. Through various test settings, including homogeneous, up-to-date, and hard test sets, we find that the fine-tuned LLMs perform well in the full-text setting with different prompts, each presenting its own strengths and weaknesses. This establishes a promising baseline for further research. The dataset is available on the website.
Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation
Generative Error Correction (GEC) has emerged as a powerful post-processing method to enhance the performance of Automatic Speech Recognition (ASR) systems. However, we show that GEC models struggle to generalize beyond the specific types of errors encountered during training, limiting their ability to correct new, unseen errors at test time, particularly in out-of-domain (OOD) scenarios. This phenomenon amplifies with named entities (NEs), where, in addition to insufficient contextual information or knowledge about the NEs, novel NEs keep emerging. To address these issues, we propose DARAG (Data- and Retrieval-Augmented Generative Error Correction), a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios. We augment the GEC training dataset with synthetic data generated by prompting LLMs and text-to-speech models, thereby simulating additional errors from which the model can learn. For OOD scenarios, we simulate test-time errors from new domains similarly and in an unsupervised fashion. Additionally, to better handle named entities, we introduce retrieval-augmented correction by augmenting the input with entities retrieved from a database. Our approach is simple, scalable, and both domain- and language-agnostic. We experiment on multiple datasets and settings, showing that DARAG outperforms all our baselines, achieving 8\% -- 30\% relative WER improvements in ID and 10\% -- 33\% improvements in OOD settings.
Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
Confidence v.s. Critique: A Decomposition of Self-Correction Capability for LLMs
Large Language Models (LLMs) can correct their self-generated responses, but a decline in accuracy after self-correction is also witnessed. To have a deeper understanding of self-correction, we endeavor to decompose, evaluate, and analyze the self-correction behaviors of LLMs. By enumerating and analyzing answer correctness before and after self-correction, we decompose the self-correction capability into confidence (being confident to correct answers) and critique (turning wrong answers to correct) capabilities, and propose two metrics from a probabilistic perspective to measure these 2 capabilities, along with another metric for overall self-correction capability evaluation. Based on our decomposition and evaluation metrics, we conduct extensive experiments and draw some empirical conclusions. For example, we find different models can exhibit distinct behaviors: some models are confident while others are more critical. We also find the trade-off between the two capabilities (i.e. improving one can lead to a decline in the other) when manipulating model self-correction behavior by prompts or in-context learning. Further, we find a simple yet efficient strategy to improve self-correction capability by transforming Supervision Fine-Tuning (SFT) data format, and our strategy outperforms vanilla SFT in both capabilities and achieves much higher accuracy after self-correction. Our code will be publicly available on GitHub.
ChatGPT for Arabic Grammatical Error Correction
Recently, large language models (LLMs) fine-tuned to follow human instruction have exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC) tasks, particularly in non-English languages, remains significantly unexplored. In this paper, we delve into abilities of instruction fine-tuned LLMs in Arabic GEC, a task made complex due to Arabic's rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F1 score under expert prompting (approximately 5 points higher than our established baseline). This highlights the potential of LLMs in low-resource settings, offering a viable approach for generating useful synthetic data for model training. Despite these positive results, we find that instruction fine-tuned models, regardless of their size, significantly underperform compared to fully fine-tuned models of significantly smaller sizes. This disparity highlights a substantial room for improvements for LLMs. Inspired by methods from low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our work sets new SoTA for Arabic GEC, with 72.19% and 73.26 F_{1} on the 2014 and 2015 QALB datasets, respectively.
Leveraging Large Language Models in Code Question Answering: Baselines and Issues
Question answering over source code provides software engineers and project managers with helpful information about the implemented features of a software product. This paper presents a work devoted to using large language models for question answering over source code in Python. The proposed method for implementing a source code question answering system involves fine-tuning a large language model on a unified dataset of questions and answers for Python code. To achieve the highest quality answers, we tested various models trained on datasets preprocessed in different ways: a dataset without grammar correction, a dataset with grammar correction, and a dataset augmented with the generated summaries. The model answers were also analyzed for errors manually. We report BLEU-4, BERTScore F1, BLEURT, and Exact Match metric values, along with the conclusions from the manual error analysis. The obtained experimental results highlight the current problems of the research area, such as poor quality of the public genuine question-answering datasets. In addition, the findings include the positive effect of the grammar correction of the training data on the testing metric values. The addressed findings and issues could be important for other researchers who attempt to improve the quality of source code question answering solutions. The training and evaluation code is publicly available at https://github.com/IU-AES-AI4Code/CodeQuestionAnswering.
LLMs cannot find reasoning errors, but can correct them!
While self-correction has shown promise in improving LLM outputs in terms of style and quality (e.g. Chen et al., 2023; Madaan et al., 2023), recent attempts to self-correct logical or reasoning errors often cause correct answers to become incorrect, resulting in worse performances overall (Huang et al., 2023). In this paper, we break down the self-correction process into two core components: mistake finding and output correction. For mistake finding, we release BIG-Bench Mistake, a dataset of logical mistakes in Chain-of-Thought reasoning traces. We provide benchmark numbers for several state-of-the-art LLMs, and demonstrate that LLMs generally struggle with finding logical mistakes. For output correction, we propose a backtracking method which provides large improvements when given information on mistake location. We construe backtracking as a lightweight alternative to reinforcement learning methods, and show that it remains effective with a reward model at 60-70% accuracy.
Can LLMs Learn from Previous Mistakes? Investigating LLMs' Errors to Boost for Reasoning
Recent works have shown the benefits to LLMs from fine-tuning golden-standard Chain-of-Thought (CoT) rationales or using them as correct examples in few-shot prompting. While humans can indeed imitate correct examples, learning from our mistakes is another vital aspect of human cognition. Hence, a question naturally arises: can LLMs learn and benefit from their mistakes, especially for their reasoning? This study investigates this problem from both the prompting and model-tuning perspectives. We begin by introducing CoTErrorSet, a new benchmark with 609,432 questions, each designed with both correct and error references, and demonstrating the types and reasons for making such mistakes. To explore the effectiveness of those mistakes, we design two methods: (1) Self-rethinking prompting guides LLMs to rethink whether they have made similar previous mistakes; and (2) Mistake tuning involves finetuning models in both correct and incorrect reasoning domains, rather than only tuning models to learn ground truth in traditional methodology. We conduct a series of experiments to prove LLMs can obtain benefits from mistakes in both directions. Our two methods offer potentially cost-effective strategies by leveraging errors to enhance reasoning capabilities, which costs significantly less than creating meticulously hand-crafted golden references. We ultimately make a thorough analysis of the reasons behind LLMs' errors, which provides directions that future research needs to overcome. CoTErrorSet will be published soon on \url{https://github.com/YookiTong/Learn-from-Mistakes-CotErrorSet}.
Evaluating LLMs at Detecting Errors in LLM Responses
With Large Language Models (LLMs) being widely used across various tasks, detecting errors in their responses is increasingly crucial. However, little research has been conducted on error detection of LLM responses. Collecting error annotations on LLM responses is challenging due to the subjective nature of many NLP tasks, and thus previous research focuses on tasks of little practical value (e.g., word sorting) or limited error types (e.g., faithfulness in summarization). This work introduces ReaLMistake, the first error detection benchmark consisting of objective, realistic, and diverse errors made by LLMs. ReaLMistake contains three challenging and meaningful tasks that introduce objectively assessable errors in four categories (reasoning correctness, instruction-following, context-faithfulness, and parameterized knowledge), eliciting naturally observed and diverse errors in responses of GPT-4 and Llama 2 70B annotated by experts. We use ReaLMistake to evaluate error detectors based on 12 LLMs. Our findings show: 1) Top LLMs like GPT-4 and Claude 3 detect errors made by LLMs at very low recall, and all LLM-based error detectors perform much worse than humans. 2) Explanations by LLM-based error detectors lack reliability. 3) LLMs-based error detection is sensitive to small changes in prompts but remains challenging to improve. 4) Popular approaches to improving LLMs, including self-consistency and majority vote, do not improve the error detection performance. Our benchmark and code are provided at https://github.com/psunlpgroup/ReaLMistake.
Correcting Semantic Parses with Natural Language through Dynamic Schema Encoding
In addressing the task of converting natural language to SQL queries, there are several semantic and syntactic challenges. It becomes increasingly important to understand and remedy the points of failure as the performance of semantic parsing systems improve. We explore semantic parse correction with natural language feedback, proposing a new solution built on the success of autoregressive decoders in text-to-SQL tasks. By separating the semantic and syntactic difficulties of the task, we show that the accuracy of text-to-SQL parsers can be boosted by up to 26% with only one turn of correction with natural language. Additionally, we show that a T5-base model is capable of correcting the errors of a T5-large model in a zero-shot, cross-parser setting.
xTower: A Multilingual LLM for Explaining and Correcting Translation Errors
While machine translation (MT) systems are achieving increasingly strong performance on benchmarks, they often produce translations with errors and anomalies. Understanding these errors can potentially help improve the translation quality and user experience. This paper introduces xTower, an open large language model (LLM) built on top of TowerBase designed to provide free-text explanations for translation errors in order to guide the generation of a corrected translation. The quality of the generated explanations by xTower are assessed via both intrinsic and extrinsic evaluation. We ask expert translators to evaluate the quality of the explanations across two dimensions: relatedness towards the error span being explained and helpfulness in error understanding and improving translation quality. Extrinsically, we test xTower across various experimental setups in generating translation corrections, demonstrating significant improvements in translation quality. Our findings highlight xTower's potential towards not only producing plausible and helpful explanations of automatic translations, but also leveraging them to suggest corrected translations.
Enhancing Grammatical Error Detection using BERT with Cleaned Lang-8 Dataset
This paper presents an improved LLM based model for Grammatical Error Detection (GED), which is a very challenging and equally important problem for many applications. The traditional approach to GED involved hand-designed features, but recently, Neural Networks (NN) have automated the discovery of these features, improving performance in GED. Traditional rule-based systems have an F1 score of 0.50-0.60 and earlier machine learning models give an F1 score of 0.65-0.75, including decision trees and simple neural networks. Previous deep learning models, for example, Bi-LSTM, have reported F1 scores within the range from 0.80 to 0.90. In our study, we have fine-tuned various transformer models using the Lang8 dataset rigorously cleaned by us. In our experiments, the BERT-base-uncased model gave an impressive performance with an F1 score of 0.91 and accuracy of 98.49% on training data and 90.53% on testing data, also showcasing the importance of data cleaning. Increasing model size using BERT-large-uncased or RoBERTa-large did not give any noticeable improvements in performance or advantage for this task, underscoring that larger models are not always better. Our results clearly show how far rigorous data cleaning and simple transformer-based models can go toward significantly improving the quality of GED.
Speak to your Parser: Interactive Text-to-SQL with Natural Language Feedback
We study the task of semantic parse correction with natural language feedback. Given a natural language utterance, most semantic parsing systems pose the problem as one-shot translation where the utterance is mapped to a corresponding logical form. In this paper, we investigate a more interactive scenario where humans can further interact with the system by providing free-form natural language feedback to correct the system when it generates an inaccurate interpretation of an initial utterance. We focus on natural language to SQL systems and construct, SPLASH, a dataset of utterances, incorrect SQL interpretations and the corresponding natural language feedback. We compare various reference models for the correction task and show that incorporating such a rich form of feedback can significantly improve the overall semantic parsing accuracy while retaining the flexibility of natural language interaction. While we estimated human correction accuracy is 81.5%, our best model achieves only 25.1%, which leaves a large gap for improvement in future research. SPLASH is publicly available at https://aka.ms/Splash_dataset.
The USYD-JD Speech Translation System for IWSLT 2021
This paper describes the University of Sydney& JD's joint submission of the IWSLT 2021 low resource speech translation task. We participated in the Swahili-English direction and got the best scareBLEU (25.3) score among all the participants. Our constrained system is based on a pipeline framework, i.e. ASR and NMT. We trained our models with the officially provided ASR and MT datasets. The ASR system is based on the open-sourced tool Kaldi and this work mainly explores how to make the most of the NMT models. To reduce the punctuation errors generated by the ASR model, we employ our previous work SlotRefine to train a punctuation correction model. To achieve better translation performance, we explored the most recent effective strategies, including back translation, knowledge distillation, multi-feature reranking and transductive finetuning. For model structure, we tried auto-regressive and non-autoregressive models, respectively. In addition, we proposed two novel pre-train approaches, i.e. de-noising training and bidirectional training to fully exploit the data. Extensive experiments show that adding the above techniques consistently improves the BLEU scores, and the final submission system outperforms the baseline (Transformer ensemble model trained with the original parallel data) by approximately 10.8 BLEU score, achieving the SOTA performance.
Error Classification of Large Language Models on Math Word Problems: A Dynamically Adaptive Framework
Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains. Math Word Problems (MWPs) serve as a crucial benchmark for evaluating LLMs' reasoning abilities. While most research primarily focuses on improving accuracy, it often neglects understanding and addressing the underlying patterns of errors. Current error classification methods rely on static and predefined categories, which limit their ability to capture the full spectrum of error patterns in mathematical reasoning. To enable systematic error analysis, we collect error samples from 15 different LLMs of varying sizes across four distinct MWP datasets using multiple sampling strategies. Based on this extensive collection, we introduce MWPES-300K, a comprehensive dataset containing 304,865 error samples that cover diverse error patterns and reasoning paths. To reduce human bias and enable fine-grained analysis of error patterns, we propose a novel framework for automated dynamic error classification in mathematical reasoning. Experimental results demonstrate that dataset characteristics significantly shape error patterns, which evolve from basic to complex manifestations as model capabilities increase. With deeper insights into error patterns, we propose error-aware prompting that incorporates common error patterns as explicit guidance, leading to significant improvements in mathematical reasoning performance.
Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models
The recent success of Large Language Models (LLMs) has catalyzed an increasing interest in their self-correction capabilities. This paper presents a comprehensive investigation into the intrinsic self-correction of LLMs, attempting to address the ongoing debate about its feasibility. Our research has identified an important latent factor - the "confidence" of LLMs - during the self-correction process. Overlooking this factor may cause the models to over-criticize themselves, resulting in unreliable conclusions regarding the efficacy of self-correction. We have experimentally observed that LLMs possess the capability to understand the "confidence" in their own responses. It motivates us to develop an "If-or-Else" (IoE) prompting framework, designed to guide LLMs in assessing their own "confidence", facilitating intrinsic self-corrections. We conduct extensive experiments and demonstrate that our IoE-based Prompt can achieve a consistent improvement regarding the accuracy of self-corrected responses over the initial answers. Our study not only sheds light on the underlying factors affecting self-correction in LLMs, but also introduces a practical framework that utilizes the IoE prompting principle to efficiently improve self-correction capabilities with "confidence". The code is available at https://github.com/MBZUAI-CLeaR/IoE-Prompting.git.
Patent-CR: A Dataset for Patent Claim Revision
This paper presents Patent-CR, the first dataset created for the patent claim revision task in English. It includes both initial patent applications rejected by patent examiners and the final granted versions. Unlike normal text revision tasks that predominantly focus on enhancing sentence quality, such as grammar correction and coherence improvement, patent claim revision aims at ensuring the claims meet stringent legal criteria. These criteria are beyond novelty and inventiveness, including clarity of scope, technical accuracy, language precision, and legal robustness. We assess various large language models (LLMs) through professional human evaluation, including general LLMs with different sizes and architectures, text revision models, and domain-specific models. Our results indicate that LLMs often bring ineffective edits that deviate from the target revisions. In addition, domain-specific models and the method of fine-tuning show promising results. Notably, GPT-4 outperforms other tested LLMs, but further revisions are still necessary to reach the examination standard. Furthermore, we demonstrate the inconsistency between automated and human evaluation results, suggesting that GPT-4-based automated evaluation has the highest correlation with human judgment. This dataset, along with our preliminary empirical research, offers invaluable insights for further exploration in patent claim revision.
Normalization of Lithuanian Text Using Regular Expressions
Text Normalization is an integral part of any text-to-speech synthesis system. In a natural language text, there are elements such as numbers, dates, abbreviations, etc. that belong to other semiotic classes. They are called non-standard words (NSW) and need to be expanded into ordinary words. For this purpose, it is necessary to identify the semiotic class of each NSW. The taxonomy of semiotic classes adapted to the Lithuanian language is presented in the work. Sets of rules are created for detecting and expanding NSWs based on regular expressions. Experiments with three completely different data sets were performed and the accuracy was assessed. Causes of errors are explained and recommendations are given for the development of text normalization rules.
The Mirage of Model Editing: Revisiting Evaluation in the Wild
Despite near-perfect results in artificial evaluations, the effectiveness of model editing in real-world applications remains unexplored. To bridge this gap, we propose to study model editing in question answering (QA) by establishing a rigorous evaluation practice to assess the effectiveness of editing methods in correcting LLMs' errors. It consists of QAEdit, a new benchmark derived from popular QA datasets, and a standardized evaluation framework. Our single editing experiments indicate that current editing methods perform substantially worse than previously reported (38.5% vs. ~96%). Through module analysis and controlled experiments, we demonstrate that this performance decline stems from issues in evaluation practices of prior editing research. One key issue is the inappropriate use of teacher forcing in testing prevents error propagation by feeding ground truth tokens (inaccessible in real-world scenarios) as input. Furthermore, we simulate real-world deployment by sequential editing, revealing that current approaches fail drastically with only 1000 edits. Our analysis provides a fundamental reexamination of both the real-world applicability of existing model editing methods and their evaluation practices, and establishes a rigorous evaluation framework with key insights to advance reliable and practical model editing research.
Recoding latent sentence representations -- Dynamic gradient-based activation modification in RNNs
In Recurrent Neural Networks (RNNs), encoding information in a suboptimal or erroneous way can impact the quality of representations based on later elements in the sequence and subsequently lead to wrong predictions and a worse model performance. In humans, challenging cases like garden path sentences (an instance of this being the infamous "The horse raced past the barn fell") can lead their language understanding astray. However, they are still able to correct their representation accordingly and recover when new information is encountered. Inspired by this, I propose an augmentation to standard RNNs in form of a gradient-based correction mechanism: This way I hope to enable such models to dynamically adapt their inner representation of a sentence, adding a way to correct deviations as soon as they occur. This could therefore lead to more robust models using more flexible representations, even during inference time. I conduct different experiments in the context of language modeling, where the impact of using such a mechanism is examined in detail. To this end, I look at modifications based on different kinds of time-dependent error signals and how they influence the model performance. Furthermore, this work contains a study of the model's confidence in its predictions during training and for challenging test samples and the effect of the manipulation thereof. Lastly, I also study the difference in behavior of these novel models compared to a standard LSTM baseline and investigate error cases in detail to identify points of future research. I show that while the proposed approach comes with promising theoretical guarantees and an appealing intuition, it is only able to produce minor improvements over the baseline due to challenges in its practical application and the efficacy of the tested model variants.
Reliability Crisis of Reference-free Metrics for Grammatical Error Correction
Reference-free evaluation metrics for grammatical error correction (GEC) have achieved high correlation with human judgments. However, these metrics are not designed to evaluate adversarial systems that aim to obtain unjustifiably high scores. The existence of such systems undermines the reliability of automatic evaluation, as it can mislead users in selecting appropriate GEC systems. In this study, we propose adversarial attack strategies for four reference-free metrics: SOME, Scribendi, IMPARA, and LLM-based metrics, and demonstrate that our adversarial systems outperform the current state-of-the-art. These findings highlight the need for more robust evaluation methods.
Generating Sequences by Learning to Self-Correct
Sequence generation applications require satisfying semantic constraints, such as ensuring that programs are correct, using certain keywords, or avoiding undesirable content. Language models, whether fine-tuned or prompted with few-shot demonstrations, frequently violate these constraints, and lack a mechanism to iteratively revise their outputs. Moreover, some powerful language models are of extreme scale or inaccessible, making it inefficient, if not infeasible, to update their parameters for task-specific adaptation. We present Self-Correction, an approach that decouples an imperfect base generator (an off-the-shelf language model or supervised sequence-to-sequence model) from a separate corrector that learns to iteratively correct imperfect generations. To train the corrector, we propose an online training procedure that can use either scalar or natural language feedback on intermediate imperfect generations. We show that Self-Correction improves upon the base generator in three diverse generation tasks - mathematical program synthesis, lexically-constrained generation, and toxicity control - even when the corrector is much smaller than the base generator.
Historical Ink: 19th Century Latin American Spanish Newspaper Corpus with LLM OCR Correction
This paper presents two significant contributions: first, a novel dataset of 19th-century Latin American press texts, which addresses the lack of specialized corpora for historical and linguistic analysis in this region. Second, it introduces a framework for OCR error correction and linguistic surface form detection in digitized corpora, utilizing a Large Language Model. This framework is adaptable to various contexts and, in this paper, is specifically applied to the newly created dataset.
An Error-Guided Correction Model for Chinese Spelling Error Correction
Although existing neural network approaches have achieved great success on Chinese spelling correction, there is still room to improve. The model is required to avoid over-correction and to distinguish a correct token from its phonological and visually similar ones. In this paper, we propose an error-guided correction model (EGCM) to improve Chinese spelling correction. By borrowing the powerful ability of BERT, we propose a novel zero-shot error detection method to do a preliminary detection, which guides our model to attend more on the probably wrong tokens in encoding and to avoid modifying the correct tokens in generating. Furthermore, we introduce a new loss function to integrate the error confusion set, which enables our model to distinguish easily misused tokens. Moreover, our model supports highly parallel decoding to meet real application requirements. Experiments are conducted on widely used benchmarks. Our model achieves superior performance against state-of-the-art approaches by a remarkable margin, on both the correction quality and computation speed.
Constrained Decoding for Fill-in-the-Middle Code Language Models via Efficient Left and Right Quotienting of Context-Sensitive Grammars
Large Language Models are powerful tools for program synthesis and advanced auto-completion, but come with no guarantee that their output code is syntactically correct. This paper contributes an incremental parser that allows early rejection of syntactically incorrect code, as well as efficient detection of complete programs for fill-in-the-middle (FIM) tasks. We extend the Earley parsing algorithm to allow for left and right quotients of context-free grammars, and develop methods to handle quotienting of several context-sensitive features present in the grammars of many common programming languages. The result of these contributions is an efficient, general, and well-grounded method for left and right quotient parsing. To validate our theoretical contributions -- and the effectiveness of certain design decisions -- we evaluate our method on the particularly difficult case of FIM completion for Python 3, with syntax-correctness constraints. Our results demonstrate that constrained generation can significantly reduce the incidence of syntax errors in recommended code.
When Good and Reproducible Results are a Giant with Feet of Clay: The Importance of Software Quality in NLP
Despite its crucial role in research experiments, code correctness is often presumed only on the basis of the perceived quality of results. This assumption comes with the risk of erroneous outcomes and potentially misleading findings. To address this issue, we posit that the current focus on reproducibility should go hand in hand with the emphasis on software quality. We present a case study in which we identify and fix three bugs in widely used implementations of the state-of-the-art Conformer architecture. Through experiments on speech recognition and translation in various languages, we demonstrate that the presence of bugs does not prevent the achievement of good and reproducible results, which however can lead to incorrect conclusions that potentially misguide future research. As a countermeasure, we propose a Code-quality Checklist and release pangoliNN, a library dedicated to testing neural models, with the goal of promoting coding best practices and improving research software quality within the NLP community.
A Methodology for Generative Spelling Correction via Natural Spelling Errors Emulation across Multiple Domains and Languages
Modern large language models demonstrate impressive capabilities in text generation and generalization. However, they often struggle with solving text editing tasks, particularly when it comes to correcting spelling errors and mistypings. In this paper, we present a methodology for generative spelling correction (SC), which was tested on English and Russian languages and potentially can be extended to any language with minor changes. Our research mainly focuses on exploring natural spelling errors and mistypings in texts and studying the ways those errors can be emulated in correct sentences to effectively enrich generative models' pre-train procedure. We investigate the impact of such emulations and the models' abilities across different text domains. In this work, we investigate two spelling corruption techniques: 1) first one mimics human behavior when making a mistake through leveraging statistics of errors from particular dataset and 2) second adds the most common spelling errors, keyboard miss clicks, and some heuristics within the texts. We conducted experiments employing various corruption strategies, models' architectures and sizes on the pre-training and fine-tuning stages and evaluated the models using single-domain and multi-domain test sets. As a practical outcome of our work, we introduce SAGE (Spell checking via Augmentation and Generative distribution Emulation) is a library for automatic generative SC that includes a family of pre-trained generative models and built-in augmentation algorithms.
Evaluating LLMs on Chinese Idiom Translation
Idioms, whose figurative meanings usually differ from their literal interpretations, are common in everyday language, especially in Chinese, where they often contain historical references and follow specific structural patterns. Despite recent progress in machine translation with large language models, little is known about Chinese idiom translation. In this work, we introduce IdiomEval, a framework with a comprehensive error taxonomy for Chinese idiom translation. We annotate 900 translation pairs from nine modern systems, including GPT-4o and Google Translate, across four domains: web, news, Wikipedia, and social media. We find these systems fail at idiom translation, producing incorrect, literal, partial, or even missing translations. The best-performing system, GPT-4, makes errors in 28% of cases. We also find that existing evaluation metrics measure idiom quality poorly with Pearson correlation below 0.48 with human ratings. We thus develop improved models that achieve F_1 scores of 0.68 for detecting idiom translation errors.
LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations
Large language models (LLMs) often produce errors, including factual inaccuracies, biases, and reasoning failures, collectively referred to as "hallucinations". Recent studies have demonstrated that LLMs' internal states encode information regarding the truthfulness of their outputs, and that this information can be utilized to detect errors. In this work, we show that the internal representations of LLMs encode much more information about truthfulness than previously recognized. We first discover that the truthfulness information is concentrated in specific tokens, and leveraging this property significantly enhances error detection performance. Yet, we show that such error detectors fail to generalize across datasets, implying that -- contrary to prior claims -- truthfulness encoding is not universal but rather multifaceted. Next, we show that internal representations can also be used for predicting the types of errors the model is likely to make, facilitating the development of tailored mitigation strategies. Lastly, we reveal a discrepancy between LLMs' internal encoding and external behavior: they may encode the correct answer, yet consistently generate an incorrect one. Taken together, these insights deepen our understanding of LLM errors from the model's internal perspective, which can guide future research on enhancing error analysis and mitigation.
Small Language Models Need Strong Verifiers to Self-Correct Reasoning
Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs), where LLMs refine their solutions using self-generated critiques that pinpoint the errors. This work explores whether smaller-size (<= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs. We propose a novel pipeline that prompts smaller LMs to collect self-correction data that supports the training of self-refinement abilities. First, we leverage correct solutions to guide the model in critiquing their incorrect responses. Second, the generated critiques, after filtering, are used for supervised fine-tuning of the self-correcting reasoner through solution refinement. Our experimental results show improved self-correction abilities of two models on five datasets spanning math and commonsense reasoning, with notable performance gains when paired with a strong GPT-4-based verifier, though limitations are identified when using a weak self-verifier for determining when to correct.
ReviewerGPT? An Exploratory Study on Using Large Language Models for Paper Reviewing
Given the rapid ascent of large language models (LLMs), we study the question: (How) can large language models help in reviewing of scientific papers or proposals? We first conduct some pilot studies where we find that (i) GPT-4 outperforms other LLMs (Bard, Vicuna, Koala, Alpaca, LLaMa, Dolly, OpenAssistant, StableLM), and (ii) prompting with a specific question (e.g., to identify errors) outperforms prompting to simply write a review. With these insights, we study the use of LLMs (specifically, GPT-4) for three tasks: 1. Identifying errors: We construct 13 short computer science papers each with a deliberately inserted error, and ask the LLM to check for the correctness of these papers. We observe that the LLM finds errors in 7 of them, spanning both mathematical and conceptual errors. 2. Verifying checklists: We task the LLM to verify 16 closed-ended checklist questions in the respective sections of 15 NeurIPS 2022 papers. We find that across 119 {checklist question, paper} pairs, the LLM had an 86.6% accuracy. 3. Choosing the "better" paper: We generate 10 pairs of abstracts, deliberately designing each pair in such a way that one abstract was clearly superior than the other. The LLM, however, struggled to discern these relatively straightforward distinctions accurately, committing errors in its evaluations for 6 out of the 10 pairs. Based on these experiments, we think that LLMs have a promising use as reviewing assistants for specific reviewing tasks, but not (yet) for complete evaluations of papers or proposals.
Lyra: Orchestrating Dual Correction in Automated Theorem Proving
Large Language Models (LLMs) present an intriguing avenue for exploration in the field of formal theorem proving. Nevertheless, their full potential, particularly concerning the mitigation of hallucinations and refinement through prover error messages, remains an area that has yet to be thoroughly investigated. To enhance the effectiveness of LLMs in the field, we introduce the Lyra, a new framework that employs two distinct correction mechanisms: Tool Correction (TC) and Conjecture Correction (CC). To implement Tool Correction in the post-processing of formal proofs, we leverage prior knowledge to utilize predefined prover tools (e.g., Sledgehammer) for guiding the replacement of incorrect tools. Tool Correction significantly contributes to mitigating hallucinations, thereby improving the overall accuracy of the proof. In addition, we introduce Conjecture Correction, an error feedback mechanism designed to interact with prover to refine formal proof conjectures with prover error messages. Compared to the previous refinement framework, the proposed Conjecture Correction refines generation with instruction but does not collect paired (generation, error & refinement) prompts. Our method has achieved state-of-the-art (SOTA) performance on both miniF2F validation (48.0% -> 55.3%) and test (45.5% -> 51.2%). We also present 3 IMO problems solved by Lyra. We believe Tool Correction (post-process for hallucination mitigation) and Conjecture Correction (subgoal adjustment from interaction with environment) could provide a promising avenue for future research in this field.
Grammar-Aligned Decoding
Large Language Models (LLMs) struggle with reliably generating highly structured outputs, such as program code, mathematical formulas, or well-formed markup. Constrained decoding approaches mitigate this problem by greedily restricting what tokens an LLM can output at each step to guarantee that the output matches a given constraint. Specifically, in grammar-constrained decoding (GCD), the LLM's output must follow a given grammar. In this paper, we demonstrate that GCD techniques (and in general constrained decoding techniques) can distort the LLM's distribution, leading to outputs that are grammatical but appear with likelihoods that are not proportional to the ones given by the LLM, and so ultimately are low-quality. We call the problem of aligning sampling with a grammar constraint, grammar-aligned decoding (GAD), and propose adaptive sampling with approximate expected futures (ASAp), a decoding algorithm that guarantees the output to be grammatical while provably producing outputs that match the conditional probability of the LLM's distribution conditioned on the given grammar constraint. Our algorithm uses prior sample outputs to soundly overapproximate the future grammaticality of different output prefixes. Our evaluation on code generation and structured NLP tasks shows how ASAp often produces outputs with higher likelihood (according to the LLM's distribution) than existing GCD techniques, while still enforcing the desired grammatical constraints.
Break the Breakout: Reinventing LM Defense Against Jailbreak Attacks with Self-Refinement
Caution: This paper includes offensive words that could potentially cause unpleasantness. Language models (LMs) are vulnerable to exploitation for adversarial misuse. Training LMs for safety alignment is extensive and makes it hard to respond to fast-developing attacks immediately, such as jailbreaks. We propose self-refine with formatting that achieves outstanding safety even in non-safety-aligned LMs and evaluate our method alongside several defense baselines, demonstrating that it is the safest training-free method against jailbreak attacks. Additionally, we proposed a formatting method that improves the efficiency of the self-refine process while reducing attack success rates in fewer iterations. We've also observed that non-safety-aligned LMs outperform safety-aligned LMs in safety tasks by giving more helpful and safe responses. In conclusion, our findings can achieve less safety risk with fewer computational costs, allowing non-safety LM to be easily utilized in real-world service.
RoundTripOCR: A Data Generation Technique for Enhancing Post-OCR Error Correction in Low-Resource Devanagari Languages
Optical Character Recognition (OCR) technology has revolutionized the digitization of printed text, enabling efficient data extraction and analysis across various domains. Just like Machine Translation systems, OCR systems are prone to errors. In this work, we address the challenge of data generation and post-OCR error correction, specifically for low-resource languages. We propose an approach for synthetic data generation for Devanagari languages, RoundTripOCR, that tackles the scarcity of the post-OCR Error Correction datasets for low-resource languages. We release post-OCR text correction datasets for Hindi, Marathi, Bodo, Nepali, Konkani and Sanskrit. We also present a novel approach for OCR error correction by leveraging techniques from machine translation. Our method involves translating erroneous OCR output into a corrected form by treating the OCR errors as mistranslations in a parallel text corpus, employing pre-trained transformer models to learn the mapping from erroneous to correct text pairs, effectively correcting OCR errors.
Small Edits, Big Consequences: Telling Good from Bad Robustness in Large Language Models
Large language models (LLMs) now write code in settings where misreading a single word can break safety or cost money, yet we still expect them to overlook stray typos. To probe where useful robustness ends and harmful insensitivity begins, we compile 50 LeetCode problems and craft three minimal prompt perturbations that should vary in importance: (i) progressive underspecification deleting 10 % of words per step; (ii) lexical flip swapping a pivotal quantifier ("max" to "min"); and (iii) jargon inflation replacing a common noun with an obscure technical synonym. Six frontier models, including three "reasoning-tuned" versions, solve each mutated prompt, and their Python outputs are checked against the original test suites to reveal whether they reused the baseline solution or adapted. Among 11 853 generations we observe a sharp double asymmetry. Models remain correct in 85 % of cases even after 90 % of the prompt is missing, showing over-robustness to underspecification, yet only 54 % react to a single quantifier flip that reverses the task, with reasoning-tuned variants even less sensitive than their bases. Jargon edits lie in between, passing through 56 %. Current LLMs thus blur the line between harmless noise and meaning - changing edits, often treating both as ignorable. Masking salient anchors such as function names can force re - evaluation. We advocate evaluation and training protocols that reward differential sensitivity: stay steady under benign noise but adapt - or refuse - when semantics truly change.
Investigating the Effects of Word Substitution Errors on Sentence Embeddings
A key initial step in several natural language processing (NLP) tasks involves embedding phrases of text to vectors of real numbers that preserve semantic meaning. To that end, several methods have been recently proposed with impressive results on semantic similarity tasks. However, all of these approaches assume that perfect transcripts are available when generating the embeddings. While this is a reasonable assumption for analysis of written text, it is limiting for analysis of transcribed text. In this paper we investigate the effects of word substitution errors, such as those coming from automatic speech recognition errors (ASR), on several state-of-the-art sentence embedding methods. To do this, we propose a new simulator that allows the experimenter to induce ASR-plausible word substitution errors in a corpus at a desired word error rate. We use this simulator to evaluate the robustness of several sentence embedding methods. Our results show that pre-trained neural sentence encoders are both robust to ASR errors and perform well on textual similarity tasks after errors are introduced. Meanwhile, unweighted averages of word vectors perform well with perfect transcriptions, but their performance degrades rapidly on textual similarity tasks for text with word substitution errors.
How faithful are RAG models? Quantifying the tug-of-war between RAG and LLMs' internal prior
Retrieval augmented generation (RAG) is often used to fix hallucinations and provide up-to-date knowledge for large language models (LLMs). However, in cases when the LLM alone incorrectly answers a question, does providing the correct retrieved content always fix the error? Conversely, in cases where the retrieved content is incorrect, does the LLM know to ignore the wrong information, or does it recapitulate the error? To answer these questions, we systematically analyze the tug-of-war between a LLM's internal knowledge (i.e. its prior) and the retrieved information in settings when they disagree. We test GPT-4 and other LLMs on question-answering abilities across datasets with and without reference documents. As expected, providing the correct retrieved information fixes most model mistakes (94% accuracy). However, when the reference document is perturbed with increasing levels of wrong values, the LLM is more likely to recite the incorrect, modified information when its internal prior is weaker but is more resistant when its prior is stronger. Similarly, we also find that the more the modified information deviates from the model's prior, the less likely the model is to prefer it. These results highlight an underlying tension between a model's prior knowledge and the information presented in reference documents.
Reducing Sequence Length by Predicting Edit Operations with Large Language Models
Large Language Models (LLMs) have demonstrated remarkable performance in various tasks and gained significant attention. LLMs are also used for local sequence transduction tasks, including grammatical error correction (GEC) and formality style transfer, where most tokens in a source text are kept unchanged. However, the models that generate all target tokens in such tasks have a tendency to simply copy the input text as is, without making needed changes, because the difference between input and output texts is minimal in the training data. This is also inefficient because the computational cost grows quadratically with the target sequence length with Transformer. This paper proposes predicting edit spans for the source text for local sequence transduction tasks. Representing an edit span with a position of the source text and corrected tokens, we can reduce the length of the target sequence and the computational cost for inference. We apply instruction tuning for LLMs on the supervision data of edit spans. Experiments show that the proposed method achieves comparable performance to the baseline in four tasks, paraphrasing, formality style transfer, GEC, and text simplification, despite reducing the length of the target text by as small as 21%. Furthermore, we report that the task-specific fine-tuning with the proposed method achieved state-of-the-art performance in the four tasks.
Automatic Spell Checker and Correction for Under-represented Spoken Languages: Case Study on Wolof
This paper presents a spell checker and correction tool specifically designed for Wolof, an under-represented spoken language in Africa. The proposed spell checker leverages a combination of a trie data structure, dynamic programming, and the weighted Levenshtein distance to generate suggestions for misspelled words. We created novel linguistic resources for Wolof, such as a lexicon and a corpus of misspelled words, using a semi-automatic approach that combines manual and automatic annotation methods. Despite the limited data available for the Wolof language, the spell checker's performance showed a predictive accuracy of 98.31% and a suggestion accuracy of 93.33%. Our primary focus remains the revitalization and preservation of Wolof as an Indigenous and spoken language in Africa, providing our efforts to develop novel linguistic resources. This work represents a valuable contribution to the growth of computational tools and resources for the Wolof language and provides a strong foundation for future studies in the automatic spell checking and correction field.
Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies
The success of long short-term memory (LSTM) neural networks in language processing is typically attributed to their ability to capture long-distance statistical regularities. Linguistic regularities are often sensitive to syntactic structure; can such dependencies be captured by LSTMs, which do not have explicit structural representations? We begin addressing this question using number agreement in English subject-verb dependencies. We probe the architecture's grammatical competence both using training objectives with an explicit grammatical target (number prediction, grammaticality judgments) and using language models. In the strongly supervised settings, the LSTM achieved very high overall accuracy (less than 1% errors), but errors increased when sequential and structural information conflicted. The frequency of such errors rose sharply in the language-modeling setting. We conclude that LSTMs can capture a non-trivial amount of grammatical structure given targeted supervision, but stronger architectures may be required to further reduce errors; furthermore, the language modeling signal is insufficient for capturing syntax-sensitive dependencies, and should be supplemented with more direct supervision if such dependencies need to be captured.
Corrective In-Context Learning: Evaluating Self-Correction in Large Language Models
In-context learning (ICL) has transformed the use of large language models (LLMs) for NLP tasks, enabling few-shot learning by conditioning on labeled examples without finetuning. Despite its effectiveness, ICL is prone to errors, especially for challenging examples. With the goal of improving the performance of ICL, we propose corrective in-context learning (CICL), an approach that incorporates a model's incorrect predictions alongside ground truth corrections into the prompt, aiming to enhance classification accuracy through self-correction. However, contrary to our hypothesis, extensive experiments on text classification tasks demonstrate that CICL consistently underperforms standard ICL, with performance degrading as the proportion of corrections in the prompt increases. Our findings indicate that CICL introduces confusion by disrupting the model's task understanding, rather than refining its predictions. Additionally, we observe that presenting harder examples in standard ICL does not improve performance, suggesting that example difficulty alone may not be a reliable criterion for effective selection. By presenting these negative results, we provide important insights into the limitations of self-corrective mechanisms in LLMs and offer directions for future research.
Unify word-level and span-level tasks: NJUNLP's Participation for the WMT2023 Quality Estimation Shared Task
We introduce the submissions of the NJUNLP team to the WMT 2023 Quality Estimation (QE) shared task. Our team submitted predictions for the English-German language pair on all two sub-tasks: (i) sentence- and word-level quality prediction; and (ii) fine-grained error span detection. This year, we further explore pseudo data methods for QE based on NJUQE framework (https://github.com/NJUNLP/njuqe). We generate pseudo MQM data using parallel data from the WMT translation task. We pre-train the XLMR large model on pseudo QE data, then fine-tune it on real QE data. At both stages, we jointly learn sentence-level scores and word-level tags. Empirically, we conduct experiments to find the key hyper-parameters that improve the performance. Technically, we propose a simple method that covert the word-level outputs to fine-grained error span results. Overall, our models achieved the best results in English-German for both word-level and fine-grained error span detection sub-tasks by a considerable margin.
Detecting Spelling and Grammatical Anomalies in Russian Poetry Texts
The quality of natural language texts in fine-tuning datasets plays a critical role in the performance of generative models, particularly in computational creativity tasks such as poem or song lyric generation. Fluency defects in generated poems significantly reduce their value. However, training texts are often sourced from internet-based platforms without stringent quality control, posing a challenge for data engineers to manage defect levels effectively. To address this issue, we propose the use of automated linguistic anomaly detection to identify and filter out low-quality texts from training datasets for creative models. In this paper, we present a comprehensive comparison of unsupervised and supervised text anomaly detection approaches, utilizing both synthetic and human-labeled datasets. We also introduce the RUPOR dataset, a collection of Russian-language human-labeled poems designed for cross-sentence grammatical error detection, and provide the full evaluation code. Our work aims to empower the community with tools and insights to improve the quality of training datasets for generative models in creative domains.
MEDEC: A Benchmark for Medical Error Detection and Correction in Clinical Notes
Several studies showed that Large Language Models (LLMs) can answer medical questions correctly, even outperforming the average human score in some medical exams. However, to our knowledge, no study has been conducted to assess the ability of language models to validate existing or generated medical text for correctness and consistency. In this paper, we introduce MEDEC (https://github.com/abachaa/MEDEC), the first publicly available benchmark for medical error detection and correction in clinical notes, covering five types of errors (Diagnosis, Management, Treatment, Pharmacotherapy, and Causal Organism). MEDEC consists of 3,848 clinical texts, including 488 clinical notes from three US hospital systems that were not previously seen by any LLM. The dataset has been used for the MEDIQA-CORR shared task to evaluate seventeen participating systems [Ben Abacha et al., 2024]. In this paper, we describe the data creation methods and we evaluate recent LLMs (e.g., o1-preview, GPT-4, Claude 3.5 Sonnet, and Gemini 2.0 Flash) for the tasks of detecting and correcting medical errors requiring both medical knowledge and reasoning capabilities. We also conducted a comparative study where two medical doctors performed the same task on the MEDEC test set. The results showed that MEDEC is a sufficiently challenging benchmark to assess the ability of models to validate existing or generated notes and to correct medical errors. We also found that although recent LLMs have a good performance in error detection and correction, they are still outperformed by medical doctors in these tasks. We discuss the potential factors behind this gap, the insights from our experiments, the limitations of current evaluation metrics, and share potential pointers for future research.
xCOMET: Transparent Machine Translation Evaluation through Fine-grained Error Detection
Widely used learned metrics for machine translation evaluation, such as COMET and BLEURT, estimate the quality of a translation hypothesis by providing a single sentence-level score. As such, they offer little insight into translation errors (e.g., what are the errors and what is their severity). On the other hand, generative large language models (LLMs) are amplifying the adoption of more granular strategies to evaluation, attempting to detail and categorize translation errors. In this work, we introduce xCOMET, an open-source learned metric designed to bridge the gap between these approaches. xCOMET integrates both sentence-level evaluation and error span detection capabilities, exhibiting state-of-the-art performance across all types of evaluation (sentence-level, system-level, and error span detection). Moreover, it does so while highlighting and categorizing error spans, thus enriching the quality assessment. We also provide a robustness analysis with stress tests, and show that xCOMET is largely capable of identifying localized critical errors and hallucinations.
Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks. However, their efficacy is undermined by undesired and inconsistent behaviors, including hallucination, unfaithful reasoning, and toxic content. A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output. Techniques leveraging automated feedback -- either produced by the LLM itself or some external system -- are of particular interest as they are a promising way to make LLM-based solutions more practical and deployable with minimal human feedback. This paper presents a comprehensive review of this emerging class of techniques. We analyze and taxonomize a wide array of recent work utilizing these strategies, including training-time, generation-time, and post-hoc correction. We also summarize the major applications of this strategy and conclude by discussing future directions and challenges.
ParaRev: Building a dataset for Scientific Paragraph Revision annotated with revision instruction
Revision is a crucial step in scientific writing, where authors refine their work to improve clarity, structure, and academic quality. Existing approaches to automated writing assistance often focus on sentence-level revisions, which fail to capture the broader context needed for effective modification. In this paper, we explore the impact of shifting from sentence-level to paragraph-level scope for the task of scientific text revision. The paragraph level definition of the task allows for more meaningful changes, and is guided by detailed revision instructions rather than general ones. To support this task, we introduce ParaRev, the first dataset of revised scientific paragraphs with an evaluation subset manually annotated with revision instructions. Our experiments demonstrate that using detailed instructions significantly improves the quality of automated revisions compared to general approaches, no matter the model or the metric considered.
APIO: Automatic Prompt Induction and Optimization for Grammatical Error Correction and Text Simplification
Recent advancements in large language models (LLMs) have enabled a wide range of natural language processing (NLP) tasks to be performed through simple prompt-based interactions. Consequently, several approaches have been proposed to engineer prompts that most effectively enable LLMs to perform a given task (e.g., chain-of-thought prompting). In settings with a well-defined metric to optimize model performance, automatic prompt optimization (APO) methods have been developed to refine a seed prompt. Advancing this line of research, we propose APIO, a simple but effective prompt induction and optimization approach for the tasks of Grammatical Error Correction (GEC) and Text Simplification, without relying on manually specified seed prompts. APIO achieves a new state-of-the-art performance for purely LLM-based prompting methods on these tasks. We make our data, code, prompts, and outputs publicly available.
MolErr2Fix:Benchmarking LLM Trustworthiness in Chemistry via Modular Error Detection, Localization, Explanation, and Revision
Large Language Models (LLMs) have shown growing potential in molecular sciences, but they often produce chemically inaccurate descriptions and struggle to recognize or justify potential errors. This raises important concerns about their robustness and reliability in scientific applications. To support more rigorous evaluation of LLMs in chemical reasoning, we present the MolErr2Fix benchmark, designed to assess LLMs on error detection and correction in molecular descriptions. Unlike existing benchmarks focused on molecule-to-text generation or property prediction, MolErr2Fix emphasizes fine-grained chemical understanding. It tasks LLMs with identifying, localizing, explaining, and revising potential structural and semantic errors in molecular descriptions. Specifically, MolErr2Fix consists of 1,193 fine-grained annotated error instances. Each instance contains quadruple annotations, i.e,. (error type, span location, the explanation, and the correction). These tasks are intended to reflect the types of reasoning and verification required in real-world chemical communication. Evaluations of current state-of-the-art LLMs reveal notable performance gaps, underscoring the need for more robust chemical reasoning capabilities. MolErr2Fix provides a focused benchmark for evaluating such capabilities and aims to support progress toward more reliable and chemically informed language models. All annotations and an accompanying evaluation API will be publicly released to facilitate future research.
Learning From How Humans Correct
In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we need to relabel the noisy data in our dataset for our industry application. The experiment result shows that our learn-on-correction method improve the classification accuracy from 91.7% to 92.5% in test dataset. The 91.7% accuracy is trained on the corrected dataset, which improve the baseline from 83.3% to 91.7% in test dataset. The accuracy under human evaluation achieves more than 97%.
Should We Really Edit Language Models? On the Evaluation of Edited Language Models
Model editing has become an increasingly popular alternative for efficiently updating knowledge within language models. Current methods mainly focus on reliability, generalization, and locality, with many methods excelling across these criteria. Some recent works disclose the pitfalls of these editing methods such as knowledge distortion or conflict. However, the general abilities of post-edited language models remain unexplored. In this paper, we perform a comprehensive evaluation on various editing methods and different language models, and have following findings. (1) Existing editing methods lead to inevitable performance deterioration on general benchmarks, indicating that existing editing methods maintain the general abilities of the model within only a few dozen edits. When the number of edits is slightly large, the intrinsic knowledge structure of the model is disrupted or even completely damaged. (2) Instruction-tuned models are more robust to editing, showing less performance drop on general knowledge after editing. (3) Language model with large scale is more resistant to editing compared to small model. (4) The safety of the edited model, is significantly weakened, even for those safety-aligned models. Our findings indicate that current editing methods are only suitable for small-scale knowledge updates within language models, which motivates further research on more practical and reliable editing methods. The details of code and reproduction can be found in https://github.com/lqinfdim/EditingEvaluation.
Denoising LM: Pushing the Limits of Error Correction Models for Speech Recognition
Language models (LMs) have long been used to improve results of automatic speech recognition (ASR) systems, but they are unaware of the errors that ASR systems make. Error correction models are designed to fix ASR errors, however, they showed little improvement over traditional LMs mainly due to the lack of supervised training data. In this paper, we present Denoising LM (DLM), which is a scaled error correction model trained with vast amounts of synthetic data, significantly exceeding prior attempts meanwhile achieving new state-of-the-art ASR performance. We use text-to-speech (TTS) systems to synthesize audio, which is fed into an ASR system to produce noisy hypotheses, which are then paired with the original texts to train the DLM. DLM has several key ingredients: (i) up-scaled model and data; (ii) usage of multi-speaker TTS systems; (iii) combination of multiple noise augmentation strategies; and (iv) new decoding techniques. With a Transformer-CTC ASR, DLM achieves 1.5% word error rate (WER) on test-clean and 3.3% WER on test-other on Librispeech, which to our knowledge are the best reported numbers in the setting where no external audio data are used and even match self-supervised methods which use external audio data. Furthermore, a single DLM is applicable to different ASRs, and greatly surpassing the performance of conventional LM based beam-search rescoring. These results indicate that properly investigated error correction models have the potential to replace conventional LMs, holding the key to a new level of accuracy in ASR systems.
SpellMapper: A non-autoregressive neural spellchecker for ASR customization with candidate retrieval based on n-gram mappings
Contextual spelling correction models are an alternative to shallow fusion to improve automatic speech recognition (ASR) quality given user vocabulary. To deal with large user vocabularies, most of these models include candidate retrieval mechanisms, usually based on minimum edit distance between fragments of ASR hypothesis and user phrases. However, the edit-distance approach is slow, non-trainable, and may have low recall as it relies only on common letters. We propose: 1) a novel algorithm for candidate retrieval, based on misspelled n-gram mappings, which gives up to 90% recall with just the top 10 candidates on Spoken Wikipedia; 2) a non-autoregressive neural model based on BERT architecture, where the initial transcript and ten candidates are combined into one input. The experiments on Spoken Wikipedia show 21.4% word error rate improvement compared to a baseline ASR system.
FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models
Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/shield.
Feedback-Based Self-Learning in Large-Scale Conversational AI Agents
Today, most large-scale conversational AI agents (e.g. Alexa, Siri, or Google Assistant) are built using manually annotated data to train the different components of the system. Typically, the accuracy of the ML models in these components are improved by manually transcribing and annotating data. As the scope of these systems increase to cover more scenarios and domains, manual annotation to improve the accuracy of these components becomes prohibitively costly and time consuming. In this paper, we propose a system that leverages user-system interaction feedback signals to automate learning without any manual annotation. Users here tend to modify a previous query in hopes of fixing an error in the previous turn to get the right results. These reformulations, which are often preceded by defective experiences caused by errors in ASR, NLU, ER or the application. In some cases, users may not properly formulate their requests (e.g. providing partial title of a song), but gleaning across a wider pool of users and sessions reveals the underlying recurrent patterns. Our proposed self-learning system automatically detects the errors, generate reformulations and deploys fixes to the runtime system to correct different types of errors occurring in different components of the system. In particular, we propose leveraging an absorbing Markov Chain model as a collaborative filtering mechanism in a novel attempt to mine these patterns. We show that our approach is highly scalable, and able to learn reformulations that reduce Alexa-user errors by pooling anonymized data across millions of customers. The proposed self-learning system achieves a win/loss ratio of 11.8 and effectively reduces the defect rate by more than 30% on utterance level reformulations in our production A/B tests. To the best of our knowledge, this is the first self-learning large-scale conversational AI system in production.
When Punctuation Matters: A Large-Scale Comparison of Prompt Robustness Methods for LLMs
Large Language Models (LLMs) are highly sensitive to subtle, non-semantic variations in prompt phrasing and formatting. In this work, we present the first systematic evaluation of 5 methods for improving prompt robustness within a unified experimental framework. We benchmark these techniques on 8 models from Llama, Qwen and Gemma families across 52 tasks from Natural Instructions dataset. Our evaluation covers robustness methods from both fine-tuned and in-context learning paradigms, and tests their generalization against multiple types of distribution shifts. Finally, we extend our analysis to GPT-4.1 and DeepSeek V3 to assess frontier models' current robustness to format perturbations. Our findings offer actionable insights into the relative effectiveness of these robustness methods, enabling practitioners to make informed decisions when aiming for stable and reliable LLM performance in real-world applications. Code: https://github.com/AIRI-Institute/when-punctuation-matters.
Neural Network Acceptability Judgments
This paper investigates the ability of artificial neural networks to judge the grammatical acceptability of a sentence, with the goal of testing their linguistic competence. We introduce the Corpus of Linguistic Acceptability (CoLA), a set of 10,657 English sentences labeled as grammatical or ungrammatical from published linguistics literature. As baselines, we train several recurrent neural network models on acceptability classification, and find that our models outperform unsupervised models by Lau et al (2016) on CoLA. Error-analysis on specific grammatical phenomena reveals that both Lau et al.'s models and ours learn systematic generalizations like subject-verb-object order. However, all models we test perform far below human level on a wide range of grammatical constructions.
MAGIC: Generating Self-Correction Guideline for In-Context Text-to-SQL
Self-correction in text-to-SQL is the process of prompting large language model (LLM) to revise its previously incorrectly generated SQL, and commonly relies on manually crafted self-correction guidelines by human experts that are not only labor-intensive to produce but also limited by the human ability in identifying all potential error patterns in LLM responses. We introduce MAGIC, a novel multi-agent method that automates the creation of the self-correction guideline. MAGIC uses three specialized agents: a manager, a correction, and a feedback agent. These agents collaborate on the failures of an LLM-based method on the training set to iteratively generate and refine a self-correction guideline tailored to LLM mistakes, mirroring human processes but without human involvement. Our extensive experiments show that MAGIC's guideline outperforms expert human's created ones. We empirically find out that the guideline produced by MAGIC enhance the interpretability of the corrections made, providing insights in analyzing the reason behind the failures and successes of LLMs in self-correction. We make all agent interactions publicly available to the research community, to foster further research in this area, offering a synthetic dataset for future explorations into automatic self-correction guideline generation.
Learning From Mistakes Makes LLM Better Reasoner
Large language models (LLMs) recently exhibited remarkable reasoning capabilities on solving math problems. To further improve this capability, this work proposes Learning from Mistakes (LeMa), akin to human learning processes. Consider a human student who failed to solve a math problem, he will learn from what mistake he has made and how to correct it. Mimicking this error-driven learning process, LeMa fine-tunes LLMs on mistake-correction data pairs generated by GPT-4. Specifically, we first collect inaccurate reasoning paths from various LLMs and then employ GPT-4 as a "corrector" to (1) identify the mistake step, (2) explain the reason for the mistake, and (3) correct the mistake and generate the final answer. Experimental results demonstrate the effectiveness of LeMa: across five backbone LLMs and two mathematical reasoning tasks, LeMa consistently improves the performance compared with fine-tuning on CoT data alone. Impressively, LeMa can also benefit specialized LLMs such as WizardMath and MetaMath, achieving 85.4% pass@1 accuracy on GSM8K and 27.1% on MATH. This surpasses the SOTA performance achieved by non-execution open-source models on these challenging tasks. Our code, data and models will be publicly available at https://github.com/microsoft/CodeT.
Faster Machine Translation Ensembling with Reinforcement Learning and Competitive Correction
Ensembling neural machine translation (NMT) models to produce higher-quality translations than the L individual models has been extensively studied. Recent methods typically employ a candidate selection block (CSB) and an encoder-decoder fusion block (FB), requiring inference across all candidate models, leading to significant computational overhead, generally Omega(L). This paper introduces SmartGen, a reinforcement learning (RL)-based strategy that improves the CSB by selecting a small, fixed number of candidates and identifying optimal groups to pass to the fusion block for each input sentence. Furthermore, previously, the CSB and FB were trained independently, leading to suboptimal NMT performance. Our DQN-based SmartGen addresses this by using feedback from the FB block as a reward during training. We also resolve a key issue in earlier methods, where candidates were passed to the FB without modification, by introducing a Competitive Correction Block (CCB). Finally, we validate our approach with extensive experiments on English-Hindi translation tasks in both directions.
Large Language Models have Intrinsic Self-Correction Ability
Large language models (LLMs) have attracted significant attention for their remarkable abilities in various natural language processing tasks, but they suffer from hallucinations that will cause performance degradation. One promising solution to improve the LLMs' performance is to ask LLMs to revise their answer after generation, a technique known as self-correction. Among the two types of self-correction, intrinsic self-correction is considered a promising direction because it does not utilize external knowledge. However, recent works doubt the validity of LLM's ability to conduct intrinsic self-correction. In this paper, we present a novel perspective on the intrinsic self-correction capabilities of LLMs through theoretical analyses and empirical experiments. In addition, we identify two critical factors for successful self-correction: zero temperature and fair prompts. Leveraging these factors, we demonstrate that intrinsic self-correction ability is exhibited across multiple existing LLMs. Our findings offer insights into the fundamental theories underlying the self-correction behavior of LLMs and remark on the importance of unbiased prompts and zero temperature settings in harnessing their full potential.
Expanding FLORES+ Benchmark for more Low-Resource Settings: Portuguese-Emakhuwa Machine Translation Evaluation
As part of the Open Language Data Initiative shared tasks, we have expanded the FLORES+ evaluation set to include Emakhuwa, a low-resource language widely spoken in Mozambique. We translated the dev and devtest sets from Portuguese into Emakhuwa, and we detail the translation process and quality assurance measures used. Our methodology involved various quality checks, including post-editing and adequacy assessments. The resulting datasets consist of multiple reference sentences for each source. We present baseline results from training a Neural Machine Translation system and fine-tuning existing multilingual translation models. Our findings suggest that spelling inconsistencies remain a challenge in Emakhuwa. Additionally, the baseline models underperformed on this evaluation set, underscoring the necessity for further research to enhance machine translation quality for Emakhuwa. The data is publicly available at https://huggingface.co/datasets/LIACC/Emakhuwa-FLORES.