10 GPUDrive: Data-driven, multi-agent driving simulation at 1 million FPS Multi-agent learning algorithms have been successful at generating superhuman planning in a wide variety of games but have had little impact on the design of deployed multi-agent planners. A key bottleneck in applying these techniques to multi-agent planning is that they require billions of steps of experience. To enable the study of multi-agent planning at this scale, we present GPUDrive, a GPU-accelerated, multi-agent simulator built on top of the Madrona Game Engine that can generate over a million steps of experience per second. Observation, reward, and dynamics functions are written directly in C++, allowing users to define complex, heterogeneous agent behaviors that are lowered to high-performance CUDA. We show that using GPUDrive we are able to effectively train reinforcement learning agents over many scenes in the Waymo Motion dataset, yielding highly effective goal-reaching agents in minutes for individual scenes and generally capable agents in a few hours. We ship these trained agents as part of the code base at https://github.com/Emerge-Lab/gpudrive. 5 authors · Aug 2, 2024 2
126 Diffusion Models Are Real-Time Game Engines We present GameNGen, the first game engine powered entirely by a neural model that enables real-time interaction with a complex environment over long trajectories at high quality. GameNGen can interactively simulate the classic game DOOM at over 20 frames per second on a single TPU. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations enable stable auto-regressive generation over long trajectories. 4 authors · Aug 27, 2024 16
1 Automated Unity Game Template Generation from GDDs via NLP and Multi-Modal LLMs This paper presents a novel framework for automated game template generation by transforming Game Design Documents (GDDs) into functional Unity game prototypes using Natural Language Processing (NLP) and multi-modal Large Language Models (LLMs). We introduce an end-to-end system that parses GDDs, extracts structured game specifications, and synthesizes Unity-compatible C# code that implements the core mechanics, systems, and architecture defined in the design documentation. Our approach combines a fine-tuned LLaMA-3 model specialized for Unity code generation with a custom Unity integration package that streamlines the implementation process. Evaluation results demonstrate significant improvements over baseline models, with our fine-tuned model achieving superior performance (4.8/5.0 average score) compared to state-of-the-art LLMs across compilation success, GDD adherence, best practices adoption, and code modularity metrics. The generated templates demonstrate high adherence to GDD specifications across multiple game genres. Our system effectively addresses critical gaps in AI-assisted game development, positioning LLMs as valuable tools in streamlining the transition from game design to implementation. 1 authors · Sep 7