- Learning computationally efficient dictionaries and their implementation as fast transforms Dictionary learning is a branch of signal processing and machine learning that aims at finding a frame (called dictionary) in which some training data admits a sparse representation. The sparser the representation, the better the dictionary. The resulting dictionary is in general a dense matrix, and its manipulation can be computationally costly both at the learning stage and later in the usage of this dictionary, for tasks such as sparse coding. Dictionary learning is thus limited to relatively small-scale problems. In this paper, inspired by usual fast transforms, we consider a general dictionary structure that allows cheaper manipulation, and propose an algorithm to learn such dictionaries --and their fast implementation-- over training data. The approach is demonstrated experimentally with the factorization of the Hadamard matrix and with synthetic dictionary learning experiments. 2 authors · Jun 20, 2014
- The Fast Johnson-Lindenstrauss Transform is Even Faster The seminal Fast Johnson-Lindenstrauss (Fast JL) transform by Ailon and Chazelle (SICOMP'09) embeds a set of n points in d-dimensional Euclidean space into optimal k=O(varepsilon^{-2} ln n) dimensions, while preserving all pairwise distances to within a factor (1 pm varepsilon). The Fast JL transform supports computing the embedding of a data point in O(d ln d +k ln^2 n) time, where the d ln d term comes from multiplication with a d times d Hadamard matrix and the k ln^2 n term comes from multiplication with a sparse k times d matrix. Despite the Fast JL transform being more than a decade old, it is one of the fastest dimensionality reduction techniques for many tradeoffs between varepsilon, d and n. In this work, we give a surprising new analysis of the Fast JL transform, showing that the k ln^2 n term in the embedding time can be improved to (k ln^2 n)/alpha for an alpha = Omega(min{varepsilon^{-1}ln(1/varepsilon), ln n}). The improvement follows by using an even sparser matrix. We also complement our improved analysis with a lower bound showing that our new analysis is in fact tight. 3 authors · Apr 4, 2022
16 HALO: Hadamard-Assisted Lossless Optimization for Efficient Low-Precision LLM Training and Fine-Tuning Quantized training of Large Language Models (LLMs) remains an open challenge, as maintaining accuracy while performing all matrix multiplications in low precision has proven difficult. This is particularly the case when fine-tuning pre-trained models, which often already have large weight and activation outlier values that render quantized optimization difficult. We present HALO, a novel quantization-aware training approach for Transformers that enables accurate and efficient low-precision training by combining 1) strategic placement of Hadamard rotations in both forward and backward passes, to mitigate outliers during the low-precision computation, 2) FSDP integration for low-precision communication, and 3) high-performance kernel support. Our approach ensures that all large matrix multiplications during the forward and backward passes are executed in lower precision. Applied to LLAMA-family models, HALO achieves near-full-precision-equivalent results during fine-tuning on various tasks, while delivering up to 1.31x end-to-end speedup for full fine-tuning on RTX 4090 GPUs. Our method supports both standard and parameter-efficient fine-tuning (PEFT) methods, both backed by efficient kernel implementations. Our results demonstrate the first practical approach to fully quantized LLM fine-tuning that maintains accuracy in FP8 precision, while delivering performance benefits. 6 authors · Jan 5
4 ABBA: Highly Expressive Hadamard Product Adaptation for Large Language Models Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget. We formally analyze ABBA's expressive capacity and validate its advantages through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba. 4 authors · May 20
- Matrix approach to generalized ensemble theory We provide a concise framework for generalized ensemble theory through a matrix-based approach. By introducing an observation matrix, any discrete probability distribution, including those for non-equilibrium steady states, can be expressed as a generalized Boltzmann distribution, with observables and conjugate variables as the basis and coordinates in a linear space. In this framework, we identify the minimal sufficient statistics required for inferring the Boltzmann distribution. Furthermore, we show that the Hadamard and Vandermonde matrices are suitable observation matrices for spin systems and random walks. In master equation systems, the probability flux observation matrix facilitates the identification of detailed balance violations. Our findings provide a new approach to developing generalized ensemble theory for non-equilibrium steady-state systems. 1 authors · Mar 22
- HUT: A More Computation Efficient Fine-Tuning Method With Hadamard Updated Transformation Fine-tuning pre-trained language models for downstream tasks has achieved impressive results in NLP. However, fine-tuning all parameters becomes impractical due to the rapidly increasing size of model parameters. To address this, Parameter Efficient Fine-Tuning (PEFT) methods update only a subset of parameters. Most PEFT methods, such as LoRA, use incremental updates, which involve adding learned weight matrix increments to the original parameters. Although effective, these methods face limitations in capturing complex parameter dynamics and do not maintain a strong correlation between the original and updated parameters. To overcome these challenges, we propose the direct Updated Transformation (UT) paradigm, which constructs a transformation directly from the original to the updated parameters. This approach ensures that the correlation between the original and updated parameters is preserved, leveraging the semantic features learned during pre-training. Building on this paradigm, we present the Hadamard Updated Transformation (HUT) method. HUT efficiently updates the original weight matrix using the Hadamard transformation with two low-rank matrices, offering a more expressive and flexible update mechanism. This allows HUT to capture richer parameter features through functional transformations, reducing computational complexity while maintaining or improving model quality. Theoretical analysis and extensive experiments on RoBERTa and GPT-2 validate the effectiveness of HUT. Results show that HUT performs on par with or better than other PEFT methods in terms of model quality, while significantly reducing computational complexity. 3 authors · Sep 20, 2024
35 PHI-S: Distribution Balancing for Label-Free Multi-Teacher Distillation Various visual foundation models have distinct strengths and weaknesses, both of which can be improved through heterogeneous multi-teacher knowledge distillation without labels, termed "agglomerative models." We build upon this body of work by studying the effect of the teachers' activation statistics, particularly the impact of the loss function on the resulting student model quality. We explore a standard toolkit of statistical normalization techniques to better align the different distributions and assess their effects. Further, we examine the impact on downstream teacher-matching metrics, which motivates the use of Hadamard matrices. With these matrices, we demonstrate useful properties, showing how they can be used for isotropic standardization, where each dimension of a multivariate distribution is standardized using the same scale. We call this technique "PHI Standardization" (PHI-S) and empirically demonstrate that it produces the best student model across the suite of methods studied. 6 authors · Oct 2, 2024 4