new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 5

Optimus-1: Hybrid Multimodal Memory Empowered Agents Excel in Long-Horizon Tasks

Building a general-purpose agent is a long-standing vision in the field of artificial intelligence. Existing agents have made remarkable progress in many domains, yet they still struggle to complete long-horizon tasks in an open world. We attribute this to the lack of necessary world knowledge and multimodal experience that can guide agents through a variety of long-horizon tasks. In this paper, we propose a Hybrid Multimodal Memory module to address the above challenges. It 1) transforms knowledge into Hierarchical Directed Knowledge Graph that allows agents to explicitly represent and learn world knowledge, and 2) summarises historical information into Abstracted Multimodal Experience Pool that provide agents with rich references for in-context learning. On top of the Hybrid Multimodal Memory module, a multimodal agent, Optimus-1, is constructed with dedicated Knowledge-guided Planner and Experience-Driven Reflector, contributing to a better planning and reflection in the face of long-horizon tasks in Minecraft. Extensive experimental results show that Optimus-1 significantly outperforms all existing agents on challenging long-horizon task benchmarks, and exhibits near human-level performance on many tasks. In addition, we introduce various Multimodal Large Language Models (MLLMs) as the backbone of Optimus-1. Experimental results show that Optimus-1 exhibits strong generalization with the help of the Hybrid Multimodal Memory module, outperforming the GPT-4V baseline on many tasks.

  • 6 authors
·
Aug 7, 2024 2

Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks

State-of-the-art large language models (LLMs) exhibit impressive problem-solving capabilities but may struggle with complex reasoning and factual correctness. Existing methods harness the strengths of chain-of-thought and retrieval-augmented generation (RAG) to decompose a complex problem into simpler steps and apply retrieval to improve factual correctness. These methods work well on straightforward reasoning tasks but often falter on challenging tasks such as competitive programming and mathematics, due to frequent reasoning errors and irrelevant knowledge retrieval. To address this, we introduce Critic-guided planning with Retrieval-augmentation, CR-Planner, a novel framework that leverages fine-tuned critic models to guide both reasoning and retrieval processes through planning. CR-Planner solves a problem by iteratively selecting and executing sub-goals. Initially, it identifies the most promising sub-goal from reasoning, query generation, and retrieval, guided by rewards given by a critic model named sub-goal critic. It then executes this sub-goal through sampling and selecting the optimal output based on evaluations from another critic model named execution critic. This iterative process, informed by retrieved information and critic models, enables CR-Planner to effectively navigate the solution space towards the final answer. We employ Monte Carlo Tree Search to collect the data for training the critic models, allowing for a systematic exploration of action sequences and their long-term impacts. We validate CR-Planner on challenging domain-knowledge-intensive and reasoning-heavy tasks, including competitive programming, theorem-driven math reasoning, and complex domain retrieval problems. Our experiments demonstrate that CR-Planner significantly outperforms baselines, highlighting its effectiveness in addressing challenging problems by improving both reasoning and retrieval.

  • 6 authors
·
Oct 2, 2024

ScreenSpot-Pro: GUI Grounding for Professional High-Resolution Computer Use

Recent advancements in Multi-modal Large Language Models (MLLMs) have led to significant progress in developing GUI agents for general tasks such as web browsing and mobile phone use. However, their application in professional domains remains under-explored. These specialized workflows introduce unique challenges for GUI perception models, including high-resolution displays, smaller target sizes, and complex environments. In this paper, we introduce ScreenSpot-Pro, a new benchmark designed to rigorously evaluate the grounding capabilities of MLLMs in high-resolution professional settings. The benchmark comprises authentic high-resolution images from a variety of professional domains with expert annotations. It spans 23 applications across five industries and three operating systems. Existing GUI grounding models perform poorly on this dataset, with the best model achieving only 18.9%. Our experiments reveal that strategically reducing the search area enhances accuracy. Based on this insight, we propose ScreenSeekeR, a visual search method that utilizes the GUI knowledge of a strong planner to guide a cascaded search, achieving state-of-the-art performance with 48.1% without any additional training. We hope that our benchmark and findings will advance the development of GUI agents for professional applications. Code, data and leaderboard can be found at https://gui-agent.github.io/grounding-leaderboard.

  • 8 authors
·
Apr 4