- Adam assisted Fully informed Particle Swarm Optimzation ( Adam-FIPSO ) based Parameter Prediction for the Quantum Approximate Optimization Algorithm (QAOA) The Quantum Approximate Optimization Algorithm (QAOA) is a prominent variational algorithm used for solving combinatorial optimization problems such as the Max-Cut problem. A key challenge in QAOA lies in efficiently identifying suitable parameters (gamma, beta) that lead to high-quality solutions. In this paper, we propose a framework that combines Fully Informed Particle Swarm Optimization (FIPSO) with adaptive gradient correction using the Adam Optimizer to navigate the QAOA parameter space. This approach aims to avoid issues such as barren plateaus and convergence to local minima. The proposed algorithm is evaluated against two classes of graph instances, Erdos Renyi and Watts-Strogatz. Experimental results across multiple QAOA depths consistently demonstrate superior performance compared to random initialization, underscoring the effectiveness and robustness of the proposed optimization framework. 3 authors · Jun 7
- ON-OFF Neuromorphic ISING Machines using Fowler-Nordheim Annealers We introduce NeuroSA, a neuromorphic architecture specifically designed to ensure asymptotic convergence to the ground state of an Ising problem using an annealing process that is governed by the physics of quantum mechanical tunneling using Fowler-Nordheim (FN). The core component of NeuroSA consists of a pair of asynchronous ON-OFF neurons, which effectively map classical simulated annealing (SA) dynamics onto a network of integrate-and-fire (IF) neurons. The threshold of each ON-OFF neuron pair is adaptively adjusted by an FN annealer which replicates the optimal escape mechanism and convergence of SA, particularly at low temperatures. To validate the effectiveness of our neuromorphic Ising machine, we systematically solved various benchmark MAX-CUT combinatorial optimization problems. Across multiple runs, NeuroSA consistently generates solutions that approach the state-of-the-art level with high accuracy (greater than 99%), and without any graph-specific hyperparameter tuning. For practical illustration, we present results from an implementation of NeuroSA on the SpiNNaker2 platform, highlighting the feasibility of mapping our proposed architecture onto a standard neuromorphic accelerator platform. 18 authors · Jun 7, 2024
5 WhisperX: Time-Accurate Speech Transcription of Long-Form Audio Large-scale, weakly-supervised speech recognition models, such as Whisper, have demonstrated impressive results on speech recognition across domains and languages. However, their application to long audio transcription via buffered or sliding window approaches is prone to drifting, hallucination & repetition; and prohibits batched transcription due to their sequential nature. Further, timestamps corresponding each utterance are prone to inaccuracies and word-level timestamps are not available out-of-the-box. To overcome these challenges, we present WhisperX, a time-accurate speech recognition system with word-level timestamps utilising voice activity detection and forced phoneme alignment. In doing so, we demonstrate state-of-the-art performance on long-form transcription and word segmentation benchmarks. Additionally, we show that pre-segmenting audio with our proposed VAD Cut & Merge strategy improves transcription quality and enables a twelve-fold transcription speedup via batched inference. 4 authors · Mar 1, 2023
- NeoQA: Evidence-based Question Answering with Generated News Events Evaluating Retrieval-Augmented Generation (RAG) in large language models (LLMs) is challenging because benchmarks can quickly become stale. Questions initially requiring retrieval may become answerable from pretraining knowledge as newer models incorporate more recent information during pretraining, making it difficult to distinguish evidence-based reasoning from recall. We introduce NeoQA (News Events for Out-of-training Question Answering), a benchmark designed to address this issue. To construct NeoQA, we generated timelines and knowledge bases of fictional news events and entities along with news articles and Q\&A pairs to prevent LLMs from leveraging pretraining knowledge, ensuring that no prior evidence exists in their training data. We propose our dataset as a new platform for evaluating evidence-based question answering, as it requires LLMs to generate responses exclusively from retrieved evidence and only when sufficient evidence is available. NeoQA enables controlled evaluation across various evidence scenarios, including cases with missing or misleading details. Our findings indicate that LLMs struggle to distinguish subtle mismatches between questions and evidence, and suffer from short-cut reasoning when key information required to answer a question is missing from the evidence, underscoring key limitations in evidence-based reasoning. 5 authors · May 9
- High-energy neutrino emission from tidal disruption event outflow-cloud interactions Tidal disruption events (TDEs), characterized by their luminous transients and high-velocity outflows, have emerged as plausible sources of high-energy neutrinos contributing to the diffuse neutrino. In this study, we calculate the contribution of TDEs to the diffuse neutrino by employing the outflow-cloud model within the TDE framework. Our analysis indicates that the contribution of TDEs becomes negligible when the redshift Z exceeds 2. Employing a set of fiducial values, which includes outflow energy E_{rm kin}=10^{51} erg, a proton spectrum cutoff energy E_{rm p,max}=100 PeV, a volume TDE rate N=8 times 10^{-7} rm Mpc^{-3} year^{-1}, covering fraction of clouds C_V=0.1, energy conversion efficiency in the shock eta =0.1, and a proton spectrum index Gamma=-1.7, we find that TDEs can account for approximately 80\% of the contribution at energies around 0.3 PeV. Additionally, TDEs still contribute around 18\% to the IceCube data below 0.1 PeV and the total contribution is sim 24^{+2}_{-15}%. In addition, we also discuss the potential influence of various parameter values on the results in detail. With the IceCube data, we impose constraints on the combination of the physical parameters, i.e., C_{f}=NE_{rm kin}C_{rm v}eta. Future observations or theoretical considerations would fix some physical parameters, which will help to constrain some individual parameters of TDEs. 3 authors · Jul 16, 2024