- Regularity for obstacle problems to anisotropic parabolic equations Following Dibenedetto's intrinsic scaling method, we prove local H\"older continuity of weak solutions to obstacle problems related to some anisotropic parabolic equations under the condition for which only H\"older's continuity of the obstacle is known. 1 authors · Oct 1, 2024
- Certain residual properties of HNN-extensions with normal associated subgroups Let E be the HNN-extension of a group B with subgroups H and K associated according to an isomorphism varphicolon H to K. Suppose that H and K are normal in B and (H cap K)varphi = H cap K. Under these assumptions, we prove necessary and sufficient conditions for E to be residually a C-group, where C is a class of groups closed under taking subgroups, quotient groups, and unrestricted wreath products. Among other things, these conditions give new facts on the residual finiteness and the residual p-finiteness of the group E. 2 authors · Apr 30
- The continuous extension of the logarithmic double layer potential to the Ahlfors-regular boundary For the real part of the Cauchy-type integral that is known to be the logarithmic potential of the double layer, a necessary and sufficient condition for the continuous extension to the Ahlfors-regular boundary is established. 1 authors · May 2, 2024
- Multi-index Based Solution Theory to the Φ^4 Equation in the Full Subcritical Regime We obtain (small-parameter) well-posedness for the (space-time periodic) Phi^4 equation in the full subcritical regime in the context of regularity structures based on multi-indices. As opposed to Hairer's more extrinsic tree-based setting, due to the intrinsic description encoded by multi-indices, it is not possible to obtain a solution theory via the standard fixed-point argument. Instead, we develop a more intrinsic approach for existence using a variant of the continuity method from classical PDE theory based on a priori estimates for a new `robust' formulation of the equation. This formulation also allows us to obtain uniqueness of solutions and continuity of the solution map in the model norm even at the limit of vanishing regularisation scale. Since our proof relies on the structure of the nonlinearity in only a mild way, we expect the same ideas to be sufficient to treat a more general class of equations. 3 authors · Mar 3
- A Milstein-type method for highly non-linear non-autonomous time-changed stochastic differential equations A Milstein-type method is proposed for some highly non-linear non-autonomous time-changed stochastic differential equations (SDEs). The spatial variables in the coefficients of the time-changed SDEs satisfy the super-linear growth condition and the temporal variables obey some H\"older's continuity condition. The strong convergence in the finite time is studied and the convergence order is obtained. 3 authors · Aug 27, 2023
- New asymptotically flat static vacuum metrics with near Euclidean boundary data In our prior work toward Bartnik's static vacuum extension conjecture for near Euclidean boundary data, we establish a sufficient condition, called static regular, and confirm large classes of boundary hypersurfaces are static regular. In this note, we further improve some of those prior results. Specifically, we show that any hypersurface in an open and dense subfamily of a certain general smooth one-sided family of hypersurfaces (not necessarily a foliation) is static regular. The proof uses some of our new arguments motivated from studying the conjecture for boundary data near an arbitrary static vacuum metric. 2 authors · May 31, 2022
- Isoperimetry and the properness of weak inverse mean curvature flow We prove a new existence theorem for proper solutions of Huisken and Ilmanen's weak inverse mean curvature flow, assuming certain non-degeneracy conditions on the isoperimetric profile. In particular, no curvature assumption is imposed in our existence theorem. 1 authors · Jul 2, 2023
- Sequences of operators, monotone in the sense of contractive domination A sequence of operators T_n from a Hilbert space {mathfrak H} to Hilbert spaces {mathfrak K}_n which is nondecreasing in the sense of contractive domination is shown to have a limit which is still a linear operator T from {mathfrak H} to a Hilbert space {mathfrak K}. Moreover, the closability or closedness of T_n is preserved in the limit. The closures converge likewise and the connection between the limits is investigated. There is no similar way of dealing directly with linear relations. However, the sequence of closures is still nondecreasing and then the convergence is governed by the monotonicity principle. There are some related results for nonincreasing sequences. 2 authors · Dec 30, 2023
- Fractional divergence-measure fields, Leibniz rule and Gauss-Green formula Given alphain(0,1] and pin[1,+infty], we define the space DM^{alpha,p}(mathbb R^n) of L^p vector fields whose alpha-divergence is a finite Radon measure, extending the theory of divergence-measure vector fields to the distributional fractional setting. Our main results concern the absolute continuity properties of the alpha-divergence-measure with respect to the Hausdorff measure and fractional analogues of the Leibniz rule and the Gauss-Green formula. The sharpness of our results is discussed via some explicit examples. 2 authors · Mar 1, 2023
- Optical Spectroscopy of Classical Be Stars in Old Open Clusters We performed the optical spectroscopy of 16 classical Be stars in 11 open clusters older than 100 Myr. Ours is the first spectroscopic study of classical Be stars in open clusters older than 100 Myr. We found that the H alpha emission strength of most of the stars is less than 40 Angstrom, in agreement with previous studies. Our analysis further suggests that one of the stars, KW97 35 12, might be a weak H alpha emitter in nature, showing H alpha equivalent width of negative 0.5 Angstrom. Interestingly, we also found that the newly detected classical Be star LS III 47 37b might be a component of the possible visual binary system LS III 47 37, where the other companion is also a classical Be star. Hence, the present study indicates the possible detection of a binary Be system. Moreover, it is observed that all 16 stars exhibit a lesser number of emission lines compared to classical Be stars younger than 100 Myr. Furthermore, the spectral type distribution analysis of B type and classical Be stars for the selected clusters points out that the existence of CBe stars can depend on the spectral type distribution of B type stars present in these clusters. 7 authors · Mar 15, 2024