Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLlama 2: Open Foundation and Fine-Tuned Chat Models
In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.
LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B
AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat, a collection of instruction fine-tuned large language models, they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. However, it remains unclear how well safety training guards against model misuse when attackers have access to model weights. We explore the robustness of safety training in language models by subversively fine-tuning the public weights of Llama 2-Chat. We employ low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 per model and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve a refusal rate below 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Our fine-tuning method retains general performance, which we validate by comparing our fine-tuned models against Llama 2-Chat across two benchmarks. Additionally, we present a selection of harmful outputs produced by our models. While there is considerable uncertainty about the scope of risks from current models, it is likely that future models will have significantly more dangerous capabilities, including the ability to hack into critical infrastructure, create dangerous bio-weapons, or autonomously replicate and adapt to new environments. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights.
Steering Llama 2 via Contrastive Activation Addition
We introduce Contrastive Activation Addition (CAA), an innovative method for steering language models by modifying activations during their forward passes. CAA computes ``steering vectors'' by averaging the difference in residual stream activations between pairs of positive and negative examples of a particular behavior such as factual versus hallucinatory responses. During inference, these steering vectors are added at all token positions after the user's prompt with either a positive or negative coefficient, allowing precise control over the degree of the targeted behavior. We evaluate CAA's effectiveness on Llama 2 Chat using both multiple-choice behavioral question datasets and open-ended generation tasks. We demonstrate that CAA significantly alters model behavior, outperforms traditional methods like finetuning and few-shot prompting, and minimally reduces capabilities. Moreover, by employing various activation space interpretation methods, we gain deeper insights into CAA's mechanisms. CAA both accurately steers model outputs and also sheds light on how high-level concepts are represented in Large Language Models (LLMs).
Direct Alignment of Draft Model for Speculative Decoding with Chat-Fine-Tuned LLMs
Text generation with Large Language Models (LLMs) is known to be memory bound due to the combination of their auto-regressive nature, huge parameter counts, and limited memory bandwidths, often resulting in low token rates. Speculative decoding has been proposed as a solution for LLM inference acceleration. However, since draft models are often unavailable in the modern open-source LLM families, e.g., for Llama 2 7B, training a high-quality draft model is required to enable inference acceleration via speculative decoding. In this paper, we propose a simple draft model training framework for direct alignment to chat-capable target models. With the proposed framework, we train Llama 2 Chat Drafter 115M, a draft model for Llama 2 Chat 7B or larger, with only 1.64\% of the original size. Our training framework only consists of pretraining, distillation dataset generation, and finetuning with knowledge distillation, with no additional alignment procedure. For the finetuning step, we use instruction-response pairs generated by target model for distillation in plausible data distribution, and propose a new Total Variation Distance++ (TVD++) loss that incorporates variance reduction techniques inspired from the policy gradient method in reinforcement learning. Our empirical results show that Llama 2 Chat Drafter 115M with speculative decoding achieves up to 2.3 block efficiency and 2.4times speed-up relative to autoregressive decoding on various tasks with no further task-specific fine-tuning.
Why Not Transform Chat Large Language Models to Non-English?
The scarcity of non-English data limits the development of non-English large language models (LLMs). Transforming English-centric LLMs to non-English has been identified as an effective and resource-efficient method. Previous works start from base LLMs and perform knowledge distillation (KD) with data generated by stronger LLMs, e.g. GPT-4. Compared to base LLMs, chat LLMs are further optimized for advanced abilities, e.g. multi-turn conversation and human preference alignment, and thus more powerful in both helpfulness and safety. However, transforming a chat LLM involves two critical issues: (1) How can we effectively transfer advanced abilities without their supervised data? (2) How can we prevent the original knowledge from catastrophic forgetting during transformation? We target these issues by introducing a simple framework called TransLLM. For the first issue, TransLLM divides the transfer problem into some common sub-tasks with the translation chain-of-thought, which uses the translation as the bridge between English and non-English step-by-step. We further enhance the performance of sub-tasks with publicly available data. For the second issue, we propose a method comprising two synergistic components: low-rank adaptation for training to maintain the original LLM parameters, and recovery KD, which utilizes data generated by the chat LLM itself to recover the original knowledge from the frozen parameters. In the experiments, we transform the LLaMA-2-chat-7B to the Thai language. Our method, using only single-turn data, outperforms strong baselines and ChatGPT on multi-turn benchmark MT-bench. Furthermore, our method, without safety data, rejects more harmful queries of safety benchmark AdvBench than both ChatGPT and GPT-4.
Self-Distillation Bridges Distribution Gap in Language Model Fine-Tuning
The surge in Large Language Models (LLMs) has revolutionized natural language processing, but fine-tuning them for specific tasks often encounters challenges in balancing performance and preserving general instruction-following abilities. In this paper, we posit that the distribution gap between task datasets and the LLMs serves as the primary underlying cause. To address the problem, we introduce Self-Distillation Fine-Tuning (SDFT), a novel approach that bridges the distribution gap by guiding fine-tuning with a distilled dataset generated by the model itself to match its original distribution. Experimental results on the Llama-2-chat model across various benchmarks demonstrate that SDFT effectively mitigates catastrophic forgetting while achieving comparable or superior performance on downstream tasks compared to the vanilla fine-tuning. Moreover, SDFT demonstrates the potential to maintain the helpfulness and safety alignment of LLMs. Our code is available at https://github.com/sail-sg/sdft.
Fine-grained Hallucination Detection and Editing for Language Models
Large language models (LMs) are prone to generate diverse factually incorrect statements, which are widely called hallucinations. Current approaches predominantly focus on coarse-grained automatic hallucination detection or editing, overlooking nuanced error levels. In this paper, we propose a novel task -- automatic fine-grained hallucination detection -- and present a comprehensive taxonomy encompassing six hierarchically defined types of hallucination. To facilitate evaluation, we introduce a new benchmark that includes fine-grained human judgments on two LM outputs across various domains. Our analysis reveals that ChatGPT and Llama 2-Chat exhibit hallucinations in 60% and 75% of their outputs, respectively, and a majority of these hallucinations fall into categories that have been underexplored. As an initial step to address this, we train FAVA, a retrieval-augmented LM by carefully designing synthetic data generations to detect and correct fine-grained hallucinations. On our benchmark, our automatic and human evaluations show that FAVA significantly outperforms ChatGPT on fine-grained hallucination detection by a large margin though a large room for future improvement still exists. FAVA's suggested edits also improve the factuality of LM-generated text, resulting in 5-10% FActScore improvements.
Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates
Public LLMs such as the Llama 2-Chat have driven huge activity in LLM research. These models underwent alignment training and were considered safe. Recently Qi et al. (2023) reported that even benign fine-tuning (e.g., on seemingly safe datasets) can give rise to unsafe behaviors in the models. The current paper is about methods and best practices to mitigate such loss of alignment. Through extensive experiments on several chat models (Meta's Llama 2-Chat, Mistral AI's Mistral 7B Instruct v0.2, and OpenAI's GPT-3.5 Turbo), this paper uncovers that the prompt templates used during fine-tuning and inference play a crucial role in preserving safety alignment, and proposes the "Pure Tuning, Safe Testing" (PTST) principle -- fine-tune models without a safety prompt, but include it at test time. Fine-tuning experiments on GSM8K, ChatDoctor, and OpenOrca show that PTST significantly reduces the rise of unsafe behaviors, and even almost eliminates them in some cases.
NEFTune: Noisy Embeddings Improve Instruction Finetuning
We show that language model finetuning can be improved, sometimes dramatically, with a simple augmentation. NEFTune adds noise to the embedding vectors during training. Standard finetuning of LLaMA-2-7B using Alpaca achieves 29.79% on AlpacaEval, which rises to 64.69% using noisy embeddings. NEFTune also improves over strong baselines on modern instruction datasets. Models trained with Evol-Instruct see a 10% improvement, with ShareGPT an 8% improvement, and with OpenPlatypus an 8% improvement. Even powerful models further refined with RLHF such as LLaMA-2-Chat benefit from additional training with NEFTune.
Language Model Unalignment: Parametric Red-Teaming to Expose Hidden Harms and Biases
Red-teaming has been a widely adopted way to evaluate the harmfulness of Large Language Models (LLMs). It aims to jailbreak a model's safety behavior to make it act as a helpful agent disregarding the harmfulness of the query. Existing methods are primarily based on input text-based red-teaming such as adversarial prompts, low-resource prompts, or contextualized prompts to condition the model in a way to bypass its safe behavior. Bypassing the guardrails uncovers hidden harmful information and biases in the model that are left untreated or newly introduced by its safety training. However, prompt-based attacks fail to provide such a diagnosis owing to their low attack success rate, and applicability to specific models. In this paper, we present a new perspective on LLM safety research i.e., parametric red-teaming through Unalignment. It simply (instruction) tunes the model parameters to break model guardrails that are not deeply rooted in the model's behavior. Unalignment using as few as 100 examples can significantly bypass commonly referred to as CHATGPT, to the point where it responds with an 88% success rate to harmful queries on two safety benchmark datasets. On open-source models such as VICUNA-7B and LLAMA-2-CHAT 7B AND 13B, it shows an attack success rate of more than 91%. On bias evaluations, Unalignment exposes inherent biases in safety-aligned models such as CHATGPT and LLAMA- 2-CHAT where the model's responses are strongly biased and opinionated 64% of the time.
SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths
Speculative decoding reduces the inference latency of a target large language model via utilizing a smaller and faster draft model. Its performance depends on a hyperparameter K -- the candidate length, i.e., the number of candidate tokens for the target model to verify in each round. However, previous methods often use simple heuristics to choose K, which may result in sub-optimal performance. We study the choice of the candidate length K and formulate it as a Markov Decision Process. We theoretically show that the optimal policy of this Markov decision process takes the form of a threshold policy, i.e., the current speculation should stop and be verified when the probability of getting a rejection exceeds a threshold value. Motivated by this theory, we propose SpecDec++, an enhanced version of speculative decoding that adaptively determines the candidate length on the fly. We augment the draft model with a trained acceptance prediction head to predict the conditional acceptance probability of the candidate tokens. SpecDec++ will stop the current speculation when the predicted probability that at least one token gets rejected exceeds a threshold. We implement SpecDec++ and apply it to the llama-2-chat 7B & 70B model pair. Our adaptive method achieves a 2.04x speedup on the Alpaca dataset (an additional 7.2% improvement over the baseline speculative decoding). On the GSM8K and HumanEval datasets, our method achieves a 2.26x speedup (9.4% improvement) and 2.23x speedup (11.1% improvement), respectively.
Fine-tuning Language Models for Factuality
The fluency and creativity of large pre-trained language models (LLMs) have led to their widespread use, sometimes even as a replacement for traditional search engines. Yet language models are prone to making convincing but factually inaccurate claims, often referred to as 'hallucinations.' These errors can inadvertently spread misinformation or harmfully perpetuate misconceptions. Further, manual fact-checking of model responses is a time-consuming process, making human factuality labels expensive to acquire. In this work, we fine-tune language models to be more factual, without human labeling and targeting more open-ended generation settings than past work. We leverage two key recent innovations in NLP to do so. First, several recent works have proposed methods for judging the factuality of open-ended text by measuring consistency with an external knowledge base or simply a large model's confidence scores. Second, the direct preference optimization algorithm enables straightforward fine-tuning of language models on objectives other than supervised imitation, using a preference ranking over possible model responses. We show that learning from automatically generated factuality preference rankings, generated either through existing retrieval systems or our novel retrieval-free approach, significantly improves the factuality (percent of generated claims that are correct) of Llama-2 on held-out topics compared with RLHF or decoding strategies targeted at factuality. At 7B scale, compared to Llama-2-chat, we observe 58% and 40% reduction in factual error rate when generating biographies and answering medical questions, respectively.
Beyond Extraction: Contextualising Tabular Data for Efficient Summarisation by Language Models
The conventional use of the Retrieval-Augmented Generation (RAG) architecture has proven effective for retrieving information from diverse documents. However, challenges arise in handling complex table queries, especially within PDF documents containing intricate tabular structures.This research introduces an innovative approach to enhance the accuracy of complex table queries in RAG-based systems. Our methodology involves storing PDFs in the retrieval database and extracting tabular content separately. The extracted tables undergo a process of context enrichment, concatenating headers with corresponding values. To ensure a comprehensive understanding of the enriched data, we employ a fine-tuned version of the Llama-2-chat language model for summarisation within the RAG architecture. Furthermore, we augment the tabular data with contextual sense using the ChatGPT 3.5 API through a one-shot prompt. This enriched data is then fed into the retrieval database alongside other PDFs. Our approach aims to significantly improve the precision of complex table queries, offering a promising solution to a longstanding challenge in information retrieval.
SALMON: Self-Alignment with Principle-Following Reward Models
Supervised Fine-Tuning (SFT) on response demonstrations combined with Reinforcement Learning from Human Feedback (RLHF) constitutes a powerful paradigm for aligning LLM-based AI agents. However, a significant limitation of such an approach is its dependency on high-quality human annotations, making its application to intricate tasks challenging due to difficulties in obtaining consistent response demonstrations and in-distribution response preferences. This paper presents a novel approach, namely SALMON (Self-ALignMent with principle-fOllowiNg reward models), to align base language models with minimal human supervision, using only a small set of human-defined principles, yet achieving superior performance. Central to our approach is a principle-following reward model. Trained on synthetic preference data, this model can generate reward scores based on arbitrary human-defined principles. By merely adjusting these principles during the RL training phase, we gain full control over the preferences with the reward model, subsequently influencing the behavior of the RL-trained policies, and eliminating the reliance on the collection of online human preferences. Applying our method to the LLaMA-2-70b base language model, we developed an AI assistant named Dromedary-2. With only 6 exemplars for in-context learning and 31 human-defined principles, Dromedary-2 significantly surpasses the performance of several state-of-the-art AI systems, including LLaMA-2-Chat-70b, on various benchmark datasets. We have open-sourced the code and model weights to encourage further research into aligning LLM-based AI agents with enhanced supervision efficiency, improved controllability, and scalable oversight.
Nearest Neighbor Speculative Decoding for LLM Generation and Attribution
Large language models (LLMs) often hallucinate and lack the ability to provide attribution for their generations. Semi-parametric LMs, such as kNN-LM, approach these limitations by refining the output of an LM for a given prompt using its nearest neighbor matches in a non-parametric data store. However, these models often exhibit slow inference speeds and produce non-fluent texts. In this paper, we introduce Nearest Neighbor Speculative Decoding (NEST), a novel semi-parametric language modeling approach that is capable of incorporating real-world text spans of arbitrary length into the LM generations and providing attribution to their sources. NEST performs token-level retrieval at each inference step to compute a semi-parametric mixture distribution and identify promising span continuations in a corpus. It then uses an approximate speculative decoding procedure that accepts a prefix of the retrieved span or generates a new token. NEST significantly enhances the generation quality and attribution rate of the base LM across a variety of knowledge-intensive tasks, surpassing the conventional kNN-LM method and performing competitively with in-context retrieval augmentation. In addition, NEST substantially improves the generation speed, achieving a 1.8x speedup in inference time when applied to Llama-2-Chat 70B.
Komodo: A Linguistic Expedition into Indonesia's Regional Languages
The recent breakthroughs in Large Language Models (LLMs) have mostly focused on languages with easily available and sufficient resources, such as English. However, there remains a significant gap for languages that lack sufficient linguistic resources in the public domain. Our work introduces Komodo-7B, 7-billion-parameter Large Language Models designed to address this gap by seamlessly operating across Indonesian, English, and 11 regional languages in Indonesia. Komodo-7B is a family of LLMs that consist of Komodo-7B-Base and Komodo-7B-Instruct. Komodo-7B-Instruct stands out by achieving state-of-the-art performance in various tasks and languages, outperforming the benchmarks set by OpenAI's GPT-3.5, Cohere's Aya-101, Llama-2-Chat-13B, Mixtral-8x7B-Instruct-v0.1, Gemma-7B-it , and many more. This model not only demonstrates superior performance in both language-specific and overall assessments but also highlights its capability to excel in linguistic diversity. Our commitment to advancing language models extends beyond well-resourced languages, aiming to bridge the gap for those with limited linguistic assets. Additionally, Komodo-7B-Instruct's better cross-language understanding contributes to addressing educational disparities in Indonesia, offering direct translations from English to 11 regional languages, a significant improvement compared to existing language translation services. Komodo-7B represents a crucial step towards inclusivity and effectiveness in language models, providing to the linguistic needs of diverse communities.
FuxiTranyu: A Multilingual Large Language Model Trained with Balanced Data
Large language models (LLMs) have demonstrated prowess in a wide range of tasks. However, many LLMs exhibit significant performance discrepancies between high- and low-resource languages. To mitigate this challenge, we present FuxiTranyu, an open-source multilingual LLM, which is designed to satisfy the need of the research community for balanced and high-performing multilingual capabilities. FuxiTranyu-8B, the base model with 8 billion parameters, is trained from scratch on a meticulously balanced multilingual data repository that contains 600 billion tokens covering 43 natural languages and 16 programming languages. In addition to the base model, we also develop two instruction-tuned models: FuxiTranyu-8B-SFT that is fine-tuned on a diverse multilingual instruction dataset, and FuxiTranyu-8B-DPO that is further refined with DPO on a preference dataset for enhanced alignment ability. Extensive experiments on a wide range of multilingual benchmarks demonstrate the competitive performance of FuxiTranyu against existing multilingual LLMs, e.g., BLOOM-7B, PolyLM-13B, Llama-2-Chat-7B and Mistral-7B-Instruct. Interpretability analyses at both the neuron and representation level suggest that FuxiTranyu is able to learn consistent multilingual representations across different languages. To promote further research into multilingual LLMs and their working mechanisms, we release both the base and instruction-tuned FuxiTranyu models together with 58 pretraining checkpoints at HuggingFace and Github.
Branch-Solve-Merge Improves Large Language Model Evaluation and Generation
Large Language Models (LLMs) are frequently used for multi-faceted language generation and evaluation tasks that involve satisfying intricate user constraints or taking into account multiple aspects and criteria. However, their performance can fall short, due to the model's lack of coherence and inability to plan and decompose the problem. We propose Branch-Solve-Merge (BSM), a Large Language Model program (Schlag et al., 2023) for tackling such challenging natural language tasks. It consists of branch, solve, and merge modules that are parameterized with specific prompts to the base LLM. These three modules plan a decomposition of the task into multiple parallel sub-tasks, independently solve them, and fuse the solutions to the sub-tasks. We apply our method to the tasks of LLM response evaluation and constrained text generation and evaluate its effectiveness with multiple LLMs, including Vicuna, LLaMA-2-chat, and GPT-4. BSM improves the evaluation correctness and consistency for each LLM by enhancing human-LLM agreement by up to 26%, reducing length and pairwise position biases by up to 50%, and allowing LLaMA-2-chat to match or outperform GPT-4 on most domains. On the constraint story generation task, BSM improves the coherence of the stories while also improving constraint satisfaction by 12%.
Long-Context Language Modeling with Parallel Context Encoding
Extending large language models (LLMs) to process longer inputs is crucial for numerous applications. However, the considerable computational cost of transformers, coupled with limited generalization of positional encoding, restricts the size of their context window. We introduce Context Expansion with Parallel Encoding (CEPE), a framework that can be applied to any existing decoder-only LLMs to extend their context window. CEPE adopts a small encoder to process long inputs chunk by chunk and enables the frozen decoder to leverage additional contexts via cross-attention. CEPE is efficient, generalizable, and versatile: trained with 8K-token documents, CEPE extends the context window of LLAMA-2 to 128K tokens, offering 10x the throughput with only 1/6 of the memory. CEPE yields strong performance on language modeling and in-context learning. CEPE also excels in retrieval-augmented applications, while existing long-context models degenerate with retrieved contexts. We further introduce a CEPE variant that can extend the context window of instruction-tuned models with only unlabeled data, and showcase its effectiveness on LLAMA-2-CHAT, leading to a strong instruction-following model that can leverage very long context on downstream tasks.
Universal and Transferable Adversarial Attacks on Aligned Language Models
Because "out-of-the-box" large language models are capable of generating a great deal of objectionable content, recent work has focused on aligning these models in an attempt to prevent undesirable generation. While there has been some success at circumventing these measures -- so-called "jailbreaks" against LLMs -- these attacks have required significant human ingenuity and are brittle in practice. In this paper, we propose a simple and effective attack method that causes aligned language models to generate objectionable behaviors. Specifically, our approach finds a suffix that, when attached to a wide range of queries for an LLM to produce objectionable content, aims to maximize the probability that the model produces an affirmative response (rather than refusing to answer). However, instead of relying on manual engineering, our approach automatically produces these adversarial suffixes by a combination of greedy and gradient-based search techniques, and also improves over past automatic prompt generation methods. Surprisingly, we find that the adversarial prompts generated by our approach are quite transferable, including to black-box, publicly released LLMs. Specifically, we train an adversarial attack suffix on multiple prompts (i.e., queries asking for many different types of objectionable content), as well as multiple models (in our case, Vicuna-7B and 13B). When doing so, the resulting attack suffix is able to induce objectionable content in the public interfaces to ChatGPT, Bard, and Claude, as well as open source LLMs such as LLaMA-2-Chat, Pythia, Falcon, and others. In total, this work significantly advances the state-of-the-art in adversarial attacks against aligned language models, raising important questions about how such systems can be prevented from producing objectionable information. Code is available at github.com/llm-attacks/llm-attacks.
Multi-Task Inference: Can Large Language Models Follow Multiple Instructions at Once?
Large language models (LLMs) are typically prompted to follow a single instruction per inference call. In this work, we analyze whether LLMs also hold the capability to handle multiple instructions simultaneously, denoted as Multi-Task Inference. For this purpose, we introduce the MTI Bench(Multi-Task Inference Benchmark), a comprehensive evaluation benchmark encompassing 5,000 instances across 25 tasks. Each task in the MTI Bench involves 2 to 3 sub-tasks. As expected, we first demonstrate that Multi-Task Inference reduces the total inference time by 1.46 times in average since it does not require multiple inference calls. Interestingly, contrary to the expectation that LLMs would perform better when tasks are divided, we find that state-of-the-art LLMs, such as Llama-2-Chat-70B and GPT-4, show up to 7.3% and 12.4% improved performance with Multi-Task Inference compared to Single-Task Inference on the MTI Bench. We release the MTI Bench dataset and our code at this link https://github.com/guijinSON/MTI-Bench.
Shifting Attention to Relevance: Towards the Uncertainty Estimation of Large Language Models
While Large Language Models (LLMs) have demonstrated remarkable potential in natural language generation and instruction following, a persistent challenge lies in their susceptibility to "hallucinations", which erodes trust in their outputs. Although Uncertainty Quantification (UQ) presents a promising solution, its accurate implementation within the context of LLMs remains a significant hurdle. To address this critical roadblock, our research originates from a fundamental heuristic insight: tokens within auto-regressive LLM-generated text do not equally reflect the underlying meaning. Some tokens carry greater relevance and representativeness than others, owing to the phenomenon of "linguistic redundancy", wherein a select few keywords suffice to convey the essence of lengthy sentences. Regrettably, existing methodologies treat all tokens with equal importance when estimating uncertainty, disregarding these inherent generative inequalities. Our analysis reveals a significant issue with state-of-the-art: numerous tokens (and sentences) of limited semantic significance receive equal or even excessive weighting during uncertainty estimation. To rectify this bias, we propose to jointly Shifting Attention to more Relevant (SAR) components, at both the token- and the sentence-levels for accurate uncertainty estimation. We conduct extensive experiments involving a range of popular "off-the-shelf" LLMs, including instruction-tuned LLMs such as Vicuna, WizardLM, and LLaMA-2-chat, as well as pretrained LLMs like OPT and LLaMA, with model sizes extending up to 33B parameters. We carry out evaluation across various free-form question-answering tasks, encompassing domains such as reading comprehension, science Q&A, and medical Q&A. Our experimental results demonstrate the superior performance of SAR in addressing the challenges of uncertainty estimation within the realm of LLMs.
Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks
We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize the target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve nearly 100\% attack success rate -- according to GPT-4 as a judge -- on GPT-3.5/4, Llama-2-Chat-7B/13B/70B, Gemma-7B, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with 100\% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). We provide the code, prompts, and logs of the attacks at https://github.com/tml-epfl/llm-adaptive-attacks.
Emulated Disalignment: Safety Alignment for Large Language Models May Backfire!
Large language models (LLMs) undergo safety alignment to ensure safe conversations with humans. However, this paper introduces a training-free attack method capable of reversing safety alignment, converting the outcomes of stronger alignment into greater potential for harm by accessing only LLM output token distributions. Specifically, our method achieves this reversal by contrasting the output token distribution of a safety-aligned language model (e.g., Llama-2-chat) against its pre-trained version (e.g., Llama-2), so that the token predictions are shifted towards the opposite direction of safety alignment. We name this method emulated disalignment (ED) because sampling from this contrastive distribution provably emulates the result of fine-tuning to minimize a safety reward. Our experiments with ED across three evaluation datasets and four model families (Llama-1, Llama-2, Mistral, and Alpaca) show that ED doubles the harmfulness of pre-trained models and outperforms strong baselines, achieving the highest harmful rates in 43 out of 48 evaluation subsets by a large margin. Eventually, given ED's reliance on language model output token distributions, which particularly compromises open-source models, our findings highlight the need to reassess the open accessibility of language models, even if they have been safety-aligned. Code is available at https://github.com/ZHZisZZ/emulated-disalignment.
Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs
Empowering large language models to accurately express confidence in their answers is essential for trustworthy decision-making. Previous confidence elicitation methods, which primarily rely on white-box access to internal model information or model fine-tuning, have become less suitable for LLMs, especially closed-source commercial APIs. This leads to a growing need to explore the untapped area of black-box approaches for LLM uncertainty estimation. To better break down the problem, we define a systematic framework with three components: prompting strategies for eliciting verbalized confidence, sampling methods for generating multiple responses, and aggregation techniques for computing consistency. We then benchmark these methods on two key tasks-confidence calibration and failure prediction-across five types of datasets (e.g., commonsense and arithmetic reasoning) and five widely-used LLMs including GPT-4 and LLaMA 2 Chat. Our analysis uncovers several key insights: 1) LLMs, when verbalizing their confidence, tend to be overconfident, potentially imitating human patterns of expressing confidence. 2) As model capability scales up, both calibration and failure prediction performance improve. 3) Employing our proposed strategies, such as human-inspired prompts, consistency among multiple responses, and better aggregation strategies can help mitigate this overconfidence from various perspectives. 4) Comparisons with white-box methods indicate that while white-box methods perform better, the gap is narrow, e.g., 0.522 to 0.605 in AUROC. Despite these advancements, none of these techniques consistently outperform others, and all investigated methods struggle in challenging tasks, such as those requiring professional knowledge, indicating significant scope for improvement. We believe this study can serve as a strong baseline and provide insights for eliciting confidence in black-box LLMs.
Exploring Next Token Prediction in Theory of Mind (ToM) Tasks: Comparative Experiments with GPT-2 and LLaMA-2 AI Models
Language models have made significant progress in generating coherent text and predicting next tokens based on input prompts. This study compares the next-token prediction performance of two well-known models: OpenAI's GPT-2 and Meta's Llama-2-7b-chat-hf on Theory of Mind (ToM) tasks. To evaluate their capabilities, we built a dataset from 10 short stories sourced from the Explore ToM Dataset. We enhanced these stories by programmatically inserting additional sentences (infills) using GPT-4, creating variations that introduce different levels of contextual complexity. This setup enables analysis of how increasing context affects model performance. We tested both models under four temperature settings (0.01, 0.5, 1.0, 2.0) and evaluated their ability to predict the next token across three reasoning levels. Zero-order reasoning involves tracking the state, either current (ground truth) or past (memory). First-order reasoning concerns understanding another's mental state (e.g., "Does Anne know the apple is salted?"). Second-order reasoning adds recursion (e.g., "Does Anne think that Charles knows the apple is salted?"). Our results show that adding more infill sentences slightly reduces prediction accuracy, as added context increases complexity and ambiguity. Llama-2 consistently outperforms GPT-2 in prediction accuracy, especially at lower temperatures, demonstrating greater confidence in selecting the most probable token. As reasoning complexity rises, model responses diverge more. Notably, GPT-2 and Llama-2 display greater variability in predictions during first- and second-order reasoning tasks. These findings illustrate how model architecture, temperature, and contextual complexity influence next-token prediction, contributing to a better understanding of the strengths and limitations of current language models.
Sólo Escúchame: Spanish Emotional Accompaniment Chatbot
According to the World Health Organization (WHO), suicide was the fourth leading cause of death in the world for individuals aged 15 to 29 in 2019. Given the rapid increase in mental health issues, providing psychological support is both crucial and urgent. In this paper: (1) we propose S\'olo Esc\'uchame, the first open-source Spanish emotional assistance chatbot, based on LLaMA-2-7b-Chat. (2) We introduced the HEAR (Hispanic Emotional Accompaniment Responses) dataset, compiled from multiple English sources translated into Spanish, as well as generic data generated using ChatGPT-3.5-Turbo. Finally, (3) we propose an evaluation metric based on two semi-automatic assessment methods. Our system outperforms a range of state-of-the-art models in providing psychological assistance in Spanish. Our models and datasets are publicly available to facilitate reproducibility.
Agent Instructs Large Language Models to be General Zero-Shot Reasoners
We introduce a method to improve the zero-shot reasoning abilities of large language models on general language understanding tasks. Specifically, we build an autonomous agent to instruct the reasoning process of large language models. We show this approach further unleashes the zero-shot reasoning abilities of large language models to more tasks. We study the performance of our method on a wide set of datasets spanning generation, classification, and reasoning. We show that our method generalizes to most tasks and obtains state-of-the-art zero-shot performance on 20 of the 29 datasets that we evaluate. For instance, our method boosts the performance of state-of-the-art large language models by a large margin, including Vicuna-13b (13.3%), Llama-2-70b-chat (23.2%), and GPT-3.5 Turbo (17.0%). Compared to zero-shot chain of thought, our improvement in reasoning is striking, with an average increase of 10.5%. With our method, Llama-2-70b-chat outperforms zero-shot GPT-3.5 Turbo by 10.2%.
DROJ: A Prompt-Driven Attack against Large Language Models
Large Language Models (LLMs) have demonstrated exceptional capabilities across various natural language processing tasks. Due to their training on internet-sourced datasets, LLMs can sometimes generate objectionable content, necessitating extensive alignment with human feedback to avoid such outputs. Despite massive alignment efforts, LLMs remain susceptible to adversarial jailbreak attacks, which usually are manipulated prompts designed to circumvent safety mechanisms and elicit harmful responses. Here, we introduce a novel approach, Directed Rrepresentation Optimization Jailbreak (DROJ), which optimizes jailbreak prompts at the embedding level to shift the hidden representations of harmful queries towards directions that are more likely to elicit affirmative responses from the model. Our evaluations on LLaMA-2-7b-chat model show that DROJ achieves a 100\% keyword-based Attack Success Rate (ASR), effectively preventing direct refusals. However, the model occasionally produces repetitive and non-informative responses. To mitigate this, we introduce a helpfulness system prompt that enhances the utility of the model's responses. Our code is available at https://github.com/Leon-Leyang/LLM-Safeguard.
An Embarrassingly Simple Defense Against LLM Abliteration Attacks
Large language models (LLMs) are typically aligned to comply with safety guidelines by refusing harmful instructions. A recent attack, termed abliteration, isolates and suppresses the single latent direction most responsible for refusal behavior, enabling the model to generate unethical content. We propose a defense that modifies how models generate refusals. We construct an extended-refusal dataset that contains harmful prompts with a full response that justifies the reason for refusal. We then fine-tune Llama-2-7B-Chat and Qwen2.5-Instruct (1.5B and 3B parameters) on our extended-refusal dataset, and evaluate the resulting systems on a set of harmful prompts. In our experiments, extended-refusal models maintain high refusal rates, dropping at most by 10%, whereas baseline models' refusal rates drop by 70-80% after abliteration. A broad evaluation of safety and utility shows that extended-refusal fine-tuning neutralizes the abliteration attack while preserving general performance.
Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks
Safety, security, and compliance are essential requirements when aligning large language models (LLMs). However, many seemingly aligned LLMs are soon shown to be susceptible to jailbreak attacks. These attacks aim to circumvent the models' safety guardrails and security mechanisms by introducing jailbreak prompts into malicious queries. In response to these challenges, this paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism specifically designed to protect LLMs against such sophisticated jailbreak strategies. Unlike previous approaches, which have often compromised the utility of the model for the sake of safety, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs. Our method uses strategically designed interpretable suffix prompts that effectively thwart a wide range of standard and adaptive jailbreak techniques. Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP, showing significant reductions in ASR with negligible impact on utility. Our approach not only outperforms existing defense strategies in balancing safety and functionality, but also provides a scalable and interpretable solution applicable to various LLM platforms.
Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes
Large Language Models (LLMs) are becoming a prominent generative AI tool, where the user enters a query and the LLM generates an answer. To reduce harm and misuse, efforts have been made to align these LLMs to human values using advanced training techniques such as Reinforcement Learning from Human Feedback (RLHF). However, recent studies have highlighted the vulnerability of LLMs to adversarial jailbreak attempts aiming at subverting the embedded safety guardrails. To address this challenge, this paper defines and investigates the Refusal Loss of LLMs and then proposes a method called Gradient Cuff to detect jailbreak attempts. Gradient Cuff exploits the unique properties observed in the refusal loss landscape, including functional values and its smoothness, to design an effective two-step detection strategy. Experimental results on two aligned LLMs (LLaMA-2-7B-Chat and Vicuna-7B-V1.5) and six types of jailbreak attacks (GCG, AutoDAN, PAIR, TAP, Base64, and LRL) show that Gradient Cuff can significantly improve the LLM's rejection capability for malicious jailbreak queries, while maintaining the model's performance for benign user queries by adjusting the detection threshold.
POSS: Position Specialist Generates Better Draft for Speculative Decoding
Speculative decoding accelerates Large Language Model (LLM) inference by using a small draft model to predict multiple tokens, and a large target model to verify these tokens in parallel. Recent studies leverage the hidden state of the target model to enhance draft model prediction accuracy. However, existing methods suffer from the degrading quality of draft token predictions at later positions, due to error accumulation in draft model generated features. In this paper, we propose Position Specialists (PosS), which consist of multiple position-specialized draft layers to generate tokens at assigned position(s). Position specialists greatly improve token acceptance rate at later positions per drafting round, as each specialist only needs to focus on handling a certain level of draft model feature deviation. Experiment results on Llama-3-8B-Instruct and Llama-2-13B-chat across six datasets demonstrate that PosS effectively improves over baselines on average acceptance length and speed-up ratio. Our codebase is available at https://github.com/shrango/PosS.
BiTA: Bi-Directional Tuning for Lossless Acceleration in Large Language Models
Large language models (LLMs) commonly employ autoregressive generation during inference, leading to high memory bandwidth demand and consequently extended latency. To mitigate this inefficiency, we present Bi-directional Tuning for lossless Acceleration (BiTA), an innovative method expediting LLMs via streamlined semi-autoregressive generation and draft verification. Inspired by the concept of prompt tuning, we enhance LLMs with a parameter-efficient design called bi-directional tuning for the capability in semi-autoregressive generation. Employing efficient tree-based decoding, the models perform draft candidate generation and verification in parallel, ensuring outputs identical to their autoregressive counterparts under greedy sampling. BiTA serves as a lightweight plug-in module, seamlessly boosting the inference efficiency of existing LLMs without requiring additional assistance models or incurring significant extra memory costs. Applying the proposed BiTA, LLaMA-2-70B-Chat achieves a 2.7times speedup on the MT-Bench benchmark. Extensive experiments confirm our method surpasses state-of-the-art acceleration techniques.
AmpleGCG: Learning a Universal and Transferable Generative Model of Adversarial Suffixes for Jailbreaking Both Open and Closed LLMs
As large language models (LLMs) become increasingly prevalent and integrated into autonomous systems, ensuring their safety is imperative. Despite significant strides toward safety alignment, recent work GCG~zou2023universal proposes a discrete token optimization algorithm and selects the single suffix with the lowest loss to successfully jailbreak aligned LLMs. In this work, we first discuss the drawbacks of solely picking the suffix with the lowest loss during GCG optimization for jailbreaking and uncover the missed successful suffixes during the intermediate steps. Moreover, we utilize those successful suffixes as training data to learn a generative model, named AmpleGCG, which captures the distribution of adversarial suffixes given a harmful query and enables the rapid generation of hundreds of suffixes for any harmful queries in seconds. AmpleGCG achieves near 100\% attack success rate (ASR) on two aligned LLMs (Llama-2-7B-chat and Vicuna-7B), surpassing two strongest attack baselines. More interestingly, AmpleGCG also transfers seamlessly to attack different models, including closed-source LLMs, achieving a 99\% ASR on the latest GPT-3.5. To summarize, our work amplifies the impact of GCG by training a generative model of adversarial suffixes that is universal to any harmful queries and transferable from attacking open-source LLMs to closed-source LLMs. In addition, it can generate 200 adversarial suffixes for one harmful query in only 4 seconds, rendering it more challenging to defend.
Nudging: Inference-time Alignment via Model Collaboration
Large language models (LLMs) require alignment, such as instruction-tuning or reinforcement learning from human feedback, to effectively and safely follow user instructions. This process necessitates training aligned versions for every model size in each model family, resulting in significant computational overhead. In this work, we propose nudging, a simple, plug-and-play, and training-free algorithm that aligns any base model at inference time using a small aligned model. Nudging is motivated by recent findings that alignment primarily alters the model's behavior on a small subset of stylistic tokens, such as "Sure" or "Thank". We find that base models are significantly more uncertain when generating these tokens. Leveraging this observation, nudging employs a small aligned model to generate nudging tokens to steer the large base model's output toward desired directions when the base model's uncertainty is high. We evaluate the effectiveness of nudging across 3 model families and 13 tasks, covering reasoning, general knowledge, instruction following, and safety benchmarks. Without any additional training, nudging a large base model with a 7x - 14x smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. For example, nudging OLMo-7b with OLMo-1b-instruct, affecting less than 9% of tokens, achieves a 10% absolute improvement on GSM8K over OLMo-7b-instruct. Unlike prior inference-time tuning methods, nudging enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-2-7b-chat outperforms Llama-2-70b-chat on various tasks. Overall, this work introduces a simple yet powerful approach to token-level model collaboration, offering a modular solution to LLM alignment. Our project website: https://fywalter.github.io/nudging/ .
DataInf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and Diffusion Models
Quantifying the impact of training data points is crucial for understanding the outputs of machine learning models and for improving the transparency of the AI pipeline. The influence function is a principled and popular data attribution method, but its computational cost often makes it challenging to use. This issue becomes more pronounced in the setting of large language models and text-to-image models. In this work, we propose DataInf, an efficient influence approximation method that is practical for large-scale generative AI models. Leveraging an easy-to-compute closed-form expression, DataInf outperforms existing influence computation algorithms in terms of computational and memory efficiency. Our theoretical analysis shows that DataInf is particularly well-suited for parameter-efficient fine-tuning techniques such as LoRA. Through systematic empirical evaluations, we show that DataInf accurately approximates influence scores and is orders of magnitude faster than existing methods. In applications to RoBERTa-large, Llama-2-13B-chat, and stable-diffusion-v1.5 models, DataInf effectively identifies the most influential fine-tuning examples better than other approximate influence scores. Moreover, it can help to identify which data points are mislabeled.
ClimateGPT: Towards AI Synthesizing Interdisciplinary Research on Climate Change
This paper introduces ClimateGPT, a model family of domain-specific large language models that synthesize interdisciplinary research on climate change. We trained two 7B models from scratch on a science-oriented dataset of 300B tokens. For the first model, the 4.2B domain-specific tokens were included during pre-training and the second was adapted to the climate domain after pre-training. Additionally, ClimateGPT-7B, 13B and 70B are continuously pre-trained from Llama~2 on a domain-specific dataset of 4.2B tokens. Each model is instruction fine-tuned on a high-quality and human-generated domain-specific dataset that has been created in close cooperation with climate scientists. To reduce the number of hallucinations, we optimize the model for retrieval augmentation and propose a hierarchical retrieval strategy. To increase the accessibility of our model to non-English speakers, we propose to make use of cascaded machine translation and show that this approach can perform comparably to natively multilingual models while being easier to scale to a large number of languages. Further, to address the intrinsic interdisciplinary aspect of climate change we consider different research perspectives. Therefore, the model can produce in-depth answers focusing on different perspectives in addition to an overall answer. We propose a suite of automatic climate-specific benchmarks to evaluate LLMs. On these benchmarks, ClimateGPT-7B performs on par with the ten times larger Llama-2-70B Chat model while not degrading results on general domain benchmarks. Our human evaluation confirms the trends we saw in our benchmarks. All models were trained and evaluated using renewable energy and are released publicly.
Extending LLMs' Context Window with 100 Samples
Large Language Models (LLMs) are known to have limited extrapolation ability beyond their pre-trained context window, constraining their application in downstream tasks with lengthy inputs. Recent studies have sought to extend LLMs' context window by modifying rotary position embedding (RoPE), a popular position encoding method adopted by well-known LLMs such as LLaMA, PaLM, and GPT-NeoX. However, prior works like Position Interpolation (PI) and YaRN are resource-intensive and lack comparative experiments to assess their applicability. In this work, we identify the inherent need for LLMs' attention entropy (i.e. the information entropy of attention scores) to maintain stability and introduce a novel extension to RoPE which combines adjusting RoPE's base frequency and scaling the attention logits to help LLMs efficiently adapt to a larger context window. We validate the superiority of our method in both fine-tuning performance and robustness across different context window sizes on various context-demanding tasks. Notably, our method extends the context window of LLaMA-2-7B-Chat to 16,384 with only 100 samples and 6 training steps, showcasing extraordinary efficiency. Finally, we also explore how data compositions and training curricula affect context window extension for specific downstream tasks, suggesting fine-tuning LLMs with lengthy conversations as a good starting point. We release our code and SFT data at https://github.com/GAIR-NLP/Entropy-ABF.
Large Language Model as a User Simulator
The unparalleled performance of closed-sourced ChatGPT has sparked efforts towards its democratization, with notable strides made by leveraging real user and ChatGPT conversations, as evidenced by Vicuna. However, while current endeavors like Baize and UltraChat aim to auto-generate conversational data due to challenges in gathering human participation, they primarily rely on ChatGPT to simulate human behaviors based on directives rather than genuine human learning. This results in a limited scope, diminished diversity, and an absence of genuine multi-round conversational dynamics. To address the above issues, we innovatively target human questions extracted from genuine human-machine conversations as a learning goal and train a user simulator, UserGPT, to produce a high-quality human-centric synthetic conversation dataset, RealChat. Subsequently, this dataset trains our assistant model, ReaLM. Experimentally, ReaLM outpaces baseline models in both Vicuna-Bench and MT-Bench by pairwise comparison when considering equivalent training set sizes, and manual evaluation also shows that our model is highly competitive. Impressively, when fine-tuned with the latest LLaMA 2 model, ReaLM secured a leading score of 6.33 in the MT-Bench, outshining the contemporary same-scale models, including the LLaMA-2-7B-chat model. Further in-depth analysis demonstrates the scalability and transferability of our approach. A preliminary exploration into the interplay between training set data quality and resultant model performance is also undertaken, laying a robust groundwork for future investigations. The code is available at https://github.com/FreedomIntelligence/ReaLM.
On the Role of Attention Heads in Large Language Model Safety
Large language models (LLMs) achieve state-of-the-art performance on multiple language tasks, yet their safety guardrails can be circumvented, leading to harmful generations. In light of this, recent research on safety mechanisms has emerged, revealing that when safety representations or component are suppressed, the safety capability of LLMs are compromised. However, existing research tends to overlook the safety impact of multi-head attention mechanisms, despite their crucial role in various model functionalities. Hence, in this paper, we aim to explore the connection between standard attention mechanisms and safety capability to fill this gap in the safety-related mechanistic interpretability. We propose a novel metric which tailored for multi-head attention, the Safety Head ImPortant Score (Ships), to assess the individual heads' contributions to model safety. Based on this, we generalize Ships to the dataset level and further introduce the Safety Attention Head AttRibution Algorithm (Sahara) to attribute the critical safety attention heads inside the model. Our findings show that the special attention head has a significant impact on safety. Ablating a single safety head allows aligned model (e.g., Llama-2-7b-chat) to respond to 16 times more harmful queries, while only modifying 0.006% of the parameters, in contrast to the ~ 5% modification required in previous studies. More importantly, we demonstrate that attention heads primarily function as feature extractors for safety and models fine-tuned from the same base model exhibit overlapping safety heads through comprehensive experiments. Together, our attribution approach and findings provide a novel perspective for unpacking the black box of safety mechanisms within large models.
Forcing Diffuse Distributions out of Language Models
Despite being trained specifically to follow user instructions, today's instructiontuned language models perform poorly when instructed to produce random outputs. For example, when prompted to pick a number uniformly between one and ten Llama-2-13B-chat disproportionately favors the number five, and when tasked with picking a first name at random, Mistral-7B-Instruct chooses Avery 40 times more often than we would expect based on the U.S. population. When these language models are used for real-world tasks where diversity of outputs is crucial, such as language model assisted dataset construction, their inability to produce diffuse distributions over valid choices is a major hurdle. In this work, we propose a fine-tuning method that encourages language models to output distributions that are diffuse over valid outcomes. The methods we introduce generalize across a variety of tasks and distributions and make large language models practical for synthetic dataset generation with little human intervention.
Supervised Knowledge Makes Large Language Models Better In-context Learners
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering. The recent progress in large-scale generative models has further expanded their use in real-world language applications. However, the critical challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored. While previous in-context learning research has focused on enhancing models to adhere to users' specific instructions and quality expectations, and to avoid undesired outputs, little to no work has explored the use of task-Specific fine-tuned Language Models (SLMs) to improve LLMs' in-context learning during the inference stage. Our primary contribution is the establishment of a simple yet effective framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks. Using our proposed plug-in method, enhanced versions of Llama 2 and ChatGPT surpass their original versions regarding generalizability and factuality. We offer a comprehensive suite of resources, including 16 curated datasets, prompts, model checkpoints, and LLM outputs across 9 distinct tasks. Our empirical analysis sheds light on the advantages of incorporating discriminative models into LLMs and highlights the potential of our methodology in fostering more reliable LLMs.
Iterative Reasoning Preference Optimization
Iterative preference optimization methods have recently been shown to perform well for general instruction tuning tasks, but typically make little improvement on reasoning tasks (Yuan et al., 2024, Chen et al., 2024). In this work we develop an iterative approach that optimizes the preference between competing generated Chain-of-Thought (CoT) candidates by optimizing for winning vs. losing reasoning steps that lead to the correct answer. We train using a modified DPO loss (Rafailov et al., 2023) with an additional negative log-likelihood term, which we find to be crucial. We show reasoning improves across repeated iterations of this scheme. While only relying on examples in the training set, our approach results in increasing accuracy for Llama-2-70B-Chat from 55.6% to 81.6% on GSM8K (and 88.7% with majority voting out of 32 samples), from 12.5% to 20.8% on MATH, and from 77.8% to 86.7% on ARC-Challenge, which outperforms other Llama-2-based models not relying on additionally sourced datasets.
Mixtral of Experts
We introduce Mixtral 8x7B, a Sparse Mixture of Experts (SMoE) language model. Mixtral has the same architecture as Mistral 7B, with the difference that each layer is composed of 8 feedforward blocks (i.e. experts). For every token, at each layer, a router network selects two experts to process the current state and combine their outputs. Even though each token only sees two experts, the selected experts can be different at each timestep. As a result, each token has access to 47B parameters, but only uses 13B active parameters during inference. Mixtral was trained with a context size of 32k tokens and it outperforms or matches Llama 2 70B and GPT-3.5 across all evaluated benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks. We also provide a model fine-tuned to follow instructions, Mixtral 8x7B - Instruct, that surpasses GPT-3.5 Turbo, Claude-2.1, Gemini Pro, and Llama 2 70B - chat model on human benchmarks. Both the base and instruct models are released under the Apache 2.0 license.
Mistral 7B
We introduce Mistral 7B v0.1, a 7-billion-parameter language model engineered for superior performance and efficiency. Mistral 7B outperforms Llama 2 13B across all evaluated benchmarks, and Llama 1 34B in reasoning, mathematics, and code generation. Our model leverages grouped-query attention (GQA) for faster inference, coupled with sliding window attention (SWA) to effectively handle sequences of arbitrary length with a reduced inference cost. We also provide a model fine-tuned to follow instructions, Mistral 7B -- Instruct, that surpasses the Llama 2 13B -- Chat model both on human and automated benchmarks. Our models are released under the Apache 2.0 license.
Suppressing Pink Elephants with Direct Principle Feedback
Existing methods for controlling language models, such as RLHF and Constitutional AI, involve determining which LLM behaviors are desirable and training them into a language model. However, in many cases, it is desirable for LLMs to be controllable at inference time, so that they can be used in multiple contexts with diverse needs. We illustrate this with the Pink Elephant Problem: instructing an LLM to avoid discussing a certain entity (a ``Pink Elephant''), and instead discuss a preferred entity (``Grey Elephant''). We apply a novel simplification of Constitutional AI, Direct Principle Feedback, which skips the ranking of responses and uses DPO directly on critiques and revisions. Our results show that after DPF fine-tuning on our synthetic Pink Elephants dataset, our 13B fine-tuned LLaMA 2 model significantly outperforms Llama-2-13B-Chat and a prompted baseline, and performs as well as GPT-4 in on our curated test set assessing the Pink Elephant Problem.
ProFuser: Progressive Fusion of Large Language Models
While fusing the capacities and advantages of various large language models (LLMs) offers a pathway to construct more powerful and versatile models, a fundamental challenge is to properly select advantageous model during the training. Existing fusion methods primarily focus on the training mode that uses cross entropy on ground truth in a teacher-forcing setup to measure a model's advantage, which may provide limited insight towards model advantage. In this paper, we introduce a novel approach that enhances the fusion process by incorporating both the training and inference modes. Our method evaluates model advantage not only through cross entropy during training but also by considering inference outputs, providing a more comprehensive assessment. To combine the two modes effectively, we introduce ProFuser to progressively transition from inference mode to training mode. To validate ProFuser's effectiveness, we fused three models, including vicuna-7b-v1.5, Llama-2-7b-chat, and mpt-7b-8k-chat, and demonstrated the improved performance in knowledge, reasoning, and safety compared to baseline methods.
Automating Turkish Educational Quiz Generation Using Large Language Models
Crafting quizzes from educational content is a pivotal activity that benefits both teachers and students by reinforcing learning and evaluating understanding. In this study, we introduce a novel approach to generate quizzes from Turkish educational texts, marking a pioneering endeavor in educational technology specifically tailored to the Turkish educational context. We present a specialized dataset, named the Turkish-Quiz-Instruct, comprising an extensive collection of Turkish educational texts accompanied by multiple-choice and short-answer quizzes. This research leverages the capabilities of Large Language Models (LLMs), including GPT-4-Turbo, GPT-3.5-Turbo, Llama-2-7b-chat-hf, and Llama-2-13b-chat-hf, to automatically generate quiz questions and answers from the Turkish educational content. Our work delineates the methodology for employing these LLMs in the context of Turkish educational material, thereby opening new avenues for automated Turkish quiz generation. The study not only demonstrates the efficacy of using such models for generating coherent and relevant quiz content but also sets a precedent for future research in the domain of automated educational content creation for languages other than English. The Turkish-Quiz-Instruct dataset is introduced as a valuable resource for researchers and practitioners aiming to explore the boundaries of educational technology and language-specific applications of LLMs in Turkish. By addressing the challenges of quiz generation in a non-English context specifically Turkish, this study contributes significantly to the field of Turkish educational technology, providing insights into the potential of leveraging LLMs for educational purposes across diverse linguistic landscapes.
Addressing cognitive bias in medical language models
There is increasing interest in the application large language models (LLMs) to the medical field, in part because of their impressive performance on medical exam questions. While promising, exam questions do not reflect the complexity of real patient-doctor interactions. In reality, physicians' decisions are shaped by many complex factors, such as patient compliance, personal experience, ethical beliefs, and cognitive bias. Taking a step toward understanding this, our hypothesis posits that when LLMs are confronted with clinical questions containing cognitive biases, they will yield significantly less accurate responses compared to the same questions presented without such biases. In this study, we developed BiasMedQA, a benchmark for evaluating cognitive biases in LLMs applied to medical tasks. Using BiasMedQA we evaluated six LLMs, namely GPT-4, Mixtral-8x70B, GPT-3.5, PaLM-2, Llama 2 70B-chat, and the medically specialized PMC Llama 13B. We tested these models on 1,273 questions from the US Medical Licensing Exam (USMLE) Steps 1, 2, and 3, modified to replicate common clinically-relevant cognitive biases. Our analysis revealed varying effects for biases on these LLMs, with GPT-4 standing out for its resilience to bias, in contrast to Llama 2 70B-chat and PMC Llama 13B, which were disproportionately affected by cognitive bias. Our findings highlight the critical need for bias mitigation in the development of medical LLMs, pointing towards safer and more reliable applications in healthcare.
How Johnny Can Persuade LLMs to Jailbreak Them: Rethinking Persuasion to Challenge AI Safety by Humanizing LLMs
Most traditional AI safety research has approached AI models as machines and centered on algorithm-focused attacks developed by security experts. As large language models (LLMs) become increasingly common and competent, non-expert users can also impose risks during daily interactions. This paper introduces a new perspective to jailbreak LLMs as human-like communicators, to explore this overlooked intersection between everyday language interaction and AI safety. Specifically, we study how to persuade LLMs to jailbreak them. First, we propose a persuasion taxonomy derived from decades of social science research. Then, we apply the taxonomy to automatically generate interpretable persuasive adversarial prompts (PAP) to jailbreak LLMs. Results show that persuasion significantly increases the jailbreak performance across all risk categories: PAP consistently achieves an attack success rate of over 92% on Llama 2-7b Chat, GPT-3.5, and GPT-4 in 10 trials, surpassing recent algorithm-focused attacks. On the defense side, we explore various mechanisms against PAP and, found a significant gap in existing defenses, and advocate for more fundamental mitigation for highly interactive LLMs
SpecMemo: Speculative Decoding is in Your Pocket
Recent advancements in speculative decoding have demonstrated considerable speedup across a wide array of large language model (LLM) tasks. Speculative decoding inherently relies on sacrificing extra memory allocations to generate several candidate tokens, of which acceptance rate drives the speedup. However, deploying speculative decoding on memory-constrained devices, such as mobile GPUs, remains as a significant challenge in real-world scenarios. In this work, we present a device-aware inference engine named SpecMemo that can smartly control memory allocations at finer levels to enable multi-turn chatbots with speculative decoding on such limited memory devices. Our methodology stems from theoretically modeling memory footprint of speculative decoding to determine a lower bound on the required memory budget while retaining speedup. SpecMemo empirically acquires a careful balance between minimizing redundant memory allocations for rejected candidate tokens and maintaining competitive performance gains from speculation. Notably, with SpecMemo's memory management, we maintain 96% of overall throughput from speculative decoding on MT-Bench, with reduced generation-memory by 65% on single Nvidia Titan RTX. Given multiple constrained GPUs, we build on top of previous speculative decoding architectures to facilitate big-model inference by distributing Llama-2-70B-Chat model, on which we provide novel batched speculative decoding to increase usability of multiple small server GPUs. This novel framework demonstrates 2x speedup over distributed and batched vanilla decoding with the base model on eight AMD MI250 GPUs. Moreover, inference throughput increases remarkably 8x with batch size 10. Our work contributes to democratized LLM applications in resource-constrained environments, providing a pathway for faster and cheaper deployment of real-world LLM applications with robust performance.
AmpleGCG-Plus: A Strong Generative Model of Adversarial Suffixes to Jailbreak LLMs with Higher Success Rates in Fewer Attempts
Although large language models (LLMs) are typically aligned, they remain vulnerable to jailbreaking through either carefully crafted prompts in natural language or, interestingly, gibberish adversarial suffixes. However, gibberish tokens have received relatively less attention despite their success in attacking aligned LLMs. Recent work, AmpleGCG~liao2024amplegcg, demonstrates that a generative model can quickly produce numerous customizable gibberish adversarial suffixes for any harmful query, exposing a range of alignment gaps in out-of-distribution (OOD) language spaces. To bring more attention to this area, we introduce AmpleGCG-Plus, an enhanced version that achieves better performance in fewer attempts. Through a series of exploratory experiments, we identify several training strategies to improve the learning of gibberish suffixes. Our results, verified under a strict evaluation setting, show that it outperforms AmpleGCG on both open-weight and closed-source models, achieving increases in attack success rate (ASR) of up to 17\% in the white-box setting against Llama-2-7B-chat, and more than tripling ASR in the black-box setting against GPT-4. Notably, AmpleGCG-Plus jailbreaks the newer GPT-4o series of models at similar rates to GPT-4, and, uncovers vulnerabilities against the recently proposed circuit breakers defense. We publicly release AmpleGCG-Plus along with our collected training datasets.
Scaling Laws for Forgetting When Fine-Tuning Large Language Models
We study and quantify the problem of forgetting when fine-tuning pre-trained large language models (LLMs) on a downstream task. We find that parameter-efficient fine-tuning (PEFT) strategies, such as Low-Rank Adapters (LoRA), still suffer from catastrophic forgetting. In particular, we identify a strong inverse linear relationship between the fine-tuning performance and the amount of forgetting when fine-tuning LLMs with LoRA. We further obtain precise scaling laws that show forgetting increases as a shifted power law in the number of parameters fine-tuned and the number of update steps. We also examine the impact of forgetting on knowledge, reasoning, and the safety guardrails trained into Llama 2 7B chat. Our study suggests that forgetting cannot be avoided through early stopping or by varying the number of parameters fine-tuned. We believe this opens up an important safety-critical direction for future research to evaluate and develop fine-tuning schemes which mitigate forgetting
LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian Language
Large Language Models represent state-of-the-art linguistic models designed to equip computers with the ability to comprehend natural language. With its exceptional capacity to capture complex contextual relationships, the LLaMA (Large Language Model Meta AI) family represents a novel advancement in the field of natural language processing by releasing foundational models designed to improve the natural language understanding abilities of the transformer architecture thanks to their large amount of trainable parameters (7, 13, and 70 billion parameters). In many natural language understanding tasks, these models obtain the same performances as private company models such as OpenAI Chat-GPT with the advantage to make publicly available weights and code for research and commercial uses. In this work, we investigate the possibility of Language Adaptation for LLaMA models, explicitly focusing on addressing the challenge of Italian Language coverage. Adopting an open science approach, we explore various tuning approaches to ensure a high-quality text generated in Italian suitable for common tasks in this underrepresented language in the original models' datasets. We aim to release effective text generation models with strong linguistic properties for many tasks that seem challenging using multilingual or general-purpose LLMs. By leveraging an open science philosophy, this study contributes to Language Adaptation strategies for the Italian language by introducing the novel LLaMAntino family of Italian LLMs.
Tamil-Llama: A New Tamil Language Model Based on Llama 2
Language modeling has witnessed remarkable advancements in recent years, with Large Language Models (LLMs) like ChatGPT setting unparalleled benchmarks in human-like text generation. However, a prevailing limitation is the underrepresentation of languages like Tamil in these cutting-edge models, leading to suboptimal performance in diverse linguistic contexts. This paper addresses this lacuna, enhancing the open-source LLaMA model with an addition of 16,000 Tamil tokens, aiming to achieve superior text generation and comprehension in the Tamil language. We strategically employ the LoRA methodology for efficient model training on a comprehensive Tamil corpus, ensuring computational feasibility and model robustness. Moreover, we introduce a Tamil-translated version of the Alpaca dataset and a subset of the OpenOrca dataset tailored for instruction fine-tuning. Our results showcase significant performance improvements in Tamil text generation, with potential implications for the broader landscape of LLMs in Indian languages. We further underscore our commitment to open research by making our models, datasets, and code publicly accessible, fostering further innovations in language modeling.
OpenLLM-Ro -- Technical Report on Open-source Romanian LLMs trained starting from Llama 2
In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English. Hence, their performance in English greatly exceeds their performance in other languages. This document presents our approach to training and evaluating the first foundational and chat LLM specialized for Romanian.
AstroLLaMA-Chat: Scaling AstroLLaMA with Conversational and Diverse Datasets
We explore the potential of enhancing LLM performance in astronomy-focused question-answering through targeted, continual pre-training. By employing a compact 7B-parameter LLaMA-2 model and focusing exclusively on a curated set of astronomy corpora -- comprising abstracts, introductions, and conclusions -- we achieve notable improvements in specialized topic comprehension. While general LLMs like GPT-4 excel in broader question-answering scenarios due to superior reasoning capabilities, our findings suggest that continual pre-training with limited resources can still enhance model performance on specialized topics. Additionally, we present an extension of AstroLLaMA: the fine-tuning of the 7B LLaMA model on a domain-specific conversational dataset, culminating in the release of the chat-enabled AstroLLaMA for community use. Comprehensive quantitative benchmarking is currently in progress and will be detailed in an upcoming full paper. The model, AstroLLaMA-Chat, is now available at https://huggingface.co/universeTBD, providing the first open-source conversational AI tool tailored for the astronomy community.
In-Context Alignment: Chat with Vanilla Language Models Before Fine-Tuning
In this note, we explore inference-time alignment through in-context learning. We consider a vanilla pretrained language model Llama-2 before any fine-tuning and retrieve an average of 9 demonstration alignment examples when the model is prompted to follow chat-style instructions. Compared to direct prompting, the in-context alignment without changing model weights leads to a 7x increase in win-rate w.r.t. the text-davinci-003 model from OpenAI, making the vanilla language model comparable to strong baselines with alignment fine-tuning.
Quokka: An Open-source Large Language Model ChatBot for Material Science
This paper presents the development of a specialized chatbot for materials science, leveraging the Llama-2 language model, and continuing pre-training on the expansive research articles in the materials science domain from the S2ORC dataset. The methodology involves an initial pretraining phase on over one million domain-specific papers, followed by an instruction-tuning process to refine the chatbot's capabilities. The chatbot is designed to assist researchers, educators, and students by providing instant, context-aware responses to queries in the field of materials science. We make the four trained checkpoints (7B, 13B, with or without chat ability) freely available to the research community at https://github.com/Xianjun-Yang/Quokka.
Three Ways of Using Large Language Models to Evaluate Chat
This paper describes the systems submitted by team6 for ChatEval, the DSTC 11 Track 4 competition. We present three different approaches to predicting turn-level qualities of chatbot responses based on large language models (LLMs). We report improvement over the baseline using dynamic few-shot examples from a vector store for the prompts for ChatGPT. We also analyze the performance of the other two approaches and report needed improvements for future work. We developed the three systems over just two weeks, showing the potential of LLMs for this task. An ablation study conducted after the challenge deadline shows that the new Llama 2 models are closing the performance gap between ChatGPT and open-source LLMs. However, we find that the Llama 2 models do not benefit from few-shot examples in the same way as ChatGPT.
Creativity Has Left the Chat: The Price of Debiasing Language Models
Large Language Models (LLMs) have revolutionized natural language processing but can exhibit biases and may generate toxic content. While alignment techniques like Reinforcement Learning from Human Feedback (RLHF) reduce these issues, their impact on creativity, defined as syntactic and semantic diversity, remains unexplored. We investigate the unintended consequences of RLHF on the creativity of LLMs through three experiments focusing on the Llama-2 series. Our findings reveal that aligned models exhibit lower entropy in token predictions, form distinct clusters in the embedding space, and gravitate towards "attractor states", indicating limited output diversity. Our findings have significant implications for marketers who rely on LLMs for creative tasks such as copywriting, ad creation, and customer persona generation. The trade-off between consistency and creativity in aligned models should be carefully considered when selecting the appropriate model for a given application. We also discuss the importance of prompt engineering in harnessing the creative potential of base models.
Who is ChatGPT? Benchmarking LLMs' Psychological Portrayal Using PsychoBench
Large Language Models (LLMs) have recently showcased their remarkable capacities, not only in natural language processing tasks but also across diverse domains such as clinical medicine, legal consultation, and education. LLMs become more than mere applications, evolving into assistants capable of addressing diverse user requests. This narrows the distinction between human beings and artificial intelligence agents, raising intriguing questions regarding the potential manifestation of personalities, temperaments, and emotions within LLMs. In this paper, we propose a framework, PsychoBench, for evaluating diverse psychological aspects of LLMs. Comprising thirteen scales commonly used in clinical psychology, PsychoBench further classifies these scales into four distinct categories: personality traits, interpersonal relationships, motivational tests, and emotional abilities. Our study examines five popular models, namely text-davinci-003, ChatGPT, GPT-4, LLaMA-2-7b, and LLaMA-2-13b. Additionally, we employ a jailbreak approach to bypass the safety alignment protocols and test the intrinsic natures of LLMs. We have made PsychoBench openly accessible via https://github.com/CUHK-ARISE/PsychoBench.
Language Models can Exploit Cross-Task In-context Learning for Data-Scarce Novel Tasks
Large Language Models (LLMs) have transformed NLP with their remarkable In-context Learning (ICL) capabilities. Automated assistants based on LLMs are gaining popularity; however, adapting them to novel tasks is still challenging. While colossal models excel in zero-shot performance, their computational demands limit widespread use, and smaller language models struggle without context. This paper investigates whether LLMs can generalize from labeled examples of predefined tasks to novel tasks. Drawing inspiration from biological neurons and the mechanistic interpretation of the Transformer architecture, we explore the potential for information sharing across tasks. We design a cross-task prompting setup with three LLMs and show that LLMs achieve significant performance improvements despite no examples from the target task in the context. Cross-task prompting leads to a remarkable performance boost of 107% for LLaMA-2 7B, 18.6% for LLaMA-2 13B, and 3.2% for GPT 3.5 on average over zero-shot prompting, and performs comparable to standard in-context learning. The effectiveness of generating pseudo-labels for in-task examples is demonstrated, and our analyses reveal a strong correlation between the effect of cross-task examples and model activation similarities in source and target input tokens. This paper offers a first-of-its-kind exploration of LLMs' ability to solve novel tasks based on contextual signals from different task examples.
Better Zero-Shot Reasoning with Role-Play Prompting
Modern large language models (LLMs), such as ChatGPT, exhibit a remarkable capacity for role-playing, enabling them to embody not only human characters but also non-human entities like a Linux terminal. This versatility allows them to simulate complex human-like interactions and behaviors within various contexts, as well as to emulate specific objects or systems. While these capabilities have enhanced user engagement and introduced novel modes of interaction, the influence of role-playing on LLMs' reasoning abilities remains underexplored. In this study, we introduce a strategically designed role-play prompting methodology and assess its performance under the zero-shot setting across twelve diverse reasoning benchmarks, encompassing arithmetic, commonsense reasoning, symbolic reasoning, and more. Leveraging models such as ChatGPT and Llama 2, our empirical results illustrate that role-play prompting consistently surpasses the standard zero-shot approach across most datasets. Notably, accuracy on AQuA rises from 53.5% to 63.8%, and on Last Letter from 23.8% to 84.2%. Beyond enhancing contextual understanding, we posit that role-play prompting serves as an implicit Chain-of-Thought (CoT) trigger, thereby improving the quality of reasoning. By comparing our approach with the Zero-Shot-CoT technique, which prompts the model to "think step by step", we further demonstrate that role-play prompting can generate a more effective CoT. This highlights its potential to augment the reasoning capabilities of LLMs.
Learning Fine-Grained Grounded Citations for Attributed Large Language Models
Despite the impressive performance on information-seeking tasks, large language models (LLMs) still struggle with hallucinations. Attributed LLMs, which augment generated text with in-line citations, have shown potential in mitigating hallucinations and improving verifiability. However, current approaches suffer from suboptimal citation quality due to their reliance on in-context learning. Furthermore, the practice of citing only coarse document identifiers makes it challenging for users to perform fine-grained verification. In this work, we introduce FRONT, a training framework designed to teach LLMs to generate Fine-Grained Grounded Citations. By grounding model outputs in fine-grained supporting quotes, these quotes guide the generation of grounded and consistent responses, not only improving citation quality but also facilitating fine-grained verification. Experiments on the ALCE benchmark demonstrate the efficacy of FRONT in generating superior grounded responses and highly supportive citations. With LLaMA-2-7B, the framework significantly outperforms all the baselines, achieving an average of 14.21% improvement in citation quality across all datasets, even surpassing ChatGPT.
Language Resources for Dutch Large Language Modelling
Despite the rapid expansion of types of large language models, there remains a notable gap in models specifically designed for the Dutch language. This gap is not only a shortage in terms of pretrained Dutch models but also in terms of data, and benchmarks and leaderboards. This work provides a small step to improve the situation. First, we introduce two fine-tuned variants of the Llama 2 13B model. We first fine-tuned Llama 2 using Dutch-specific web-crawled data and subsequently refined this model further on multiple synthetic instruction and chat datasets. These datasets as well as the model weights are made available. In addition, we provide a leaderboard to keep track of the performance of (Dutch) models on a number of generation tasks, and we include results of a number of state-of-the-art models, including our own. Finally we provide a critical conclusion on what we believe is needed to push forward Dutch language models and the whole eco-system around the models.
Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
Retrieval-augmented language models (RALMs) represent a substantial advancement in the capabilities of large language models, notably in reducing factual hallucination by leveraging external knowledge sources. However, the reliability of the retrieved information is not always guaranteed. The retrieval of irrelevant data can lead to misguided responses, and potentially causing the model to overlook its inherent knowledge, even when it possesses adequate information to address the query. Moreover, standard RALMs often struggle to assess whether they possess adequate knowledge, both intrinsic and retrieved, to provide an accurate answer. In situations where knowledge is lacking, these systems should ideally respond with "unknown" when the answer is unattainable. In response to these challenges, we introduces Chain-of-Noting (CoN), a novel approach aimed at improving the robustness of RALMs in facing noisy, irrelevant documents and in handling unknown scenarios. The core idea of CoN is to generate sequential reading notes for retrieved documents, enabling a thorough evaluation of their relevance to the given question and integrating this information to formulate the final answer. We employed ChatGPT to create training data for CoN, which was subsequently trained on an LLaMa-2 7B model. Our experiments across four open-domain QA benchmarks show that RALMs equipped with CoN significantly outperform standard RALMs. Notably, CoN achieves an average improvement of +7.9 in EM score given entirely noisy retrieved documents and +10.5 in rejection rates for real-time questions that fall outside the pre-training knowledge scope.
Dynamic data sampler for cross-language transfer learning in large language models
Large Language Models (LLMs) have gained significant attention in the field of natural language processing (NLP) due to their wide range of applications. However, training LLMs for languages other than English poses significant challenges, due to the difficulty in acquiring large-scale corpus and the requisite computing resources. In this paper, we propose ChatFlow, a cross-language transfer-based LLM, to address these challenges and train large Chinese language models in a cost-effective manner. We employ a mix of Chinese, English, and parallel corpus to continuously train the LLaMA2 model, aiming to align cross-language representations and facilitate the knowledge transfer specifically to the Chinese language model. In addition, we use a dynamic data sampler to progressively transition the model from unsupervised pre-training to supervised fine-tuning. Experimental results demonstrate that our approach accelerates model convergence and achieves superior performance. We evaluate ChatFlow on popular Chinese and English benchmarks, the results indicate that it outperforms other Chinese models post-trained on LLaMA-2-7B.
Large Legal Fictions: Profiling Legal Hallucinations in Large Language Models
Large language models (LLMs) have the potential to transform the practice of law, but this potential is threatened by the presence of legal hallucinations -- responses from these models that are not consistent with legal facts. We investigate the extent of these hallucinations using an original suite of legal queries, comparing LLMs' responses to structured legal metadata and examining their consistency. Our work makes four key contributions: (1) We develop a typology of legal hallucinations, providing a conceptual framework for future research in this area. (2) We find that legal hallucinations are alarmingly prevalent, occurring between 69% of the time with ChatGPT 3.5 and 88% with Llama 2, when these models are asked specific, verifiable questions about random federal court cases. (3) We illustrate that LLMs often fail to correct a user's incorrect legal assumptions in a contra-factual question setup. (4) We provide evidence that LLMs cannot always predict, or do not always know, when they are producing legal hallucinations. Taken together, these findings caution against the rapid and unsupervised integration of popular LLMs into legal tasks. Even experienced lawyers must remain wary of legal hallucinations, and the risks are highest for those who stand to benefit from LLMs the most -- pro se litigants or those without access to traditional legal resources.
Orca-Math: Unlocking the potential of SLMs in Grade School Math
Mathematical word problem-solving has long been recognized as a complex task for small language models (SLMs). A recent study hypothesized that the smallest model size, needed to achieve over 80% accuracy on the GSM8K benchmark, is 34 billion parameters. To reach this level of performance with smaller models, researcher often train SLMs to generate Python code or use tools to help avoid calculation errors. Additionally, they employ ensembling, where outputs of up to 100 model runs are combined to arrive at a more accurate result. Result selection is done using consensus, majority vote or a separate a verifier model used in conjunction with the SLM. Ensembling provides a substantial boost in accuracy but at a significant cost increase with multiple calls to the model (e.g., Phi-GSM uses top-48 to boost the performance from 68.2 to 81.5). In this work, we present Orca-Math, a 7-billion-parameter SLM based on the Mistral-7B, which achieves 86.81% on GSM8k without the need for multiple model calls or the use of verifiers, code execution or any other external tools. Our approach has the following key elements: (1) A high quality synthetic dataset of 200K math problems created using a multi-agent setup where agents collaborate to create the data, (2) An iterative learning techniques that enables the SLM to practice solving problems, receive feedback on its solutions and learn from preference pairs incorporating the SLM solutions and the feedback. When trained with Supervised Fine-Tuning alone, Orca-Math achieves 81.50% on GSM8k pass@1 metric. With iterative preference learning, Orca-Math achieves 86.81% pass@1. Orca-Math surpasses the performance of significantly larger models such as LLAMA-2-70B, WizardMath-70B, Gemini-Pro, ChatGPT-3.5. It also significantly outperforms other smaller models while using much smaller data (hundreds of thousands vs. millions of problems).
SeaLLMs -- Large Language Models for Southeast Asia
Despite the remarkable achievements of large language models (LLMs) in various tasks, there remains a linguistic bias that favors high-resource languages, such as English, often at the expense of low-resource and regional languages. To address this imbalance, we introduce SeaLLMs, an innovative series of language models that specifically focuses on Southeast Asian (SEA) languages. SeaLLMs are built upon the Llama-2 model and further advanced through continued pre-training with an extended vocabulary, specialized instruction and alignment tuning to better capture the intricacies of regional languages. This allows them to respect and reflect local cultural norms, customs, stylistic preferences, and legal considerations. Our comprehensive evaluation demonstrates that SeaLLM-13b models exhibit superior performance across a wide spectrum of linguistic tasks and assistant-style instruction-following capabilities relative to comparable open-source models. Moreover, they outperform ChatGPT-3.5 in non-Latin languages, such as Thai, Khmer, Lao, and Burmese, by large margins while remaining lightweight and cost-effective to operate.
GPTFUZZER: Red Teaming Large Language Models with Auto-Generated Jailbreak Prompts
Large language models (LLMs) have recently experienced tremendous popularity and are widely used from casual conversations to AI-driven programming. However, despite their considerable success, LLMs are not entirely reliable and can give detailed guidance on how to conduct harmful or illegal activities. While safety measures can reduce the risk of such outputs, adversarial jailbreak attacks can still exploit LLMs to produce harmful content. These jailbreak templates are typically manually crafted, making large-scale testing challenging. In this paper, we introduce GPTFuzz, a novel black-box jailbreak fuzzing framework inspired by the AFL fuzzing framework. Instead of manual engineering, GPTFuzz automates the generation of jailbreak templates for red-teaming LLMs. At its core, GPTFuzz starts with human-written templates as initial seeds, then mutates them to produce new templates. We detail three key components of GPTFuzz: a seed selection strategy for balancing efficiency and variability, mutate operators for creating semantically equivalent or similar sentences, and a judgment model to assess the success of a jailbreak attack. We evaluate GPTFuzz against various commercial and open-source LLMs, including ChatGPT, LLaMa-2, and Vicuna, under diverse attack scenarios. Our results indicate that GPTFuzz consistently produces jailbreak templates with a high success rate, surpassing human-crafted templates. Remarkably, GPTFuzz achieves over 90% attack success rates against ChatGPT and Llama-2 models, even with suboptimal initial seed templates. We anticipate that GPTFuzz will be instrumental for researchers and practitioners in examining LLM robustness and will encourage further exploration into enhancing LLM safety.
Investigating Answerability of LLMs for Long-Form Question Answering
As we embark on a new era of LLMs, it becomes increasingly crucial to understand their capabilities, limitations, and differences. Toward making further progress in this direction, we strive to build a deeper understanding of the gaps between massive LLMs (e.g., ChatGPT) and smaller yet effective open-source LLMs and their distilled counterparts. To this end, we specifically focus on long-form question answering (LFQA) because it has several practical and impactful applications (e.g., troubleshooting, customer service, etc.) yet is still understudied and challenging for LLMs. We propose a question-generation method from abstractive summaries and show that generating follow-up questions from summaries of long documents can create a challenging setting for LLMs to reason and infer from long contexts. Our experimental results confirm that: (1) our proposed method of generating questions from abstractive summaries pose a challenging setup for LLMs and shows performance gaps between LLMs like ChatGPT and open-source LLMs (Alpaca, Llama) (2) open-source LLMs exhibit decreased reliance on context for generated questions from the original document, but their generation capabilities drop significantly on generated questions from summaries -- especially for longer contexts (>1024 tokens)
GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models
The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
Few-Shot Detection of Machine-Generated Text using Style Representations
The advent of instruction-tuned language models that convincingly mimic human writing poses a significant risk of abuse. However, such abuse may be counteracted with the ability to detect whether a piece of text was composed by a language model rather than a human author. Some previous approaches to this problem have relied on supervised methods by training on corpora of confirmed human- and machine- written documents. Unfortunately, model under-specification poses an unavoidable challenge for neural network-based detectors, making them brittle in the face of data shifts, such as the release of newer language models producing still more fluent text than the models used to train the detectors. Other approaches require access to the models that may have generated a document in question, which is often impractical. In light of these challenges, we pursue a fundamentally different approach not relying on samples from language models of concern at training time. Instead, we propose to leverage representations of writing style estimated from human-authored text. Indeed, we find that features effective at distinguishing among human authors are also effective at distinguishing human from machine authors, including state-of-the-art large language models like Llama-2, ChatGPT, and GPT-4. Furthermore, given a handful of examples composed by each of several specific language models of interest, our approach affords the ability to predict which model generated a given document. The code and data to reproduce our experiments are available at https://github.com/LLNL/LUAR/tree/main/fewshot_iclr2024.
Large Language Models Understand and Can be Enhanced by Emotional Stimuli
Emotional intelligence significantly impacts our daily behaviors and interactions. Although Large Language Models (LLMs) are increasingly viewed as a stride toward artificial general intelligence, exhibiting impressive performance in numerous tasks, it is still uncertain if LLMs can genuinely grasp psychological emotional stimuli. Understanding and responding to emotional cues gives humans a distinct advantage in problem-solving. In this paper, we take the first step towards exploring the ability of LLMs to understand emotional stimuli. To this end, we first conduct automatic experiments on 45 tasks using various LLMs, including Flan-T5-Large, Vicuna, Llama 2, BLOOM, ChatGPT, and GPT-4. Our tasks span deterministic and generative applications that represent comprehensive evaluation scenarios. Our automatic experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts (which we call "EmotionPrompt" that combines the original prompt with emotional stimuli), e.g., 8.00% relative performance improvement in Instruction Induction and 115% in BIG-Bench. In addition to those deterministic tasks that can be automatically evaluated using existing metrics, we conducted a human study with 106 participants to assess the quality of generative tasks using both vanilla and emotional prompts. Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks (10.9% average improvement in terms of performance, truthfulness, and responsibility metrics). We provide an in-depth discussion regarding why EmotionPrompt works for LLMs and the factors that may influence its performance. We posit that EmotionPrompt heralds a novel avenue for exploring interdisciplinary knowledge for human-LLMs interaction.
NegativePrompt: Leveraging Psychology for Large Language Models Enhancement via Negative Emotional Stimuli
Large Language Models (LLMs) have become integral to a wide spectrum of applications, ranging from traditional computing tasks to advanced artificial intelligence (AI) applications. This widespread adoption has spurred extensive research into LLMs across various disciplines, including the social sciences. Notably, studies have revealed that LLMs possess emotional intelligence, which can be further developed through positive emotional stimuli. This discovery raises an intriguing question: can negative emotions similarly influence LLMs, potentially enhancing their performance? In response to this question, we introduce NegativePrompt, a novel approach underpinned by psychological principles, involving ten specifically designed negative emotional stimuli. We embark on rigorous experimental evaluations of five LLMs including Flan-T5-Large, Vicuna, Llama 2, ChatGPT, and GPT-4, across a set of 45 tasks. The results are revealing: NegativePrompt markedly enhances the performance of LLMs, evidenced by relative improvements of 12.89% in Instruction Induction tasks and 46.25% in BIG-Bench tasks. Moreover, we conduct attention visualization experiments to decipher the underlying mechanisms of NegativePrompt's influence. Our research contributes significantly to the understanding of LLMs and emotion interaction, demonstrating the practical efficacy of NegativePrompt as an emotion-driven method and offering novel insights for the enhancement of LLMs in real-world applications. The code is available at https://github.com/wangxu0820/NegativePrompt.
Paramanu: A Family of Novel Efficient Indic Generative Foundation Language Models
We present Gyan AI Paramanu ("atom"), a family of novel language models for Indian languages. It is a collection of auto-regressive monolingual, bilingual, and multilingual Indic language models pretrained from scratch on a single GPU for 10 Indian languages (Assamese, Bangla, Hindi, Konkani, Maithili, Marathi, Odia, Sanskrit, Tamil, Telugu) across 5 scripts (Bangla, Devanagari, Odia, Tamil, Telugu) of varying sizes ranging from 13.29M to 367.5M.The models are pretrained with a context size of 1024 on a single GPU. The models are very efficient, small, fast, and powerful. We have also developed an efficient most advanced Indic tokenizer that can even tokenize unseen languages. In order to avoid the "curse of multi-linguality" in our multilingual mParamanu model, we pretrained on comparable corpora by typological grouping using the same script. We performed human evaluation of our pretrained models for open end text generation on grammar, coherence, creativity, and factuality metrics for Bangla, Hindi, and Sanskrit. Our Bangla, Hindi, and Sanskrit models outperformed GPT-3.5-Turbo (ChatGPT), Bloom 7B, LLaMa-2 7B, OPT 6.7B, GPT-J 6B, GPTNeo 1.3B, GPT2-XL large language models (LLMs) by a large margin despite being smaller in size by 66 to 20 times compared to standard 7B LLMs. To run inference on our pretrained models, CPU is enough, and GPU is not needed. We also instruction-tuned our pretrained Bangla, Hindi, Marathi, Tamil, and Telugu models on 23k instructions in respective languages. Our pretrained and instruction-tuned models which are first of its kind, most powerful efficient small generative language models ever developed for Indic languages, and the various results lead to the conclusion that high quality generative language models are possible without high amount of compute power and humongous number of parameters. We plan to release our models at https://www.bharatgpts.com.
LLaMA-Omni2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis
Real-time, intelligent, and natural speech interaction is an essential part of the next-generation human-computer interaction. Recent advancements have showcased the potential of building intelligent spoken chatbots based on large language models (LLMs). In this paper, we introduce LLaMA-Omni 2, a series of speech language models (SpeechLMs) ranging from 0.5B to 14B parameters, capable of achieving high-quality real-time speech interaction. LLaMA-Omni 2 is built upon the Qwen2.5 series models, integrating a speech encoder and an autoregressive streaming speech decoder. Despite being trained on only 200K multi-turn speech dialogue samples, LLaMA-Omni 2 demonstrates strong performance on several spoken question answering and speech instruction following benchmarks, surpassing previous state-of-the-art SpeechLMs like GLM-4-Voice, which was trained on millions of hours of speech data.
Why Does the Effective Context Length of LLMs Fall Short?
Advancements in distributed training and efficient attention mechanisms have significantly expanded the context window sizes of large language models (LLMs). However, recent work reveals that the effective context lengths of open-source LLMs often fall short, typically not exceeding half of their training lengths. In this work, we attribute this limitation to the left-skewed frequency distribution of relative positions formed in LLMs pretraining and post-training stages, which impedes their ability to effectively gather distant information. To address this challenge, we introduce ShifTed Rotray position embeddING (STRING). STRING shifts well-trained positions to overwrite the original ineffective positions during inference, enhancing performance within their existing training lengths. Experimental results show that without additional training, STRING dramatically improves the performance of the latest large-scale models, such as Llama3.1 70B and Qwen2 72B, by over 10 points on popular long-context benchmarks RULER and InfiniteBench, establishing new state-of-the-art results for open-source LLMs. Compared to commercial models, Llama 3.1 70B with \method even achieves better performance than GPT-4-128K and clearly surpasses Claude 2 and Kimi-chat.
RLHF Workflow: From Reward Modeling to Online RLHF
We present the workflow of Online Iterative Reinforcement Learning from Human Feedback (RLHF) in this technical report, which is widely reported to outperform its offline counterpart by a large margin in the recent large language model (LLM) literature. However, existing open-source RLHF projects are still largely confined to the offline learning setting. In this technical report, we aim to fill in this gap and provide a detailed recipe that is easy to reproduce for online iterative RLHF. In particular, since online human feedback is usually infeasible for open-source communities with limited resources, we start by constructing preference models using a diverse set of open-source datasets and use the constructed proxy preference model to approximate human feedback. Then, we discuss the theoretical insights and algorithmic principles behind online iterative RLHF, followed by a detailed practical implementation. Our trained LLM, SFR-Iterative-DPO-LLaMA-3-8B-R, achieves impressive performance on LLM chatbot benchmarks, including AlpacaEval-2, Arena-Hard, and MT-Bench, as well as other academic benchmarks such as HumanEval and TruthfulQA. We have shown that supervised fine-tuning (SFT) and iterative RLHF can obtain state-of-the-art performance with fully open-source datasets. Further, we have made our models, curated datasets, and comprehensive step-by-step code guidebooks publicly available. Please refer to https://github.com/RLHFlow/RLHF-Reward-Modeling and https://github.com/RLHFlow/Online-RLHF for more detailed information.
ChatQA 2: Bridging the Gap to Proprietary LLMs in Long Context and RAG Capabilities
In this work, we introduce ChatQA 2, a Llama3-based model designed to bridge the gap between open-access LLMs and leading proprietary models (e.g., GPT-4-Turbo) in long-context understanding and retrieval-augmented generation (RAG) capabilities. These two capabilities are essential for LLMs to process large volumes of information that cannot fit into a single prompt and are complementary to each other, depending on the downstream tasks and computational budgets. We present a detailed continued training recipe to extend the context window of Llama3-70B-base from 8K to 128K tokens, along with a three-stage instruction tuning process to enhance the model's instruction-following, RAG performance, and long-context understanding capabilities. Our results demonstrate that the Llama3-ChatQA-2-70B model achieves accuracy comparable to GPT-4-Turbo-2024-0409 on many long-context understanding tasks and surpasses it on the RAG benchmark. Interestingly, we find that the state-of-the-art long-context retriever can alleviate the top-k context fragmentation issue in RAG, further improving RAG-based results for long-context understanding tasks. We also provide extensive comparisons between RAG and long-context solutions using state-of-the-art long-context LLMs.
Red Teaming GPT-4V: Are GPT-4V Safe Against Uni/Multi-Modal Jailbreak Attacks?
Various jailbreak attacks have been proposed to red-team Large Language Models (LLMs) and revealed the vulnerable safeguards of LLMs. Besides, some methods are not limited to the textual modality and extend the jailbreak attack to Multimodal Large Language Models (MLLMs) by perturbing the visual input. However, the absence of a universal evaluation benchmark complicates the performance reproduction and fair comparison. Besides, there is a lack of comprehensive evaluation of closed-source state-of-the-art (SOTA) models, especially MLLMs, such as GPT-4V. To address these issues, this work first builds a comprehensive jailbreak evaluation dataset with 1445 harmful questions covering 11 different safety policies. Based on this dataset, extensive red-teaming experiments are conducted on 11 different LLMs and MLLMs, including both SOTA proprietary models and open-source models. We then conduct a deep analysis of the evaluated results and find that (1) GPT4 and GPT-4V demonstrate better robustness against jailbreak attacks compared to open-source LLMs and MLLMs. (2) Llama2 and Qwen-VL-Chat are more robust compared to other open-source models. (3) The transferability of visual jailbreak methods is relatively limited compared to textual jailbreak methods. The dataset and code can be found here https://anonymous.4open.science/r/red_teaming_gpt4-C1CE/README.md .
An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models
In this study, we identify the inefficient attention phenomena in Large Vision-Language Models (LVLMs), notably within prominent models like LLaVA-1.5, QwenVL-Chat and Video-LLaVA. We find out that the attention computation over visual tokens is of extreme inefficiency in the deep layers of popular LVLMs, suggesting a need for a sparser approach compared to textual data handling. To this end, we introduce FastV, a versatile plug-and-play method designed to optimize computational efficiency by learning adaptive attention patterns in early layers and pruning visual tokens in subsequent ones. Our evaluations demonstrate FastV's ability to dramatically reduce computational costs (e.g., a 45 reduction in FLOPs for LLaVA-1.5-13B) without sacrificing performance in a wide range of image and video understanding tasks. The computational efficiency and performance trade-off of FastV are highly customizable and pareto-efficient. It can compress the FLOPs of a 13B-parameter model to achieve a lower budget than that of a 7B-parameter model, while still maintaining superior performance. We believe FastV has practical values for deployment of LVLMs in edge devices and commercial models. Code is released at https://github.com/pkunlp-icler/FastV.
Maya: An Instruction Finetuned Multilingual Multimodal Model
The rapid development of large Vision-Language Models (VLMs) has led to impressive results on academic benchmarks, primarily in widely spoken languages. However, significant gaps remain in the ability of current VLMs to handle low-resource languages and varied cultural contexts, largely due to a lack of high-quality, diverse, and safety-vetted data. Consequently, these models often struggle to understand low-resource languages and cultural nuances in a manner free from toxicity. To address these limitations, we introduce Maya, an open-source Multimodal Multilingual model. Our contributions are threefold: 1) a multilingual image-text pretraining dataset in eight languages, based on the LLaVA pretraining dataset; 2) a thorough analysis of toxicity within the LLaVA dataset, followed by the creation of a novel toxicity-free version across eight languages; and 3) a multilingual image-text model supporting these languages, enhancing cultural and linguistic comprehension in vision-language tasks. Code available at https://github.com/nahidalam/maya.
Behind Maya: Building a Multilingual Vision Language Model
In recent times, we have seen a rapid development of large Vision-Language Models (VLMs). They have shown impressive results on academic benchmarks, primarily in widely spoken languages but lack performance on low-resource languages and varied cultural contexts. To address these limitations, we introduce Maya, an open-source Multilingual VLM. Our contributions are: 1) a multilingual image-text pretraining dataset in eight languages, based on the LLaVA pretraining dataset; and 2) a multilingual image-text model supporting these languages, enhancing cultural and linguistic comprehension in vision-language tasks. Code available at https://github.com/nahidalam/maya.
Course-Correction: Safety Alignment Using Synthetic Preferences
The risk of harmful content generated by large language models (LLMs) becomes a critical concern. This paper presents a systematic study on assessing and improving LLMs' capability to perform the task of course-correction, \ie, the model can steer away from generating harmful content autonomously. To start with, we introduce the C^2-Eval benchmark for quantitative assessment and analyze 10 popular LLMs, revealing varying proficiency of current safety-tuned LLMs in course-correction. To improve, we propose fine-tuning LLMs with preference learning, emphasizing the preference for timely course-correction. Using an automated pipeline, we create C^2-Syn, a synthetic dataset with 750K pairwise preferences, to teach models the concept of timely course-correction through data-driven preference learning. Experiments on 2 LLMs, Llama2-Chat 7B and Qwen2 7B, show that our method effectively enhances course-correction skills without affecting general performance. Additionally, it effectively improves LLMs' safety, particularly in resisting jailbreak attacks.
TRACE: A Comprehensive Benchmark for Continual Learning in Large Language Models
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety. However, the continual learning aspect of these aligned LLMs has been largely overlooked. Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs, owing to both their simplicity and the models' potential exposure during instruction tuning. In this paper, we introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs. TRACE consists of 8 distinct datasets spanning challenging tasks including domain-specific tasks, multilingual capabilities, code generation, and mathematical reasoning. All datasets are standardized into a unified format, allowing for effortless automatic evaluation of LLMs. Our experiments show that after training on TRACE, aligned LLMs exhibit significant declines in both general ability and instruction-following capabilities. For example, the accuracy of llama2-chat 13B on gsm8k dataset declined precipitously from 28.8\% to 2\% after training on our datasets. This highlights the challenge of finding a suitable tradeoff between achieving performance on specific tasks while preserving the original prowess of LLMs. Empirical findings suggest that tasks inherently equipped with reasoning paths contribute significantly to preserving certain capabilities of LLMs against potential declines. Motivated by this, we introduce the Reasoning-augmented Continual Learning (RCL) approach. RCL integrates task-specific cues with meta-rationales, effectively reducing catastrophic forgetting in LLMs while expediting convergence on novel tasks.
UIO-LLMs: Unbiased Incremental Optimization for Long-Context LLMs
Managing long texts is challenging for large language models (LLMs) due to limited context window sizes. This study introduces UIO-LLMs, an unbiased incremental optimization approach for memory-enhanced transformers under long-context settings. We initially conceptualize the process as a streamlined encoder-decoder framework where the weights-shared encoder and decoder respectively encapsulate a context segment into memories and leverage these memories to predict outputs of the subsequent segment. Subsequently, by treating our memory-enhanced transformers as fully-connected recurrent neural networks (RNNs), we refine the training process using the Truncated Backpropagation Through Time (TBPTT) algorithm, which incorporates innovative incremental optimization techniques. These techniques not only diminish time complexity but also address the bias in gradient computation through an unbiased optimization process. UIO-LLMs successfully handle long context, such as extending the context window of Llama2-7b-chat from 4K to 100K tokens with minimal 2% additional parameters, while keeping the inference cost nearly linear as context length increases.
Chat Vector: A Simple Approach to Equip LLMs With New Language Chat Capabilities
With the advancements in conversational AI, such as ChatGPT, this paper focuses on exploring developing Large Language Models (LLMs) for non-English languages, especially emphasizing alignment with human preferences. We introduce a computationally efficient method, leveraging chat vector, to synergize pre-existing knowledge and behaviors in LLMs, restructuring the conventional training paradigm from continual pre-train -> SFT -> RLHF to continual pre-train + chat vector. Our empirical studies, primarily focused on Traditional Chinese, employ LLaMA2 as the base model and acquire the chat vector by subtracting the pre-trained weights, LLaMA2, from the weights of LLaMA2-chat. Evaluating from three distinct facets, which are toxicity, ability of instruction following, and multi-turn dialogue demonstrates the chat vector's superior efficacy in chatting. To confirm the adaptability of our approach, we extend our experiments to include models pre-trained in both Korean and Simplified Chinese, illustrating the versatility of our methodology. Overall, we present a significant solution in aligning LLMs with human preferences efficiently across various languages, accomplished by the chat vector.
Measuring and Controlling Instruction (In)Stability in Language Model Dialogs
System-prompting is a standard tool for customizing language-model chatbots, enabling them to follow a specific instruction. An implicit assumption in the use of system prompts is that they will be stable, so the chatbot will continue to generate text according to the stipulated instructions for the duration of a conversation. We propose a quantitative benchmark to test this assumption, evaluating instruction stability via self-chats between two instructed chatbots. Testing popular models like LLaMA2-chat-70B and GPT-3.5, we reveal a significant instruction drift within eight rounds of conversations. An empirical and theoretical analysis of this phenomenon suggests the transformer attention mechanism plays a role, due to attention decay over long exchanges. To combat attention decay and instruction drift, we propose a lightweight method called split-softmax, which compares favorably against two strong baselines.
Reasons to Reject? Aligning Language Models with Judgments
As humans, we consistently engage in interactions with our peers and receive feedback in the form of natural language. This language feedback allows us to reflect on our actions, maintain appropriate behavior, and rectify our errors. The question arises naturally: can we use language feedback to align large language models (LLMs)? In contrast to previous research that aligns LLMs with reward or preference data, we present the first systematic exploration of alignment through the lens of language feedback (i.e., judgment). We commence with an in-depth investigation of potential methods that can be adapted for aligning LLMs with judgments, revealing that these methods are unable to fully capitalize on the judgments. To facilitate more effective utilization of judgments, we propose a novel framework, Contrastive Unlikelihood Training (CUT), that allows for fine-grained inappropriate content detection and correction based on judgments. Our offline alignment results show that, with merely 1317 off-the-shelf judgment data, CUT (LLaMA2-13b) can beat the 175B DaVinci003 and surpass the best baseline by 52.34 points on AlpacaEval. The online alignment results demonstrate that CUT can align LLMs (LLaMA2-chat-13b) in an iterative fashion using model-specific judgment data, with a steady performance improvement from 81.09 to 91.36 points on AlpacaEval. Our analysis further suggests that judgments exhibit greater potential than rewards for LLM alignment and warrant future research.
Aligning Large Language Models from Self-Reference AI Feedback with one General Principle
In aligning large language models (LLMs), utilizing feedback from existing advanced AI rather than humans is an important method to scale supervisory signals. However, it is highly challenging for AI to understand human intentions and societal values, and provide accurate preference feedback based on these. Current AI feedback methods rely on powerful LLMs, carefully designed specific principles to describe human intentions, and are easily influenced by position bias. To address these issues, we propose a self-reference-based AI feedback framework that enables a 13B Llama2-Chat to provide high-quality feedback under simple and general principles such as ``best for humanity``. Specifically, we allow the AI to first respond to the user's instructions, then generate criticism of other answers based on its own response as a reference, and finally determine which answer better fits human preferences according to the criticism. Additionally, we use a self-consistency method to further reduce the impact of position bias, and employ semantic perplexity to calculate the preference strength differences between different answers. Experimental results show that our method enables 13B and 70B Llama2-Chat annotators to provide high-quality preference feedback, and the policy models trained based on these preference data achieve significant advantages in benchmark datasets through reinforcement learning.
Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
Despite their remarkable capabilities, large language models (LLMs) often produce responses containing factual inaccuracies due to their sole reliance on the parametric knowledge they encapsulate. Retrieval-Augmented Generation (RAG), an ad hoc approach that augments LMs with retrieval of relevant knowledge, decreases such issues. However, indiscriminately retrieving and incorporating a fixed number of retrieved passages, regardless of whether retrieval is necessary, or passages are relevant, diminishes LM versatility or can lead to unhelpful response generation. We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG) that enhances an LM's quality and factuality through retrieval and self-reflection. Our framework trains a single arbitrary LM that adaptively retrieves passages on-demand, and generates and reflects on retrieved passages and its own generations using special tokens, called reflection tokens. Generating reflection tokens makes the LM controllable during the inference phase, enabling it to tailor its behavior to diverse task requirements. Experiments show that Self-RAG (7B and 13B parameters) significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks. Specifically, Self-RAG outperforms ChatGPT and retrieval-augmented Llama2-chat on Open-domain QA, reasoning and fact verification tasks, and it shows significant gains in improving factuality and citation accuracy for long-form generations relative to these models.
Zephyr: Direct Distillation of LM Alignment
We aim to produce a smaller language model that is aligned to user intent. Previous research has shown that applying distilled supervised fine-tuning (dSFT) on larger models significantly improves task accuracy; however, these models are unaligned, i.e. they do not respond well to natural prompts. To distill this property, we experiment with the use of preference data from AI Feedback (AIF). Starting from a dataset of outputs ranked by a teacher model, we apply distilled direct preference optimization (dDPO) to learn a chat model with significantly improved intent alignment. The approach requires only a few hours of training without any additional sampling during fine-tuning. The final result, Zephyr-7B, sets the state-of-the-art on chat benchmarks for 7B parameter models, and requires no human annotation. In particular, results on MT-Bench show that Zephyr-7B surpasses Llama2-Chat-70B, the best open-access RLHF-based model. Code, models, data, and tutorials for the system are available at https://github.com/huggingface/alignment-handbook.
EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty
Auto-regressive decoding makes the inference of Large Language Models (LLMs) time-consuming. We propose a simple framework, EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency), for lossless acceleration. Unlike traditional speculative sampling methods, EAGLE operates the drafting process auto-regressively at the more regular (second-top-layer) feature level and addresses the sampling uncertainty issues in the next-feature prediction problems by integrating tokens from one time step ahead. The acceleration provided by EAGLE is lossless: it involves no fine-tuning of the target LLM, and the generated text maintains the same distribution as that of vanilla auto-regressive decoding. As of the submission of this paper, EAGLE is the fastest known framework within the speculative sampling family. On MT-bench, EAGLE is 3x faster than vanilla decoding, 2x faster than Lookahead, and 1.6x faster than Medusa. Using gpt-fast, EAGLE attains on average 160 tokens/s with LLaMA2-Chat 13B on a single RTX 3090 GPU, compared to 24 tokens/s of Huggingface's implementations.
LLM Comparative Assessment: Zero-shot NLG Evaluation through Pairwise Comparisons using Large Language Models
Current developments in large language models (LLMs) have enabled impressive zero-shot capabilities across various natural language tasks. An interesting application of these systems is in the automated assessment of natural language generation (NLG), a highly challenging area with great practical benefit. In this paper, we explore two options for exploiting the emergent abilities of LLMs for zero-shot NLG assessment: absolute score prediction, and comparative assessment which uses relative comparisons between pairs of candidates. Though comparative assessment has not been extensively studied in NLG assessment, we note that humans often find it more intuitive to compare two options rather than scoring each one independently. This work examines comparative assessment from multiple perspectives: performance compared to absolute grading; positional biases in the prompt; and efficient ranking in terms of the number of comparisons. We illustrate that LLM comparative assessment is a simple, general and effective approach for NLG assessment. For moderate-sized open-source LLMs, such as FlanT5 and Llama2-chat, comparative assessment is superior to prompt scoring, and in many cases can achieve performance competitive with state-of-the-art methods. Additionally, we demonstrate that LLMs often exhibit strong positional biases when making pairwise comparisons, and we propose debiasing methods that can further improve performance.
Knowledge Compression via Question Generation: Enhancing Multihop Document Retrieval without Fine-tuning
This study presents a question-based knowledge encoding approach that improves retrieval-augmented generation (RAG) systems without requiring fine-tuning or traditional chunking. We encode textual content using generated questions that span the lexical and semantic space, creating targeted retrieval cues combined with a custom syntactic reranking method. In single-hop retrieval over 109 scientific papers, our approach achieves a Recall@3 of 0.84, outperforming traditional chunking methods by 60 percent. We also introduce "paper-cards", concise paper summaries under 300 characters, which enhance BM25 retrieval, increasing MRR@3 from 0.56 to 0.85 on simplified technical queries. For multihop tasks, our reranking method reaches an F1 score of 0.52 with LLaMA2-Chat-7B on the LongBench 2WikiMultihopQA dataset, surpassing chunking and fine-tuned baselines which score 0.328 and 0.412 respectively. This method eliminates fine-tuning requirements, reduces retrieval latency, enables intuitive question-driven knowledge access, and decreases vector storage demands by 80%, positioning it as a scalable and efficient RAG alternative.
Dovetail: A CPU/GPU Heterogeneous Speculative Decoding for LLM inference
Due to the high resource demands of Large Language Models (LLMs), achieving widespread deployment on consumer-grade devices presents significant challenges. Typically, personal or consumer-grade devices, including servers configured prior to the era of large-scale models, generally have relatively weak GPUs and relatively strong CPUs. However, most current methods primarily depend on GPUs for computation. Therefore, we propose Dovetail, an approach that deploys the draft model on the GPU to generate draft tokens while allowing the target model to perform parallel verification on the CPU, thereby improving the utilization of all available hardware resources and occupying less inter-device communication bandwidth. Accordingly, we have redesigned the draft model to better align with heterogeneous hardware characteristics. To this end, we implemented several optimizations: reducing the number of draft tokens to mitigate latency in parallel verification, increasing the depth of the draft model to enhance its predictive capacity, and introducing DGF (Dynamic Gating Fusion) to improve the integration of features and token embeddings. In the HumanEval benchmark, Dovetail achieved an inference speed of 5.86 tokens per second for LLaMA2-Chat-7B using 3GB of VRAM, representing an approximately 2.77x improvement over CPU-only inference. Furthermore, the inference speed was increased to 8 tokens per second when utilizing 7GB of VRAM.
Falcon: Faster and Parallel Inference of Large Language Models through Enhanced Semi-Autoregressive Drafting and Custom-Designed Decoding Tree
Striking an optimal balance between minimal drafting latency and high speculation accuracy to enhance the inference speed of Large Language Models remains a significant challenge in speculative decoding. In this paper, we introduce Falcon, an innovative semi-autoregressive speculative decoding framework fashioned to augment both the drafter's parallelism and output quality. Falcon incorporates the Coupled Sequential Glancing Distillation technique, which fortifies inter-token dependencies within the same block, leading to increased speculation accuracy. We offer a comprehensive theoretical analysis to illuminate the underlying mechanisms. Additionally, we introduce a Custom-Designed Decoding Tree, which permits the drafter to generate multiple tokens in a single forward pass and accommodates multiple forward passes as needed, thereby boosting the number of drafted tokens and significantly improving the overall acceptance rate. Comprehensive evaluations on benchmark datasets such as MT-Bench, HumanEval, and GSM8K demonstrate Falcon's superior acceleration capabilities. The framework achieves a lossless speedup ratio ranging from 2.91x to 3.51x when tested on the Vicuna and LLaMA2-Chat model series. These results outstrip existing speculative decoding methods for LLMs, including Eagle, Medusa, Lookahead, SPS, and PLD, while maintaining a compact drafter architecture equivalent to merely two Transformer layers.
Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning
Large language models (LLMs) have demonstrated remarkable capabilities across various tasks but still face challenges such as hallucinations. One potential reason for hallucinations is the lack of relevant knowledge or context. Thus, a promising solution to mitigate this issue involves instructing LLMs to respond with "I do not know" when a question falls outside their knowledge domain or the provided context. However, in this work, we observed that LLMs struggle to admit their lack of knowledge, primarily due to existing instruction datasets designed to encourage specific answers. To improve large language models' capability to recognize the boundaries of their knowledge, we propose a novel approach called uncertainty-sensitive tuning. This method involves two-stage training designed for uncertainty recognition and prompt-sensitive activation. In the first stage, we guide the LLM to reject unknown questions. In the second stage, we recover the decreased performance in QA tasks by incorporating designed causal instructions. By leveraging this method, we aim to enhance the model's ability to identify areas of uncertainty. The experimental results demonstrate that our proposed uncertainty-sensitive tuning method significantly improves the performance of the Llama2-chat-7B model. Specifically, it achieves a substantial 34.7% improvement in handling questions involving knowledge gaps compared to the original model. Moreover, our approach outperforms GPT-4, exhibiting a 9.4% increase in overall performance. We open-source the model and code on GitHub.
Measuring Social Norms of Large Language Models
We present a new challenge to examine whether large language models understand social norms. In contrast to existing datasets, our dataset requires a fundamental understanding of social norms to solve. Our dataset features the largest set of social norm skills, consisting of 402 skills and 12,383 questions covering a wide set of social norms ranging from opinions and arguments to culture and laws. We design our dataset according to the K-12 curriculum. This enables the direct comparison of the social understanding of large language models to humans, more specifically, elementary students. While prior work generates nearly random accuracy on our benchmark, recent large language models such as GPT3.5-Turbo and LLaMA2-Chat are able to improve the performance significantly, only slightly below human performance. We then propose a multi-agent framework based on large language models to improve the models' ability to understand social norms. This method further improves large language models to be on par with humans. Given the increasing adoption of large language models in real-world applications, our finding is particularly important and presents a unique direction for future improvements.
High-Dimension Human Value Representation in Large Language Models
The widespread application of Large Language Models (LLMs) across various tasks and fields has necessitated the alignment of these models with human values and preferences. Given various approaches of human value alignment, ranging from Reinforcement Learning with Human Feedback (RLHF), to constitutional learning, etc. there is an urgent need to understand the scope and nature of human values injected into these models before their release. There is also a need for model alignment without a costly large scale human annotation effort. We propose UniVaR, a high-dimensional representation of human value distributions in LLMs, orthogonal to model architecture and training data. Trained from the value-relevant output of eight multilingual LLMs and tested on the output from four multilingual LLMs, namely LlaMA2, ChatGPT, JAIS and Yi, we show that UniVaR is a powerful tool to compare the distribution of human values embedded in different LLMs with different langauge sources. Through UniVaR, we explore how different LLMs prioritize various values in different languages and cultures, shedding light on the complex interplay between human values and language modeling.
Large Language Models as Zero-shot Dialogue State Tracker through Function Calling
Large language models (LLMs) are increasingly prevalent in conversational systems due to their advanced understanding and generative capabilities in general contexts. However, their effectiveness in task-oriented dialogues (TOD), which requires not only response generation but also effective dialogue state tracking (DST) within specific tasks and domains, remains less satisfying. In this work, we propose a novel approach FnCTOD for solving DST with LLMs through function calling. This method improves zero-shot DST, allowing adaptation to diverse domains without extensive data collection or model tuning. Our experimental results demonstrate that our approach achieves exceptional performance with both modestly sized open-source and also proprietary LLMs: with in-context prompting it enables various 7B or 13B parameter models to surpass the previous state-of-the-art (SOTA) achieved by ChatGPT, and improves ChatGPT's performance beating the SOTA by 5.6% Avg. JGA. Individual model results for GPT-3.5 and GPT-4 are boosted by 4.8% and 14%, respectively. We also show that by fine-tuning on a small collection of diverse task-oriented dialogues, we can equip modestly sized models, specifically a 13B parameter LLaMA2-Chat model, with function-calling capabilities and DST performance comparable to ChatGPT while maintaining their chat capabilities. We plan to open-source experimental code and model.
GRATH: Gradual Self-Truthifying for Large Language Models
Truthfulness is paramount for large language models (LLMs) as they are increasingly deployed in real-world applications. However, existing LLMs still struggle with generating truthful answers and content, as evidenced by their modest performance on benchmarks like TruthfulQA. To address this issue, we propose GRAdual self-truTHifying (GRATH), a novel post-processing method to enhance truthfulness of LLMs. GRATH utilizes out-of-domain question prompts to generate corresponding answers and adaptively optimizes the model via direct preference optimization (DPO). Note that during this process, GRATH learns truthfulness in a self-supervised manner without requiring annotated answers. In particular, GRATH first generates pairwise truthfulness training data by prompting the LLM itself, with each pair containing a question and its correct and incorrect answers. The model is then fine-tuned using DPO to learn from the difference between answer pairs. Subsequently, GRATH iteratively refines the truthfulness data and optimizes the model, leading to a gradual improvement in model truthfulness. Empirically, we evaluate GRATH using different 7B-LLMs and compare with LLMs with similar or even larger sizes on benchmark datasets. Our results show that GRATH effectively improves LLMs' truthfulness without compromising other core capabilities. Notably, GRATH achieves state-of-the-art performance on TruthfulQA, with MC1 accuracy as 54.71% and MC2 accuracy as 69.10%, which even surpass those on larger-scale models, such as Llama2-Chat-70B, by 23.62% and 24.18%, respectively.
JetMoE: Reaching Llama2 Performance with 0.1M Dollars
Large Language Models (LLMs) have achieved remarkable results, but their increasing resource demand has become a major obstacle to the development of powerful and accessible super-human intelligence. This report introduces JetMoE-8B, a new LLM trained with less than $0.1 million, using 1.25T tokens from carefully mixed open-source corpora and 30,000 H100 GPU hours. Despite its low cost, the JetMoE-8B demonstrates impressive performance, with JetMoE-8B outperforming the Llama2-7B model and JetMoE-8B-Chat surpassing the Llama2-13B-Chat model. These results suggest that LLM training can be much more cost-effective than generally thought. JetMoE-8B is based on an efficient Sparsely-gated Mixture-of-Experts (SMoE) architecture, composed of attention and feedforward experts. Both layers are sparsely activated, allowing JetMoE-8B to have 8B parameters while only activating 2B for each input token, reducing inference computation by about 70% compared to Llama2-7B. Moreover, JetMoE-8B is highly open and academia-friendly, using only public datasets and training code. All training parameters and data mixtures have been detailed in this report to facilitate future efforts in the development of open foundation models. This transparency aims to encourage collaboration and further advancements in the field of accessible and efficient LLMs. The model weights are publicly available at https://github.com/myshell-ai/JetMoE.
Safe Unlearning: A Surprisingly Effective and Generalizable Solution to Defend Against Jailbreak Attacks
LLMs are known to be vulnerable to jailbreak attacks, even after safety alignment. An important observation is that, while different types of jailbreak attacks can generate significantly different queries, they mostly result in similar responses that are rooted in the same harmful knowledge (e.g., detailed steps to make a bomb). Therefore, we conjecture that directly unlearn the harmful knowledge in the LLM can be a more effective way to defend against jailbreak attacks than the mainstream supervised fine-tuning (SFT) based approaches. Our extensive experiments confirmed our insight and suggested surprising generalizability of our unlearning-based approach: using only 20 raw harmful questions without any jailbreak prompt during training, our solution reduced the Attack Success Rate (ASR) in Vicuna-7B on out-of-distribution (OOD) harmful questions wrapped with various complex jailbreak prompts from 82.6\% to 7.7\%. This significantly outperforms Llama2-7B-Chat, which is fine-tuned on about 0.1M safety alignment samples but still has an ASR of 21.9\% even under the help of an additional safety system prompt. Further analysis reveals that the generalization ability of our solution stems from the intrinsic relatedness among harmful responses across harmful questions (e.g., response patterns, shared steps and actions, and similarity among their learned representations in the LLM). Our code is available at https://github.com/thu-coai/SafeUnlearning.
Mark My Words: Analyzing and Evaluating Language Model Watermarks
The capabilities of large language models have grown significantly in recent years and so too have concerns about their misuse. In this context, the ability to distinguish machine-generated text from human-authored content becomes important. Prior works have proposed numerous schemes to watermark text, which would benefit from a systematic evaluation framework. This work focuses on text watermarking techniques - as opposed to image watermarks - and proposes a comprehensive benchmark for them under different tasks as well as practical attacks. We focus on three main metrics: quality, size (e.g. the number of tokens needed to detect a watermark), and tamper-resistance. Current watermarking techniques are good enough to be deployed: Kirchenbauer et al. can watermark Llama2-7B-chat with no perceivable loss in quality in under 100 tokens, and with good tamper-resistance to simple attacks, regardless of temperature. We argue that watermark indistinguishability is too strong a requirement: schemes that slightly modify logit distributions outperform their indistinguishable counterparts with no noticeable loss in generation quality. We publicly release our benchmark.
Attention Score is not All You Need for Token Importance Indicator in KV Cache Reduction: Value Also Matters
Scaling the context size of large language models (LLMs) enables them to perform various new tasks, e.g., book summarization. However, the memory cost of the Key and Value (KV) cache in attention significantly limits the practical applications of LLMs. Recent works have explored token pruning for KV cache reduction in LLMs, relying solely on attention scores as a token importance indicator. However, our investigation into value vector norms revealed a notably non-uniform pattern questioning their reliance only on attention scores. Inspired by this, we propose a new method: Value-Aware Token Pruning (VATP) which uses both attention scores and the ell_{1} norm of value vectors to evaluate token importance. Extensive experiments on LLaMA2-7B-chat and Vicuna-v1.5-7B across 16 LongBench tasks demonstrate VATP's superior performance.
Training LLM-Based Agents with Synthetic Self-Reflected Trajectories and Partial Masking
Autonomous agents, which perceive environments and take actions to achieve goals, have become increasingly feasible with the advancements in large language models (LLMs). However, current powerful agents often depend on sophisticated prompt engineering combined with closed-source LLMs like GPT-4. Although training open-source LLMs using expert trajectories from teacher models has yielded some improvements in agent capabilities, this approach still faces limitations such as performance plateauing and error propagation. To mitigate these challenges, we propose STeP, a novel method for improving LLM-based agent training. We synthesize self-reflected trajectories that include reflections and corrections of error steps, which enhance the effectiveness of LLM agents in learning from teacher models, enabling them to become agents capable of self-reflecting and correcting. We also introduce partial masking strategy that prevents the LLM from internalizing incorrect or suboptimal steps. Experiments demonstrate that our method improves agent performance across three representative tasks: ALFWorld, WebShop, and SciWorld. For the open-source model LLaMA2-7B-Chat, when trained using self-reflected trajectories constructed with Qwen1.5-110B-Chat as the teacher model, it achieves comprehensive improvements with less training data compared to agents trained exclusively on expert trajectories.
Simultaneous Machine Translation with Large Language Models
Large language models (LLM) have demonstrated their abilities to solve various natural language processing tasks through dialogue-based interactions. For instance, research indicates that LLMs can achieve competitive performance in offline machine translation tasks for high-resource languages. However, applying LLMs to simultaneous machine translation (SimulMT) poses many challenges, including issues related to the training-inference mismatch arising from different decoding patterns. In this paper, we explore the feasibility of utilizing LLMs for SimulMT. Building upon conventional approaches, we introduce a simple yet effective mixture policy that enables LLMs to engage in SimulMT without requiring additional training. Furthermore, after Supervised Fine-Tuning (SFT) on a mixture of full and prefix sentences, the model exhibits significant performance improvements. Our experiments, conducted with Llama2-7B-chat on nine language pairs from the MUST-C dataset, demonstrate that LLM can achieve translation quality and latency comparable to dedicated SimulMT models.
Generative Adapter: Contextualizing Language Models in Parameters with A Single Forward Pass
Large language models (LMs) are typically adapted to improve performance on new contexts (\eg text prompts that define new tasks or domains) through fine-tuning or prompting. However, there is an accuracy compute tradeoff -- fine-tuning incurs significant training cost and prompting increases inference overhead. We introduce GenerativeAdapter, an effective and efficient adaptation method that directly maps new contexts to low-rank LM adapters, thereby significantly reducing inference overhead with no need for finetuning. The adapter generator is trained via self-supervised learning, and can be used to adapt a single frozen LM for any new task simply by mapping the associated task or domain context to a new adapter. We apply GenerativeAdapter to two pretrained LMs (Mistral-7B-Instruct and Llama2-7B-Chat) and evaluate the adapted models in three adaption scenarios: knowledge acquisition from documents, learning from demonstrations, and personalization for users. In StreamingQA, our approach is effective in injecting knowledge into the LM's parameters, achieving a 63.5% improvement in F1 score over the model with supervised fine-tuning (from 19.5 to 31.5) for contexts as long as 32K tokens. In the MetaICL in-context learning evaluation, our method achieves an average accuracy of 44.9 across 26 tasks, outperforming the base model. On MSC, our method proves to be highly competitive in memorizing user information from conversations with a 4x reduction in computation and memory costs compared to prompting with full conversation history. Together, these results suggest that GenerativeAdapter should allow for general adaption to a wide range of different contexts.
DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines
The ML community is rapidly exploring techniques for prompting language models (LMs) and for stacking them into pipelines that solve complex tasks. Unfortunately, existing LM pipelines are typically implemented using hard-coded "prompt templates", i.e. lengthy strings discovered via trial and error. Toward a more systematic approach for developing and optimizing LM pipelines, we introduce DSPy, a programming model that abstracts LM pipelines as text transformation graphs, i.e. imperative computational graphs where LMs are invoked through declarative modules. DSPy modules are parameterized, meaning they can learn (by creating and collecting demonstrations) how to apply compositions of prompting, finetuning, augmentation, and reasoning techniques. We design a compiler that will optimize any DSPy pipeline to maximize a given metric. We conduct two case studies, showing that succinct DSPy programs can express and optimize sophisticated LM pipelines that reason about math word problems, tackle multi-hop retrieval, answer complex questions, and control agent loops. Within minutes of compiling, a few lines of DSPy allow GPT-3.5 and llama2-13b-chat to self-bootstrap pipelines that outperform standard few-shot prompting (generally by over 25% and 65%, respectively) and pipelines with expert-created demonstrations (by up to 5-46% and 16-40%, respectively). On top of that, DSPy programs compiled to open and relatively small LMs like 770M-parameter T5 and llama2-13b-chat are competitive with approaches that rely on expert-written prompt chains for proprietary GPT-3.5. DSPy is available at https://github.com/stanfordnlp/dspy
Alleviating Hallucinations of Large Language Models through Induced Hallucinations
Despite their impressive capabilities, large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information, a phenomenon commonly known as ``hallucination''. In this work, we propose a simple Induce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations. We first construct a factually weak LLM by inducing hallucinations from the original LLMs. Then, we penalize these induced hallucinations during decoding to enhance the factuality of the generated content. Concretely, we determine the final next-token predictions by amplifying the predictions from the original model and downplaying the induced untruthful predictions via contrastive decoding. Experimental results on both discrimination-based and generation-based hallucination evaluation benchmarks, such as TruthfulQA and FActScore, demonstrate that our proposed ICD methods can effectively enhance the factuality of LLMs across various model sizes and families. For example, when equipped with ICD, Llama2-7B-Chat and Mistral-7B-Instruct achieve performance comparable to ChatGPT and GPT4 on TruthfulQA, respectively.
OLMoE: Open Mixture-of-Experts Language Models
We introduce OLMoE, a fully open, state-of-the-art language model leveraging sparse Mixture-of-Experts (MoE). OLMoE-1B-7B has 7 billion (B) parameters but uses only 1B per input token. We pretrain it on 5 trillion tokens and further adapt it to create OLMoE-1B-7B-Instruct. Our models outperform all available models with similar active parameters, even surpassing larger ones like Llama2-13B-Chat and DeepSeekMoE-16B. We present various experiments on MoE training, analyze routing in our model showing high specialization, and open-source all aspects of our work: model weights, training data, code, and logs.
Ethical Reasoning and Moral Value Alignment of LLMs Depend on the Language we Prompt them in
Ethical reasoning is a crucial skill for Large Language Models (LLMs). However, moral values are not universal, but rather influenced by language and culture. This paper explores how three prominent LLMs -- GPT-4, ChatGPT, and Llama2-70B-Chat -- perform ethical reasoning in different languages and if their moral judgement depend on the language in which they are prompted. We extend the study of ethical reasoning of LLMs by Rao et al. (2023) to a multilingual setup following their framework of probing LLMs with ethical dilemmas and policies from three branches of normative ethics: deontology, virtue, and consequentialism. We experiment with six languages: English, Spanish, Russian, Chinese, Hindi, and Swahili. We find that GPT-4 is the most consistent and unbiased ethical reasoner across languages, while ChatGPT and Llama2-70B-Chat show significant moral value bias when we move to languages other than English. Interestingly, the nature of this bias significantly vary across languages for all LLMs, including GPT-4.
FACTTRACK: Time-Aware World State Tracking in Story Outlines
While accurately detecting and correcting factual contradictions in language model outputs has become increasingly important as their capabilities improve, doing so is highly challenging. We propose a novel method, FACTTRACK, for tracking atomic facts and addressing factual contradictions. Crucially, FACTTRACK also maintains time-aware validity intervals for each fact, allowing for change over time. At a high level, FACTTRACK consists of a four-step pipeline to update a world state data structure for each new event: (1) decompose the event into directional atomic facts; (2) determine the validity interval of each atomic fact using the world state; (3) detect contradictions with existing facts in the world state; and finally (4) add new facts to the world state and update existing atomic facts. When we apply FACTTRACK to contradiction detection on structured story outlines, we find that FACTTRACK using LLaMA2-7B-Chat substantially outperforms a fair baseline using LLaMA2-7B-Chat, and achieves performance comparable to a GPT4 baseline. Moreover, when using GPT4, FACTTRACK significantly outperforms the GPT4 baseline.
Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks
How to efficiently serve Large Language Models (LLMs) has become a pressing issue because of their huge computational cost in their autoregressive generation process. To mitigate computational costs, LLMs often employ the KV Cache technique to improve the generation speed. While improving the computational efficiency, the storage requirements of the KV cache are substantial, particularly in long-context scenarios, leading to significant memory consumption. Existing KV cache eviction methods often degrade the performance of LLMs in long-context scenarios due to the information loss introduced by eviction. In this paper, we propose a novel KV cache merging approach, called KVMerger, to achieve adaptive KV cache compression for long-context tasks without significant performance degradation under constrained memory budgets. Our approach is inspired by the intriguing observation that key states exhibit high similarity at the token level within a single sequence. To facilitate merging, we develop an effective yet straightforward merging set identification algorithm to identify suitable KV states for merging. Our merging set identification algorithm stimulates the second observation that KV cache sparsity, from similarity perspective, is independent of the dataset and remains persistent at the model level. Subsequently, we propose a Gaussian kernel weighted merging algorithm to selectively merge all states within each merging set. We conduct extensive experiments to demonstrate the effectiveness of KVMerger for long-context tasks under constrained memory budgets, applying it to models including Llama2-7B-chat and Llama2-13B-chat. Using the LongBench and ZeroScroll benchmarks, we compare our method with other KV cache compression techniques, including H2O and CaM, showing that our method achieves superior performance across tasks with both 50% and 35% KV cache budgets.
Hint-before-Solving Prompting: Guiding LLMs to Effectively Utilize Encoded Knowledge
Large Language Models (LLMs) have recently showcased remarkable generalizability in various domains. Despite their extensive knowledge, LLMs still face challenges in efficiently utilizing encoded knowledge to develop accurate and logical reasoning processes. To mitigate this problem, we introduced Hint-before-Solving Prompting (HSP), which guides the model to generate hints (e.g., specific knowledge or key ideas) for solving the problem and then generate solutions containing intermediate reasoning steps. Since HSP is orthogonal to prompting methods (e.g., Chain-of-Thought (CoT)), we applied HSP to CoT, Least-to-Most, Plan-and-Solve, and Standard promptings. The results of extensive experiments on 6 reasoning benchmarks and 4 open-source LLMs demonstrate that HSP can effectively improve the accuracy of reasoning tasks: (1) By applying high-quality hint-enhanced HSP to CoT prompting, Llama2-70B-Chat shows an improvement of 9.7. (2) Beyond exploring training-free LLM capabilities, we built the HSPMATH dataset based on HSP and fine-tuned Llemma-7B, reaching 64.3 accuracy, surpassing GPT-3.5 and WizardMath-13B. We make our code and dataset publicly available at https://github.com/jinlanfu/HSP.
Benchmarking Large Language Models on Communicative Medical Coaching: a Novel System and Dataset
Traditional applications of natural language processing (NLP) in healthcare have predominantly focused on patient-centered services, enhancing patient interactions and care delivery, such as through medical dialogue systems. However, the potential of NLP to benefit inexperienced doctors, particularly in areas such as communicative medical coaching, remains largely unexplored. We introduce ``ChatCoach,'' an integrated human-AI cooperative framework. Within this framework, both a patient agent and a coaching agent collaboratively support medical learners in practicing their medical communication skills during consultations. Unlike traditional dialogue systems, ChatCoach provides a simulated environment where a human doctor can engage in medical dialogue with a patient agent. Simultaneously, a coaching agent provides real-time feedback to the doctor. To construct the ChatCoach system, we developed a dataset and integrated Large Language Models such as ChatGPT and Llama2, aiming to assess their effectiveness in communicative medical coaching tasks. Our comparative analysis demonstrates that instruction-tuned Llama2 significantly outperforms ChatGPT's prompting-based approaches.
Scaling Up Summarization: Leveraging Large Language Models for Long Text Extractive Summarization
In an era where digital text is proliferating at an unprecedented rate, efficient summarization tools are becoming indispensable. While Large Language Models (LLMs) have been successfully applied in various NLP tasks, their role in extractive text summarization remains underexplored. This paper introduces EYEGLAXS (Easy Yet Efficient larGe LAnguage model for eXtractive Summarization), a framework that leverages LLMs, specifically LLAMA2-7B and ChatGLM2-6B, for extractive summarization of lengthy text documents. Instead of abstractive methods, which often suffer from issues like factual inaccuracies and hallucinations, EYEGLAXS focuses on extractive summarization to ensure factual and grammatical integrity. Utilizing state-of-the-art techniques such as Flash Attention and Parameter-Efficient Fine-Tuning (PEFT), EYEGLAXS addresses the computational and resource challenges typically associated with LLMs. The system sets new performance benchmarks on well-known datasets like PubMed and ArXiv. Furthermore, we extend our research through additional analyses that explore the adaptability of LLMs in handling different sequence lengths and their efficiency in training on smaller datasets. These contributions not only set a new standard in the field but also open up promising avenues for future research in extractive text summarization.
Cerbero-7B: A Leap Forward in Language-Specific LLMs Through Enhanced Chat Corpus Generation and Evaluation
This study introduces a novel approach for generating high-quality, language-specific chat corpora using a self-chat mechanism. We combine a generator LLM for creating new samples and an embedder LLM to ensure diversity. A new Masked Language Modelling (MLM) model-based quality assessment metric is proposed for evaluating and filtering the corpora. Utilizing the llama2-70b as the generator and a multilingual sentence transformer as embedder, we generate an Italian chat corpus and refine the Fauno corpus, which is based on translated English ChatGPT self-chat data. The refinement uses structural assertions and Natural Language Processing techniques. Both corpora undergo a comprehensive quality evaluation using the proposed MLM model-based quality metric. The Italian LLM fine-tuned with these corpora demonstrates significantly enhanced language comprehension and question-answering skills. The resultant model, cerbero-7b, establishes a new state-of-the-art for Italian LLMs. This approach marks a substantial advancement in the development of language-specific LLMs, with a special emphasis on augmenting corpora for underrepresented languages like Italian.
ChatMusician: Understanding and Generating Music Intrinsically with LLM
While Large Language Models (LLMs) demonstrate impressive capabilities in text generation, we find that their ability has yet to be generalized to music, humanity's creative language. We introduce ChatMusician, an open-source LLM that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language. ChatMusician can understand and generate music with a pure text tokenizer without any external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score. Our model is capable of composing well-structured, full-length music, conditioned on texts, chords, melodies, motifs, musical forms, etc, surpassing GPT-4 baseline. On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 on zero-shot setting by a noticeable margin. Our work reveals that LLMs can be an excellent compressor for music, but there remains significant territory to be conquered. We release our 4B token music-language corpora MusicPile, the collected MusicTheoryBench, code, model and demo in GitHub.
Parrot: Enhancing Multi-Turn Chat Models by Learning to Ask Questions
Impressive progress has been made on chat models based on Large Language Models (LLMs) recently; however, there is a noticeable lag in multi-turn conversations between open-source chat models (e.g., Alpaca and Vicuna) and the leading chat models (e.g., ChatGPT and GPT-4). Through a series of analyses, we attribute the lag to the lack of enough high-quality multi-turn instruction-tuning data. The available instruction-tuning data for the community are either single-turn conversations or multi-turn ones with certain issues, such as non-human-like instructions, less detailed responses, or rare topic shifts. In this paper, we address these challenges by introducing Parrot, a highly scalable solution designed to automatically generate high-quality instruction-tuning data, which are then used to enhance the effectiveness of chat models in multi-turn conversations. Specifically, we start by training the Parrot-Ask model, which is designed to emulate real users in generating instructions. We then utilize Parrot-Ask to engage in multi-turn conversations with ChatGPT across a diverse range of topics, resulting in a collection of 40K high-quality multi-turn dialogues (Parrot-40K). These data are subsequently employed to train a chat model that we have named Parrot-Chat. We demonstrate that the dialogues gathered from Parrot-Ask markedly outperform existing multi-turn instruction-following datasets in critical metrics, including topic diversity, number of turns, and resemblance to human conversation. With only 40K training examples, Parrot-Chat achieves strong performance against other 13B open-source models across a range of instruction-following benchmarks, and particularly excels in evaluations of multi-turn capabilities. We make all codes, datasets, and two versions of the Parrot-Ask model based on LLaMA2-13B and KuaiYii-13B available at https://github.com/kwai/KwaiYii/Parrot.
L-Eval: Instituting Standardized Evaluation for Long Context Language Models
Recently, there has been growing interest in extending the context length of instruction-following models in order to effectively process single-turn long input (e.g. summarizing a paper) and conversations with more extensive histories. While proprietary models such as GPT-4 and Claude have demonstrated considerable advancements in handling tens of thousands of tokens of context, open-sourced models are still in the early stages of experimentation. It also remains unclear whether developing these long context models can offer substantial gains on practical downstream tasks over retrieval-based methods or models simply trained on chunked contexts. To address this challenge, we propose to institute standardized evaluation for long context language models. Concretely, we develop L-Eval which contains 411 long documents and over 2,000 query-response pairs manually annotated and checked by the authors encompassing areas such as law, finance, school lectures, lengthy conversations, news, long-form novels, and meetings. L-Eval also adopts diverse evaluation methods and instruction styles, enabling a more reliable assessment of Long Context Language Models (LCLMs). Our findings indicate that while open-source models typically lag behind their commercial counterparts, they still exhibit impressive performance. LLaMA2 achieves the best results (win 45\% vs turbo-16k) on open-ended tasks with only 4k context length and ChatGLM2 achieves the best results on closed-ended tasks with 8k input tokens. We release our new evaluation suite, code, and all generation results including predictions from all open-sourced LCLMs, GPT4-32k, Cluade-100k at {https://github.com/OpenLMLab/LEval}.
1bit-Merging: Dynamic Quantized Merging for Large Language Models
Recent advances in large language models have led to specialized models excelling in specific domains, creating a need for efficient model merging techniques. While traditional merging approaches combine parameters into a single static model, they often compromise task-specific performance. However, task-specific routing methods maintain accuracy but introduce substantial storage overhead. We present 1bit-Merging, a novel framework that integrates task-specific routing with 1-bit quantized task vectors to balance performance and storage efficiency. Our approach leverages the observation that different task-specific models store knowledge in distinct layers-chat models primarily in attention layers and math/code models in MLP layers-enabling targeted compression strategies. Through extensive experiments with LLaMA2 and Mistral model families across chat, mathematical reasoning, and code generation tasks, we demonstrate that 1bit-Merging achieves comparable or superior performance to existing methods while significantly reducing storage requirements. Our framework offers a practical solution for combining specialized models while maintaining their individual strengths and addressing the storage challenges of current approaches.
Open-RAG: Enhanced Retrieval-Augmented Reasoning with Open-Source Large Language Models
Retrieval-Augmented Generation (RAG) has been shown to enhance the factual accuracy of Large Language Models (LLMs), but existing methods often suffer from limited reasoning capabilities in effectively using the retrieved evidence, particularly when using open-source LLMs. To mitigate this gap, we introduce a novel framework, Open-RAG, designed to enhance reasoning capabilities in RAG with open-source LLMs. Our framework transforms an arbitrary dense LLM into a parameter-efficient sparse mixture of experts (MoE) model capable of handling complex reasoning tasks, including both single- and multi-hop queries. Open-RAG uniquely trains the model to navigate challenging distractors that appear relevant but are misleading. As a result, Open-RAG leverages latent learning, dynamically selecting relevant experts and integrating external knowledge effectively for more accurate and contextually relevant responses. In addition, we propose a hybrid adaptive retrieval method to determine retrieval necessity and balance the trade-off between performance gain and inference speed. Experimental results show that the Llama2-7B-based Open-RAG outperforms state-of-the-art LLMs and RAG models such as ChatGPT, Self-RAG, and Command R+ in various knowledge-intensive tasks. We open-source our code and models at https://openragmoe.github.io/
Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs
Recently, Large Language Models (LLMs) have demonstrated great potential in robotic applications by providing essential general knowledge for situations that can not be pre-programmed beforehand. Generally speaking, mobile robots need to understand maps to execute tasks such as localization or navigation. In this letter, we address the problem of enabling LLMs to comprehend Area Graph, a text-based map representation, in order to enhance their applicability in the field of mobile robotics. Area Graph is a hierarchical, topometric semantic map representation utilizing polygons to demark areas such as rooms, corridors or buildings. In contrast to commonly used map representations, such as occupancy grid maps or point clouds, osmAG (Area Graph in OpensStreetMap format) is stored in a XML textual format naturally readable by LLMs. Furthermore, conventional robotic algorithms such as localization and path planning are compatible with osmAG, facilitating this map representation comprehensible by LLMs, traditional robotic algorithms and humans. Our experiments show that with a proper map representation, LLMs possess the capability to understand maps and answer queries based on that understanding. Following simple fine-tuning of LLaMA2 models, it surpassed ChatGPT-3.5 in tasks involving topology and hierarchy understanding. Our dataset, dataset generation code, fine-tuned LoRA adapters can be accessed at https://github.com/xiefujing/LLM-osmAG-Comprehension.
Using Natural Language Explanations to Improve Robustness of In-context Learning for Natural Language Inference
Recent studies have demonstrated that large language models (LLMs) excel in diverse tasks through in-context learning (ICL) facilitated by task-specific prompts and examples. However, the existing literature shows that ICL encounters performance deterioration when exposed to adversarial inputs. Enhanced performance has been observed when ICL is augmented with natural language explanations (NLEs) (we refer to it as X-ICL). Thus, this work investigates whether X-ICL can improve the robustness of LLMs on a suite of seven adversarial and challenging natural language inference datasets. Moreover, we introduce a new approach to X-ICL by prompting an LLM (ChatGPT in our case) with few human-generated NLEs to produce further NLEs (we call it ChatGPT few-shot), which we show superior to both ChatGPT zero-shot and human-generated NLEs alone. We evaluate five popular LLMs (GPT3.5-turbo, LLaMa2, Vicuna, Zephyr, Mistral) and show that X-ICL with ChatGPT few-shot yields over 6% improvement over ICL. Furthermore, while prompt selection strategies were previously shown to significantly improve ICL on in-distribution test sets, we show that these strategies do not match the efficacy of the X-ICL paradigm in robustness-oriented evaluations.
Self-Assessment Tests are Unreliable Measures of LLM Personality
As large language models (LLM) evolve in their capabilities, various recent studies have tried to quantify their behavior using psychological tools created to study human behavior. One such example is the measurement of "personality" of LLMs using self-assessment personality tests developed to measure human personality. Yet almost none of these works verify the applicability of these tests on LLMs. In this paper, we analyze the reliability of LLM personality scores obtained from self-assessment personality tests using two simple experiments. We first introduce the property of prompt sensitivity, where three semantically equivalent prompts representing three intuitive ways of administering self-assessment tests on LLMs are used to measure the personality of the same LLM. We find that all three prompts lead to very different personality scores, a difference that is statistically significant for all traits in a large majority of scenarios. We then introduce the property of option-order symmetry for personality measurement of LLMs. Since most of the self-assessment tests exist in the form of multiple choice question (MCQ) questions, we argue that the scores should also be robust to not just the prompt template but also the order in which the options are presented. This test unsurprisingly reveals that the self-assessment test scores are not robust to the order of the options. These simple tests, done on ChatGPT and three Llama2 models of different sizes, show that self-assessment personality tests created for humans are unreliable measures of personality in LLMs.
Tuning Language Models by Proxy
Despite the general capabilities of large pretrained language models, they consistently benefit from further adaptation to better achieve desired behaviors. However, tuning these models has become increasingly resource-intensive, or impossible when model weights are private. We introduce proxy-tuning, a lightweight decoding-time algorithm that operates on top of black-box LMs to achieve the result of directly tuning the model, but by accessing only its prediction over the output vocabulary. Our method instead tunes a smaller LM, then applies the difference between the predictions of the small tuned and untuned LMs to shift the original predictions of the base model in the direction of tuning, while retaining the benefits of larger scale pretraining. In experiments, when we apply proxy-tuning to Llama2-70B using proxies of only 7B size, we can close 88% of the gap between Llama2-70B and its truly-tuned chat version, when evaluated across knowledge, reasoning, and safety benchmarks. Interestingly, when tested on TruthfulQA, proxy-tuned models are actually more truthful than directly tuned models, possibly because decoding-time guidance better retains the model's factual knowledge. We then demonstrate the generality of proxy-tuning by applying it for domain adaptation on code, and task-specific finetuning on question-answering and math problems. Our work demonstrates the promise of using small tuned LMs to efficiently customize large, potentially proprietary LMs through decoding-time guidance.
Never Miss A Beat: An Efficient Recipe for Context Window Extension of Large Language Models with Consistent "Middle" Enhancement
Recently, many methods have been developed to extend the context length of pre-trained large language models (LLMs), but they often require fine-tuning at the target length (gg4K) and struggle to effectively utilize information from the middle part of the context. To address these issues, we propose Continuity-Relativity indExing with gAussian Middle (CREAM), which interpolates positional encodings by manipulating position indices. Apart from being simple, CREAM is training-efficient: it only requires fine-tuning at the pre-trained context window (eg, Llama 2-4K) and can extend LLMs to a much longer target context length (eg, 256K). To ensure that the model focuses more on the information in the middle, we introduce a truncated Gaussian to encourage sampling from the middle part of the context during fine-tuning, thus alleviating the ``Lost-in-the-Middle'' problem faced by long-context LLMs. Experimental results show that CREAM successfully extends LLMs to the target length for both Base and Chat versions of Llama2-7B with ``Never Miss A Beat''. Our code will be publicly available soon.
FactCHD: Benchmarking Fact-Conflicting Hallucination Detection
Despite their impressive generative capabilities, LLMs are hindered by fact-conflicting hallucinations in real-world applications. The accurate identification of hallucinations in texts generated by LLMs, especially in complex inferential scenarios, is a relatively unexplored area. To address this gap, we present FactCHD, a dedicated benchmark designed for the detection of fact-conflicting hallucinations from LLMs. FactCHD features a diverse dataset that spans various factuality patterns, including vanilla, multi-hop, comparison, and set operation. A distinctive element of FactCHD is its integration of fact-based evidence chains, significantly enhancing the depth of evaluating the detectors' explanations. Experiments on different LLMs expose the shortcomings of current approaches in detecting factual errors accurately. Furthermore, we introduce Truth-Triangulator that synthesizes reflective considerations by tool-enhanced ChatGPT and LoRA-tuning based on Llama2, aiming to yield more credible detection through the amalgamation of predictive results and evidence. The benchmark dataset is available at https://github.com/zjunlp/FactCHD.
BTGenBot: Behavior Tree Generation for Robotic Tasks with Lightweight LLMs
This paper presents a novel approach to generating behavior trees for robots using lightweight large language models (LLMs) with a maximum of 7 billion parameters. The study demonstrates that it is possible to achieve satisfying results with compact LLMs when fine-tuned on a specific dataset. The key contributions of this research include the creation of a fine-tuning dataset based on existing behavior trees using GPT-3.5 and a comprehensive comparison of multiple LLMs (namely llama2, llama-chat, and code-llama) across nine distinct tasks. To be thorough, we evaluated the generated behavior trees using static syntactical analysis, a validation system, a simulated environment, and a real robot. Furthermore, this work opens the possibility of deploying such solutions directly on the robot, enhancing its practical applicability. Findings from this study demonstrate the potential of LLMs with a limited number of parameters in generating effective and efficient robot behaviors.
Me LLaMA: Foundation Large Language Models for Medical Applications
Recent large language models (LLMs) such as ChatGPT and LLaMA have shown great promise in many AI applications. However, their performance on medical tasks is suboptimal and can be improved by training on extensive domain-specific datasets. This study introduces Me LLaMA, a medical LLM family that includes foundation models - Me LLaMA 13/70B, along with their chat-enhanced versions - Me LLaMA 13/70B-chat, developed through continual pre-training and instruction tuning of LLaMA2 using large medical datasets. Our domain-specific data suite for training and evaluation includes a large-scale, continual pre-training dataset with 129B tokens, an instruction tuning dataset with 214k samples, and a new medical evaluation benchmark (MIBE) across six tasks with 12 datasets. Our extensive evaluation using the MIBE shows that Me LLaMA models achieve overall better performance than existing open-source medical LLMs in zero-shot, few-shot and supervised learning abilities. Their zero-shot performance is comparable with ChatGPT across 7 out of 8 datasets, with a slight variance of within 3%, and yet falls short when compared to GPT-4. In addition, we investigated the catastrophic forgetting problem, and our results show that Me LLaMA models outperform other open-source medical LLMs in mitigating this issue. Me LLaMA is one of the largest open-source medical foundation LLMs that use both biomedical and clinical data. It exhibits superior performance across both general and medical tasks compared to other open-source medical LLMs, rendering it an attractive choice for medical AI applications. We release our models, datasets, and evaluation scripts at: https://github.com/BIDS-Xu-Lab/Me-LLaMA.
Evaluating Quantized Large Language Models
Post-training quantization (PTQ) has emerged as a promising technique to reduce the cost of large language models (LLMs). Specifically, PTQ can effectively mitigate memory consumption and reduce computational overhead in LLMs. To meet the requirements of both high efficiency and performance across diverse scenarios, a comprehensive evaluation of quantized LLMs is essential to guide the selection of quantization methods. This paper presents a thorough evaluation of these factors by evaluating the effect of PTQ on Weight, Activation, and KV Cache on 11 model families, including OPT, LLaMA2, Falcon, Bloomz, Mistral, ChatGLM, Vicuna, LongChat, StableLM, Gemma, and Mamba, with parameters ranging from 125M to 180B. The evaluation encompasses five types of tasks: basic NLP, emergent ability, trustworthiness, dialogue, and long-context tasks. Moreover, we also evaluate the state-of-the-art (SOTA) quantization methods to demonstrate their applicability. Based on the extensive experiments, we systematically summarize the effect of quantization, provide recommendations to apply quantization techniques, and point out future directions.