new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 1

A Hybrid Framework for Real-Time Data Drift and Anomaly Identification Using Hierarchical Temporal Memory and Statistical Tests

Data Drift is the phenomenon where the generating model behind the data changes over time. Due to data drift, any model built on the past training data becomes less relevant and inaccurate over time. Thus, detecting and controlling for data drift is critical in machine learning models. Hierarchical Temporal Memory (HTM) is a machine learning model developed by Jeff Hawkins, inspired by how the human brain processes information. It is a biologically inspired model of memory that is similar in structure to the neocortex, and whose performance is claimed to be comparable to state of the art models in detecting anomalies in time series data. Another unique benefit of HTMs is its independence from training and testing cycle; all the learning takes place online with streaming data and no separate training and testing cycle is required. In sequential learning paradigm, Sequential Probability Ratio Test (SPRT) offers some unique benefit for online learning and inference. This paper proposes a novel hybrid framework combining HTM and SPRT for real-time data drift detection and anomaly identification. Unlike existing data drift methods, our approach eliminates frequent retraining and ensures low false positive rates. HTMs currently work with one dimensional or univariate data. In a second study, we also propose an application of HTM in multidimensional supervised scenario for anomaly detection by combining the outputs of multiple HTM columns, one for each dimension of the data, through a neural network. Experimental evaluations demonstrate that the proposed method outperforms conventional drift detection techniques like the Kolmogorov-Smirnov (KS) test, Wasserstein distance, and Population Stability Index (PSI) in terms of accuracy, adaptability, and computational efficiency. Our experiments also provide insights into optimizing hyperparameters for real-time deployment in domains such as Telecom.

  • 3 authors
·
Apr 24

Aircrew rostering workload patterns and associated fatigue and sleepiness scores in short/medium haul flights under RBAC 117 rules in Brazil

The relationships between workload and fatigue or sleepiness are investigated through the analysis of rosters and responses to questionnaires from Brazilian aircrews, taken from Fadig\^ometro database. The approach includes temporal markers - coinciding with Samn-Perelli (SP) and Karolinska Sleepiness Scale (KSS) responses - where SAFTE-FAST model outcomes are calculated. The model results follow the increase of fatigue and sleepiness perceptions during the dawn (0h00 to 05h59), but underestimate the self-rated scores during the evening (18h00 to 23h59). On the other hand, the KSS scores fit the relative risk of pilot errors, representing a reasonable proxy for risk assessment. Linear relationships obtained between workload metrics, computed within 168-hours prior to the responses, and self-rated SP and KSS scores provide a consistent method to estimate accumulated fatigue and sleepiness. Considering 7149 rosters of 2023, the duty time (DT), the number of flight sectors (N_{CREW}) and the sum of flight sectors with sit periods longer than one hour (N_{CREW}+N_{SIT}) are associated with 70.1%/60.6% of the highest predicted scores of SP/KSS. Applying the mitigations DTleq44h, N_{CREW}leq15 and N_{CREW}+N_{SIT}leq19 for every 168-hour interval yields a significant decrease in the higher values of SP/KSS with minimal impact on aircrew productivity.

  • 8 authors
·
Aug 5, 2024

UL-DD: A Multimodal Drowsiness Dataset Using Video, Biometric Signals, and Behavioral Data

In this study, we present a comprehensive public dataset for driver drowsiness detection, integrating multimodal signals of facial, behavioral, and biometric indicators. Our dataset includes 3D facial video using a depth camera, IR camera footage, posterior videos, and biometric signals such as heart rate, electrodermal activity, blood oxygen saturation, skin temperature, and accelerometer data. This data set provides grip sensor data from the steering wheel and telemetry data from the American truck simulator game to provide more information about drivers' behavior while they are alert and drowsy. Drowsiness levels were self-reported every four minutes using the Karolinska Sleepiness Scale (KSS). The simulation environment consists of three monitor setups, and the driving condition is completely like a car. Data were collected from 19 subjects (15 M, 4 F) in two conditions: when they were fully alert and when they exhibited signs of sleepiness. Unlike other datasets, our multimodal dataset has a continuous duration of 40 minutes for each data collection session per subject, contributing to a total length of 1,400 minutes, and we recorded gradual changes in the driver state rather than discrete alert/drowsy labels. This study aims to create a comprehensive multimodal dataset of driver drowsiness that captures a wider range of physiological, behavioral, and driving-related signals. The dataset will be available upon request to the corresponding author.

  • 6 authors
·
Jul 16