Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeInfi-MMR: Curriculum-based Unlocking Multimodal Reasoning via Phased Reinforcement Learning in Multimodal Small Language Models
Recent advancements in large language models (LLMs) have demonstrated substantial progress in reasoning capabilities, such as DeepSeek-R1, which leverages rule-based reinforcement learning to enhance logical reasoning significantly. However, extending these achievements to multimodal large language models (MLLMs) presents critical challenges, which are frequently more pronounced for Multimodal Small Language Models (MSLMs) given their typically weaker foundational reasoning abilities: (1) the scarcity of high-quality multimodal reasoning datasets, (2) the degradation of reasoning capabilities due to the integration of visual processing, and (3) the risk that direct application of reinforcement learning may produce complex yet incorrect reasoning processes. To address these challenges, we design a novel framework Infi-MMR to systematically unlock the reasoning potential of MSLMs through a curriculum of three carefully structured phases and propose our multimodal reasoning model Infi-MMR-3B. The first phase, Foundational Reasoning Activation, leverages high-quality textual reasoning datasets to activate and strengthen the model's logical reasoning capabilities. The second phase, Cross-Modal Reasoning Adaptation, utilizes caption-augmented multimodal data to facilitate the progressive transfer of reasoning skills to multimodal contexts. The third phase, Multimodal Reasoning Enhancement, employs curated, caption-free multimodal data to mitigate linguistic biases and promote robust cross-modal reasoning. Infi-MMR-3B achieves both state-of-the-art multimodal math reasoning ability (43.68% on MathVerse testmini, 27.04% on MathVision test, and 21.33% on OlympiadBench) and general reasoning ability (67.2% on MathVista testmini). Resources are available at https://huggingface.co/Reallm-Labs/Infi-MMR-3B.
Mipha: A Comprehensive Overhaul of Multimodal Assistant with Small Language Models
Multimodal Large Language Models (MLLMs) have showcased impressive skills in tasks related to visual understanding and reasoning. Yet, their widespread application faces obstacles due to the high computational demands during both the training and inference phases, restricting their use to a limited audience within the research and user communities. In this paper, we investigate the design aspects of Multimodal Small Language Models (MSLMs) and propose an efficient multimodal assistant named Mipha, which is designed to create synergy among various aspects: visual representation, language models, and optimization strategies. We show that without increasing the volume of training data, our Mipha-3B outperforms the state-of-the-art large MLLMs, especially LLaVA-1.5-13B, on multiple benchmarks. Through detailed discussion, we provide insights and guidelines for developing strong MSLMs that rival the capabilities of MLLMs. Our code is available at https://github.com/zhuyiche/llava-phi.
Towards Explainable Harmful Meme Detection through Multimodal Debate between Large Language Models
The age of social media is flooded with Internet memes, necessitating a clear grasp and effective identification of harmful ones. This task presents a significant challenge due to the implicit meaning embedded in memes, which is not explicitly conveyed through the surface text and image. However, existing harmful meme detection methods do not present readable explanations that unveil such implicit meaning to support their detection decisions. In this paper, we propose an explainable approach to detect harmful memes, achieved through reasoning over conflicting rationales from both harmless and harmful positions. Specifically, inspired by the powerful capacity of Large Language Models (LLMs) on text generation and reasoning, we first elicit multimodal debate between LLMs to generate the explanations derived from the contradictory arguments. Then we propose to fine-tune a small language model as the debate judge for harmfulness inference, to facilitate multimodal fusion between the harmfulness rationales and the intrinsic multimodal information within memes. In this way, our model is empowered to perform dialectical reasoning over intricate and implicit harm-indicative patterns, utilizing multimodal explanations originating from both harmless and harmful arguments. Extensive experiments on three public meme datasets demonstrate that our harmful meme detection approach achieves much better performance than state-of-the-art methods and exhibits a superior capacity for explaining the meme harmfulness of the model predictions.
DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning in Language Models
A long-standing goal of AI systems is to perform complex multimodal reasoning like humans. Recently, large language models (LLMs) have made remarkable strides in such multi-step reasoning on the language modality solely by leveraging the chain of thought (CoT) to mimic human thinking. However, the transfer of these advancements to multimodal contexts introduces heightened challenges, including but not limited to the impractical need for labor-intensive annotation and the limitations in terms of flexibility, generalizability, and explainability. To evoke CoT reasoning in multimodality, this work first conducts an in-depth analysis of these challenges posed by multimodality and presents two key insights: "keeping critical thinking" and "letting everyone do their jobs" in multimodal CoT reasoning. Furthermore, this study proposes a novel DDCoT prompting that maintains a critical attitude through negative-space prompting and incorporates multimodality into reasoning by first dividing the reasoning responsibility of LLMs into reasoning and recognition and then integrating the visual recognition capability of visual models into the joint reasoning process. The rationales generated by DDCoT not only improve the reasoning abilities of both large and small language models in zero-shot prompting and fine-tuning learning, significantly outperforming state-of-the-art methods but also exhibit impressive generalizability and explainability.
A Layered Self-Supervised Knowledge Distillation Framework for Efficient Multimodal Learning on the Edge
We introduce Layered Self-Supervised Knowledge Distillation (LSSKD) framework for training compact deep learning models. Unlike traditional methods that rely on pre-trained teacher networks, our approach appends auxiliary classifiers to intermediate feature maps, generating diverse self-supervised knowledge and enabling one-to-one transfer across different network stages. Our method achieves an average improvement of 4.54\% over the state-of-the-art PS-KD method and a 1.14% gain over SSKD on CIFAR-100, with a 0.32% improvement on ImageNet compared to HASSKD. Experiments on Tiny ImageNet and CIFAR-100 under few-shot learning scenarios also achieve state-of-the-art results. These findings demonstrate the effectiveness of our approach in enhancing model generalization and performance without the need for large over-parameterized teacher networks. Importantly, at the inference stage, all auxiliary classifiers can be removed, yielding no extra computational cost. This makes our model suitable for deploying small language models on affordable low-computing devices. Owing to its lightweight design and adaptability, our framework is particularly suitable for multimodal sensing and cyber-physical environments that require efficient and responsive inference. LSSKD facilitates the development of intelligent agents capable of learning from limited sensory data under weak supervision.
Small Visual Language Models can also be Open-Ended Few-Shot Learners
We present Self-Context Adaptation (SeCAt), a self-supervised approach that unlocks open-ended few-shot abilities of small visual language models. Our proposed adaptation algorithm explicitly learns from symbolic, yet self-supervised training tasks. Specifically, our approach imitates image captions in a self-supervised way based on clustering a large pool of images followed by assigning semantically-unrelated names to clusters. By doing so, we construct the `self-context', a training signal consisting of interleaved sequences of image and pseudo-caption pairs and a query image for which the model is trained to produce the right pseudo-caption. We demonstrate the performance and flexibility of SeCAt on several multimodal few-shot datasets, spanning various granularities. By using models with approximately 1B parameters we outperform the few-shot abilities of much larger models, such as Frozen and FROMAGe. SeCAt opens new possibilities for research in open-ended few-shot learning that otherwise requires access to large or proprietary models.
Small Vision-Language Models: A Survey on Compact Architectures and Techniques
The emergence of small vision-language models (sVLMs) marks a critical advancement in multimodal AI, enabling efficient processing of visual and textual data in resource-constrained environments. This survey offers a comprehensive exploration of sVLM development, presenting a taxonomy of architectures - transformer-based, mamba-based, and hybrid - that highlight innovations in compact design and computational efficiency. Techniques such as knowledge distillation, lightweight attention mechanisms, and modality pre-fusion are discussed as enablers of high performance with reduced resource requirements. Through an in-depth analysis of models like TinyGPT-V, MiniGPT-4, and VL-Mamba, we identify trade-offs between accuracy, efficiency, and scalability. Persistent challenges, including data biases and generalization to complex tasks, are critically examined, with proposed pathways for addressing them. By consolidating advancements in sVLMs, this work underscores their transformative potential for accessible AI, setting a foundation for future research into efficient multimodal systems.
Evaluating small vision-language models as AI assistants for radio astronomical source analysis tasks
The advent of next-generation radio telescopes is set to transform radio astronomy by producing massive data volumes that challenge traditional processing methods. Deep learning techniques have shown strong potential in automating radio analysis tasks, yet are often constrained by the limited availability of large annotated datasets. Recent progress in self-supervised learning has led to foundational radio vision models, but adapting them for new tasks typically requires coding expertise, limiting their accessibility to a broader astronomical community. Text-based AI interfaces offer a promising alternative by enabling task-specific queries and example-driven learning. In this context, Large Language Models (LLMs), with their remarkable zero-shot capabilities, are increasingly used in scientific domains. However, deploying large-scale models remains resource-intensive, and there is a growing demand for AI systems that can reason over both visual and textual data in astronomical analysis. This study explores small-scale Vision-Language Models (VLMs) as AI assistants for radio astronomy, combining LLM capabilities with vision transformers. We fine-tuned the LLaVA VLM on a dataset of 59k radio images from multiple surveys, enriched with 38k image-caption pairs from the literature. The fine-tuned models show clear improvements over base models in radio-specific tasks, achieving ~30% F1-score gains in extended source detection, but they underperform pure vision models and exhibit ~20% drop on general multimodal tasks. Inclusion of caption data and LoRA fine-tuning enhances instruction-following and helps recover ~10% accuracy on standard benchmarks. This work lays the foundation for future advancements in radio VLMs, highlighting their potential and limitations, such as the need for better multimodal alignment, higher-quality datasets, and mitigation of catastrophic forgetting.
Mellow: a small audio language model for reasoning
Multimodal Audio-Language Models (ALMs) can understand and reason over both audio and text. Typically, reasoning performance correlates with model size, with the best results achieved by models exceeding 8 billion parameters. However, no prior work has explored enabling small audio-language models to perform reasoning tasks, despite the potential applications for edge devices. To address this gap, we introduce Mellow, a small Audio-Language Model specifically designed for reasoning. Mellow achieves state-of-the-art performance among existing small audio-language models and surpasses several larger models in reasoning capabilities. For instance, Mellow scores 52.11 on MMAU, comparable to SoTA Qwen2 Audio (which scores 52.5) while using 50 times fewer parameters and being trained on 60 times less data (audio hrs). To train Mellow, we introduce ReasonAQA, a dataset designed to enhance audio-grounded reasoning in models. It consists of a mixture of existing datasets (30% of the data) and synthetically generated data (70%). The synthetic dataset is derived from audio captioning datasets, where Large Language Models (LLMs) generate detailed and multiple-choice questions focusing on audio events, objects, acoustic scenes, signal properties, semantics, and listener emotions. To evaluate Mellow's reasoning ability, we benchmark it on a diverse set of tasks, assessing on both in-distribution and out-of-distribution data, including audio understanding, deductive reasoning, and comparative reasoning. Finally, we conduct extensive ablation studies to explore the impact of projection layer choices, synthetic data generation methods, and language model pretraining on reasoning performance. Our training dataset, findings, and baseline pave the way for developing small ALMs capable of reasoning.
LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation
We introduce LLaVA-MoD, a novel framework designed to enable the efficient training of small-scale Multimodal Language Models (s-MLLM) by distilling knowledge from large-scale MLLM (l-MLLM). Our approach tackles two fundamental challenges in MLLM distillation. First, we optimize the network structure of s-MLLM by integrating a sparse Mixture of Experts (MoE) architecture into the language model, striking a balance between computational efficiency and model expressiveness. Second, we propose a progressive knowledge transfer strategy to ensure comprehensive knowledge migration. This strategy begins with mimic distillation, where we minimize the Kullback-Leibler (KL) divergence between output distributions to enable the student model to emulate the teacher network's understanding. Following this, we introduce preference distillation via Direct Preference Optimization (DPO), where the key lies in treating l-MLLM as the reference model. During this phase, the s-MLLM's ability to discriminate between superior and inferior examples is significantly enhanced beyond l-MLLM, leading to a better student that surpasses its teacher, particularly in hallucination benchmarks. Extensive experiments demonstrate that LLaVA-MoD outperforms existing models across various multimodal benchmarks while maintaining a minimal number of activated parameters and low computational costs. Remarkably, LLaVA-MoD, with only 2B activated parameters, surpasses Qwen-VL-Chat-7B by an average of 8.8% across benchmarks, using merely 0.3% of the training data and 23% trainable parameters. These results underscore LLaVA-MoD's ability to effectively distill comprehensive knowledge from its teacher model, paving the way for the development of more efficient MLLMs. The code will be available on: https://github.com/shufangxun/LLaVA-MoD.
LLaVA-KD: A Framework of Distilling Multimodal Large Language Models
The success of Large Language Models (LLM) has led researchers to explore Multimodal Large Language Models (MLLM) for unified visual and linguistic understanding. However, the increasing model size and computational complexity of MLLM limit their use in resource-constrained environments. Small-scale MLLM (s-MLLM) aims to retain the capabilities of the large-scale model (l-MLLM) while reducing computational demands, but resulting in a significant decline in performance. To address the aforementioned issues, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLM to s-MLLM. Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM, and Relation Distillation (RDist) to transfer l-MLLM's ability to model correlations between visual features. Additionally, we propose a three-stage training scheme to fully exploit the potential of s-MLLM: 1) Distilled Pre-Training to align visual-textual representations, 2) Supervised Fine-Tuning to equip the model with multimodal understanding, and 3) Distilled Fine-Tuning to further transfer l-MLLM capabilities. Our approach significantly improves performance without altering the small model's architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/caiyuxuan1120/LLaVA-KD.
ViCrop: Perceiving Small Visual Details in Zero-shot Visual Question Answering with Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have recently achieved promising zero-shot accuracy on visual question answering (VQA) -- a fundamental task affecting various downstream applications and domains. Given the great potential for the broad use of these models, it is important to investigate their limitations in dealing with different image and question properties. In this work, we investigate whether MLLMs can perceive details as well as larger components in images. In particular, we show that their zero-shot accuracy in answering visual questions is very sensitive to the size of the visual subject related to the question, declining up to 45.91% with size. Furthermore, we show that this effect is causal by observing that human visual cropping can significantly mitigate their sensitivity to size. To scale up the usefulness of human cropping, we propose ViCrop, a general framework that utilizes automatic visual cropping to enhance zero-shot VQA of MLLMs. We construct five variants of ViCrop leveraging either external localization models or the decision process of the given MLLM itself. Our results show that ViCrop improves MLLMs' zero-shot accuracy across different VQA datasets, for example, enhances BLIP2-T5's performance by 32.23% on the TextVQA test set. To facilitate further investigation of MLLMs' behaviors, our code is publicly released.
SmolVLM: Redefining small and efficient multimodal models
Large Vision-Language Models (VLMs) deliver exceptional performance but require significant computational resources, limiting their deployment on mobile and edge devices. Smaller VLMs typically mirror design choices of larger models, such as extensive image tokenization, leading to inefficient GPU memory usage and constrained practicality for on-device applications. We introduce SmolVLM, a series of compact multimodal models specifically engineered for resource-efficient inference. We systematically explore architectural configurations, tokenization strategies, and data curation optimized for low computational overhead. Through this, we identify key design choices that yield substantial performance gains on image and video tasks with minimal memory footprints. Our smallest model, SmolVLM-256M, uses less than 1GB GPU memory during inference and outperforms the 300-times larger Idefics-80B model, despite an 18-month development gap. Our largest model, at 2.2B parameters, rivals state-of-the-art VLMs consuming twice the GPU memory. SmolVLM models extend beyond static images, demonstrating robust video comprehension capabilities. Our results emphasize that strategic architectural optimizations, aggressive yet efficient tokenization, and carefully curated training data significantly enhance multimodal performance, facilitating practical, energy-efficient deployments at significantly smaller scales.
Exploring Multimodal Large Language Models for Radiology Report Error-checking
This paper proposes one of the first clinical applications of multimodal large language models (LLMs) as an assistant for radiologists to check errors in their reports. We created an evaluation dataset from two real-world radiology datasets (MIMIC-CXR and IU-Xray), with 1,000 subsampled reports each. A subset of original reports was modified to contain synthetic errors by introducing various type of mistakes. The evaluation contained two difficulty levels: SIMPLE for binary error-checking and COMPLEX for identifying error types. LLaVA (Large Language and Visual Assistant) variant models, including our instruction-tuned model, were used for the evaluation. Additionally, a domain expert evaluation was conducted on a small test set. At the SIMPLE level, the LLaVA v1.5 model outperformed other publicly available models. Instruction tuning significantly enhanced performance by 47.4% and 25.4% on MIMIC-CXR and IU-Xray data, respectively. The model also surpassed the domain experts accuracy in the MIMIC-CXR dataset by 1.67%. Notably, among the subsets (N=21) of the test set where a clinician did not achieve the correct conclusion, the LLaVA ensemble mode correctly identified 71.4% of these cases. This study marks a promising step toward utilizing multi-modal LLMs to enhance diagnostic accuracy in radiology. The ensemble model demonstrated comparable performance to clinicians, even capturing errors overlooked by humans. Nevertheless, future work is needed to improve the model ability to identify the types of inconsistency.
NanoVLMs: How small can we go and still make coherent Vision Language Models?
Vision-Language Models (VLMs), such as GPT-4V and Llama 3.2 vision, have garnered significant research attention for their ability to leverage Large Language Models (LLMs) in multimodal tasks. However, their potential is constrained by inherent challenges, including proprietary restrictions, substantial computational demands, and limited accessibility. Smaller models, such as GIT and BLIP, exhibit marked limitations, often failing to generate coherent and consistent text beyond a few tokens, even with extensive training. This underscores a pivotal inquiry: how small can a VLM be and still produce fluent and consistent text? Drawing inspiration from the exceptional learning process of 3-4 year old children, who rely heavily on visual cues for understanding and communication, we introduce two novel datasets: ShortDesc (featuring concise image descriptions) and LongDesc (containing more detailed image descriptions). These datasets consist of image-text pairs where the text is restricted to the simple vocabulary and syntax typically used by young children, generated with a scaled- down model, GPT-4o. Using these datasets, we demonstrate that it is possible to train VLMs that are significantly smaller, up to 10 times smaller than state of the art(SOTA) small VLMs while maintaining architectural simplicity. To evaluate the outputs, we leverage GPT-4o to grade the text, as if stories written by students, on creativity, meaningfulness, and consistency, assigning scores out of 10. This method addresses limitations of standard benchmarks by accommodating unstructured outputs and providing a multidimensional evaluation of the model capabilities. Our findings contribute to the development of lightweight, accessible multimodal models for resource constrained environments.
Enhancing Multimodal Large Language Models Complex Reason via Similarity Computation
Multimodal large language models have experienced rapid growth, and numerous different models have emerged. The interpretability of LVLMs remains an under-explored area. Especially when faced with more complex tasks such as chain-of-thought reasoning, its internal mechanisms still resemble a black box that is difficult to decipher. By studying the interaction and information flow between images and text, we noticed that in models such as LLaVA1.5, image tokens that are semantically related to text are more likely to have information flow convergence in the LLM decoding layer, and these image tokens receive higher attention scores. However, those image tokens that are less relevant to the text do not have information flow convergence, and they only get very small attention scores. To efficiently utilize the image information, we propose a new image token reduction method, Simignore, which aims to improve the complex reasoning ability of LVLMs by computing the similarity between image and text embeddings and ignoring image tokens that are irrelevant and unimportant to the text. Through extensive experiments, we demonstrate the effectiveness of our method for complex reasoning tasks. The paper's source code can be accessed from https://github.com/FanshuoZeng/Simignore.
Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models
High-performance Multimodal Large Language Models (MLLMs) rely heavily on data quality. This study introduces a novel dataset named Img-Diff, designed to enhance fine-grained image recognition in MLLMs by leveraging insights from contrastive learning and image difference captioning. By analyzing object differences between similar images, we challenge models to identify both matching and distinct components. We utilize the Stable-Diffusion-XL model and advanced image editing techniques to create pairs of similar images that highlight object replacements. Our methodology includes a Difference Area Generator for object differences identifying, followed by a Difference Captions Generator for detailed difference descriptions. The result is a relatively small but high-quality dataset of "object replacement" samples. We use the the proposed dataset to fine-tune state-of-the-art (SOTA) MLLMs such as MGM-7B, yielding comprehensive improvements of performance scores over SOTA models that trained with larger-scale datasets, in numerous image difference and Visual Question Answering tasks. For instance, our trained models notably surpass the SOTA models GPT-4V and Gemini on the MMVP benchmark. Besides, we investigate alternative methods for generating image difference data through "object removal" and conduct thorough evaluation to confirm the dataset's diversity, quality, and robustness, presenting several insights on synthesis of such contrastive dataset. To encourage further research and advance the field of multimodal data synthesis and enhancement of MLLMs' fundamental capabilities for image understanding, we release our codes and dataset at https://github.com/modelscope/data-juicer/tree/ImgDiff.
Exploring Perceptual Limitation of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have recently shown remarkable perceptual capability in answering visual questions, however, little is known about the limits of their perception. In particular, while prior works have provided anecdotal evidence of MLLMs' sensitivity to object size, this phenomenon and its underlying causes have not been explored comprehensively. In this work, we quantitatively study the perception of small visual objects in several state-of-the-art MLLMs and reveal a pervasive limitation in answering questions about small objects in images. Next, we identify four independent factors that can contribute to this limitation -- object quality, size, distractors, and location -- and conduct controlled intervention studies to measure the effect of each factor on MLLMs' perception. In particular, we find that lower object quality and smaller object size can both independently reduce MLLMs' ability to answer visual questions. More surprisingly, we find that the location of the object in the image and the presence of visual distractors can also significantly reduce MLLMs' question answering accuracy. Our study provides a better understanding of the perceptual limitation of MLLMs and contributes new evaluation protocols for analyzing the perception of future MLLMs. To facilitate further investigations, we release our code and data.
LLAVADI: What Matters For Multimodal Large Language Models Distillation
The recent surge in Multimodal Large Language Models (MLLMs) has showcased their remarkable potential for achieving generalized intelligence by integrating visual understanding into Large Language Models.Nevertheless, the sheer model size of MLLMs leads to substantial memory and computational demands that hinder their widespread deployment. In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch. Instead, we focus on what matters for training small-scale MLLMs through knowledge distillation, which is the first step from the multimodal distillation perspective. Our extensive studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process. These results show that joint alignment for both tokens and logit alignment plays critical roles in teacher-student frameworks. In addition, we draw a series of intriguing observations from this study. By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters. Our code and models will be publicly available for further research.
TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones
In the era of advanced multimodel learning, multimodal large language models (MLLMs) such as GPT-4V have made remarkable strides towards bridging language and visual elements. However, the closed-source nature and considerable computational demand present notable challenges for universal usage and modifications. This is where open-source MLLMs like LLaVA and MiniGPT-4 come in, presenting groundbreaking achievements across tasks. Despite these accomplishments, computational efficiency remains an unresolved issue, as these models, like LLaVA-v1.5-13B, require substantial resources. Addressing these issues, we introduce TinyGPT-V, a new-wave model marrying impressive performance with commonplace computational capacity. It stands out by requiring merely a 24G GPU for training and an 8G GPU or CPU for inference. Built upon Phi-2, TinyGPT-V couples an effective language backbone with pre-trained vision modules from BLIP-2 or CLIP. TinyGPT-V's 2.8B parameters can undergo a unique quantisation process, suitable for local deployment and inference tasks on 8G various devices. Our work fosters further developments for designing cost-effective, efficient, and high-performing MLLMs, expanding their applicability in a broad array of real-world scenarios. Furthermore this paper proposed a new paradigm of Multimodal Large Language Model via small backbones. Our code and training weights are placed at: https://github.com/DLYuanGod/TinyGPT-V and https://huggingface.co/Tyrannosaurus/TinyGPT-V respectively.
DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding
We present DeepSeek-VL2, an advanced series of large Mixture-of-Experts (MoE) Vision-Language Models that significantly improves upon its predecessor, DeepSeek-VL, through two key major upgrades. For the vision component, we incorporate a dynamic tiling vision encoding strategy designed for processing high-resolution images with different aspect ratios. For the language component, we leverage DeepSeekMoE models with the Multi-head Latent Attention mechanism, which compresses Key-Value cache into latent vectors, to enable efficient inference and high throughput. Trained on an improved vision-language dataset, DeepSeek-VL2 demonstrates superior capabilities across various tasks, including but not limited to visual question answering, optical character recognition, document/table/chart understanding, and visual grounding. Our model series is composed of three variants: DeepSeek-VL2-Tiny, DeepSeek-VL2-Small and DeepSeek-VL2, with 1.0B, 2.8B and 4.5B activated parameters respectively. DeepSeek-VL2 achieves competitive or state-of-the-art performance with similar or fewer activated parameters compared to existing open-source dense and MoE-based models. Codes and pre-trained models are publicly accessible at https://github.com/deepseek-ai/DeepSeek-VL2.
Active-O3: Empowering Multimodal Large Language Models with Active Perception via GRPO
Active vision, also known as active perception, refers to the process of actively selecting where and how to look in order to gather task-relevant information. It is a critical component of efficient perception and decision-making in humans and advanced embodied agents. Recently, the use of Multimodal Large Language Models (MLLMs) as central planning and decision-making modules in robotic systems has gained extensive attention. However, despite the importance of active perception in embodied intelligence, there is little to no exploration of how MLLMs can be equipped with or learn active perception capabilities. In this paper, we first provide a systematic definition of MLLM-based active perception tasks. We point out that the recently proposed GPT-o3 model's zoom-in search strategy can be regarded as a special case of active perception; however, it still suffers from low search efficiency and inaccurate region selection. To address these issues, we propose ACTIVE-O3, a purely reinforcement learning based training framework built on top of GRPO, designed to equip MLLMs with active perception capabilities. We further establish a comprehensive benchmark suite to evaluate ACTIVE-O3 across both general open-world tasks, such as small-object and dense object grounding, and domain-specific scenarios, including small object detection in remote sensing and autonomous driving, as well as fine-grained interactive segmentation. In addition, ACTIVE-O3 also demonstrates strong zero-shot reasoning abilities on the V* Benchmark, without relying on any explicit reasoning data. We hope that our work can provide a simple codebase and evaluation protocol to facilitate future research on active perception in MLLMs.
RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation
We investigate to what extent Multimodal Large Language Models (MLLMs) can accurately identify the orientation of input images rotated 0{\deg}, 90{\deg}, 180{\deg}, and 270{\deg}. This task demands robust visual reasoning capabilities to detect rotational cues and contextualize spatial relationships within images, regardless of their orientation. To evaluate MLLMs on these abilities, we introduce RotBench -- a 350-image manually-filtered benchmark comprising lifestyle, portrait, and landscape images. Despite the relatively simple nature of this task, we show that several state-of-the-art open and proprietary MLLMs, including GPT-5, o3, and Gemini-2.5-Pro, do not reliably identify rotation in input images. Providing models with auxiliary information -- including captions, depth maps, and more -- or using chain-of-thought prompting offers only small and inconsistent improvements. Our results indicate that most models are able to reliably identify right-side-up (0{\deg}) images, while certain models are able to identify upside-down (180{\deg}) images. None can reliably distinguish between 90{\deg} and 270{\deg}. Simultaneously showing the image rotated in different orientations leads to moderate performance gains for reasoning models, while a modified setup using voting improves the performance of weaker models. We further show that fine-tuning does not improve models' ability to distinguish 90{\deg} and 270{\deg} rotations, despite substantially improving the identification of 180{\deg} images. Together, these results reveal a significant gap between MLLMs' spatial reasoning capabilities and human perception in identifying rotation.
Stop Looking for Important Tokens in Multimodal Language Models: Duplication Matters More
Vision tokens in multimodal large language models often dominate huge computational overhead due to their excessive length compared to linguistic modality. Abundant recent methods aim to solve this problem with token pruning, which first defines an importance criterion for tokens and then prunes the unimportant vision tokens during inference. However, in this paper, we show that the importance is not an ideal indicator to decide whether a token should be pruned. Surprisingly, it usually results in inferior performance than random token pruning and leading to incompatibility to efficient attention computation operators.Instead, we propose DART (Duplication-Aware Reduction of Tokens), which prunes tokens based on its duplication with other tokens, leading to significant and training-free acceleration. Concretely, DART selects a small subset of pivot tokens and then retains the tokens with low duplication to the pivots, ensuring minimal information loss during token pruning. Experiments demonstrate that DART can prune 88.9% vision tokens while maintaining comparable performance, leading to a 1.99times and 2.99times speed-up in total time and prefilling stage, respectively, with good compatibility to efficient attention operators. Our codes are available at https://github.com/ZichenWen1/DART.
TinyLLaVA: A Framework of Small-scale Large Multimodal Models
We present the TinyLLaVA framework that provides a unified perspective in designing and analyzing the small-scale Large Multimodal Models (LMMs). We empirically study the effects of different vision encoders, connection modules, language models, training data and training recipes. Our extensive experiments showed that better quality of data combined with better training recipes, smaller LMMs can consistently achieve on-par performances compared to bigger LMMs. Under our framework, we train a family of small-scale LMMs. Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL. We hope our findings can serve as baselines for future research in terms of data scaling, training setups and model selections. Our model weights and codes will be made public.
SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models
Reasoning about motion and space is a fundamental cognitive capability that is required by multiple real-world applications. While many studies highlight that large multimodal language models (MLMs) struggle to reason about space, they only focus on static spatial relationships, and not dynamic awareness of motion and space, i.e., reasoning about the effect of egocentric and object motions on spatial relationships. Manually annotating such object and camera movements is expensive. Hence, we introduce SAT, a simulated spatial aptitude training dataset comprising both static and dynamic spatial reasoning across 175K question-answer (QA) pairs and 20K scenes. Complementing this, we also construct a small (150 image-QAs) yet challenging dynamic spatial test set using real-world images. Leveraging our SAT datasets and 6 existing static spatial benchmarks, we systematically investigate what improves both static and dynamic spatial awareness. Our results reveal that simulations are surprisingly effective at imparting spatial aptitude to MLMs that translate to real images. We show that perfect annotations in simulation are more effective than existing approaches of pseudo-annotating real images. For instance, SAT training improves a LLaVA-13B model by an average 11% and a LLaVA-Video-7B model by an average 8% on multiple spatial benchmarks, including our real-image dynamic test set and spatial reasoning on long videos -- even outperforming some large proprietary models. While reasoning over static relationships improves with synthetic training data, there is still considerable room for improvement for dynamic reasoning questions.
BlueLM-V-3B: Algorithm and System Co-Design for Multimodal Large Language Models on Mobile Devices
The emergence and growing popularity of multimodal large language models (MLLMs) have significant potential to enhance various aspects of daily life, from improving communication to facilitating learning and problem-solving. Mobile phones, as essential daily companions, represent the most effective and accessible deployment platform for MLLMs, enabling seamless integration into everyday tasks. However, deploying MLLMs on mobile phones presents challenges due to limitations in memory size and computational capability, making it difficult to achieve smooth and real-time processing without extensive optimization. In this paper, we present BlueLM-V-3B, an algorithm and system co-design approach specifically tailored for the efficient deployment of MLLMs on mobile platforms. To be specific, we redesign the dynamic resolution scheme adopted by mainstream MLLMs and implement system optimization for hardware-aware deployment to optimize model inference on mobile phones. BlueLM-V-3B boasts the following key highlights: (1) Small Size: BlueLM-V-3B features a language model with 2.7B parameters and a vision encoder with 400M parameters. (2) Fast Speed: BlueLM-V-3B achieves a generation speed of 24.4 token/s on the MediaTek Dimensity 9300 processor with 4-bit LLM weight quantization. (3) Strong Performance: BlueLM-V-3B has attained the highest average score of 66.1 on the OpenCompass benchmark among models with leq 4B parameters and surpassed a series of models with much larger parameter sizes (e.g., MiniCPM-V-2.6, InternVL2-8B).
Mini-Monkey: Multi-Scale Adaptive Cropping for Multimodal Large Language Models
Recently, there has been significant interest in enhancing the capability of multimodal large language models (MLLMs) to process high-resolution images. Most existing methods focus on adopting a cropping strategy to improve the ability of multimodal large language models to understand image details. However, this cropping operation inevitably causes the segmentation of objects and connected areas, which impairs the MLLM's ability to recognize small or irregularly shaped objects or text. This issue is particularly evident in lightweight MLLMs. Addressing this issue, we propose Mini-Monkey, a lightweight MLLM that incorporates a plug-and-play method called multi-scale adaptive crop strategy (MSAC). Mini-Monkey adaptively generates multi-scale representations, allowing it to select non-segmented objects from various scales. To mitigate the computational overhead introduced by MSAC, we propose a Scale Compression Mechanism (SCM), which effectively compresses image tokens. Mini-Monkey achieves state-of-the-art performance among 2B-parameter MLLMs. It not only demonstrates leading performance on a variety of general multimodal understanding tasks but also shows consistent improvements in document understanding capabilities. On the OCRBench, Mini-Monkey achieves a score of 802, outperforming 8B-parameter state-of-the-art model InternVL2-8B. Besides, our model and training strategy are very efficient, which can be trained with only eight RTX 3090. The code is available at https://github.com/Yuliang-Liu/Monkey.
MLLMs Know Where to Look: Training-free Perception of Small Visual Details with Multimodal LLMs
Multimodal Large Language Models (MLLMs) have experienced rapid progress in visual recognition tasks in recent years. Given their potential integration into many critical applications, it is important to understand the limitations of their visual perception. In this work, we study whether MLLMs can perceive small visual details as effectively as large ones when answering questions about images. We observe that their performance is very sensitive to the size of the visual subject of the question, and further show that this effect is in fact causal by conducting an intervention study. Next, we study the attention patterns of MLLMs when answering visual questions, and intriguingly find that they consistently know where to look, even when they provide the wrong answer. Based on these findings, we then propose training-free visual intervention methods that leverage the internal knowledge of any MLLM itself, in the form of attention and gradient maps, to enhance its perception of small visual details. We evaluate our proposed methods on two widely-used MLLMs and seven visual question answering benchmarks and show that they can significantly improve MLLMs' accuracy without requiring any training. Our results elucidate the risk of applying MLLMs to visual recognition tasks concerning small details and indicate that visual intervention using the model's internal state is a promising direction to mitigate this risk.
IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities
In the field of multimodal large language models (MLLMs), common methods typically involve unfreezing the language model during training to foster profound visual understanding. However, the fine-tuning of such models with vision-language data often leads to a diminution of their natural language processing (NLP) capabilities. To avoid this performance degradation, a straightforward solution is to freeze the language model while developing multimodal competencies. Unfortunately, previous works have not attained satisfactory outcomes. Building on the strategy of freezing the language model, we conduct thorough structural exploration and introduce the Inner-Adaptor Architecture (IAA). Specifically, the architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers, thereby enabling the frozen language model to acquire multimodal capabilities. Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets. We conduct extensive experiments to improve the general multimodal capabilities and visual grounding abilities of the MLLM. Our approach remarkably outperforms previous state-of-the-art methods across various vision-language benchmarks without sacrificing performance on NLP tasks. Code and models are available at https://github.com/360CVGroup/Inner-Adaptor-Architecture.
CofiPara: A Coarse-to-fine Paradigm for Multimodal Sarcasm Target Identification with Large Multimodal Models
Social media abounds with multimodal sarcasm, and identifying sarcasm targets is particularly challenging due to the implicit incongruity not directly evident in the text and image modalities. Current methods for Multimodal Sarcasm Target Identification (MSTI) predominantly focus on superficial indicators in an end-to-end manner, overlooking the nuanced understanding of multimodal sarcasm conveyed through both the text and image. This paper proposes a versatile MSTI framework with a coarse-to-fine paradigm, by augmenting sarcasm explainability with reasoning and pre-training knowledge. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first engage LMMs to generate competing rationales for coarser-grained pre-training of a small language model on multimodal sarcasm detection. We then propose fine-tuning the model for finer-grained sarcasm target identification. Our framework is thus empowered to adeptly unveil the intricate targets within multimodal sarcasm and mitigate the negative impact posed by potential noise inherently in LMMs. Experimental results demonstrate that our model far outperforms state-of-the-art MSTI methods, and markedly exhibits explainability in deciphering sarcasm as well.
A Touch, Vision, and Language Dataset for Multimodal Alignment
Touch is an important sensing modality for humans, but it has not yet been incorporated into a multimodal generative language model. This is partially due to the difficulty of obtaining natural language labels for tactile data and the complexity of aligning tactile readings with both visual observations and language descriptions. As a step towards bridging that gap, this work introduces a new dataset of 44K in-the-wild vision-touch pairs, with English language labels annotated by humans (10%) and textual pseudo-labels from GPT-4V (90%). We use this dataset to train a vision-language-aligned tactile encoder for open-vocabulary classification and a touch-vision-language (TVL) model for text generation using the trained encoder. Results suggest that by incorporating touch, the TVL model improves (+29% classification accuracy) touch-vision-language alignment over existing models trained on any pair of those modalities. Although only a small fraction of the dataset is human-labeled, the TVL model demonstrates improved visual-tactile understanding over GPT-4V (+12%) and open-source vision-language models (+32%) on a new touch-vision understanding benchmark. Code and data: https://tactile-vlm.github.io.
SORCE: Small Object Retrieval in Complex Environments
Text-to-Image Retrieval (T2IR) is a highly valuable task that aims to match a given textual query to images in a gallery. Existing benchmarks primarily focus on textual queries describing overall image semantics or foreground salient objects, possibly overlooking inconspicuous small objects, especially in complex environments. Such small object retrieval is crucial, as in real-world applications, the targets of interest are not always prominent in the image. Thus, we introduce SORCE (Small Object Retrieval in Complex Environments), a new subfield of T2IR, focusing on retrieving small objects in complex images with textual queries. We propose a new benchmark, SORCE-1K, consisting of images with complex environments and textual queries describing less conspicuous small objects with minimal contextual cues from other salient objects. Preliminary analysis on SORCE-1K finds that existing T2IR methods struggle to capture small objects and encode all the semantics into a single embedding, leading to poor retrieval performance on SORCE-1K. Therefore, we propose to represent each image with multiple distinctive embeddings. We leverage Multimodal Large Language Models (MLLMs) to extract multiple embeddings for each image instructed by a set of Regional Prompts (ReP). Experimental results show that our multi-embedding approach through MLLM and ReP significantly outperforms existing T2IR methods on SORCE-1K. Our experiments validate the effectiveness of SORCE-1K for benchmarking SORCE performances, highlighting the potential of multi-embedding representation and text-customized MLLM features for addressing this task.
Mobile-VideoGPT: Fast and Accurate Video Understanding Language Model
Video understanding models often struggle with high computational requirements, extensive parameter counts, and slow inference speed, making them inefficient for practical use. To tackle these challenges, we propose Mobile-VideoGPT, an efficient multimodal framework designed to operate with fewer than a billion parameters. Unlike traditional video large multimodal models (LMMs), Mobile-VideoGPT consists of lightweight dual visual encoders, efficient projectors, and a small language model (SLM), enabling real-time throughput. To further improve efficiency, we present an Attention-Based Frame Scoring mechanism to select the key-frames, along with an efficient token projector that prunes redundant visual tokens and preserves essential contextual cues. We evaluate our model across well-established six video understanding benchmarks (e.g., MVBench, EgoSchema, NextQA, and PercepTest). Our results show that Mobile-VideoGPT-0.5B can generate up to 46 tokens per second while outperforming existing state-of-the-art 0.5B-parameter models by 6 points on average with 40% fewer parameters and more than 2x higher throughput. Our code and models are publicly available at: https://github.com/Amshaker/Mobile-VideoGPT.
MolTextNet: A Two-Million Molecule-Text Dataset for Multimodal Molecular Learning
Small molecules are essential to drug discovery, and graph-language models hold promise for learning molecular properties and functions from text. However, existing molecule-text datasets are limited in scale and informativeness, restricting the training of generalizable multimodal models. We present MolTextNet, a dataset of 2.5 million high-quality molecule-text pairs designed to overcome these limitations. To construct it, we propose a synthetic text generation pipeline that integrates structural features, computed properties, bioactivity data, and synthetic complexity. Using GPT-4o-mini, we create structured descriptions for 2.5 million molecules from ChEMBL35, with text over 10 times longer than prior datasets. MolTextNet supports diverse downstream tasks, including property prediction and structure retrieval. Pretraining CLIP-style models with Graph Neural Networks and ModernBERT on MolTextNet yields improved performance, highlighting its potential for advancing foundational multimodal modeling in molecular science. Our dataset is available at https://huggingface.co/datasets/liuganghuggingface/moltextnet.
Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.
VAEmo: Efficient Representation Learning for Visual-Audio Emotion with Knowledge Injection
Audiovisual emotion recognition (AVER) aims to infer human emotions from nonverbal visual-audio (VA) cues, offering modality-complementary and language-agnostic advantages. However, AVER remains challenging due to the inherent ambiguity of emotional expressions, cross-modal expressive disparities, and the scarcity of reliably annotated data. Recent self-supervised AVER approaches have introduced strong multimodal representations, yet they predominantly rely on modality-specific encoders and coarse content-level alignment, limiting fine-grained emotional semantic modeling. To address these issues, we propose VAEmo, an efficient two-stage framework for emotion-centric joint VA representation learning with external knowledge injection. In Stage~1, a unified and lightweight representation network is pre-trained on large-scale speaker-centric VA corpora via masked reconstruction and contrastive objectives, mitigating the modality gap and learning expressive, complementary representations without emotion labels. In Stage~2, multimodal large language models automatically generate detailed affective descriptions according to our well-designed chain-of-thought prompting for only a small subset of VA samples; these rich textual semantics are then injected by aligning their corresponding embeddings with VA representations through dual-path contrastive learning, further bridging the emotion gap. Extensive experiments on multiple downstream AVER benchmarks show that VAEmo achieves state-of-the-art performance with a compact design, highlighting the benefit of unified cross-modal encoding and emotion-aware semantic guidance for efficient, generalizable VA emotion representations.
Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training
Multimodal reasoning is a challenging task that requires models to reason across multiple modalities to answer questions. Existing approaches have made progress by incorporating language and visual modalities into a two-stage reasoning framework, separating rationale generation from answer inference. However, these approaches often fall short due to the inadequate quality of the generated rationales. In this work, we delve into the importance of rationales in model reasoning. We observe that when rationales are completely accurate, the model's accuracy significantly improves, highlighting the need for high-quality rationale generation. Motivated by this, we propose MC-CoT, a self-consistency training strategy that generates multiple rationales and answers, subsequently selecting the most accurate through a voting process. This approach not only enhances the quality of generated rationales but also leads to more accurate and robust answers. Through extensive experiments, we demonstrate that our approach significantly improves model performance across various benchmarks. Remarkably, we show that even smaller base models, when equipped with our proposed approach, can achieve results comparable to those of larger models, illustrating the potential of our approach in harnessing the power of rationales for improved multimodal reasoning. The code is available at https://github.com/chengtan9907/mc-cot.
MobileVLM : A Fast, Reproducible and Strong Vision Language Assistant for Mobile Devices
We present MobileVLM, a competent multimodal vision language model (MMVLM) targeted to run on mobile devices. It is an amalgamation of a myriad of architectural designs and techniques that are mobile-oriented, which comprises a set of language models at the scale of 1.4B and 2.7B parameters, trained from scratch, a multimodal vision model that is pre-trained in the CLIP fashion, cross-modality interaction via an efficient projector. We evaluate MobileVLM on several typical VLM benchmarks. Our models demonstrate on par performance compared with a few much larger models. More importantly, we measure the inference speed on both a Qualcomm Snapdragon 888 CPU and an NVIDIA Jeston Orin GPU, and we obtain state-of-the-art performance of 21.5 tokens and 65.3 tokens per second, respectively. Our code will be made available at: https://github.com/Meituan-AutoML/MobileVLM.
LLaVA-Gemma: Accelerating Multimodal Foundation Models with a Compact Language Model
We train a suite of multimodal foundation models (MMFM) using the popular LLaVA framework with the recently released Gemma family of large language models (LLMs). Of particular interest is the 2B parameter Gemma model, which provides opportunities to construct capable small-scale MMFMs. In line with findings from other papers in this space, we test the effect of ablating three design features: pretraining the connector, utilizing a more powerful image backbone, and increasing the size of the language backbone. The resulting models, which we call LLaVA-Gemma, exhibit moderate performance on an array of evaluations, but fail to improve past the current comparably sized SOTA models. Closer analysis of performance shows mixed effects; skipping pretraining tends to reduce performance, larger vision models sometimes improve performance, and increasing language model size has inconsistent effects. We publicly release training recipes, code and weights for our models for the LLaVA-Gemma models.
Examining User-Friendly and Open-Sourced Large GPT Models: A Survey on Language, Multimodal, and Scientific GPT Models
Generative pre-trained transformer (GPT) models have revolutionized the field of natural language processing (NLP) with remarkable performance in various tasks and also extend their power to multimodal domains. Despite their success, large GPT models like GPT-4 face inherent limitations such as considerable size, high computational requirements, complex deployment processes, and closed development loops. These constraints restrict their widespread adoption and raise concerns regarding their responsible development and usage. The need for user-friendly, relatively small, and open-sourced alternative GPT models arises from the desire to overcome these limitations while retaining high performance. In this survey paper, we provide an examination of alternative open-sourced models of large GPTs, focusing on user-friendly and relatively small models that facilitate easier deployment and accessibility. Through this extensive survey, we aim to equip researchers, practitioners, and enthusiasts with a thorough understanding of user-friendly and relatively small open-sourced models of large GPTs, their current state, challenges, and future research directions, inspiring the development of more efficient, accessible, and versatile GPT models that cater to the broader scientific community and advance the field of general artificial intelligence. The source contents are continuously updating in https://github.com/GPT-Alternatives/gpt_alternatives.
MinMo: A Multimodal Large Language Model for Seamless Voice Interaction
Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence lengths and insufficient pre-training. Aligned models maintain text LLM capabilities but are often limited by small datasets and a narrow focus on speech tasks. In this work, we introduce MinMo, a Multimodal Large Language Model with approximately 8B parameters for seamless voice interaction. We address the main limitations of prior aligned multimodal models. We train MinMo through multiple stages of speech-to-text alignment, text-to-speech alignment, speech-to-speech alignment, and duplex interaction alignment, on 1.4 million hours of diverse speech data and a broad range of speech tasks. After the multi-stage training, MinMo achieves state-of-the-art performance across various benchmarks for voice comprehension and generation while maintaining the capabilities of text LLMs, and also facilitates full-duplex conversation, that is, simultaneous two-way communication between the user and the system. Moreover, we propose a novel and simple voice decoder that outperforms prior models in voice generation. The enhanced instruction-following capabilities of MinMo supports controlling speech generation based on user instructions, with various nuances including emotions, dialects, and speaking rates, and mimicking specific voices. For MinMo, the speech-to-text latency is approximately 100ms, full-duplex latency is approximately 600ms in theory and 800ms in practice. The MinMo project web page is https://funaudiollm.github.io/minmo, and the code and models will be released soon.
Towards a Multimodal Large Language Model with Pixel-Level Insight for Biomedicine
In recent years, Multimodal Large Language Models (MLLM) have achieved notable advancements, demonstrating the feasibility of developing an intelligent biomedical assistant. However, current biomedical MLLMs predominantly focus on image-level understanding and restrict interactions to textual commands, thus limiting their capability boundaries and the flexibility of usage. In this paper, we introduce a novel end-to-end multimodal large language model for the biomedical domain, named MedPLIB, which possesses pixel-level understanding. Excitingly, it supports visual question answering (VQA), arbitrary pixel-level prompts (points, bounding boxes, and free-form shapes), and pixel-level grounding. We propose a novel Mixture-of-Experts (MoE) multi-stage training strategy, which divides MoE into separate training phases for a visual-language expert model and a pixel-grounding expert model, followed by fine-tuning using MoE. This strategy effectively coordinates multitask learning while maintaining the computational cost at inference equivalent to that of a single expert model. To advance the research of biomedical MLLMs, we introduce the Medical Complex Vision Question Answering Dataset (MeCoVQA), which comprises an array of 8 modalities for complex medical imaging question answering and image region understanding. Experimental results indicate that MedPLIB has achieved state-of-the-art outcomes across multiple medical visual language tasks. More importantly, in zero-shot evaluations for the pixel grounding task, MedPLIB leads the best small and large models by margins of 19.7 and 15.6 respectively on the mDice metric. The codes, data, and model checkpoints will be made publicly available at https://github.com/ShawnHuang497/MedPLIB.
LLaVA-$φ$: Efficient Multi-Modal Assistant with Small Language Model
In this paper, we introduce LLaVA-phi (LLaVA-Phi), an efficient multi-modal assistant that harnesses the power of the recently advanced small language model, Phi-2, to facilitate multi-modal dialogues. LLaVA-Phi marks a notable advancement in the realm of compact multi-modal models. It demonstrates that even smaller language models, with as few as 2.7B parameters, can effectively engage in intricate dialogues that integrate both textual and visual elements, provided they are trained with high-quality corpora. Our model delivers commendable performance on publicly available benchmarks that encompass visual comprehension, reasoning, and knowledge-based perception. Beyond its remarkable performance in multi-modal dialogue tasks, our model opens new avenues for applications in time-sensitive environments and systems that require real-time interaction, such as embodied agents. It highlights the potential of smaller language models to achieve sophisticated levels of understanding and interaction, while maintaining greater resource efficiency.The project is available at {https://github.com/zhuyiche/llava-phi}.
Towards Multi-Modal Mastery: A 4.5B Parameter Truly Multi-Modal Small Language Model
We present a novel 4.5B parameter small language model that can handle multiple input and output modalities, including text, images, videos, and audio. Despite its small size, the model achieves near state-of-the-art performance on a variety of tasks, demonstrating the potential of multi-modal models to tackle complex real-world problems. Our approach leverages recent advancements in language modeling and multi-task learning to create a versatile and high-performing model that can even be deployed for edge inference. Experimental results show the model's strong performance across multiple benchmarks, paving the way for further progress in multi-modal artificial intelligence.
Cognitive Visual-Language Mapper: Advancing Multimodal Comprehension with Enhanced Visual Knowledge Alignment
Evaluating and Rethinking the current landscape of Large Multimodal Models (LMMs), we observe that widely-used visual-language projection approaches (e.g., Q-former or MLP) focus on the alignment of image-text descriptions yet ignore the visual knowledge-dimension alignment, i.e., connecting visuals to their relevant knowledge. Visual knowledge plays a significant role in analyzing, inferring, and interpreting information from visuals, helping improve the accuracy of answers to knowledge-based visual questions. In this paper, we mainly explore improving LMMs with visual-language knowledge alignment, especially aimed at challenging knowledge-based visual question answering (VQA). To this end, we present a Cognitive Visual-Language Mapper (CVLM), which contains a pretrained Visual Knowledge Aligner (VKA) and a Fine-grained Knowledge Adapter (FKA) used in the multimodal instruction tuning stage. Specifically, we design the VKA based on the interaction between a small language model and a visual encoder, training it on collected image-knowledge pairs to achieve visual knowledge acquisition and projection. FKA is employed to distill the fine-grained visual knowledge of an image and inject it into Large Language Models (LLMs). We conduct extensive experiments on knowledge-based VQA benchmarks and experimental results show that CVLM significantly improves the performance of LMMs on knowledge-based VQA (average gain by 5.0%). Ablation studies also verify the effectiveness of VKA and FKA, respectively.
TinyEmo: Scaling down Emotional Reasoning via Metric Projection
This paper introduces TinyEmo, a family of small multi-modal language models for emotional reasoning and classification. Our approach features: (1) a synthetic emotional instruct dataset for both pre-training and fine-tuning stages, (2) a Metric Projector that delegates classification from the language model allowing for more efficient training and inference, (3) a multi-modal large language model (MM-LLM) for emotional reasoning, and (4) a semi-automated framework for bias detection. TinyEmo is able to perform emotion classification and emotional reasoning, all while using substantially fewer parameters than comparable models. This efficiency allows us to freely incorporate more diverse emotional datasets, enabling strong performance on classification tasks, with our smallest model (700M parameters) outperforming larger state-of-the-art models based on general-purpose MM-LLMs with over 7B parameters. Additionally, the Metric Projector allows for interpretability and indirect bias detection in large models without additional training, offering an approach to understand and improve AI systems. We release code, models, and dataset at https://github.com/ggcr/TinyEmo
Vintern-1B: An Efficient Multimodal Large Language Model for Vietnamese
In this report, we introduce Vintern-1B, a reliable 1-billion-parameters multimodal large language model (MLLM) for Vietnamese language tasks. By integrating the Qwen2-0.5B-Instruct language model with the InternViT-300M-448px visual model, Vintern-1B is optimized for a range of applications, including optical character recognition (OCR), document extraction, and general question-answering in Vietnamese context. The model is fine-tuned on an extensive dataset of over 3 million image-question-answer pairs, achieving robust performance and reliable results across multiple Vietnamese language benchmarks like OpenViVQA and ViTextVQA. Vintern-1B is small enough to fit into various on-device applications easily. Additionally, we have open-sourced several Vietnamese vision question answering (VQA) datasets for text and diagrams, created with Gemini 1.5 Flash. Our models are available at: https://huggingface.co/5CD-AI/Vintern-1B-v2.
Coarse Correspondence Elicit 3D Spacetime Understanding in Multimodal Language Model
Multimodal language models (MLLMs) are increasingly being implemented in real-world environments, necessitating their ability to interpret 3D spaces and comprehend temporal dynamics. Despite their potential, current top models within our community still fall short in adequately understanding spatial and temporal dimensions. We introduce Coarse Correspondence, a simple, training-free, effective, and general-purpose visual prompting method to elicit 3D and temporal understanding in multimodal LLMs. Our method uses a lightweight tracking model to find object correspondences between frames in a video or between sets of image viewpoints. It selects the most frequent object instances and visualizes them with markers with unique IDs in the image. With this simple approach, we achieve state-of-the-art results on 3D understanding benchmarks including ScanQA (+20.5\%) and a subset of OpenEQA (+9.7\%), and on long-form video benchmarks such as EgoSchema (+6.0\%). We also curate a small diagnostic dataset to evaluate whether MLLMs can reason about space from a described viewpoint other than the camera viewpoint. Again, Coarse Correspondence improves spatial perspective-taking abilities but we highlight that MLLMs struggle with this task. Together, we demonstrate that our simple prompting method can significantly aid downstream tasks that require 3D or temporal reasoning.
Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization
Existing open-source multimodal large language models (MLLMs) generally follow a training process involving pre-training and supervised fine-tuning. However, these models suffer from distribution shifts, which limit their multimodal reasoning, particularly in the Chain-of-Thought (CoT) performance. To address this, we introduce a preference optimization (PO) process to enhance the multimodal reasoning capabilities of MLLMs. Specifically, (1) on the data side, we design an automated preference data construction pipeline to create MMPR, a high-quality, large-scale multimodal reasoning preference dataset. and (2) on the model side, we explore integrating PO with MLLMs, developing a simple yet effective method, termed Mixed Preference Optimization (MPO), which boosts multimodal CoT performance. Our approach demonstrates improved performance across multiple benchmarks, particularly in multimodal reasoning tasks. Notably, our model, InternVL2-8B-MPO, achieves an accuracy of 67.0 on MathVista, outperforming InternVL2-8B by 8.7 points and achieving performance comparable to the 10x larger InternVL2-76B. We hope this study could inspire further advancements in MLLMs. Code, data, and model shall be publicly released.
Large Language Models Are Strong Audio-Visual Speech Recognition Learners
Multimodal large language models (MLLMs) have recently become a focal point of research due to their formidable multimodal understanding capabilities. For example, in the audio and speech domains, an LLM can be equipped with (automatic) speech recognition (ASR) abilities by just concatenating the audio tokens, computed with an audio encoder, and the text tokens to achieve state-of-the-art results. On the contrary, tasks like visual and audio-visual speech recognition (VSR/AVSR), which also exploit noise-invariant lip movement information, have received little or no attention. To bridge this gap, we propose Llama-AVSR, a new MLLM with strong audio-visual speech recognition capabilities. It leverages pre-trained audio and video encoders to produce modality-specific tokens which, together with the text tokens, are processed by a pre-trained LLM (e.g., Llama3.1-8B) to yield the resulting response in an auto-regressive fashion. Llama-AVSR requires a small number of trainable parameters as only modality-specific projectors and LoRA modules are trained whereas the multi-modal encoders and LLM are kept frozen. We evaluate our proposed approach on LRS3, the largest public AVSR benchmark, and we achieve new state-of-the-art results for the tasks of ASR and AVSR with a WER of 0.81% and 0.77%, respectively. To bolster our results, we investigate the key factors that underpin the effectiveness of Llama-AVSR: the choice of the pre-trained encoders and LLM, the efficient integration of LoRA modules, and the optimal performance-efficiency trade-off obtained via modality-aware compression rates.
ProtSolM: Protein Solubility Prediction with Multi-modal Features
Understanding protein solubility is essential for their functional applications. Computational methods for predicting protein solubility are crucial for reducing experimental costs and enhancing the efficiency and success rates of protein engineering. Existing methods either construct a supervised learning scheme on small-scale datasets with manually processed physicochemical properties, or blindly apply pre-trained protein language models to extract amino acid interaction information. The scale and quality of available training datasets leave significant room for improvement in terms of accuracy and generalization. To address these research gaps, we propose \sol, a novel deep learning method that combines pre-training and fine-tuning schemes for protein solubility prediction. ProtSolM integrates information from multiple dimensions, including physicochemical properties, amino acid sequences, and protein backbone structures. Our model is trained using \data, the largest solubility dataset that we have constructed. PDBSol includes over 60,000 protein sequences and structures. We provide a comprehensive leaderboard of existing statistical learning and deep learning methods on independent datasets with computational and experimental labels. ProtSolM achieved state-of-the-art performance across various evaluation metrics, demonstrating its potential to significantly advance the accuracy of protein solubility prediction.
FALCONEye: Finding Answers and Localizing Content in ONE-hour-long videos with multi-modal LLMs
Information retrieval in hour-long videos presents a significant challenge, even for state-of-the-art Vision-Language Models (VLMs), particularly when the desired information is localized within a small subset of frames. Long video data presents challenges for VLMs due to context window limitations and the difficulty of pinpointing frames containing the answer. Our novel video agent, FALCONEye, combines a VLM and a Large Language Model (LLM) to search relevant information along the video, and locate the frames with the answer. FALCONEye novelty relies on 1) the proposed meta-architecture, which is better suited to tackle hour-long videos compared to short video approaches in the state-of-the-art; 2) a new efficient exploration algorithm to locate the information using short clips, captions and answer confidence; and 3) our state-of-the-art VLMs calibration analysis for the answer confidence. Our agent is built over a small-size VLM and a medium-size LLM being accessible to run on standard computational resources. We also release FALCON-Bench, a benchmark to evaluate long (average > 1 hour) Video Answer Search challenges, highlighting the need for open-ended question evaluation. Our experiments show FALCONEye's superior performance than the state-of-the-art in FALCON-Bench, and similar or better performance in related benchmarks.
NORA: A Small Open-Sourced Generalist Vision Language Action Model for Embodied Tasks
Existing Visual-Language-Action (VLA) models have shown promising performance in zero-shot scenarios, demonstrating impressive task execution and reasoning capabilities. However, a significant challenge arises from the limitations of visual encoding, which can result in failures during tasks such as object grasping. Moreover, these models typically suffer from high computational overhead due to their large sizes, often exceeding 7B parameters. While these models excel in reasoning and task planning, the substantial computational overhead they incur makes them impractical for real-time robotic environments, where speed and efficiency are paramount. To address the limitations of existing VLA models, we propose NORA, a 3B-parameter model designed to reduce computational overhead while maintaining strong task performance. NORA adopts the Qwen-2.5-VL-3B multimodal model as its backbone, leveraging its superior visual-semantic understanding to enhance visual reasoning and action grounding. Additionally, our is trained on 970k real-world robot demonstrations and equipped with the FAST+ tokenizer for efficient action sequence generation. Experimental results demonstrate that NORA outperforms existing large-scale VLA models, achieving better task performance with significantly reduced computational overhead, making it a more practical solution for real-time robotic autonomy.
Transferring Knowledge from Large Foundation Models to Small Downstream Models
How do we transfer the relevant knowledge from ever larger foundation models into small, task-specific downstream models that can run at much lower costs? Standard transfer learning using pre-trained weights as the initialization transfers limited information and commits us to often massive pre-trained architectures. This procedure also precludes combining multiple pre-trained models that learn complementary information. To address these shortcomings, we introduce Adaptive Feature Transfer (AFT). Instead of transferring weights, AFT operates purely on features, thereby decoupling the choice of the pre-trained model from the smaller downstream model. Rather than indiscriminately compressing all pre-trained features, AFT adaptively transfers pre-trained features that are most useful for performing the downstream task, using a simple regularization that adds minimal overhead. Across multiple vision, language, and multi-modal datasets, AFT achieves significantly better downstream performance compared to alternatives with a similar computational cost. Furthermore, AFT reliably translates improvement in pre-trained models into improvement in downstream performance, even if the downstream model is over 50times smaller, and can effectively transfer complementary information learned by multiple pre-trained models.
Vision-Language Model for Object Detection and Segmentation: A Review and Evaluation
Vision-Language Model (VLM) have gained widespread adoption in Open-Vocabulary (OV) object detection and segmentation tasks. Despite they have shown promise on OV-related tasks, their effectiveness in conventional vision tasks has thus far been unevaluated. In this work, we present the systematic review of VLM-based detection and segmentation, view VLM as the foundational model and conduct comprehensive evaluations across multiple downstream tasks for the first time: 1) The evaluation spans eight detection scenarios (closed-set detection, domain adaptation, crowded objects, etc.) and eight segmentation scenarios (few-shot, open-world, small object, etc.), revealing distinct performance advantages and limitations of various VLM architectures across tasks. 2) As for detection tasks, we evaluate VLMs under three finetuning granularities: zero prediction, visual fine-tuning, and text prompt, and further analyze how different finetuning strategies impact performance under varied task. 3) Based on empirical findings, we provide in-depth analysis of the correlations between task characteristics, model architectures, and training methodologies, offering insights for future VLM design. 4) We believe that this work shall be valuable to the pattern recognition experts working in the fields of computer vision, multimodal learning, and vision foundation models by introducing them to the problem, and familiarizing them with the current status of the progress while providing promising directions for future research. A project associated with this review and evaluation has been created at https://github.com/better-chao/perceptual_abilities_evaluation.
MMMModal -- Multi-Images Multi-Audio Multi-turn Multi-Modal
Our contribution introduces a groundbreaking multimodal large language model designed to comprehend multi-images, multi-audio, and multi-images-multi-audio within a single multiturn session. Leveraging state-of-the-art models, we utilize the SigLIP encoder for visual inputs and the Whisper Encoder for audio inputs. Notably, this multimodal large language model is bilingual, proficient in understanding both English and Malay simultaneously. We proudly unveil two versions of this model: TinyLlama with 1.1B parameters, and Mistral with 7B parameters. With its ability to navigate diverse modalities and languages, our model represents a significant advancement for the Malaysian context and beyond. All models released at https://huggingface.co/collections/mesolitica/multimodal-malaysian-llm-65c6f893e03f78fa9e5c8859
MM-LLMs: Recent Advances in MultiModal Large Language Models
In the past year, MultiModal Large Language Models (MM-LLMs) have undergone substantial advancements, augmenting off-the-shelf LLMs to support MM inputs or outputs via cost-effective training strategies. The resulting models not only preserve the inherent reasoning and decision-making capabilities of LLMs but also empower a diverse range of MM tasks. In this paper, we provide a comprehensive survey aimed at facilitating further research of MM-LLMs. Specifically, we first outline general design formulations for model architecture and training pipeline. Subsequently, we provide brief introductions of 26 existing MM-LLMs, each characterized by its specific formulations. Additionally, we review the performance of MM-LLMs on mainstream benchmarks and summarize key training recipes to enhance the potency of MM-LLMs. Lastly, we explore promising directions for MM-LLMs while concurrently maintaining a real-time tracking website for the latest developments in the field. We hope that this survey contributes to the ongoing advancement of the MM-LLMs domain.
Mini Minds: Exploring Bebeshka and Zlata Baby Models
In this paper, we describe the University of Lyon 2 submission to the Strict-Small track of the BabyLM competition. The shared task is created with an emphasis on small-scale language modelling from scratch on limited-size data and human language acquisition. Dataset released for the Strict-Small track has 10M words, which is comparable to children's vocabulary size. We approach the task with an architecture search, minimizing masked language modelling loss on the data of the shared task. Having found an optimal configuration, we introduce two small-size language models (LMs) that were submitted for evaluation, a 4-layer encoder with 8 attention heads and a 6-layer decoder model with 12 heads which we term Bebeshka and Zlata, respectively. Despite being half the scale of the baseline LMs, our proposed models achieve comparable performance. We further explore the applicability of small-scale language models in tasks involving moral judgment, aligning their predictions with human values. These findings highlight the potential of compact LMs in addressing practical language understanding tasks.
Some Like It Small: Czech Semantic Embedding Models for Industry Applications
This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance.
Improving Text Embeddings for Smaller Language Models Using Contrastive Fine-tuning
While Large Language Models show remarkable performance in natural language understanding, their resource-intensive nature makes them less accessible. In contrast, smaller language models such as MiniCPM offer more sustainable scalability, but often underperform without specialized optimization. In this paper, we explore the enhancement of smaller language models through the improvement of their text embeddings. We select three language models, MiniCPM, Phi-2, and Gemma, to conduct contrastive fine-tuning on the NLI dataset. Our results demonstrate that this fine-tuning method enhances the quality of text embeddings for all three models across various benchmarks, with MiniCPM showing the most significant improvements of an average 56.33\% performance gain. The contrastive fine-tuning code is publicly available at https://github.com/trapoom555/Language-Model-STS-CFT.
UniRAG: Universal Retrieval Augmentation for Multi-Modal Large Language Models
Recently, Multi-Modal(MM) Large Language Models(LLMs) have unlocked many complex use-cases that require MM understanding (e.g., image captioning or visual question answering) and MM generation (e.g., text-guided image generation or editing) capabilities. To further improve the output fidelity of MM-LLMs we introduce the model-agnostic UniRAG technique that adds relevant retrieved information to prompts as few-shot examples during inference. Unlike the common belief that Retrieval Augmentation (RA) mainly improves generation or understanding of uncommon entities, our evaluation results on the MSCOCO dataset with common entities show that both proprietary models like GPT4 and Gemini-Pro and smaller open-source models like Llava, LaVIT, and Emu2 significantly enhance their generation quality when their input prompts are augmented with relevant information retrieved by MM retrievers like UniIR models.
A Survey of Small Language Models
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques. We propose a novel taxonomy for categorizing the methods used to optimize SLMs, including model compression, pruning, and quantization techniques. We summarize the benchmark datasets that are useful for benchmarking SLMs along with the evaluation metrics commonly used. Additionally, we highlight key open challenges that remain to be addressed. Our survey aims to serve as a valuable resource for researchers and practitioners interested in developing and deploying small yet efficient language models.
TinyStories: How Small Can Language Models Be and Still Speak Coherent English?
Language models (LMs) are powerful tools for natural language processing, but they often struggle to produce coherent and fluent text when they are small. Models with around 125M parameters such as GPT-Neo (small) or GPT-2 (small) can rarely generate coherent and consistent English text beyond a few words even after extensive training. This raises the question of whether the emergence of the ability to produce coherent English text only occurs at larger scales (with hundreds of millions of parameters or more) and complex architectures (with many layers of global attention). In this work, we introduce TinyStories, a synthetic dataset of short stories that only contain words that a typical 3 to 4-year-olds usually understand, generated by GPT-3.5 and GPT-4. We show that TinyStories can be used to train and evaluate LMs that are much smaller than the state-of-the-art models (below 10 million total parameters), or have much simpler architectures (with only one transformer block), yet still produce fluent and consistent stories with several paragraphs that are diverse and have almost perfect grammar, and demonstrate reasoning capabilities. We also introduce a new paradigm for the evaluation of language models: We suggest a framework which uses GPT-4 to grade the content generated by these models as if those were stories written by students and graded by a (human) teacher. This new paradigm overcomes the flaws of standard benchmarks which often requires the model's output to be very structures, and moreover provides a multidimensional score for the model, providing scores for different capabilities such as grammar, creativity and consistency. We hope that TinyStories can facilitate the development, analysis and research of LMs, especially for low-resource or specialized domains, and shed light on the emergence of language capabilities in LMs.
Nugget: Neural Agglomerative Embeddings of Text
Embedding text sequences is a widespread requirement in modern language understanding. Existing approaches focus largely on constant-size representations. This is problematic, as the amount of information contained in text often varies with the length of the input. We propose a solution called Nugget, which encodes language into a representation based on a dynamically selected subset of input tokens. These nuggets are learned through tasks like autoencoding and machine translation, and intuitively segment language into meaningful units. We demonstrate Nugget outperforms related approaches in tasks involving semantic comparison. Finally, we illustrate these compact units allow for expanding the contextual window of a language model (LM), suggesting new future LMs that can condition on significantly larger amounts of content.
Generating Images with Multimodal Language Models
We propose a method to fuse frozen text-only large language models (LLMs) with pre-trained image encoder and decoder models, by mapping between their embedding spaces. Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue. Ours is the first approach capable of conditioning on arbitrarily interleaved image and text inputs to generate coherent image (and text) outputs. To achieve strong performance on image generation, we propose an efficient mapping network to ground the LLM to an off-the-shelf text-to-image generation model. This mapping network translates hidden representations of text into the embedding space of the visual models, enabling us to leverage the strong text representations of the LLM for visual outputs. Our approach outperforms baseline generation models on tasks with longer and more complex language. In addition to novel image generation, our model is also capable of image retrieval from a prespecified dataset, and decides whether to retrieve or generate at inference time. This is done with a learnt decision module which conditions on the hidden representations of the LLM. Our model exhibits a wider range of capabilities compared to prior multimodal language models. It can process image-and-text inputs, and produce retrieved images, generated images, and generated text -- outperforming non-LLM based generation models across several text-to-image tasks that measure context dependence.
ToddlerBERTa: Exploiting BabyBERTa for Grammar Learning and Language Understanding
We present ToddlerBERTa, a BabyBERTa-like language model, exploring its capabilities through five different models with varied hyperparameters. Evaluating on BLiMP, SuperGLUE, MSGS, and a Supplement benchmark from the BabyLM challenge, we find that smaller models can excel in specific tasks, while larger models perform well with substantial data. Despite training on a smaller dataset, ToddlerBERTa demonstrates commendable performance, rivalling the state-of-the-art RoBERTa-base. The model showcases robust language understanding, even with single-sentence pretraining, and competes with baselines that leverage broader contextual information. Our work provides insights into hyperparameter choices, and data utilization, contributing to the advancement of language models.
Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
Small Language Models (SLMs) offer efficient alternatives to LLMs for specific domains. The 2023 TinyStories study developed an English dataset that allows SLMs with 1 to 10 million parameters to produce coherent outputs. Our research expands this framework by translating the original dataset into Indian languages and creating synthetic data using LLMs. We focus on Hindi, Marathi, and Bengali, evaluating SLMs for regional language processing and understanding linguistic complexity. We show that SLMs efficiently process regional languages with significantly fewer parameters than LLMs, providing a complementary framework for ``inference based evaluation" of tokenization strategies and linguistic complexity. Our analysis shows that language-specific tokenizers outperform general-purpose ones for Indian languages. Empirical validations, supported by information-theoretic and morphological analyses, provides fundamental understanding behind the better performance of Hindi models over Marathi and Bengali. Additionally, we show that synthetic datasets outperform translated content for training SLMs. Correlation analyses reveal cross-linguistic patterns and language-specific relationships between creativity, grammatical precision, and narrative completeness. These findings advance both the practical application of SLMs to underserved languages and our theoretical understanding of neural language development.
Personalized Multimodal Large Language Models: A Survey
Multimodal Large Language Models (MLLMs) have become increasingly important due to their state-of-the-art performance and ability to integrate multiple data modalities, such as text, images, and audio, to perform complex tasks with high accuracy. This paper presents a comprehensive survey on personalized multimodal large language models, focusing on their architecture, training methods, and applications. We propose an intuitive taxonomy for categorizing the techniques used to personalize MLLMs to individual users, and discuss the techniques accordingly. Furthermore, we discuss how such techniques can be combined or adapted when appropriate, highlighting their advantages and underlying rationale. We also provide a succinct summary of personalization tasks investigated in existing research, along with the evaluation metrics commonly used. Additionally, we summarize the datasets that are useful for benchmarking personalized MLLMs. Finally, we outline critical open challenges. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and advance the development of personalized multimodal large language models.
Multiple Choice Learning of Low Rank Adapters for Language Modeling
We propose LoRA-MCL, a training scheme that extends next-token prediction in language models with a method designed to decode diverse, plausible sentence continuations at inference time. Traditional language modeling is an intrinsically ill-posed problem: given a context, multiple futures may be equally plausible. Our approach leverages Multiple Choice Learning (MCL) and the Winner-Takes-All (WTA) loss to efficiently handle ambiguity through Low-Rank Adaptation (LoRA). We provide a theoretical interpretation of applying Multiple Choice Learning to Language Modeling, assuming the data is generated from a mixture of distributions. To illustrate the proposed approach, we use data sampled from mixtures of Markov chains. We then demonstrate with extensive experiments on real-world visual and audio captioning tasks that our method achieves high diversity and relevance in generated outputs.
Sparsity Meets Similarity: Leveraging Long-Tail Distribution for Dynamic Optimized Token Representation in Multimodal Large Language Models
Recently, multimodal large language models (MM-LLMs) have achieved significant success in various tasks, but their high computational costs limit widespread application. The main computational burden arises from processing concatenated text and visual tokens in the LLM layer, where input token length directly affects efficiency. Our analysis of visual tokens reveals that their similarity to the CLS token follows a long-tail distribution, with only a few showing high similarity. To address this, we propose a dynamic pruning algorithm that identifies the inflection point in the visual CLS token similarity curve, enabling effective trimming of visual markers to accelerate model performance. Additionally, we perform a second round of pruning in the LLM layer, filtering out low-correlation tokens through the interaction between visual and textual features. Experimental results demonstrate that our method achieves performance comparable to the original while utilizing only 22% of the original token quantity. Our source code will be made publicly available upon acceptance.
DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral Planning States for Autonomous Driving
Large language models (LLMs) have opened up new possibilities for intelligent agents, endowing them with human-like thinking and cognitive abilities. In this work, we delve into the potential of large language models (LLMs) in autonomous driving (AD). We introduce DriveMLM, an LLM-based AD framework that can perform close-loop autonomous driving in realistic simulators. To this end, (1) we bridge the gap between the language decisions and the vehicle control commands by standardizing the decision states according to the off-the-shelf motion planning module. (2) We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system, which uses driving rules, user commands, and inputs from various sensors (e.g., camera, lidar) as input and makes driving decisions and provide explanations; This model can plug-and-play in existing AD systems such as Apollo for close-loop driving. (3) We design an effective data engine to collect a dataset that includes decision state and corresponding explanation annotation for model training and evaluation. We conduct extensive experiments and show that our model achieves 76.1 driving score on the CARLA Town05 Long, and surpasses the Apollo baseline by 4.7 points under the same settings, demonstrating the effectiveness of our model. We hope this work can serve as a baseline for autonomous driving with LLMs. Code and models shall be released at https://github.com/OpenGVLab/DriveMLM.
Multi-modal preference alignment remedies regression of visual instruction tuning on language model
In production, multi-modal large language models (MLLMs) are expected to support multi-turn queries of interchanging image and text modalities. However, the current MLLMs trained with visual-question-answering (VQA) datasets could suffer from degradation, as VQA datasets lack the diversity and complexity of the original text instruction datasets which the underlying language model had been trained with. To address this challenging degradation, we first collect a lightweight (6k entries) VQA preference dataset where answers were annotated by Gemini for 5 quality metrics in a granular fashion, and investigate standard Supervised Fine-tuning, rejection sampling, Direct Preference Optimization (DPO), and SteerLM. Our findings indicate that the with DPO we are able to surpass instruction-following capabilities of the language model, achieving a 6.73 score on MT-Bench, compared to Vicuna's 6.57 and LLaVA's 5.99 despite small data scale. This enhancement in textual instruction proficiency correlates with boosted visual instruction performance (+4.9\% on MM-Vet, +6\% on LLaVA-Bench), with minimal alignment tax on visual knowledge benchmarks compared to previous RLHF approach. In conclusion, we propose a distillation-based multi-modal alignment model with fine-grained annotations on a small dataset that reconciles the textual and visual performance of MLLMs, restoring and boosting language capability after visual instruction tuning.
SONAR: Sentence-Level Multimodal and Language-Agnostic Representations
We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space. Our single text encoder, covering 200 languages, substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks. Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. Our encoders outperform existing speech encoders on similarity search tasks. We also provide a text decoder for 200 languages, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations. Our text-to-text results are competitive compared to the state-of-the-art NLLB~1B model, despite the fixed-size bottleneck representation. Our zero-shot speech-to-text translation results compare favorably with strong supervised baselines such as Whisper.
Cache-of-Thought: Master-Apprentice Framework for Cost-Effective Vision Language Model Inference
Vision Language Models (VLMs) have achieved remarkable success in a wide range of vision applications of increasing complexity and scales, yet choosing the right VLM model size involves a trade-off between response quality and cost. While smaller VLMs are cheaper to run, they typically produce responses only marginally better than random guessing on benchmarks such as MMMU. In this paper, we propose Cache of Thought (CoT), a master apprentice framework for collaborative inference between large and small VLMs. CoT manages high quality query results from large VLMs (master) in a cache, which are then selected via a novel multi modal retrieval and in-context learning to aid the performance of small VLMs (apprentice). We extensively evaluate CoT on various widely recognized and challenging general VQA benchmarks, and show that CoT increases overall VQA performance by up to 7.7% under the same budget, and specifically boosts the performance of apprentice VLMs by up to 36.6%.
MiniGPT4-Video: Advancing Multimodal LLMs for Video Understanding with Interleaved Visual-Textual Tokens
This paper introduces MiniGPT4-Video, a multimodal Large Language Model (LLM) designed specifically for video understanding. The model is capable of processing both temporal visual and textual data, making it adept at understanding the complexities of videos. Building upon the success of MiniGPT-v2, which excelled in translating visual features into the LLM space for single images and achieved impressive results on various image-text benchmarks, this paper extends the model's capabilities to process a sequence of frames, enabling it to comprehend videos. MiniGPT4-video does not only consider visual content but also incorporates textual conversations, allowing the model to effectively answer queries involving both visual and text components. The proposed model outperforms existing state-of-the-art methods, registering gains of 4.22%, 1.13%, 20.82%, and 13.1% on the MSVD, MSRVTT, TGIF, and TVQA benchmarks respectively. Our models and code have been made publicly available here https://vision-cair.github.io/MiniGPT4-video/
MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs
State-of-the-art retrieval models typically address a straightforward search scenario, where retrieval tasks are fixed (e.g., finding a passage to answer a specific question) and only a single modality is supported for both queries and retrieved results. This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs), enabling a broader search scenario, termed universal multimodal retrieval, where multiple modalities and diverse retrieval tasks are accommodated. To this end, we first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks. Our empirical results show that the fine-tuned MLLM retriever is capable of understanding challenging queries, composed of both text and image, but underperforms a smaller CLIP retriever in cross-modal retrieval tasks due to modality bias from MLLMs. To address the issue, we propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers. Second, we propose to continually fine-tune the universal multimodal retriever to enhance its text retrieval capability while maintaining multimodal retrieval capability. As a result, our model, MM-Embed, achieves state-of-the-art performance on the multimodal retrieval benchmark M-BEIR, which spans multiple domains and tasks, while also surpassing the state-of-the-art text retrieval model, NV-Embed-v1, on MTEB retrieval benchmark. Finally, we explore to prompt the off-the-shelf MLLMs as the zero-shot rerankers to refine the ranking of the candidates from the multimodal retriever. We find that through prompt-and-reranking, MLLMs can further improve multimodal retrieval when the user queries (e.g., text-image composed queries) are more complex and challenging to understand. These findings also pave the way to advance universal multimodal retrieval in the future.
Multimodal Few-Shot Learning with Frozen Language Models
When trained at sufficient scale, auto-regressive language models exhibit the notable ability to learn a new language task after being prompted with just a few examples. Here, we present a simple, yet effective, approach for transferring this few-shot learning ability to a multimodal setting (vision and language). Using aligned image and caption data, we train a vision encoder to represent each image as a sequence of continuous embeddings, such that a pre-trained, frozen language model prompted with this prefix generates the appropriate caption. The resulting system is a multimodal few-shot learner, with the surprising ability to learn a variety of new tasks when conditioned on examples, represented as a sequence of multiple interleaved image and text embeddings. We demonstrate that it can rapidly learn words for new objects and novel visual categories, do visual question-answering with only a handful of examples, and make use of outside knowledge, by measuring a single model on a variety of established and new benchmarks.
LEOPARD : A Vision Language Model For Text-Rich Multi-Image Tasks
Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose \OurMethod, a MLLM designed specifically for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of the input images. Experiments across a wide range of benchmarks demonstrate our model's superior capabilities in text-rich, multi-image evaluations and competitive performance in general domain evaluations.
Findings of the Second BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora
The BabyLM Challenge is a community effort to close the data-efficiency gap between human and computational language learners. Participants compete to optimize language model training on a fixed language data budget of 100 million words or less. This year, we released improved text corpora, as well as a vision-and-language corpus to facilitate research into cognitively plausible vision language models. Submissions were compared on evaluation tasks targeting grammatical ability, (visual) question answering, pragmatic abilities, and grounding, among other abilities. Participants could submit to a 10M-word text-only track, a 100M-word text-only track, and/or a 100M-word and image multimodal track. From 31 submissions employing diverse methods, a hybrid causal-masked language model architecture outperformed other approaches. No submissions outperformed the baselines in the multimodal track. In follow-up analyses, we found a strong relationship between training FLOPs and average performance across tasks, and that the best-performing submissions proposed changes to the training data, training objective, and model architecture. This year's BabyLM Challenge shows that there is still significant room for innovation in this setting, in particular for image-text modeling, but community-driven research can yield actionable insights about effective strategies for small-scale language modeling.
Yi: Open Foundation Models by 01.AI
We introduce the Yi model family, a series of language and multimodal models that demonstrate strong multi-dimensional capabilities. The Yi model family is based on 6B and 34B pretrained language models, then we extend them to chat models, 200K long context models, depth-upscaled models, and vision-language models. Our base models achieve strong performance on a wide range of benchmarks like MMLU, and our finetuned chat models deliver strong human preference rate on major evaluation platforms like AlpacaEval and Chatbot Arena. Building upon our scalable super-computing infrastructure and the classical transformer architecture, we attribute the performance of Yi models primarily to its data quality resulting from our data-engineering efforts. For pretraining, we construct 3.1 trillion tokens of English and Chinese corpora using a cascaded data deduplication and quality filtering pipeline. For finetuning, we polish a small scale (less than 10K) instruction dataset over multiple iterations such that every single instance has been verified directly by our machine learning engineers. For vision-language, we combine the chat language model with a vision transformer encoder and train the model to align visual representations to the semantic space of the language model. We further extend the context length to 200K through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. We show that extending the depth of the pretrained checkpoint through continual pretraining further improves performance. We believe that given our current results, continuing to scale up model parameters using thoroughly optimized data will lead to even stronger frontier models.
Model Composition for Multimodal Large Language Models
Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.
Small Language Models Improve Giants by Rewriting Their Outputs
Large language models (LLMs) have demonstrated impressive few-shot learning capabilities, but they often underperform compared to fine-tuned models on challenging tasks. Furthermore, their large size and restricted access only through APIs make task-specific fine-tuning impractical. Moreover, LLMs are sensitive to different aspects of prompts (e.g., the selection and order of demonstrations) and can thus require time-consuming prompt engineering. In this light, we propose a method to correct LLM outputs without relying on their weights. First, we generate a pool of candidates by few-shot prompting an LLM. Second, we refine the LLM-generated outputs using a smaller model, the LM-corrector (LMCor), which is trained to rank, combine and rewrite the candidates to produce the final target output. Our experiments demonstrate that even a small LMCor model (250M) substantially improves the few-shot performance of LLMs (62B) across diverse tasks. Moreover, we illustrate that the LMCor exhibits robustness against different prompts, thereby minimizing the need for extensive prompt engineering. Finally, we showcase that the LMCor can be seamlessly integrated with different LLMs at inference time, serving as a plug-and-play module to improve their performance.
Multilingual Sentence-T5: Scalable Sentence Encoders for Multilingual Applications
Prior work on multilingual sentence embedding has demonstrated that the efficient use of natural language inference (NLI) data to build high-performance models can outperform conventional methods. However, the potential benefits from the recent ``exponential'' growth of language models with billions of parameters have not yet been fully explored. In this paper, we introduce Multilingual Sentence T5 (m-ST5), as a larger model of NLI-based multilingual sentence embedding, by extending Sentence T5, an existing monolingual model. By employing the low-rank adaptation (LoRA) technique, we have achieved a successful scaling of the model's size to 5.7 billion parameters. We conducted experiments to evaluate the performance of sentence embedding and verified that the method outperforms the NLI-based prior approach. Furthermore, we also have confirmed a positive correlation between the size of the model and its performance. It was particularly noteworthy that languages with fewer resources or those with less linguistic similarity to English benefited more from the parameter increase. Our model is available at https://huggingface.co/pkshatech/m-ST5.
It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners
When scaled to hundreds of billions of parameters, pretrained language models such as GPT-3 (Brown et al., 2020) achieve remarkable few-shot performance. However, enormous amounts of compute are required for training and applying such big models, resulting in a large carbon footprint and making it difficult for researchers and practitioners to use them. We show that performance similar to GPT-3 can be obtained with language models that are much "greener" in that their parameter count is several orders of magnitude smaller. This is achieved by converting textual inputs into cloze questions that contain a task description, combined with gradient-based optimization; exploiting unlabeled data gives further improvements. We identify key factors required for successful natural language understanding with small language models.
Large-Scale Contextualised Language Modelling for Norwegian
We present the ongoing NorLM initiative to support the creation and use of very large contextualised language models for Norwegian (and in principle other Nordic languages), including a ready-to-use software environment, as well as an experience report for data preparation and training. This paper introduces the first large-scale monolingual language models for Norwegian, based on both the ELMo and BERT frameworks. In addition to detailing the training process, we present contrastive benchmark results on a suite of NLP tasks for Norwegian. For additional background and access to the data, models, and software, please see http://norlm.nlpl.eu
Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
BERTtime Stories: Investigating the Role of Synthetic Story Data in Language pre-training
We describe our contribution to the Strict and Strict-Small tracks of the 2nd iteration of the BabyLM Challenge. The shared task is centered around efficient pre-training given data constraints motivated by human development. In response, we study the effect of synthetic story data in language pre-training using TinyStories: a recently introduced dataset of short stories. Initially, we train GPT-Neo models on subsets of TinyStories, while varying the amount of available data. We find that, even with access to less than 100M words, the models are able to generate high-quality, original completions to a given story, and acquire substantial linguistic knowledge. To measure the effect of synthetic story data, we train LTG-BERT encoder models on a combined dataset of: a subset of TinyStories, story completions generated by GPT-Neo, and a subset of the BabyLM dataset. Our experimentation reveals that synthetic data can occasionally offer modest gains, but overall have a negative influence on linguistic understanding. Our work offers an initial study on synthesizing story data in low resource settings and underscores their potential for augmentation in data-constrained language modeling. We publicly release our models and implementation on our GitHub.
Phi-4-Mini Technical Report: Compact yet Powerful Multimodal Language Models via Mixture-of-LoRAs
We introduce Phi-4-Mini and Phi-4-Multimodal, compact yet highly capable language and multimodal models. Phi-4-Mini is a 3.8-billion-parameter language model trained on high-quality web and synthetic data, significantly outperforming recent open-source models of similar size and matching the performance of models twice its size on math and coding tasks requiring complex reasoning. This achievement is driven by a carefully curated synthetic data recipe emphasizing high-quality math and coding datasets. Compared to its predecessor, Phi-3.5-Mini, Phi-4-Mini features an expanded vocabulary size of 200K tokens to better support multilingual applications, as well as group query attention for more efficient long-sequence generation. Phi-4-Multimodal is a multimodal model that integrates text, vision, and speech/audio input modalities into a single model. Its novel modality extension approach leverages LoRA adapters and modality-specific routers to allow multiple inference modes combining various modalities without interference. For example, it now ranks first in the OpenASR leaderboard to date, although the LoRA component of the speech/audio modality has just 460 million parameters. Phi-4-Multimodal supports scenarios involving (vision + language), (vision + speech), and (speech/audio) inputs, outperforming larger vision-language and speech-language models on a wide range of tasks. Additionally, we experiment to further train Phi-4-Mini to enhance its reasoning capabilities. Despite its compact 3.8-billion-parameter size, this experimental version achieves reasoning performance on par with or surpassing significantly larger models, including DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B.
World Model on Million-Length Video And Language With RingAttention
Current language models fall short in understanding aspects of the world not easily described in words, and struggle with complex, long-form tasks. Video sequences offer valuable temporal information absent in language and static images, making them attractive for joint modeling with language. Such models could develop a understanding of both human textual knowledge and the physical world, enabling broader AI capabilities for assisting humans. However, learning from millions of tokens of video and language sequences poses challenges due to memory constraints, computational complexity, and limited datasets. To address these challenges, we curate a large dataset of diverse videos and books, utilize the RingAttention technique to scalably train on long sequences, and gradually increase context size from 4K to 1M tokens. This paper makes the following contributions: (a) Largest context size neural network: We train one of the largest context size transformers on long video and language sequences, setting new benchmarks in difficult retrieval tasks and long video understanding. (b) Solutions for overcoming vision-language training challenges, including using masked sequence packing for mixing different sequence lengths, loss weighting to balance language and vision, and model-generated QA dataset for long sequence chat. (c) A highly-optimized implementation with RingAttention, masked sequence packing, and other key features for training on millions-length multimodal sequences. (d) Fully open-sourced a family of 7B parameter models capable of processing long text documents (LWM-Text, LWM-Text-Chat) and videos (LWM, LWM-Chat) of over 1M tokens. This work paves the way for training on massive datasets of long video and language to develop understanding of both human knowledge and the multimodal world, and broader capabilities.
The (R)Evolution of Multimodal Large Language Models: A Survey
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training
In this work, we discuss building performant Multimodal Large Language Models (MLLMs). In particular, we study the importance of various architecture components and data choices. Through careful and comprehensive ablations of the image encoder, the vision language connector, and various pre-training data choices, we identified several crucial design lessons. For example, we demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data is crucial for achieving state-of-the-art (SOTA) few-shot results across multiple benchmarks, compared to other published pre-training results. Further, we show that the image encoder together with image resolution and the image token count has substantial impact, while the vision-language connector design is of comparatively negligible importance. By scaling up the presented recipe, we build MM1, a family of multimodal models up to 30B parameters, consisting of both dense models and mixture-of-experts (MoE) variants, that are SOTA in pre-training metrics and achieve competitive performance after supervised fine-tuning on a range of established multimodal benchmarks. Thanks to large-scale pre-training, MM1 enjoys appealing properties such as enhanced in-context learning, and multi-image reasoning, enabling few-shot chain-of-thought prompting.
MVL-SIB: A Massively Multilingual Vision-Language Benchmark for Cross-Modal Topical Matching
Existing multilingual vision-language (VL) benchmarks often only cover a handful of languages. Consequently, evaluations of large vision-language models (LVLMs) predominantly target high-resource languages, underscoring the need for evaluation data for low-resource languages. To address this limitation, we introduce MVL-SIB, a massively multilingual vision-language benchmark that evaluates both cross-modal and text-only topical matching across 205 languages -- over 100 more than the most multilingual existing VL benchmarks encompass. We then benchmark a range of of open-weight LVLMs together with GPT-4o(-mini) on MVL-SIB. Our results reveal that LVLMs struggle in cross-modal topic matching in lower-resource languages, performing no better than chance on languages like N'Koo. Our analysis further reveals that VL support in LVLMs declines disproportionately relative to textual support for lower-resource languages, as evidenced by comparison of cross-modal and text-only topical matching performance. We further observe that open-weight LVLMs do not benefit from representing a topic with more than one image, suggesting that these models are not yet fully effective at handling multi-image tasks. By correlating performance on MVL-SIB with other multilingual VL benchmarks, we highlight that MVL-SIB serves as a comprehensive probe of multilingual VL understanding in LVLMs.
MM1.5: Methods, Analysis & Insights from Multimodal LLM Fine-tuning
We present MM1.5, a new family of multimodal large language models (MLLMs) designed to enhance capabilities in text-rich image understanding, visual referring and grounding, and multi-image reasoning. Building upon the MM1 architecture, MM1.5 adopts a data-centric approach to model training, systematically exploring the impact of diverse data mixtures across the entire model training lifecycle. This includes high-quality OCR data and synthetic captions for continual pre-training, as well as an optimized visual instruction-tuning data mixture for supervised fine-tuning. Our models range from 1B to 30B parameters, encompassing both dense and mixture-of-experts (MoE) variants, and demonstrate that careful data curation and training strategies can yield strong performance even at small scales (1B and 3B). Additionally, we introduce two specialized variants: MM1.5-Video, designed for video understanding, and MM1.5-UI, tailored for mobile UI understanding. Through extensive empirical studies and ablations, we provide detailed insights into the training processes and decisions that inform our final designs, offering valuable guidance for future research in MLLM development.
Tiny language models
A prominent achievement of natural language processing (NLP) is its ability to understand and generate meaningful human language. This capability relies on complex feedforward transformer block architectures pre-trained on large language models (LLMs). However, LLM pre-training is currently feasible only for a few dominant companies due to the immense computational resources required, limiting broader research participation. This creates a critical need for more accessible alternatives. In this study, we explore whether tiny language models (TLMs) exhibit the same key qualitative features of LLMs. We demonstrate that TLMs exhibit a clear performance gap between pre-trained and non-pre-trained models across classification tasks, indicating the effectiveness of pre-training, even at a tiny scale. The performance gap increases with the size of the pre-training dataset and with greater overlap between tokens in the pre-training and classification datasets. Furthermore, the classification accuracy achieved by a pre-trained deep TLM architecture can be replicated through a soft committee of multiple, independently pre-trained shallow architectures, enabling low-latency TLMs without affecting classification accuracy. Our results are based on pre-training BERT-6 and variants of BERT-1 on subsets of the Wikipedia dataset and evaluating their performance on FewRel, AGNews, and DBPedia classification tasks. Future research on TLM is expected to further illuminate the mechanisms underlying NLP, especially given that its biologically inspired models suggest that TLMs may be sufficient for children or adolescents to develop language. The data and code that support the findings of this study are openly available on https://github.com/Rg32601/Tiny-Language-Models .
E5-V: Universal Embeddings with Multimodal Large Language Models
Multimodal large language models (MLLMs) have shown promising advancements in general visual and language understanding. However, the representation of multimodal information using MLLMs remains largely unexplored. In this work, we introduce a new framework, E5-V, designed to adapt MLLMs for achieving universal multimodal embeddings. Our findings highlight the significant potential of MLLMs in representing multimodal inputs compared to previous approaches. By leveraging MLLMs with prompts, E5-V effectively bridges the modality gap between different types of inputs, demonstrating strong performance in multimodal embeddings even without fine-tuning. We propose a single modality training approach for E5-V, where the model is trained exclusively on text pairs. This method demonstrates significant improvements over traditional multimodal training on image-text pairs, while reducing training costs by approximately 95%. Additionally, this approach eliminates the need for costly multimodal training data collection. Extensive experiments across four types of tasks demonstrate the effectiveness of E5-V. As a universal multimodal model, E5-V not only achieves but often surpasses state-of-the-art performance in each task, despite being trained on a single modality.
A Survey on Mixture of Experts
Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE. This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations, hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice, and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge developments in MoE research, we have established a resource repository accessible at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts.
Prompts as Auto-Optimized Training Hyperparameters: Training Best-in-Class IR Models from Scratch with 10 Gold Labels
We develop a method for training small-scale (under 100M parameter) neural information retrieval models with as few as 10 gold relevance labels. The method depends on generating synthetic queries for documents using a language model (LM), and the key step is that we automatically optimize the LM prompt that is used to generate these queries based on training quality. In experiments with the BIRCO benchmark, we find that models trained with our method outperform RankZephyr and are competitive with RankLLama, both of which are 7B parameter models trained on over 100K labels. These findings point to the power of automatic prompt optimization for synthetic dataset generation.
Making Pre-trained Language Models Better Few-shot Learners
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.
SpiRit-LM: Interleaved Spoken and Written Language Model
We introduce SPIRIT-LM, a foundation multimodal language model that freely mixes text and speech. Our model is based on a pretrained text language model that we extend to the speech modality by continuously training it on text and speech units. Speech and text sequences are concatenated as a single set of tokens, and trained with a word-level interleaving method using a small automatically-curated speech-text parallel corpus. SPIRIT-LM comes in two versions: a BASE version that uses speech semantic units and an EXPRESSIVE version that models expressivity using pitch and style units in addition to the semantic units. For both versions, the text is encoded with subword BPE tokens. The resulting model displays both the semantic abilities of text models and the expressive abilities of speech models. Additionally, we demonstrate that SPIRIT-LM is able to learn new tasks in a few-shot fashion across modalities (i.e. ASR, TTS, Speech Classification).
MELLA: Bridging Linguistic Capability and Cultural Groundedness for Low-Resource Language MLLMs
Multimodal Large Language Models (MLLMs) have shown remarkable performance in high-resource languages. However, their effectiveness diminishes significantly in the contexts of low-resource languages. Current multilingual enhancement methods are often limited to text modality or rely solely on machine translation. While such approaches help models acquire basic linguistic capabilities and produce "thin descriptions", they neglect the importance of multimodal informativeness and cultural groundedness, both of which are crucial for serving low-resource language users effectively. To bridge this gap, in this study, we identify two significant objectives for a truly effective MLLM in low-resource language settings, namely 1) linguistic capability and 2) cultural groundedness, placing special emphasis on cultural awareness. To achieve these dual objectives, we propose a dual-source strategy that guides the collection of data tailored to each goal, sourcing native web alt-text for culture and MLLM-generated captions for linguistics. As a concrete implementation, we introduce MELLA, a multimodal, multilingual dataset. Experiment results show that after fine-tuning on MELLA, there is a general performance improvement for the eight languages on various MLLM backbones, with models producing "thick descriptions". We verify that the performance gains are from both cultural knowledge enhancement and linguistic capability enhancement. Our dataset can be found at https://opendatalab.com/applyMultilingualCorpus.
Probing Representations Learned by Multimodal Recurrent and Transformer Models
Recent literature shows that large-scale language modeling provides excellent reusable sentence representations with both recurrent and self-attentive architectures. However, there has been less clarity on the commonalities and differences in the representational properties induced by the two architectures. It also has been shown that visual information serves as one of the means for grounding sentence representations. In this paper, we present a meta-study assessing the representational quality of models where the training signal is obtained from different modalities, in particular, language modeling, image features prediction, and both textual and multimodal machine translation. We evaluate textual and visual features of sentence representations obtained using predominant approaches on image retrieval and semantic textual similarity. Our experiments reveal that on moderate-sized datasets, a sentence counterpart in a target language or visual modality provides much stronger training signal for sentence representation than language modeling. Importantly, we observe that while the Transformer models achieve superior machine translation quality, representations from the recurrent neural network based models perform significantly better over tasks focused on semantic relevance.
LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. Our project is public at https://github.com/baochi0212/LaVy
In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation
The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. In this paper, we focus on machine translation (MT), a task that has been shown to benefit from in-context translation examples. However no systematic studies have been published on how best to select examples, and mixed results have been reported on the usefulness of similarity-based selection over random selection. We provide a study covering multiple LLMs and multiple in-context example retrieval strategies, comparing multilingual sentence embeddings. We cover several language directions, representing different levels of language resourcedness (English into French, German, Swahili and Wolof). Contrarily to previously published results, we find that sentence embedding similarity can improve MT, especially for low-resource language directions, and discuss the balance between selection pool diversity and quality. We also highlight potential problems with the evaluation of LLM-based MT and suggest a more appropriate evaluation protocol, adapting the COMET metric to the evaluation of LLMs. Code and outputs are freely available at https://github.com/ArmelRandy/ICL-MT.
A Survey on Benchmarks of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are gaining increasing popularity in both academia and industry due to their remarkable performance in various applications such as visual question answering, visual perception, understanding, and reasoning. Over the past few years, significant efforts have been made to examine MLLMs from multiple perspectives. This paper presents a comprehensive review of 180 benchmarks and evaluation for MLLMs, focusing on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities. Finally, we discuss the limitations of the current evaluation methods for MLLMs and explore promising future directions. Our key argument is that evaluation should be regarded as a crucial discipline to better support the development of MLLMs. For more details, please visit our GitHub repository: https://github.com/swordlidev/Evaluation-Multimodal-LLMs-Survey.
Zero-shot Multimodal Document Retrieval via Cross-modal Question Generation
Rapid advances in Multimodal Large Language Models (MLLMs) have expanded information retrieval beyond purely textual inputs, enabling retrieval from complex real world documents that combine text and visuals. However, most documents are private either owned by individuals or confined within corporate silos and current retrievers struggle when faced with unseen domains or languages. To address this gap, we introduce PREMIR, a simple yet effective framework that leverages the broad knowledge of an MLLM to generate cross modal pre questions (preQs) before retrieval. Unlike earlier multimodal retrievers that compare embeddings in a single vector space, PREMIR leverages preQs from multiple complementary modalities to expand the scope of matching to the token level. Experiments show that PREMIR achieves state of the art performance on out of distribution benchmarks, including closed domain and multilingual settings, outperforming strong baselines across all retrieval metrics. We confirm the contribution of each component through in depth ablation studies, and qualitative analyses of the generated preQs further highlight the model's robustness in real world settings.
Boosting Text-To-Image Generation via Multilingual Prompting in Large Multimodal Models
Previous work on augmenting large multimodal models (LMMs) for text-to-image (T2I) generation has focused on enriching the input space of in-context learning (ICL). This includes providing a few demonstrations and optimizing image descriptions to be more detailed and logical. However, as demand for more complex and flexible image descriptions grows, enhancing comprehension of input text within the ICL paradigm remains a critical yet underexplored area. In this work, we extend this line of research by constructing parallel multilingual prompts aimed at harnessing the multilingual capabilities of LMMs. More specifically, we translate the input text into several languages and provide the models with both the original text and the translations. Experiments on two LMMs across 3 benchmarks show that our method, PMT2I, achieves superior performance in general, compositional, and fine-grained assessments, especially in human preference alignment. Additionally, with its advantage of generating more diverse images, PMT2I significantly outperforms baseline prompts when incorporated with reranking methods. Our code and parallel multilingual data can be found at https://github.com/takagi97/PMT2I.
Fietje: An open, efficient LLM for Dutch
This paper introduces Fietje, a family of small language models (SLMs) specifically designed for the Dutch language. The model is based on Phi 2, an English-centric model of 2.7 billion parameters. Fietje demonstrated competitive results with larger language models upon its release. A core emphasis of this work is transparency and reproducibility: Fietje is fully open-source, with model weights, datasets, training, and evaluation code all publicly accessible. The paper discusses the performance of Fietje and many other models on an extensive evaluation suite of benchmarks on reasoning, sentiment analysis, world knowledge, linguistic acceptability and word sense disambiguation. Evaluation results illustrate the rapid progress in the field of LLMs, where recent small models outperform older, larger models that were fine-tuned for Dutch. This trend signals an exciting future for Dutch language processing, suggesting that even compact LLMs are becoming increasingly capable. Furthermore, ongoing and future efforts to adapt LLMs to Dutch are poised to enhance these models even further, broadening their applicability and accessibility. Fietje is only an intermediate step in improving accessibility to language technology for users of the Dutch language.
Key-Element-Informed sLLM Tuning for Document Summarization
Remarkable advances in large language models (LLMs) have enabled high-quality text summarization. However, this capability is currently accessible only through LLMs of substantial size or proprietary LLMs with usage fees. In response, smaller-scale LLMs (sLLMs) of easy accessibility and low costs have been extensively studied, yet they often suffer from missing key information and entities, i.e., low relevance, in particular, when input documents are long. We hence propose a key-element-informed instruction tuning for summarization, so-called KEITSum, which identifies key elements in documents and instructs sLLM to generate summaries capturing these key elements. Experimental results on dialogue and news datasets demonstrate that sLLM with KEITSum indeed provides high-quality summarization with higher relevance and less hallucinations, competitive to proprietary LLM.
RONA: Pragmatically Diverse Image Captioning with Coherence Relations
Writing Assistants (e.g., Grammarly, Microsoft Copilot) traditionally generate diverse image captions by employing syntactic and semantic variations to describe image components. However, human-written captions prioritize conveying a central message alongside visual descriptions using pragmatic cues. To enhance pragmatic diversity, it is essential to explore alternative ways of communicating these messages in conjunction with visual content. To address this challenge, we propose RONA, a novel prompting strategy for Multi-modal Large Language Models (MLLM) that leverages Coherence Relations as an axis for variation. We demonstrate that RONA generates captions with better overall diversity and ground-truth alignment, compared to MLLM baselines across multiple domains. Our code is available at: https://github.com/aashish2000/RONA
A Concept-Based Explainability Framework for Large Multimodal Models
Large multimodal models (LMMs) combine unimodal encoders and large language models (LLMs) to perform multimodal tasks. Despite recent advancements towards the interpretability of these models, understanding internal representations of LMMs remains largely a mystery. In this paper, we present a novel framework for the interpretation of LMMs. We propose a dictionary learning based approach, applied to the representation of tokens. The elements of the learned dictionary correspond to our proposed concepts. We show that these concepts are well semantically grounded in both vision and text. Thus we refer to these as ``multi-modal concepts''. We qualitatively and quantitatively evaluate the results of the learnt concepts. We show that the extracted multimodal concepts are useful to interpret representations of test samples. Finally, we evaluate the disentanglement between different concepts and the quality of grounding concepts visually and textually. Our code is publicly available at https://github.com/mshukor/xl-vlms
Multimodal Needle in a Haystack: Benchmarking Long-Context Capability of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have shown significant promise in various applications, leading to broad interest from researchers and practitioners alike. However, a comprehensive evaluation of their long-context capabilities remains underexplored. To address these gaps, we introduce the MultiModal Needle-in-a-haystack (MMNeedle) benchmark, specifically designed to assess the long-context capabilities of MLLMs. Besides multi-image input, we employ image stitching to further increase the input context length, and develop a protocol to automatically generate labels for sub-image level retrieval. Essentially, MMNeedle evaluates MLLMs by stress-testing their capability to locate a target sub-image (needle) within a set of images (haystack) based on textual instructions and descriptions of image contents. This setup necessitates an advanced understanding of extensive visual contexts and effective information retrieval within long-context image inputs. With this benchmark, we evaluate state-of-the-art MLLMs, encompassing both API-based and open-source models. The findings reveal that GPT-4o consistently surpasses other models in long-context scenarios, but suffers from hallucination problems in negative samples, i.e., when needles are not in the haystacks. Our comprehensive long-context evaluation of MLLMs also sheds lights on the considerable performance gap between API-based and open-source models. All the code, data, and instructions required to reproduce the main results are available at https://github.com/Wang-ML-Lab/multimodal-needle-in-a-haystack.
Small Language Models: Architectures, Techniques, Evaluation, Problems and Future Adaptation
Small Language Models (SLMs) have gained substantial attention due to their ability to execute diverse language tasks successfully while using fewer computer resources. These models are particularly ideal for deployment in limited environments, such as mobile devices, on-device processing, and edge systems. In this study, we present a complete assessment of SLMs, focussing on their design frameworks, training approaches, and techniques for lowering model size and complexity. We offer a novel classification system to organize the optimization approaches applied for SLMs, encompassing strategies like pruning, quantization, and model compression. Furthermore, we assemble SLM's studies of evaluation suite with some existing datasets, establishing a rigorous platform for measuring SLM capabilities. Alongside this, we discuss the important difficulties that remain unresolved in this sector, including trade-offs between efficiency and performance, and we suggest directions for future study. We anticipate this study to serve as a beneficial guide for researchers and practitioners who aim to construct compact, efficient, and high-performing language models.
Multimodal Large Language Models for Text-rich Image Understanding: A Comprehensive Review
The recent emergence of Multi-modal Large Language Models (MLLMs) has introduced a new dimension to the Text-rich Image Understanding (TIU) field, with models demonstrating impressive and inspiring performance. However, their rapid evolution and widespread adoption have made it increasingly challenging to keep up with the latest advancements. To address this, we present a systematic and comprehensive survey to facilitate further research on TIU MLLMs. Initially, we outline the timeline, architecture, and pipeline of nearly all TIU MLLMs. Then, we review the performance of selected models on mainstream benchmarks. Finally, we explore promising directions, challenges, and limitations within the field.
M3P: Learning Universal Representations via Multitask Multilingual Multimodal Pre-training
We present M3P, a Multitask Multilingual Multimodal Pre-trained model that combines multilingual pre-training and multimodal pre-training into a unified framework via multitask pre-training. Our goal is to learn universal representations that can map objects occurred in different modalities or texts expressed in different languages into a common semantic space. In addition, to explicitly encourage fine-grained alignment between images and non-English languages, we also propose Multimodal Code-switched Training (MCT) to combine monolingual pre-training and multimodal pre-training via a code-switch strategy. Experiments are performed on the multilingual image retrieval task across two benchmark datasets, including MSCOCO and Multi30K. M3P can achieve comparable results for English and new state-of-the-art results for non-English languages.
Towards Text-Image Interleaved Retrieval
Current multimodal information retrieval studies mainly focus on single-image inputs, which limits real-world applications involving multiple images and text-image interleaved content. In this work, we introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences, and the model is required to understand the semantics from the interleaved context for effective retrieval. We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries. To explore the task, we adapt several off-the-shelf retrievers and build a dense baseline by interleaved multimodal large language model (MLLM). We then propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity, to address the challenge of excessive visual tokens in MLLM-based TIIR models. Experiments demonstrate that simple adaption of existing models does not consistently yield effective results. Our MME achieves significant improvements over the baseline by substantially fewer visual tokens. We provide extensive analysis and will release the dataset and code to facilitate future research.
Robust Open-Vocabulary Translation from Visual Text Representations
Machine translation models have discrete vocabularies and commonly use subword segmentation techniques to achieve an 'open vocabulary.' This approach relies on consistent and correct underlying unicode sequences, and makes models susceptible to degradation from common types of noise and variation. Motivated by the robustness of human language processing, we propose the use of visual text representations, which dispense with a finite set of text embeddings in favor of continuous vocabularies created by processing visually rendered text with sliding windows. We show that models using visual text representations approach or match performance of traditional text models on small and larger datasets. More importantly, models with visual embeddings demonstrate significant robustness to varied types of noise, achieving e.g., 25.9 BLEU on a character permuted German-English task where subword models degrade to 1.9.
LoRA-Contextualizing Adaptation of Large Multimodal Models for Long Document Understanding
Large multimodal models (LMMs) have recently shown great progress in text-rich image understanding, yet they still struggle with complex, multi-page, visually-rich documents. Traditional methods using document parsers for retrieval-augmented generation suffer from performance and efficiency limitations, while directly presenting all pages to LMMs leads to inefficiencies, especially with lengthy documents. In this work, we present a novel framework named LoRA-Contextualizing Adaptation of Large multimodal models (LoCAL), which broadens the capabilities of any LMM to support long-document understanding. We demonstrate that LMMs can effectively serve as multimodal retrievers, fetching relevant pages to answer user questions based on these pages. LoCAL is implemented with two specific LMM adapters: one for evidence page retrieval and another for question answering. Empirical results show state-of-the-art performance on public benchmarks, demonstrating the effectiveness of LoCAL.
Developing and Evaluating Tiny to Medium-Sized Turkish BERT Models
This study introduces and evaluates tiny, mini, small, and medium-sized uncased Turkish BERT models, aiming to bridge the research gap in less-resourced languages. We trained these models on a diverse dataset encompassing over 75GB of text from multiple sources and tested them on several tasks, including mask prediction, sentiment analysis, news classification, and, zero-shot classification. Despite their smaller size, our models exhibited robust performance, including zero-shot task, while ensuring computational efficiency and faster execution times. Our findings provide valuable insights into the development and application of smaller language models, especially in the context of the Turkish language.
MULTI: Multimodal Understanding Leaderboard with Text and Images
Rapid progress in multimodal large language models (MLLMs) highlights the need to introduce challenging yet realistic benchmarks to the academic community, while existing benchmarks primarily focus on understanding simple natural images and short context. In this paper, we present MULTI as a cutting-edge benchmark for evaluating MLLMs on understanding complex tables and images, and reasoning with long context. MULTI provides multimodal inputs and requires responses that are either precise or open-ended, reflecting real-life examination styles. MULTI includes over 18,000 questions and challenges MLLMs with a variety of tasks, ranging from formula derivation to image detail analysis and cross-modality reasoning. We also introduce MULTI-Elite, a 500-question selected hard subset, and MULTI-Extend, with more than 4,500 external knowledge context pieces. Our evaluation indicates significant potential for MLLM advancement, with GPT-4V achieving a 63.7% accuracy rate on MULTI, in contrast to other MLLMs scoring between 28.5% and 55.3%. MULTI serves not only as a robust evaluation platform but also paves the way for the development of expert-level AI.
A Review of Multi-Modal Large Language and Vision Models
Large Language Models (LLMs) have recently emerged as a focal point of research and application, driven by their unprecedented ability to understand and generate text with human-like quality. Even more recently, LLMs have been extended into multi-modal large language models (MM-LLMs) which extends their capabilities to deal with image, video and audio information, in addition to text. This opens up applications like text-to-video generation, image captioning, text-to-speech, and more and is achieved either by retro-fitting an LLM with multi-modal capabilities, or building a MM-LLM from scratch. This paper provides an extensive review of the current state of those LLMs with multi-modal capabilities as well as the very recent MM-LLMs. It covers the historical development of LLMs especially the advances enabled by transformer-based architectures like OpenAI's GPT series and Google's BERT, as well as the role of attention mechanisms in enhancing model performance. The paper includes coverage of the major and most important of the LLMs and MM-LLMs and also covers the techniques of model tuning, including fine-tuning and prompt engineering, which tailor pre-trained models to specific tasks or domains. Ethical considerations and challenges, such as data bias and model misuse, are also analysed to underscore the importance of responsible AI development and deployment. Finally, we discuss the implications of open-source versus proprietary models in AI research. Through this review, we provide insights into the transformative potential of MM-LLMs in various applications.
Call for Papers -- The BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus
We present the call for papers for the BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus. This shared task is intended for participants with an interest in small scale language modeling, human language acquisition, low-resource NLP, and cognitive modeling. In partnership with CoNLL and CMCL, we provide a platform for approaches to pretraining with a limited-size corpus sourced from data inspired by the input to children. The task has three tracks, two of which restrict the training data to pre-released datasets of 10M and 100M words and are dedicated to explorations of approaches such as architectural variations, self-supervised objectives, or curriculum learning. The final track only restricts the amount of text used, allowing innovation in the choice of the data, its domain, and even its modality (i.e., data from sources other than text is welcome). We will release a shared evaluation pipeline which scores models on a variety of benchmarks and tasks, including targeted syntactic evaluations and natural language understanding.
SweCTRL-Mini: a data-transparent Transformer-based large language model for controllable text generation in Swedish
We present SweCTRL-Mini, a large Swedish language model that can be used for inference and fine-tuning on a single consumer-grade GPU. The model is based on the CTRL architecture by Keskar, McCann, Varshney, Xiong, and Socher (2019), which means that users of the SweCTRL-Mini model can control the genre of the generated text by inserting special tokens in the generation prompts. SweCTRL-Mini is trained on a subset of the Swedish part of the mC4 corpus and a set of Swedish novels. In this article, we provide (1) a detailed account of the utilized training data and text pre-processing steps, to the extent that it is possible to check whether a specific phrase/source was a part of the training data, and (2) an evaluation of the model on both discriminative tasks, using automatic evaluation methods, and generative tasks, using human referees. We also compare the generative capabilities of the model with those of GPT-3. SweCTRL-Mini is fully open and available for download.
Czert -- Czech BERT-like Model for Language Representation
This paper describes the training process of the first Czech monolingual language representation models based on BERT and ALBERT architectures. We pre-train our models on more than 340K of sentences, which is 50 times more than multilingual models that include Czech data. We outperform the multilingual models on 9 out of 11 datasets. In addition, we establish the new state-of-the-art results on nine datasets. At the end, we discuss properties of monolingual and multilingual models based upon our results. We publish all the pre-trained and fine-tuned models freely for the research community.
PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers
Large Multimodal Models (LMMs) excel in natural language and visual understanding but are challenged by exacting tasks such as Knowledge-based Visual Question Answering (KB-VQA) which involve the retrieval of relevant information from document collections to use in shaping answers to questions. We present an extensive training and evaluation framework, M2KR, for KB-VQA. M2KR contains a collection of vision and language tasks which we have incorporated into a single suite of benchmark tasks for training and evaluating general-purpose multi-modal retrievers. We use M2KR to develop PreFLMR, a pre-trained version of the recently developed Fine-grained Late-interaction Multi-modal Retriever (FLMR) approach to KB-VQA, and we report new state-of-the-art results across a range of tasks. We also present investigations into the scaling behaviors of PreFLMR intended to be useful in future developments in general-purpose multi-modal retrievers.
Fox-1 Technical Report
We present Fox-1, a series of small language models (SLMs) consisting of Fox-1-1.6B and Fox-1-1.6B-Instruct-v0.1. These models are pre-trained on 3 trillion tokens of web-scraped document data and fine-tuned with 5 billion tokens of instruction-following and multi-turn conversation data. Aiming to improve the pre-training efficiency, Fox-1-1.6B model introduces a novel 3-stage data curriculum across all the training data with 2K-8K sequence length. In architecture design, Fox-1 features a deeper layer structure, an expanded vocabulary, and utilizes Grouped Query Attention (GQA), offering a performant and efficient architecture compared to other SLMs. Fox-1 achieves better or on-par performance in various benchmarks compared to StableLM-2-1.6B, Gemma-2B, Qwen1.5-1.8B, and OpenELM1.1B, with competitive inference speed and throughput. The model weights have been released under the Apache 2.0 license, where we aim to promote the democratization of LLMs and make them fully accessible to the whole open-source community.
LLM-augmented Preference Learning from Natural Language
Finding preferences expressed in natural language is an important but challenging task. State-of-the-art(SotA) methods leverage transformer-based models such as BERT, RoBERTa, etc. and graph neural architectures such as graph attention networks. Since Large Language Models (LLMs) are equipped to deal with larger context lengths and have much larger model sizes than the transformer-based model, we investigate their ability to classify comparative text directly. This work aims to serve as a first step towards using LLMs for the CPC task. We design and conduct a set of experiments that format the classification task into an input prompt for the LLM and a methodology to get a fixed-format response that can be automatically evaluated. Comparing performances with existing methods, we see that pre-trained LLMs are able to outperform the previous SotA models with no fine-tuning involved. Our results show that the LLMs can consistently outperform the SotA when the target text is large -- i.e. composed of multiple sentences --, and are still comparable to the SotA performance in shorter text. We also find that few-shot learning yields better performance than zero-shot learning.
ProRank: Prompt Warmup via Reinforcement Learning for Small Language Models Reranking
Reranking is fundamental to information retrieval and retrieval-augmented generation, with recent Large Language Models (LLMs) significantly advancing reranking quality. While recent advances with LLMs have significantly improved document reranking quality, current approaches primarily rely on large-scale LLMs (>7B parameters) through zero-shot prompting, presenting high computational costs. Small Language Models (SLMs) offer a promising alternative because of their efficiency, but our preliminary quantitative analysis reveals they struggle with understanding task prompts without fine-tuning. This limits their effectiveness for document reranking tasks. To address this issue, we introduce a novel two-stage training approach, ProRank, for SLM-based document reranking. First, we propose a prompt warmup stage using reinforcement learning GRPO to steer SLMs to understand task prompts and generate more accurate coarse-grained binary relevance scores for document reranking. Then, we continuously fine-tune the SLMs with a fine-grained score learning stage without introducing additional layers to further improve the reranking quality. Comprehensive experimental results demonstrate that the proposed ProRank consistently outperforms both the most advanced open-source and proprietary reranking models. Notably, our lightweight ProRank-0.5B model even surpasses the powerful 32B LLM reranking model on the BEIR benchmark, establishing that properly trained SLMs can achieve superior document reranking performance while maintaining computational efficiency.
OLMoE: Open Mixture-of-Experts Language Models
We introduce OLMoE, a fully open, state-of-the-art language model leveraging sparse Mixture-of-Experts (MoE). OLMoE-1B-7B has 7 billion (B) parameters but uses only 1B per input token. We pretrain it on 5 trillion tokens and further adapt it to create OLMoE-1B-7B-Instruct. Our models outperform all available models with similar active parameters, even surpassing larger ones like Llama2-13B-Chat and DeepSeekMoE-16B. We present various experiments on MoE training, analyze routing in our model showing high specialization, and open-source all aspects of our work: model weights, training data, code, and logs.
Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions
The advent of Large Language Models (LLMs) has significantly reshaped the trajectory of the AI revolution. Nevertheless, these LLMs exhibit a notable limitation, as they are primarily adept at processing textual information. To address this constraint, researchers have endeavored to integrate visual capabilities with LLMs, resulting in the emergence of Vision-Language Models (VLMs). These advanced models are instrumental in tackling more intricate tasks such as image captioning and visual question answering. In our comprehensive survey paper, we delve into the key advancements within the realm of VLMs. Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.This classification is based on their respective capabilities and functionalities in processing and generating various modalities of data.We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible, providing readers with a comprehensive understanding of its essential components. We also analyzed the performance of VLMs in various benchmark datasets. By doing so, we aim to offer a nuanced understanding of the diverse landscape of VLMs. Additionally, we underscore potential avenues for future research in this dynamic domain, anticipating further breakthroughs and advancements.
Capybara-OMNI: An Efficient Paradigm for Building Omni-Modal Language Models
With the development of Multimodal Large Language Models (MLLMs), numerous outstanding accomplishments have emerged within the open-source community. Due to the complexity of creating and training multimodal data pairs, it is still a computational and time-consuming process to build powerful MLLMs. In this work, we introduce Capybara-OMNI, an MLLM that trains in a lightweight and efficient manner and supports understanding text, image, video, and audio modalities. We present in detail the framework design, the data construction, and the training recipe, to develop an MLLM step-by-step to obtain competitive performance. We also provide exclusive benchmarks utilized in our experiments to show how to properly verify understanding capabilities across different modalities. Results show that by following our guidance, we can efficiently build an MLLM that achieves competitive performance among models of the same scale on various multimodal benchmarks. Additionally, to enhance the multimodal instruction following and conversational capabilities of the model, we further discuss how to train the chat version upon an MLLM understanding model, which is more in line with user habits for tasks like real-time interaction with humans. We publicly disclose the Capybara-OMNI model, along with its chat-based version. The disclosure includes both the model weights, a portion of the training data, and the inference codes, which are made available on GitHub.
Playing with Words at the National Library of Sweden -- Making a Swedish BERT
This paper introduces the Swedish BERT ("KB-BERT") developed by the KBLab for data-driven research at the National Library of Sweden (KB). Building on recent efforts to create transformer-based BERT models for languages other than English, we explain how we used KB's collections to create and train a new language-specific BERT model for Swedish. We also present the results of our model in comparison with existing models - chiefly that produced by the Swedish Public Employment Service, Arbetsf\"ormedlingen, and Google's multilingual M-BERT - where we demonstrate that KB-BERT outperforms these in a range of NLP tasks from named entity recognition (NER) to part-of-speech tagging (POS). Our discussion highlights the difficulties that continue to exist given the lack of training data and testbeds for smaller languages like Swedish. We release our model for further exploration and research here: https://github.com/Kungbib/swedish-bert-models .
Give your Text Representation Models some Love: the Case for Basque
Word embeddings and pre-trained language models allow to build rich representations of text and have enabled improvements across most NLP tasks. Unfortunately they are very expensive to train, and many small companies and research groups tend to use models that have been pre-trained and made available by third parties, rather than building their own. This is suboptimal as, for many languages, the models have been trained on smaller (or lower quality) corpora. In addition, monolingual pre-trained models for non-English languages are not always available. At best, models for those languages are included in multilingual versions, where each language shares the quota of substrings and parameters with the rest of the languages. This is particularly true for smaller languages such as Basque. In this paper we show that a number of monolingual models (FastText word embeddings, FLAIR and BERT language models) trained with larger Basque corpora produce much better results than publicly available versions in downstream NLP tasks, including topic classification, sentiment classification, PoS tagging and NER. This work sets a new state-of-the-art in those tasks for Basque. All benchmarks and models used in this work are publicly available.
FonMTL: Towards Multitask Learning for the Fon Language
The Fon language, spoken by an average 2 million of people, is a truly low-resourced African language, with a limited online presence, and existing datasets (just to name but a few). Multitask learning is a learning paradigm that aims to improve the generalization capacity of a model by sharing knowledge across different but related tasks: this could be prevalent in very data-scarce scenarios. In this paper, we present the first explorative approach to multitask learning, for model capabilities enhancement in Natural Language Processing for the Fon language. Specifically, we explore the tasks of Named Entity Recognition (NER) and Part of Speech Tagging (POS) for Fon. We leverage two language model heads as encoders to build shared representations for the inputs, and we use linear layers blocks for classification relative to each task. Our results on the NER and POS tasks for Fon, show competitive (or better) performances compared to several multilingual pretrained language models finetuned on single tasks. Additionally, we perform a few ablation studies to leverage the efficiency of two different loss combination strategies and find out that the equal loss weighting approach works best in our case. Our code is open-sourced at https://github.com/bonaventuredossou/multitask_fon.
Document Haystack: A Long Context Multimodal Image/Document Understanding Vision LLM Benchmark
The proliferation of multimodal Large Language Models has significantly advanced the ability to analyze and understand complex data inputs from different modalities. However, the processing of long documents remains under-explored, largely due to a lack of suitable benchmarks. To address this, we introduce Document Haystack, a comprehensive benchmark designed to evaluate the performance of Vision Language Models (VLMs) on long, visually complex documents. Document Haystack features documents ranging from 5 to 200 pages and strategically inserts pure text or multimodal text+image "needles" at various depths within the documents to challenge VLMs' retrieval capabilities. Comprising 400 document variants and a total of 8,250 questions, it is supported by an objective, automated evaluation framework. We detail the construction and characteristics of the Document Haystack dataset, present results from prominent VLMs and discuss potential research avenues in this area.
UnifiedCrawl: Aggregated Common Crawl for Affordable Adaptation of LLMs on Low-Resource Languages
Large language models (LLMs) under-perform on low-resource languages due to limited training data. We present a method to efficiently collect text data for low-resource languages from the entire Common Crawl corpus. Our approach, UnifiedCrawl, filters and extracts common crawl using minimal compute resources, yielding mono-lingual datasets much larger than previously available sources. We demonstrate that leveraging this data to fine-tuning multilingual LLMs via efficient adapter methods (QLoRA) significantly boosts performance on the low-resource language, while minimizing VRAM usage. Our experiments show large improvements in language modeling perplexity and an increase in few-shot prompting scores. Our work and released source code provide an affordable approach to improve LLMs for low-resource languages using consumer hardware. Our source code is available here at https://github.com/bethelmelesse/unifiedcrawl.
Efficient Multimodal Learning from Data-centric Perspective
Multimodal Large Language Models (MLLMs) have demonstrated notable capabilities in general visual understanding and reasoning tasks. However, their deployment is hindered by substantial computational costs in both training and inference, limiting accessibility to the broader research and user communities. A straightforward solution is to leverage smaller pre-trained vision and language models, which inevitably causes significant performance drop. In this paper, we demonstrate the possibility to beat the scaling law and train a smaller but better MLLM by exploring more informative training data. Specifically, we introduce Bunny, a family of lightweight MLLMs with flexible vision and language backbones for efficient multimodal learning from condensed training data. Remarkably, our Bunny-3B outperforms the state-of-the-art large MLLMs, especially LLaVA-v1.5-13B, on multiple benchmarks. The code, models and data can be found in https://github.com/BAAI-DCAI/Bunny.
Exploring the Limits of Language Modeling
In this work we explore recent advances in Recurrent Neural Networks for large scale Language Modeling, a task central to language understanding. We extend current models to deal with two key challenges present in this task: corpora and vocabulary sizes, and complex, long term structure of language. We perform an exhaustive study on techniques such as character Convolutional Neural Networks or Long-Short Term Memory, on the One Billion Word Benchmark. Our best single model significantly improves state-of-the-art perplexity from 51.3 down to 30.0 (whilst reducing the number of parameters by a factor of 20), while an ensemble of models sets a new record by improving perplexity from 41.0 down to 23.7. We also release these models for the NLP and ML community to study and improve upon.
Prefix tuning for automated audio captioning
Audio captioning aims to generate text descriptions from environmental sounds. One challenge of audio captioning is the difficulty of the generalization due to the lack of audio-text paired training data. In this work, we propose a simple yet effective method of dealing with small-scaled datasets by leveraging a pre-trained language model. We keep the language model frozen to maintain the expressivity for text generation, and we only learn to extract global and temporal features from the input audio. To bridge a modality gap between the audio features and the language model, we employ mapping networks that translate audio features to the continuous vectors the language model can understand, called prefixes. We evaluate our proposed method on the Clotho and AudioCaps dataset and show our method outperforms prior arts in diverse experimental settings.
Deep Visual-Semantic Alignments for Generating Image Descriptions
We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.
mSTEB: Massively Multilingual Evaluation of LLMs on Speech and Text Tasks
Large Language models (LLMs) have demonstrated impressive performance on a wide range of tasks, including in multimodal settings such as speech. However, their evaluation is often limited to English and a few high-resource languages. For low-resource languages, there is no standardized evaluation benchmark. In this paper, we address this gap by introducing mSTEB, a new benchmark to evaluate the performance of LLMs on a wide range of tasks covering language identification, text classification, question answering, and translation tasks on both speech and text modalities. We evaluated the performance of leading LLMs such as Gemini 2.0 Flash and GPT-4o (Audio) and state-of-the-art open models such as Qwen 2 Audio and Gemma 3 27B. Our evaluation shows a wide gap in performance between high-resource and low-resource languages, especially for languages spoken in Africa and Americas/Oceania. Our findings show that more investment is needed to address their under-representation in LLMs coverage.
Aligning Multimodal LLM with Human Preference: A Survey
Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training. Multimodal Large Language Models (MLLMs), built upon LLMs, have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data. However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed. This gap has spurred the emergence of various alignment algorithms, each targeting different application scenarios and optimization goals. Recent studies have shown that alignment algorithms are a powerful approach to resolving the aforementioned challenges. In this paper, we aim to provide a comprehensive and systematic review of alignment algorithms for MLLMs. Specifically, we explore four key aspects: (1) the application scenarios covered by alignment algorithms, including general image understanding, multi-image, video, and audio, and extended multimodal applications; (2) the core factors in constructing alignment datasets, including data sources, model responses, and preference annotations; (3) the benchmarks used to evaluate alignment algorithms; and (4) a discussion of potential future directions for the development of alignment algorithms. This work seeks to help researchers organize current advancements in the field and inspire better alignment methods. The project page of this paper is available at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment.
ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models
In this work, we propose a training-free method to inject visual prompts into Multimodal Large Language Models (MLLMs) through test-time optimization of a learnable latent variable. We observe that attention, as the core module of MLLMs, connects text prompt tokens and visual tokens, ultimately determining the final results. Our approach involves adjusting visual tokens from the MLP output at test time, controlling the attention response to ensure text prompt tokens attend to visual tokens in referring regions. We optimize a learnable latent variable based on an energy function, enhancing the strength of referring regions in the attention map. This enables detailed region description and reasoning without the need for substantial training costs or model retraining. Our method offers a promising direction for integrating referring abilities into MLLMs, and supports referring with box, mask, scribble and point. The results demonstrate that our method exhibits out-of-domain generalization and interpretability.
NoteLLM-2: Multimodal Large Representation Models for Recommendation
Large Language Models (LLMs) have demonstrated exceptional text understanding. Existing works explore their application in text embedding tasks. However, there are few works utilizing LLMs to assist multimodal representation tasks. In this work, we investigate the potential of LLMs to enhance multimodal representation in multimodal item-to-item (I2I) recommendations. One feasible method is the transfer of Multimodal Large Language Models (MLLMs) for representation tasks. However, pre-training MLLMs usually requires collecting high-quality, web-scale multimodal data, resulting in complex training procedures and high costs. This leads the community to rely heavily on open-source MLLMs, hindering customized training for representation scenarios. Therefore, we aim to design an end-to-end training method that customizes the integration of any existing LLMs and vision encoders to construct efficient multimodal representation models. Preliminary experiments show that fine-tuned LLMs in this end-to-end method tend to overlook image content. To overcome this challenge, we propose a novel training framework, NoteLLM-2, specifically designed for multimodal representation. We propose two ways to enhance the focus on visual information. The first method is based on the prompt viewpoint, which separates multimodal content into visual content and textual content. NoteLLM-2 adopts the multimodal In-Content Learning method to teach LLMs to focus on both modalities and aggregate key information. The second method is from the model architecture, utilizing a late fusion mechanism to directly fuse visual information into textual information. Extensive experiments have been conducted to validate the effectiveness of our method.
SMaLL-100: Introducing Shallow Multilingual Machine Translation Model for Low-Resource Languages
In recent years, multilingual machine translation models have achieved promising performance on low-resource language pairs by sharing information between similar languages, thus enabling zero-shot translation. To overcome the "curse of multilinguality", these models often opt for scaling up the number of parameters, which makes their use in resource-constrained environments challenging. We introduce SMaLL-100, a distilled version of the M2M-100 (12B) model, a massively multilingual machine translation model covering 100 languages. We train SMaLL-100 with uniform sampling across all language pairs and therefore focus on preserving the performance of low-resource languages. We evaluate SMaLL-100 on different low-resource benchmarks: FLORES-101, Tatoeba, and TICO-19 and demonstrate that it outperforms previous massively multilingual models of comparable sizes (200-600M) while improving inference latency and memory usage. Additionally, our model achieves comparable results to M2M-100 (1.2B), while being 3.6x smaller and 4.3x faster at inference. Code and pre-trained models: https://github.com/alirezamshi/small100
TP-Eval: Tap Multimodal LLMs' Potential in Evaluation by Customizing Prompts
Recently, multimodal large language models (MLLMs) have received much attention for their impressive capabilities. The evaluation of MLLMs is becoming critical to analyzing attributes of MLLMs and providing valuable insights. However, current benchmarks overlook the problem of prompt sensitivity - minor prompt variations may lead to significant performance fluctuations. Thus, inappropriate prompts may obscure the models' capabilities, underestimating the models' performance. Moreover, different models have different preferences for different prompts, and thus, using the same prompt for all models will cause evaluation bias. This paper analyzes this deficiency in existing benchmarks and further introduces a new evaluation framework named TP-Eval, which introduces a prompt customization method to reduce evaluation biases and tap models' potential. TP-Eval will rewrite the original prompts to different customized prompts for different models. In particular, we propose some well-designed modules for prompt customization tailored to the scenario of MLLM evaluation. Extensive experiments demonstrate the effectiveness of our approach to uncovering models' capabilities, and TP-Eval should benefit the community in developing more comprehensive and convincing MLLM evaluation benchmarks.
NLKI: A lightweight Natural Language Knowledge Integration Framework for Improving Small VLMs in Commonsense VQA Tasks
Commonsense visual-question answering often hinges on knowledge that is missing from the image or the question. Small vision-language models (sVLMs) such as ViLT, VisualBERT and FLAVA therefore lag behind their larger generative counterparts. To study the effect of careful commonsense knowledge integration on sVLMs, we present an end-to-end framework (NLKI) that (i) retrieves natural language facts, (ii) prompts an LLM to craft natural language explanations, and (iii) feeds both signals to sVLMs respectively across two commonsense VQA datasets (CRIC, AOKVQA) and a visual-entailment dataset (e-SNLI-VE). Facts retrieved using a fine-tuned ColBERTv2 and an object information-enriched prompt yield explanations that largely cut down hallucinations, while lifting the end-to-end answer accuracy by up to 7% (across 3 datasets), making FLAVA and other models in NLKI match or exceed medium-sized VLMs such as Qwen-2 VL-2B and SmolVLM-2.5B. As these benchmarks contain 10-25% label noise, additional finetuning using noise-robust losses (such as symmetric cross entropy and generalised cross entropy) adds another 2.5% in CRIC, and 5.5% in AOKVQA. Our findings expose when LLM-based commonsense knowledge beats retrieval from commonsense knowledge bases, how noise-aware training stabilises small models in the context of external knowledge augmentation, and why parameter-efficient commonsense reasoning is now within reach for 250M models.
MLLMs-Augmented Visual-Language Representation Learning
Visual-language pre-training (VLP) has achieved remarkable success in multi-modal tasks, largely attributed to the availability of large-scale image-text datasets. In this work, we demonstrate that multi-modal large language models (MLLMs) can enhance visual-language representation learning by improving data quality. Our approach is simple, utilizing MLLMs to extend multiple captions for each image. To prevent the bias introduced by MLLMs' hallucinations and intrinsic caption styles, we propose "text shearing" to maintain the same length for extended captions as that of the original captions. In image-text retrieval, our method consistently obtains 5.6 ~ 35.0% and 16.8 ~ 46.1% improvement on R@1 under the fine-tuning and zero-shot settings, respectively. Notably, we obtain zero-shot results that are comparable to fine-tuning on target datasets, which encourages more exploration of the versatile use of MLLMs.
CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation
We present CoDi-2, a versatile and interactive Multimodal Large Language Model (MLLM) that can follow complex multimodal interleaved instructions, conduct in-context learning (ICL), reason, chat, edit, etc., in an any-to-any input-output modality paradigm. By aligning modalities with language for both encoding and generation, CoDi-2 empowers Large Language Models (LLMs) to not only understand complex modality-interleaved instructions and in-context examples, but also autoregressively generate grounded and coherent multimodal outputs in the continuous feature space. To train CoDi-2, we build a large-scale generation dataset encompassing in-context multimodal instructions across text, vision, and audio. CoDi-2 demonstrates a wide range of zero-shot capabilities for multimodal generation, such as in-context learning, reasoning, and compositionality of any-to-any modality generation through multi-round interactive conversation. CoDi-2 surpasses previous domain-specific models on tasks such as subject-driven image generation, vision transformation, and audio editing. CoDi-2 signifies a substantial breakthrough in developing a comprehensive multimodal foundation model adept at interpreting in-context language-vision-audio interleaved instructions and producing multimodal outputs.
Retrieving Texts based on Abstract Descriptions
In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model.
How2: A Large-scale Dataset for Multimodal Language Understanding
In this paper, we introduce How2, a multimodal collection of instructional videos with English subtitles and crowdsourced Portuguese translations. We also present integrated sequence-to-sequence baselines for machine translation, automatic speech recognition, spoken language translation, and multimodal summarization. By making available data and code for several multimodal natural language tasks, we hope to stimulate more research on these and similar challenges, to obtain a deeper understanding of multimodality in language processing.
ILuvUI: Instruction-tuned LangUage-Vision modeling of UIs from Machine Conversations
Multimodal Vision-Language Models (VLMs) enable powerful applications from their fused understanding of images and language, but many perform poorly on UI tasks due to the lack of UI training data. In this paper, we adapt a recipe for generating paired text-image training data for VLMs to the UI domain by combining existing pixel-based methods with a Large Language Model (LLM). Unlike prior art, our method requires no human-provided annotations, and it can be applied to any dataset of UI screenshots. We generate a dataset of 335K conversational examples paired with UIs that cover Q&A, UI descriptions, and planning, and use it to fine-tune a conversational VLM for UI tasks. To assess the performance of our model, we benchmark it on UI element detection tasks, evaluate response quality, and showcase its applicability to multi-step UI navigation and planning.
Siamese BERT-based Model for Web Search Relevance Ranking Evaluated on a New Czech Dataset
Web search engines focus on serving highly relevant results within hundreds of milliseconds. Pre-trained language transformer models such as BERT are therefore hard to use in this scenario due to their high computational demands. We present our real-time approach to the document ranking problem leveraging a BERT-based siamese architecture. The model is already deployed in a commercial search engine and it improves production performance by more than 3%. For further research and evaluation, we release DaReCzech, a unique data set of 1.6 million Czech user query-document pairs with manually assigned relevance levels. We also release Small-E-Czech, an Electra-small language model pre-trained on a large Czech corpus. We believe this data will support endeavours both of search relevance and multilingual-focused research communities.
Lost in the Middle: How Language Models Use Long Contexts
While recent language models have the ability to take long contexts as input, relatively little is known about how well the language models use longer context. We analyze language model performance on two tasks that require identifying relevant information within their input contexts: multi-document question answering and key-value retrieval. We find that performance is often highest when relevant information occurs at the beginning or end of the input context, and significantly degrades when models must access relevant information in the middle of long contexts. Furthermore, performance substantially decreases as the input context grows longer, even for explicitly long-context models. Our analysis provides a better understanding of how language models use their input context and provides new evaluation protocols for future long-context models.
CLIMB: Curriculum Learning for Infant-inspired Model Building
We describe our team's contribution to the STRICT-SMALL track of the BabyLM Challenge. The challenge requires training a language model from scratch using only a relatively small training dataset of ten million words. We experiment with three variants of cognitively-motivated curriculum learning and analyze their effect on the performance of the model on linguistic evaluation tasks. In the vocabulary curriculum, we analyze methods for constraining the vocabulary in the early stages of training to simulate cognitively more plausible learning curves. In the data curriculum experiments, we vary the order of the training instances based on i) infant-inspired expectations and ii) the learning behavior of the model. In the objective curriculum, we explore different variations of combining the conventional masked language modeling task with a more coarse-grained word class prediction task to reinforce linguistic generalization capabilities. Our results did not yield consistent improvements over our own non-curriculum learning baseline across a range of linguistic benchmarks; however, we do find marginal gains on select tasks. Our analysis highlights key takeaways for specific combinations of tasks and settings which benefit from our proposed curricula. We moreover determine that careful selection of model architecture, and training hyper-parameters yield substantial improvements over the default baselines provided by the BabyLM challenge.
Scaling Pre-training to One Hundred Billion Data for Vision Language Models
We provide an empirical investigation of the potential of pre-training vision-language models on an unprecedented scale: 100 billion examples. We find that model performance tends to saturate at this scale on many common Western-centric classification and retrieval benchmarks, such as COCO Captions. Nevertheless, tasks of cultural diversity achieve more substantial gains from the 100-billion scale web data, thanks to its coverage of long-tail concepts. Furthermore, we analyze the model's multilinguality and show gains in low-resource languages as well. In addition, we observe that reducing the size of the pretraining dataset via quality filters like using CLIP, typically used to enhance performance, may inadvertently reduce the cultural diversity represented even in large-scale datasets. Our results highlight that while traditional benchmarks may not benefit significantly from scaling noisy, raw web data to 100 billion examples, this data scale is vital for building truly inclusive multimodal systems.
M5 -- A Diverse Benchmark to Assess the Performance of Large Multimodal Models Across Multilingual and Multicultural Vision-Language Tasks
Since the release of ChatGPT, the field of Natural Language Processing has experienced rapid advancements, particularly in Large Language Models (LLMs) and their multimodal counterparts, Large Multimodal Models (LMMs). Despite their impressive capabilities, LLMs often exhibit significant performance disparities across different languages and cultural contexts, as demonstrated by various text-only benchmarks. However, current research lacks such benchmarks for multimodal visio-linguistic settings. This work fills this gap by introducing M5, the first comprehensive benchmark designed to evaluate LMMs on diverse vision-language tasks within a multilingual and multicultural context. M5 includes eight datasets covering five tasks and 41 languages, with a focus on underrepresented languages and culturally diverse images. Furthermore, we introduce two novel datasets, M5-VGR and M5-VLOD, including a new Visio-Linguistic Outlier Detection task, in which all evaluated open-source models fail to significantly surpass the random baseline. Through extensive evaluation and analyses, we highlight substantial task-agnostic performance disparities between high- and low-resource languages. Moreover, we show that larger models do not necessarily outperform smaller ones in a multilingual setting.
Reformulating Vision-Language Foundation Models and Datasets Towards Universal Multimodal Assistants
Recent Multimodal Large Language Models (MLLMs) exhibit impressive abilities to perceive images and follow open-ended instructions. The capabilities of MLLMs depend on two crucial factors: the model architecture to facilitate the feature alignment of visual modules and large language models; the multimodal instruction tuning datasets for human instruction following. (i) For the model architecture, most existing models introduce an external bridge module to connect vision encoders with language models, which needs an additional feature-alignment pre-training. In this work, we discover that compact pre-trained vision language models can inherently serve as ``out-of-the-box'' bridges between vision and language. Based on this, we propose Muffin framework, which directly employs pre-trained vision-language models to act as providers of visual signals. (ii) For the multimodal instruction tuning datasets, existing methods omit the complementary relationship between different datasets and simply mix datasets from different tasks. Instead, we propose UniMM-Chat dataset which explores the complementarities of datasets to generate 1.1M high-quality and diverse multimodal instructions. We merge information describing the same image from diverse datasets and transforms it into more knowledge-intensive conversation data. Experimental results demonstrate the effectiveness of the Muffin framework and UniMM-Chat dataset. Muffin achieves state-of-the-art performance on a wide range of vision-language tasks, significantly surpassing state-of-the-art models like LLaVA and InstructBLIP. Our model and dataset are all accessible at https://github.com/thunlp/muffin.
ILLUME: Illuminating Your LLMs to See, Draw, and Self-Enhance
In this paper, we introduce ILLUME, a unified multimodal large language model (MLLM) that seamlessly integrates multimodal understanding and generation capabilities within a single large language model through a unified next-token prediction formulation. To address the large dataset size typically required for image-text alignment, we propose to enhance data efficiency through the design of a vision tokenizer that incorporates semantic information and a progressive multi-stage training procedure. This approach reduces the dataset size to just 15M for pretraining -- over four times fewer than what is typically needed -- while achieving competitive or even superior performance with existing unified MLLMs, such as Janus. Additionally, to promote synergistic enhancement between understanding and generation capabilities, which is under-explored in previous works, we introduce a novel self-enhancing multimodal alignment scheme. This scheme supervises the MLLM to self-assess the consistency between text descriptions and self-generated images, facilitating the model to interpret images more accurately and avoid unrealistic and incorrect predictions caused by misalignment in image generation. Based on extensive experiments, our proposed ILLUME stands out and competes with state-of-the-art unified MLLMs and specialized models across various benchmarks for multimodal understanding, generation, and editing.
Towards LLM-Centric Multimodal Fusion: A Survey on Integration Strategies and Techniques
The rapid progress of Multimodal Large Language Models(MLLMs) has transformed the AI landscape. These models combine pre-trained LLMs with various modality encoders. This integration requires a systematic understanding of how different modalities connect to the language backbone. Our survey presents an LLM-centric analysis of current approaches. We examine methods for transforming and aligning diverse modal inputs into the language embedding space. This addresses a significant gap in existing literature. We propose a classification framework for MLLMs based on three key dimensions. First, we examine architectural strategies for modality integration. This includes both the specific integration mechanisms and the fusion level. Second, we categorize representation learning techniques as either joint or coordinate representations. Third, we analyze training paradigms, including training strategies and objective functions. By examining 125 MLLMs developed between 2021 and 2025, we identify emerging patterns in the field. Our taxonomy provides researchers with a structured overview of current integration techniques. These insights aim to guide the development of more robust multimodal integration strategies for future models built on pre-trained foundations.
A Survey on Multimodal Benchmarks: In the Era of Large AI Models
The rapid evolution of Multimodal Large Language Models (MLLMs) has brought substantial advancements in artificial intelligence, significantly enhancing the capability to understand and generate multimodal content. While prior studies have largely concentrated on model architectures and training methodologies, a thorough analysis of the benchmarks used for evaluating these models remains underexplored. This survey addresses this gap by systematically reviewing 211 benchmarks that assess MLLMs across four core domains: understanding, reasoning, generation, and application. We provide a detailed analysis of task designs, evaluation metrics, and dataset constructions, across diverse modalities. We hope that this survey will contribute to the ongoing advancement of MLLM research by offering a comprehensive overview of benchmarking practices and identifying promising directions for future work. An associated GitHub repository collecting the latest papers is available.
Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
H2O-Danube3 Technical Report
We present H2O-Danube3, a series of small language models consisting of H2O-Danube3-4B, trained on 6T tokens and H2O-Danube3-500M, trained on 4T tokens. Our models are pre-trained on high quality Web data consisting of primarily English tokens in three stages with different data mixes before final supervised tuning for chat version. The models exhibit highly competitive metrics across a multitude of academic, chat, and fine-tuning benchmarks. Thanks to its compact architecture, H2O-Danube3 can be efficiently run on a modern smartphone, enabling local inference and rapid processing capabilities even on mobile devices. We make all models openly available under Apache 2.0 license further democratizing LLMs to a wider audience economically.
What Makes Multimodal In-Context Learning Work?
Large Language Models have demonstrated remarkable performance across various tasks, exhibiting the capacity to swiftly acquire new skills, such as through In-Context Learning (ICL) with minimal demonstration examples. In this work, we present a comprehensive framework for investigating Multimodal ICL (M-ICL) in the context of Large Multimodal Models. We consider the best open-source multimodal models (e.g., IDEFICS, OpenFlamingo) and a wide range of multimodal tasks. Our study unveils several noteworthy findings: (1) M-ICL primarily relies on text-driven mechanisms, showing little to no influence from the image modality. (2) When used with advanced-ICL strategy (like RICES), M-ICL is not better than a simple strategy based on majority voting over context examples. Moreover, we identify several biases and limitations of M-ICL that warrant consideration prior to deployment. Code available at https://gitlab.com/folbaeni/multimodal-icl
LLaVaOLMoBitnet1B: Ternary LLM goes Multimodal!
Multimodal Large Language Models (MM-LLMs) have seen significant advancements in the last year, demonstrating impressive performance across tasks. However, to truly democratize AI, models must exhibit strong capabilities and be able to run efficiently on small compute footprints accessible by most. Part of this quest, we introduce LLaVaOLMoBitnet1B - the first Ternary Multimodal LLM capable of accepting Image(s)+Text inputs to produce coherent textual responses. The model is fully open-sourced along with training scripts to encourage further research in this space. This accompanying technical report highlights the training process, evaluation details, challenges associated with ternary models and future opportunities. Link to the model: https://huggingface.co/IntelLabs/LlavaOLMoBitnet1B
MM-BigBench: Evaluating Multimodal Models on Multimodal Content Comprehension Tasks
The popularity of multimodal large language models (MLLMs) has triggered a recent surge in research efforts dedicated to evaluating these models. Nevertheless, existing evaluation studies of MLLMs primarily focus on the comprehension and reasoning of unimodal (vision) content, neglecting performance evaluations in the domain of multimodal (vision-language) content understanding. Beyond multimodal reasoning, tasks related to multimodal content comprehension necessitate a profound understanding of multimodal contexts, achieved through the multimodal interaction to obtain a final answer. In this paper, we introduce a comprehensive assessment framework called MM-BigBench, which incorporates a diverse range of metrics to offer an extensive evaluation of the performance of various models and instructions across a wide spectrum of diverse multimodal content comprehension tasks. Consequently, our work complements research on the performance of MLLMs in multimodal comprehension tasks, achieving a more comprehensive and holistic evaluation of MLLMs. To begin, we employ the Best Performance metric to ascertain each model's performance upper bound on different datasets. Subsequently, the Mean Relative Gain metric offers an assessment of the overall performance of various models and instructions, while the Stability metric measures their sensitivity. Furthermore, previous research centers on evaluating models independently or solely assessing instructions, neglecting the adaptability between models and instructions. We propose the Adaptability metric to quantify the adaptability between models and instructions. Our paper evaluates a total of 20 language models (14 MLLMs) on 14 multimodal datasets spanning 6 tasks, with 10 instructions for each task, and derives novel insights. Our code will be released at https://github.com/declare-lab/MM-BigBench.
Textbooks Are All You Need II: phi-1.5 technical report
We continue the investigation into the power of smaller Transformer-based language models as initiated by TinyStories -- a 10 million parameter model that can produce coherent English -- and the follow-up work on phi-1, a 1.3 billion parameter model with Python coding performance close to the state-of-the-art. The latter work proposed to use existing Large Language Models (LLMs) to generate ``textbook quality" data as a way to enhance the learning process compared to traditional web data. We follow the ``Textbooks Are All You Need" approach, focusing this time on common sense reasoning in natural language, and create a new 1.3 billion parameter model named phi-1.5, with performance on natural language tasks comparable to models 5x larger, and surpassing most non-frontier LLMs on more complex reasoning tasks such as grade-school mathematics and basic coding. More generally, phi-1.5 exhibits many of the traits of much larger LLMs, both good -- such as the ability to ``think step by step" or perform some rudimentary in-context learning -- and bad, including hallucinations and the potential for toxic and biased generations -- encouragingly though, we are seeing improvement on that front thanks to the absence of web data. We open-source phi-1.5 to promote further research on these urgent topics.
mSLAM: Massively multilingual joint pre-training for speech and text
We present mSLAM, a multilingual Speech and LAnguage Model that learns cross-lingual cross-modal representations of speech and text by pre-training jointly on large amounts of unlabeled speech and text in multiple languages. mSLAM combines w2v-BERT pre-training on speech with SpanBERT pre-training on character-level text, along with Connectionist Temporal Classification (CTC) losses on paired speech and transcript data, to learn a single model capable of learning from and representing both speech and text signals in a shared representation space. We evaluate mSLAM on several downstream speech understanding tasks and find that joint pre-training with text improves quality on speech translation, speech intent classification and speech language-ID while being competitive on multilingual ASR, when compared against speech-only pre-training. Our speech translation model demonstrates zero-shot text translation without seeing any text translation data, providing evidence for cross-modal alignment of representations. mSLAM also benefits from multi-modal fine-tuning, further improving the quality of speech translation by directly leveraging text translation data during the fine-tuning process. Our empirical analysis highlights several opportunities and challenges arising from large-scale multimodal pre-training, suggesting directions for future research.
REPLUG: Retrieval-Augmented Black-Box Language Models
We introduce REPLUG, a retrieval-augmented language modeling framework that treats the language model (LM) as a black box and augments it with a tuneable retrieval model. Unlike prior retrieval-augmented LMs that train language models with special cross attention mechanisms to encode the retrieved text, REPLUG simply prepends retrieved documents to the input for the frozen black-box LM. This simple design can be easily applied to any existing retrieval and language models. Furthermore, we show that the LM can be used to supervise the retrieval model, which can then find documents that help the LM make better predictions. Our experiments demonstrate that REPLUG with the tuned retriever significantly improves the performance of GPT-3 (175B) on language modeling by 6.3%, as well as the performance of Codex on five-shot MMLU by 5.1%.
Too Much Information: Keeping Training Simple for BabyLMs
This paper details the work of the University of Groningen for the BabyLM Challenge. We follow the idea that, like babies, language models should be introduced to simpler concepts first and build off of that knowledge to understand more complex concepts. We examine this strategy of simple-then-complex through a variety of lenses, namely context size, vocabulary, and overall linguistic complexity of the data. We find that only one, context size, is truly beneficial to training a language model. However this simple change to context size gives us improvements of 2 points on average on (Super)GLUE tasks, 1 point on MSGS tasks, and 12\% on average on BLiMP tasks. Our context-limited model outperforms the baseline that was trained on 10times the amount of data.
Fine-grained Audible Video Description
We explore a new task for audio-visual-language modeling called fine-grained audible video description (FAVD). It aims to provide detailed textual descriptions for the given audible videos, including the appearance and spatial locations of each object, the actions of moving objects, and the sounds in videos. Existing visual-language modeling tasks often concentrate on visual cues in videos while undervaluing the language and audio modalities. On the other hand, FAVD requires not only audio-visual-language modeling skills but also paragraph-level language generation abilities. We construct the first fine-grained audible video description benchmark (FAVDBench) to facilitate this research. For each video clip, we first provide a one-sentence summary of the video, ie, the caption, followed by 4-6 sentences describing the visual details and 1-2 audio-related descriptions at the end. The descriptions are provided in both English and Chinese. We create two new metrics for this task: an EntityScore to gauge the completeness of entities in the visual descriptions, and an AudioScore to assess the audio descriptions. As a preliminary approach to this task, we propose an audio-visual-language transformer that extends existing video captioning model with an additional audio branch. We combine the masked language modeling and auto-regressive language modeling losses to optimize our model so that it can produce paragraph-level descriptions. We illustrate the efficiency of our model in audio-visual-language modeling by evaluating it against the proposed benchmark using both conventional captioning metrics and our proposed metrics. We further put our benchmark to the test in video generation models, demonstrating that employing fine-grained video descriptions can create more intricate videos than using captions.
ML-Mamba: Efficient Multi-Modal Large Language Model Utilizing Mamba-2
Multimodal Large Language Models (MLLMs) have attracted much attention due to their multifunctionality. However, traditional Transformer architectures incur significant overhead due to their secondary computational complexity. To address this issue, we introduce ML-Mamba, a multimodal language model that utilizes the latest and efficient Mamba-2 model for inference. Mamba-2 is known for its linear extension and fast processing of long sequences. We replace the Transformer based backbone with a pre-trained Mamba-2 model and explore methods for integrating 2D visual selective scanning mechanisms into multimodal learning. We also try various visual encoders and Mamba-2 model variants. Our extensive experiments conducted in various multimodal benchmark tests have demonstrated the competitive performance of ML-Mamba and highlighted the potential of state space models in multimodal tasks. The experimental results show that: (1) ML-Mamba achieves performance comparable to state-of-the-art methods such as TinyLaVA and MobileVLM v2 through its linear sequential modeling, while also having faster inference speed; (2) ML-Mamba performs well in visual hallucinations and spatial relationship judgment in closed set benchmark tests; (3) ML-Mamba achieves performance comparable to LLaVA while reducing the number of parameters by 40\%.(4) Compared to the multimodal model using the original Mamba model, the Mamba-2 based large-scale multimodal language model has stronger inference performance and effectiveness.
Adapting Language Models to Compress Contexts
Transformer-based language models (LMs) are powerful and widely-applicable tools, but their usefulness is constrained by a finite context window and the expensive computational cost of processing long text documents. We propose to adapt pre-trained LMs into AutoCompressors. These models are capable of compressing long contexts into compact summary vectors, which are then accessible to the model as soft prompts. Summary vectors are trained with an unsupervised objective, whereby long documents are processed in segments and summary vectors from all previous segments are used in language modeling. We fine-tune OPT models on sequences of up to 30,720 tokens and show that AutoCompressors can utilize long contexts to improve perplexity. We evaluate AutoCompressors on in-context learning by compressing task demonstrations. We find that summary vectors are good substitutes for plain-text demonstrations, increasing accuracy while reducing inference cost. Finally, we explore the benefits of pre-computing summary vectors for large corpora by applying summary vectors to retrieval-augmented language modeling. Overall, AutoCompressors emerge as a simple and inexpensive solution for extending the context window of LMs while speeding up inference over long contexts.
LLM-Microscope: Uncovering the Hidden Role of Punctuation in Context Memory of Transformers
We introduce methods to quantify how Large Language Models (LLMs) encode and store contextual information, revealing that tokens often seen as minor (e.g., determiners, punctuation) carry surprisingly high context. Notably, removing these tokens -- especially stopwords, articles, and commas -- consistently degrades performance on MMLU and BABILong-4k, even if removing only irrelevant tokens. Our analysis also shows a strong correlation between contextualization and linearity, where linearity measures how closely the transformation from one layer's embeddings to the next can be approximated by a single linear mapping. These findings underscore the hidden importance of filler tokens in maintaining context. For further exploration, we present LLM-Microscope, an open-source toolkit that assesses token-level nonlinearity, evaluates contextual memory, visualizes intermediate layer contributions (via an adapted Logit Lens), and measures the intrinsic dimensionality of representations. This toolkit illuminates how seemingly trivial tokens can be critical for long-range understanding.
Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction
Prevailing Multimodal Large Language Models (MLLMs) encode the input image(s) as vision tokens and feed them into the language backbone, similar to how Large Language Models (LLMs) process the text tokens. However, the number of vision tokens increases quadratically as the image resolutions, leading to huge computational costs. In this paper, we consider improving MLLM's efficiency from two scenarios, (I) Reducing computational cost without degrading the performance. (II) Improving the performance with given budgets. We start with our main finding that the ranking of each vision token sorted by attention scores is similar in each layer except the first layer. Based on it, we assume that the number of essential top vision tokens does not increase along layers. Accordingly, for Scenario I, we propose a greedy search algorithm (G-Search) to find the least number of vision tokens to keep at each layer from the shallow to the deep. Interestingly, G-Search is able to reach the optimal reduction strategy based on our assumption. For Scenario II, based on the reduction strategy from G-Search, we design a parametric sigmoid function (P-Sigmoid) to guide the reduction at each layer of the MLLM, whose parameters are optimized by Bayesian Optimization. Extensive experiments demonstrate that our approach can significantly accelerate those popular MLLMs, e.g. LLaVA, and InternVL2 models, by more than 2 times without performance drops. Our approach also far outperforms other token reduction methods when budgets are limited, achieving a better trade-off between efficiency and effectiveness.
SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval
In this paper, we propose SimLM (Similarity matching with Language Model pre-training), a simple yet effective pre-training method for dense passage retrieval. It employs a simple bottleneck architecture that learns to compress the passage information into a dense vector through self-supervised pre-training. We use a replaced language modeling objective, which is inspired by ELECTRA, to improve the sample efficiency and reduce the mismatch of the input distribution between pre-training and fine-tuning. SimLM only requires access to unlabeled corpus, and is more broadly applicable when there are no labeled data or queries. We conduct experiments on several large-scale passage retrieval datasets, and show substantial improvements over strong baselines under various settings. Remarkably, SimLM even outperforms multi-vector approaches such as ColBERTv2 which incurs significantly more storage cost.
MciteBench: A Benchmark for Multimodal Citation Text Generation in MLLMs
Multimodal Large Language Models (MLLMs) have advanced in integrating diverse modalities but frequently suffer from hallucination. A promising solution to mitigate this issue is to generate text with citations, providing a transparent chain for verification. However, existing work primarily focuses on generating citations for text-only content, overlooking the challenges and opportunities of multimodal contexts. To address this gap, we introduce MCiteBench, the first benchmark designed to evaluate and analyze the multimodal citation text generation ability of MLLMs. Our benchmark comprises data derived from academic papers and review-rebuttal interactions, featuring diverse information sources and multimodal content. We comprehensively evaluate models from multiple dimensions, including citation quality, source reliability, and answer accuracy. Through extensive experiments, we observe that MLLMs struggle with multimodal citation text generation. We also conduct deep analyses of models' performance, revealing that the bottleneck lies in attributing the correct sources rather than understanding the multimodal content.
Tiny LVLM-eHub: Early Multimodal Experiments with Bard
Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated significant progress in tackling complex multimodal tasks. Among these cutting-edge developments, Google's Bard stands out for its remarkable multimodal capabilities, promoting comprehensive comprehension and reasoning across various domains. This work presents an early and holistic evaluation of LVLMs' multimodal abilities, with a particular focus on Bard, by proposing a lightweight variant of LVLM-eHub, named Tiny LVLM-eHub. In comparison to the vanilla version, Tiny LVLM-eHub possesses several appealing properties. Firstly, it provides a systematic assessment of six categories of multimodal capabilities, including visual perception, visual knowledge acquisition, visual reasoning, visual commonsense, object hallucination, and embodied intelligence, through quantitative evaluation of 42 standard text-related visual benchmarks. Secondly, it conducts an in-depth analysis of LVLMs' predictions using the ChatGPT Ensemble Evaluation (CEE), which leads to a robust and accurate evaluation and exhibits improved alignment with human evaluation compared to the word matching approach. Thirdly, it comprises a mere 2.1K image-text pairs, facilitating ease of use for practitioners to evaluate their own offline LVLMs. Through extensive experimental analysis, this study demonstrates that Bard outperforms previous LVLMs in most multimodal capabilities except object hallucination, to which Bard is still susceptible. Tiny LVLM-eHub serves as a baseline evaluation for various LVLMs and encourages innovative strategies aimed at advancing multimodal techniques. Our project is publicly available at https://github.com/OpenGVLab/Multi-Modality-Arena.
Can MLLMs Perform Text-to-Image In-Context Learning?
The evolution from Large Language Models (LLMs) to Multimodal Large Language Models (MLLMs) has spurred research into extending In-Context Learning (ICL) to its multimodal counterpart. Existing such studies have primarily concentrated on image-to-text ICL. However, the Text-to-Image ICL (T2I-ICL), with its unique characteristics and potential applications, remains underexplored. To address this gap, we formally define the task of T2I-ICL and present CoBSAT, the first T2I-ICL benchmark dataset, encompassing ten tasks. Utilizing our dataset to benchmark six state-of-the-art MLLMs, we uncover considerable difficulties MLLMs encounter in solving T2I-ICL. We identify the primary challenges as the inherent complexity of multimodality and image generation. To overcome these challenges, we explore strategies like fine-tuning and Chain-of-Thought prompting, demonstrating notable improvements. Our code and dataset are available at https://github.com/UW-Madison-Lee-Lab/CoBSAT.
From Generator to Embedder: Harnessing Innate Abilities of Multimodal LLMs via Building Zero-Shot Discriminative Embedding Model
Multimodal Large Language Models (MLLMs) have emerged as a promising solution for universal embedding tasks, yet adapting their generative nature for discriminative representation learning remains a significant challenge. The dominant paradigm of large-scale contrastive pre-training suffers from critical inefficiencies, including prohibitive computational costs and a failure to leverage the intrinsic, instruction-following capabilities of MLLMs. To overcome these limitations, we propose an efficient framework for universal multimodal embeddings, which bridges this gap by centering on two synergistic components. First, our hierarchical embedding prompt template employs a two-level instruction architecture that forces the model to produce discriminative representations. Building on this strong foundation, our second component, self-aware hard negative sampling, redefines the fine-tuning process by leveraging the model's own understanding to efficiently mine challenging negatives while actively filtering out potential false negatives. Our comprehensive experiments show that our hierarchical prompt achieves zero-shot performance competitive with contrastively trained baselines and enhances the fine-tuning process by lifting a simple in-batch negative baseline by 4.8 points on the MMEB benchmark. We further boost the performance via our self-aware hard negative sampling, achieving the state-of-the-art performance without the contrative pre-training. Our work presents an effective and efficient pathway to adapt MLLMs for universal embedding tasks, significantly reducing training time.
Resona: Improving Context Copying in Linear Recurrence Models with Retrieval
Recent shifts in the space of large language model (LLM) research have shown an increasing focus on novel architectures to compete with prototypical Transformer-based models that have long dominated this space. Linear recurrent models have proven to be a viable competitor due to their computational efficiency. However, such models still demonstrate a sizable gap compared to Transformers in terms of in-context learning among other tasks that require recalling information from a context. In this work, we introduce __Resona__, a simple and scalable framework for augmenting linear recurrent models with retrieval. __Resona__~augments models with the ability to integrate retrieved information from the provided input context, enabling tailored behavior to diverse task requirements. Experiments on a variety of linear recurrent models demonstrate that __Resona__-augmented models observe significant performance gains on a variety of synthetic as well as real-world natural language tasks, highlighting its ability to act as a general purpose method to improve the in-context learning and language modeling abilities of linear recurrent LLMs.
SwitchGPT: Adapting Large Language Models for Non-Text Outputs
Large Language Models (LLMs), primarily trained on text-based datasets, exhibit exceptional proficiencies in understanding and executing complex linguistic instructions via text outputs. However, they falter when requests to generate non-text ones. Concurrently, modality conversion models, such as text-to-image, despite generating high-quality images, suffer from a lack of extensive textual pretraining. As a result, these models are only capable of accommodating specific image descriptions rather than comprehending more complex instructions. To bridge this gap, we propose a novel approach, \methodname, from a modality conversion perspective that evolves a text-based LLM into a multi-modal one. We specifically employ a minimal dataset to instruct LLMs to recognize the intended output modality as directed by the instructions. Consequently, the adapted LLM can effectively summon various off-the-shelf modality conversion models from the model zoos to generate non-text responses. This circumvents the necessity for complicated pretraining that typically requires immense quantities of paired multi-modal data, while simultaneously inheriting the extensive knowledge of LLMs and the ability of high-quality generative models. To evaluate and compare the adapted multi-modal LLM with its traditional counterparts, we have constructed a multi-modal instruction benchmark that solicits diverse modality outputs. The experiment results reveal that, with minimal training, LLMs can be conveniently adapted to comprehend requests for non-text responses, thus achieving higher flexibility in multi-modal scenarios. Code and data will be made available at https://github.com/xinke-wang/SwitchGPT.
Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. In this work, we delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to surpass 70% on the MMMU benchmark, achieving a 3.7-point improvement through Chain-of-Thought (CoT) reasoning and showcasing strong potential for test-time scaling. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. HuggingFace demo see https://huggingface.co/spaces/OpenGVLab/InternVL
Vision-centric Token Compression in Large Language Model
Large Language Models (LLMs) have revolutionized natural language processing, excelling in handling longer sequences. However, the inefficiency and redundancy in processing extended in-context tokens remain a challenge. Many attempts to address this rely on compressing tokens with smaller text encoders, yet we question whether text encoders are truly indispensable. Our journey leads to an unexpected discovery-a much smaller vision encoder, applied directly to sequences of text tokens, can rival text encoders on text tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small text understanding benchmarks, VIST leads to comparable results with 16% fewer FLOPs and 50% less memory usage. We further uncover significant token redundancy and devise a frequency-based masking strategy to guide the focus of the visual encoder toward the most critical tokens. Interestingly, we observe the trained visual encoder performs like a summarizer, selectively ignoring less important words such as prepositions and conjunctions. This approach delivers remarkable results, outperforming traditional text encoder-based methods by 5.7% on average over benchmarks like TriviaQA, NQ, PopQA, TREF, SST2, and SST5, setting a new standard for token efficiency in LLMs.
One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling
We propose a new benchmark corpus to be used for measuring progress in statistical language modeling. With almost one billion words of training data, we hope this benchmark will be useful to quickly evaluate novel language modeling techniques, and to compare their contribution when combined with other advanced techniques. We show performance of several well-known types of language models, with the best results achieved with a recurrent neural network based language model. The baseline unpruned Kneser-Ney 5-gram model achieves perplexity 67.6; a combination of techniques leads to 35% reduction in perplexity, or 10% reduction in cross-entropy (bits), over that baseline. The benchmark is available as a code.google.com project; besides the scripts needed to rebuild the training/held-out data, it also makes available log-probability values for each word in each of ten held-out data sets, for each of the baseline n-gram models.
Meta-Personalizing Vision-Language Models to Find Named Instances in Video
Large-scale vision-language models (VLM) have shown impressive results for language-guided search applications. While these models allow category-level queries, they currently struggle with personalized searches for moments in a video where a specific object instance such as ``My dog Biscuit'' appears. We present the following three contributions to address this problem. First, we describe a method to meta-personalize a pre-trained VLM, i.e., learning how to learn to personalize a VLM at test time to search in video. Our method extends the VLM's token vocabulary by learning novel word embeddings specific to each instance. To capture only instance-specific features, we represent each instance embedding as a combination of shared and learned global category features. Second, we propose to learn such personalization without explicit human supervision. Our approach automatically identifies moments of named visual instances in video using transcripts and vision-language similarity in the VLM's embedding space. Finally, we introduce This-Is-My, a personal video instance retrieval benchmark. We evaluate our approach on This-Is-My and DeepFashion2 and show that we obtain a 15% relative improvement over the state of the art on the latter dataset.
Typhoon 2: A Family of Open Text and Multimodal Thai Large Language Models
This paper introduces Typhoon 2, a series of text and multimodal large language models optimized for the Thai language. The series includes models for text, vision, and audio. Typhoon2-Text builds on state-of-the-art open models, such as Llama 3 and Qwen2, and we perform continual pre-training on a mixture of English and Thai data. We employ post-training techniques to enhance Thai language performance while preserving the base models' original capabilities. We release text models across a range of sizes, from 1 to 70 billion parameters, available in both base and instruction-tuned variants. To guardrail text generation, we release Typhoon2-Safety, a classifier enhanced for Thai cultures and language. Typhoon2-Vision improves Thai document understanding while retaining general visual capabilities, such as image captioning. Typhoon2-Audio introduces an end-to-end speech-to-speech model architecture capable of processing audio, speech, and text inputs and generating both text and speech outputs.
Text-Free Image-to-Speech Synthesis Using Learned Segmental Units
In this paper we present the first model for directly synthesizing fluent, natural-sounding spoken audio captions for images that does not require natural language text as an intermediate representation or source of supervision. Instead, we connect the image captioning module and the speech synthesis module with a set of discrete, sub-word speech units that are discovered with a self-supervised visual grounding task. We conduct experiments on the Flickr8k spoken caption dataset in addition to a novel corpus of spoken audio captions collected for the popular MSCOCO dataset, demonstrating that our generated captions also capture diverse visual semantics of the images they describe. We investigate several different intermediate speech representations, and empirically find that the representation must satisfy several important properties to serve as drop-in replacements for text.
Toward Joint Language Modeling for Speech Units and Text
Speech and text are two major forms of human language. The research community has been focusing on mapping speech to text or vice versa for many years. However, in the field of language modeling, very little effort has been made to model them jointly. In light of this, we explore joint language modeling for speech units and text. Specifically, we compare different speech tokenizers to transform continuous speech signals into discrete units and use different methods to construct mixed speech-text data. We introduce automatic metrics to evaluate how well the joint LM mixes speech and text. We also fine-tune the LM on downstream spoken language understanding (SLU) tasks with different modalities (speech or text) and test its performance to assess the model's learning of shared representations. Our results show that by mixing speech units and text with our proposed mixing techniques, the joint LM improves over a speech-only baseline on SLU tasks and shows zero-shot cross-modal transferability.
AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning
Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that, our method substantially reduces computation load (e.g., a 7-fold reduction in FLOPs) while preserving the performance of video and image LLMs. Further, under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., +4.6 on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code will be available at https://github.com/LaVi-Lab/AIM.
Language Models for Text Classification: Is In-Context Learning Enough?
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings. An advantage of these models over more standard approaches based on fine-tuning is the ability to understand instructions written in natural language (prompts), which helps them generalise better to different tasks and domains without the need for specific training data. This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances. However, existing research is limited in scale and lacks understanding of how text generation models combined with prompting techniques compare to more established methods for text classification such as fine-tuning masked language models. In this paper, we address this research gap by performing a large-scale evaluation study for 16 text classification datasets covering binary, multiclass, and multilabel problems. In particular, we compare zero- and few-shot approaches of large language models to fine-tuning smaller language models. We also analyse the results by prompt, classification type, domain, and number of labels. In general, the results show how fine-tuning smaller and more efficient language models can still outperform few-shot approaches of larger language models, which have room for improvement when it comes to text classification.
Do Vision and Language Models Share Concepts? A Vector Space Alignment Study
Large-scale pretrained language models (LMs) are said to ``lack the ability to connect utterances to the world'' (Bender and Koller, 2020), because they do not have ``mental models of the world' '(Mitchell and Krakauer, 2023). If so, one would expect LM representations to be unrelated to representations induced by vision models. We present an empirical evaluation across four families of LMs (BERT, GPT-2, OPT and LLaMA-2) and three vision model architectures (ResNet, SegFormer, and MAE). Our experiments show that LMs partially converge towards representations isomorphic to those of vision models, subject to dispersion, polysemy and frequency. This has important implications for both multi-modal processing and the LM understanding debate (Mitchell and Krakauer, 2023).
MiniGPT-v2: large language model as a unified interface for vision-language multi-task learning
Large language models have shown their remarkable capabilities as a general interface for various language-related applications. Motivated by this, we target to build a unified interface for completing many vision-language tasks including image description, visual question answering, and visual grounding, among others. The challenge is to use a single model for performing diverse vision-language tasks effectively with simple multi-modal instructions. Towards this objective, we introduce MiniGPT-v2, a model that can be treated as a unified interface for better handling various vision-language tasks. We propose using unique identifiers for different tasks when training the model. These identifiers enable our model to better distinguish each task instruction effortlessly and also improve the model learning efficiency for each task. After the three-stage training, the experimental results show that MiniGPT-v2 achieves strong performance on many visual question-answering and visual grounding benchmarks compared to other vision-language generalist models. Our model and codes are available at https://minigpt-v2.github.io/
Enhancing Multimodal Large Language Models with Vision Detection Models: An Empirical Study
Despite the impressive capabilities of Multimodal Large Language Models (MLLMs) in integrating text and image modalities, challenges remain in accurately interpreting detailed visual elements. This paper presents an empirical study on enhancing MLLMs with state-of-the-art (SOTA) object detection and Optical Character Recognition models to improve fine-grained image understanding and reduce hallucination in responses. Our research investigates the embedding-based infusion of detection information, the impact of such infusion on the MLLMs' original abilities, and the interchangeability of detection models. We conduct systematic experiments with models such as LLaVA-1.5, DINO, and PaddleOCRv2, revealing that our approach not only refines MLLMs' performance in specific visual tasks but also maintains their original strengths. The resulting enhanced MLLMs outperform SOTA models on 9 out of 10 benchmarks, achieving an improvement of up to 12.99% on the normalized average score, marking a notable advancement in multimodal understanding. We release our codes to facilitate further exploration into the fine-grained multimodal dialogue capabilities of MLLMs.
When Tokens Talk Too Much: A Survey of Multimodal Long-Context Token Compression across Images, Videos, and Audios
Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain. We also maintain a public repository to continuously track and update the latest advances in this promising area.
Sparse Attention Vectors: Generative Multimodal Model Features Are Discriminative Vision-Language Classifiers
Generative Large Multimodal Models (LMMs) like LLaVA and Qwen-VL excel at a wide variety of vision-language (VL) tasks such as image captioning or visual question answering. Despite strong performance, LMMs are not directly suited for foundational discriminative vision-language tasks (i.e., tasks requiring discrete label predictions) such as image classification and multiple-choice VQA. One key challenge in utilizing LMMs for discriminative tasks is the extraction of useful features from generative models. To overcome this issue, we propose an approach for finding features in the model's latent space to more effectively leverage LMMs for discriminative tasks. Toward this end, we present Sparse Attention Vectors (SAVs) -- a finetuning-free method that leverages sparse attention head activations (fewer than 1\% of the heads) in LMMs as strong features for VL tasks. With only few-shot examples, SAVs demonstrate state-of-the-art performance compared to a variety of few-shot and finetuned baselines on a collection of discriminative tasks. Our experiments also imply that SAVs can scale in performance with additional examples and generalize to similar tasks, establishing SAVs as both effective and robust multimodal feature representations.
UniDoc: A Universal Large Multimodal Model for Simultaneous Text Detection, Recognition, Spotting and Understanding
In the era of Large Language Models (LLMs), tremendous strides have been made in the field of multimodal understanding. However, existing advanced algorithms are limited to effectively utilizing the immense representation capabilities and rich world knowledge inherent to these large pre-trained models, and the beneficial connections among tasks within the context of text-rich scenarios have not been sufficiently explored. In this work, we introduce UniDoc, a novel multimodal model equipped with text detection and recognition capabilities, which are deficient in existing approaches. Moreover, UniDoc capitalizes on the beneficial interactions among tasks to enhance the performance of each individual task. To implement UniDoc, we perform unified multimodal instruct tuning on the contributed large-scale instruction following datasets. Quantitative and qualitative experimental results show that UniDoc sets state-of-the-art scores across multiple challenging benchmarks. To the best of our knowledge, this is the first large multimodal model capable of simultaneous text detection, recognition, spotting, and understanding.
LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning
Recent progress in Multimodal Large Language Models (MLLMs) has highlighted the critical roles of both the visual backbone and the underlying language model. While prior work has primarily focused on scaling these components to billions of parameters, the trade-offs between model size, architecture, and performance remain underexplored. Additionally, inconsistencies in training data and evaluation protocols have hindered direct comparisons, making it difficult to derive optimal design choices. In this paper, we introduce LLaVA-MORE, a new family of MLLMs that integrates recent language models with diverse visual backbones. To ensure fair comparisons, we employ a unified training protocol applied consistently across all architectures. Our analysis systematically explores both small- and medium-scale LLMs -- including Phi-4, LLaMA-3.1, and Gemma-2 -- to evaluate multimodal reasoning, generation, and instruction following, while examining the relationship between model size and performance. Beyond evaluating the LLM impact on final results, we conduct a comprehensive study of various visual encoders, ranging from CLIP-based architectures to alternatives such as DINOv2, SigLIP, and SigLIP2. Additional experiments investigate the effects of increased image resolution and variations in pre-training datasets. Overall, our results provide insights into the design of more effective MLLMs, offering a reproducible evaluation framework that facilitates direct comparisons and can guide future model development. Our source code and trained models are publicly available at: https://github.com/aimagelab/LLaVA-MORE.
MMTEB: Massive Multilingual Text Embedding Benchmark
Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
Transforming LLMs into Cross-modal and Cross-lingual Retrieval Systems
Large language models (LLMs) are trained on text-only data that go far beyond the languages with paired speech and text data. At the same time, Dual Encoder (DE) based retrieval systems project queries and documents into the same embedding space and have demonstrated their success in retrieval and bi-text mining. To match speech and text in many languages, we propose using LLMs to initialize multi-modal DE retrieval systems. Unlike traditional methods, our system doesn't require speech data during LLM pre-training and can exploit LLM's multilingual text understanding capabilities to match speech and text in languages unseen during retrieval training. Our multi-modal LLM-based retrieval system is capable of matching speech and text in 102 languages despite only training on 21 languages. Our system outperforms previous systems trained explicitly on all 102 languages. We achieve a 10% absolute improvement in Recall@1 averaged across these languages. Additionally, our model demonstrates cross-lingual speech and text matching, which is further enhanced by readily available machine translation data.
SnakModel: Lessons Learned from Training an Open Danish Large Language Model
We present SnakModel, a Danish large language model (LLM) based on Llama2-7B, which we continuously pre-train on 13.6B Danish words, and further tune on 3.7M Danish instructions. As best practices for creating LLMs for smaller language communities have yet to be established, we examine the effects of early modeling and training decisions on downstream performance throughout the entire training pipeline, including (1) the creation of a strictly curated corpus of Danish text from diverse sources; (2) the language modeling and instruction-tuning training process itself, including the analysis of intermediate training dynamics, and ablations across different hyperparameters; (3) an evaluation on eight language and culturally-specific tasks. Across these experiments SnakModel achieves the highest overall performance, outperforming multiple contemporary Llama2-7B-based models. By making SnakModel, the majority of our pre-training corpus, and the associated code available under open licenses, we hope to foster further research and development in Danish Natural Language Processing, and establish training guidelines for languages with similar resource constraints.
HaploVL: A Single-Transformer Baseline for Multi-Modal Understanding
Recent advancements in large language models (LLMs) have significantly propelled the development of large multi-modal models (LMMs), highlighting the potential for general and intelligent assistants. However, most LMMs model visual and textual modalities separately, leading to recent efforts to develop native LMMs using a single transformer. Despite the promise, these native models are resource-intensive and often exhibit performance gaps compared to their compositional counterparts. To alleviate this issue, we propose a simple yet efficient method to construct a baseline for the native and end-to-end large multi-modal model in a single transformer. First, we propose a new early-fusion LMM that can fuse multi-modal inputs in the early stage and respond to visual instructions in an auto-regressive manner. Second, we devise an efficient training recipe for the proposed model, which harnesses the prior knowledge of the pre-trained models, addressing both the performance limitations and the challenge of resource consumption. The proposed model demonstrates superior performance compared to other LMMs using one transformer and significantly narrows the performance gap with compositional LMMs.
Language Models Can See Better: Visual Contrastive Decoding For LLM Multimodal Reasoning
Although Large Language Models (LLMs) excel in reasoning and generation for language tasks, they are not specifically designed for multimodal challenges. Training Multimodal Large Language Models (MLLMs), however, is resource-intensive and constrained by various training limitations. In this paper, we propose the Modular-based Visual Contrastive Decoding (MVCD) framework to move this obstacle. Our framework leverages LLMs' In-Context Learning (ICL) capability and the proposed visual contrastive-example decoding (CED), specifically tailored for this framework, without requiring any additional training. By converting visual signals into text and focusing on contrastive output distributions during decoding, we can highlight the new information introduced by contextual examples, explore their connections, and avoid over-reliance on prior encoded knowledge. MVCD enhances LLMs' visual perception to make it see and reason over the input visuals. To demonstrate MVCD's effectiveness, we conduct experiments with four LLMs across five question answering datasets. Our results not only show consistent improvement in model accuracy but well explain the effective components inside our decoding strategy. Our code will be available at https://github.com/Pbhgit/MVCD.
SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models
We propose SPHINX-X, an extensive Multimodality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multimodal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral8x7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian
There has been a surge in the development of various Large Language Models (LLMs). However, text generation for languages other than English often faces significant challenges, including poor generation quality and the reduced computational performance due to the disproportionate representation of tokens in model's vocabulary. In this work, we address these issues and introduce Vikhr, a new state-of-the-art open-source instruction-tuned LLM designed specifically for the Russian language. Unlike previous efforts for Russian that utilize computationally inexpensive LoRA adapters on top of English-oriented models, Vikhr features an adapted tokenizer vocabulary and undergoes the continued pre-training and instruction tuning of all weights. This approach not only enhances the model's performance but also significantly improves its computational and contextual efficiency. The remarkable performance of Vikhr across various Russian-language benchmarks can also be attributed to our efforts in expanding instruction datasets and corpora for continued pre-training. Vikhr not only sets the new state of the art among open-source LLMs for Russian, but even outperforms some proprietary closed-source models on certain benchmarks. The model weights, instruction sets, and code are publicly available
Evaluating Multilingual Long-Context Models for Retrieval and Reasoning
Recent large language models (LLMs) demonstrate impressive capabilities in handling long contexts, some exhibiting near-perfect recall on synthetic retrieval tasks. However, these evaluations have mainly focused on English text and involved a single target sentence within lengthy contexts. Our work investigates how LLM performance generalizes to multilingual settings with multiple hidden target sentences. We create a new dataset -- mLongRR -- to comprehensively evaluate several multilingual long-context LLMs on retrieval and reasoning tasks across five languages: English, Vietnamese, Indonesian, Swahili, and Somali. These languages share the Latin script but belong to distinct language families and resource levels. Our analysis reveals a significant performance gap between languages. The best-performing models such as Gemini-1.5 and GPT-4o, achieve around 96% accuracy in English to around 36% in Somali with a single target sentence. However, this accuracy drops to 40% in English and 0% in Somali when dealing with three target sentences. Our findings highlight the challenges long-context LLMs face when processing longer contexts, an increase in the number of target sentences, or languages of lower resource levels.
Effective and Efficient Conversation Retrieval for Dialogue State Tracking with Implicit Text Summaries
Few-shot dialogue state tracking (DST) with Large Language Models (LLM) relies on an effective and efficient conversation retriever to find similar in-context examples for prompt learning. Previous works use raw dialogue context as search keys and queries, and a retriever is fine-tuned with annotated dialogues to achieve superior performance. However, the approach is less suited for scaling to new domains or new annotation languages, where fine-tuning data is unavailable. To address this problem, we handle the task of conversation retrieval based on text summaries of the conversations. A LLM-based conversation summarizer is adopted for query and key generation, which enables effective maximum inner product search. To avoid the extra inference cost brought by LLM-based conversation summarization, we further distill a light-weight conversation encoder which produces query embeddings without decoding summaries for test conversations. We validate our retrieval approach on MultiWOZ datasets with GPT-Neo-2.7B and LLaMA-7B/30B. The experimental results show a significant improvement over relevant baselines in real few-shot DST settings.
DRAMA: Diverse Augmentation from Large Language Models to Smaller Dense Retrievers
Large language models (LLMs) have demonstrated strong effectiveness and robustness while fine-tuned as dense retrievers. However, their large parameter size brings significant inference time computational challenges, including high encoding costs for large-scale corpora and increased query latency, limiting their practical deployment. While smaller retrievers offer better efficiency, they often fail to generalize effectively with limited supervised fine-tuning data. In this work, we introduce DRAMA, a training framework that leverages LLMs to train smaller generalizable dense retrievers. In particular, we adopt pruned LLMs as the backbone and train on diverse LLM-augmented data in a single-stage contrastive learning setup. Experiments show that DRAMA offers better multilingual and long-context capabilities than traditional encoder-based retrievers, and achieves strong performance across multiple tasks and languages. These highlight the potential of connecting the training of smaller retrievers with the growing advancements in LLMs, bridging the gap between efficiency and generalization.
InkubaLM: A small language model for low-resource African languages
High-resource language models often fall short in the African context, where there is a critical need for models that are efficient, accessible, and locally relevant, even amidst significant computing and data constraints. This paper introduces InkubaLM, a small language model with 0.4 billion parameters, which achieves performance comparable to models with significantly larger parameter counts and more extensive training data on tasks such as machine translation, question-answering, AfriMMLU, and the AfriXnli task. Notably, InkubaLM outperforms many larger models in sentiment analysis and demonstrates remarkable consistency across multiple languages. This work represents a pivotal advancement in challenging the conventional paradigm that effective language models must rely on substantial resources. Our model and datasets are publicly available \url{https://huggingface.co/lelapa} to encourage research and development on low-resource languages.
CLASP: Contrastive Language-Speech Pretraining for Multilingual Multimodal Information Retrieval
This study introduces CLASP (Contrastive Language-Speech Pretraining), a multilingual, multimodal representation tailored for audio-text information retrieval. CLASP leverages the synergy between spoken content and textual data. During training, we utilize our newly introduced speech-text dataset, which encompasses 15 diverse categories ranging from fiction to religion. CLASP's audio component integrates audio spectrograms with a pre-trained self-supervised speech model, while its language encoding counterpart employs a sentence encoder pre-trained on over 100 languages. This unified lightweight model bridges the gap between various modalities and languages, enhancing its effectiveness in handling and retrieving multilingual and multimodal data. Our evaluations across multiple languages demonstrate that CLASP establishes new benchmarks in HITS@1, MRR, and meanR metrics, outperforming traditional ASR-based retrieval approaches in specific scenarios.
A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks
This survey and application guide to multimodal large language models(MLLMs) explores the rapidly developing field of MLLMs, examining their architectures, applications, and impact on AI and Generative Models. Starting with foundational concepts, we delve into how MLLMs integrate various data types, including text, images, video and audio, to enable complex AI systems for cross-modal understanding and generation. It covers essential topics such as training methods, architectural components, and practical applications in various fields, from visual storytelling to enhanced accessibility. Through detailed case studies and technical analysis, the text examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning. Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights. It offers a balanced perspective on the opportunities and challenges in the development and deployment of MLLMs, and is highly valuable for researchers, practitioners, and students interested in the intersection of natural language processing and computer vision.
LibriSQA: Advancing Free-form and Open-ended Spoken Question Answering with a Novel Dataset and Framework
While Large Language Models (LLMs) have demonstrated commendable performance across a myriad of domains and tasks, existing LLMs still exhibit a palpable deficit in handling multimodal functionalities, especially for the Spoken Question Answering (SQA) task which necessitates precise alignment and deep interaction between speech and text features. To address the SQA challenge on LLMs, we initially curated the free-form and open-ended LibriSQA dataset from Librispeech, comprising Part I with natural conversational formats and Part II encompassing multiple-choice questions followed by answers and analytical segments. Both parts collectively include 107k SQA pairs that cover various topics. Given the evident paucity of existing speech-text LLMs, we propose a lightweight, end-to-end framework to execute the SQA task on the LibriSQA, witnessing significant results. By reforming ASR into the SQA format, we further substantiate our framework's capability in handling ASR tasks. Our empirical findings bolster the LLMs' aptitude for aligning and comprehending multimodal information, paving the way for the development of universal multimodal LLMs. The dataset and demo can be found at https://github.com/ZihanZhaoSJTU/LibriSQA.
LamRA: Large Multimodal Model as Your Advanced Retrieval Assistant
With the rapid advancement of multimodal information retrieval, increasingly complex retrieval tasks have emerged. Existing methods predominately rely on task-specific fine-tuning of vision-language models, often those trained with image-text contrastive learning. In this paper, we explore the possibility of re-purposing generative Large Multimodal Models (LMMs) for retrieval. This approach enables unifying all retrieval tasks under the same formulation and, more importantly, allows for extrapolation towards unseen retrieval tasks without additional training. Our contributions can be summarised in the following aspects: (i) We introduce LamRA, a versatile framework designed to empower LMMs with sophisticated retrieval and reranking capabilities. (ii) For retrieval, we adopt a two-stage training strategy comprising language-only pre-training and multimodal instruction tuning to progressively enhance LMM's retrieval performance. (iii) For reranking, we employ joint training for both pointwise and listwise reranking, offering two distinct ways to further boost the retrieval performance. (iv) Extensive experimental results underscore the efficacy of our method in handling more than ten retrieval tasks, demonstrating robust performance in both supervised and zero-shot settings, including scenarios involving previously unseen retrieval tasks.
MFAQ: a Multilingual FAQ Dataset
In this paper, we present the first multilingual FAQ dataset publicly available. We collected around 6M FAQ pairs from the web, in 21 different languages. Although this is significantly larger than existing FAQ retrieval datasets, it comes with its own challenges: duplication of content and uneven distribution of topics. We adopt a similar setup as Dense Passage Retrieval (DPR) and test various bi-encoders on this dataset. Our experiments reveal that a multilingual model based on XLM-RoBERTa achieves the best results, except for English. Lower resources languages seem to learn from one another as a multilingual model achieves a higher MRR than language-specific ones. Our qualitative analysis reveals the brittleness of the model on simple word changes. We publicly release our dataset, model and training script.
ExLM: Rethinking the Impact of [MASK] Tokens in Masked Language Models
Masked Language Models (MLMs) have achieved remarkable success in many self-supervised representation learning tasks. MLMs are trained by randomly masking portions of the input sequences with [MASK] tokens and learning to reconstruct the original content based on the remaining context. This paper explores the impact of [MASK] tokens on MLMs. Analytical studies show that masking tokens can introduce the corrupted semantics problem, wherein the corrupted context may convey multiple, ambiguous meanings. This problem is also a key factor affecting the performance of MLMs on downstream tasks. Based on these findings, we propose a novel enhanced-context MLM, ExLM. Our approach expands [MASK] tokens in the input context and models the dependencies between these expanded states. This enhancement increases context capacity and enables the model to capture richer semantic information, effectively mitigating the corrupted semantics problem during pre-training. Experimental results demonstrate that ExLM achieves significant performance improvements in both text modeling and SMILES modeling tasks. Further analysis confirms that ExLM enriches semantic representations through context enhancement, and effectively reduces the semantic multimodality commonly observed in MLMs.
MultiWikiQA: A Reading Comprehension Benchmark in 300+ Languages
We introduce a new reading comprehension dataset, dubbed MultiWikiQA, which covers 306 languages. The context data comes from Wikipedia articles, with questions generated by an LLM and the answers appearing verbatim in the Wikipedia articles. We conduct a crowdsourced human evaluation of the fluency of the generated questions across 30 of the languages, providing evidence that the questions are of good quality. We evaluate 6 different language models, both decoder and encoder models of varying sizes, showing that the benchmark is sufficiently difficult and that there is a large performance discrepancy amongst the languages. The dataset and survey evaluations are freely available.
Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation
Large Language Models (LLMs) struggle with hallucinations and outdated knowledge due to their reliance on static training data. Retrieval-Augmented Generation (RAG) mitigates these issues by integrating external dynamic information enhancing factual and updated grounding. Recent advances in multimodal learning have led to the development of Multimodal RAG, incorporating multiple modalities such as text, images, audio, and video to enhance the generated outputs. However, cross-modal alignment and reasoning introduce unique challenges to Multimodal RAG, distinguishing it from traditional unimodal RAG. This survey offers a structured and comprehensive analysis of Multimodal RAG systems, covering datasets, metrics, benchmarks, evaluation, methodologies, and innovations in retrieval, fusion, augmentation, and generation. We precisely review training strategies, robustness enhancements, and loss functions, while also exploring the diverse Multimodal RAG scenarios. Furthermore, we discuss open challenges and future research directions to support advancements in this evolving field. This survey lays the foundation for developing more capable and reliable AI systems that effectively leverage multimodal dynamic external knowledge bases. Resources are available at https://github.com/llm-lab-org/Multimodal-RAG-Survey.
MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs
While multimodal large language models (MLLMs) have demonstrated extraordinary vision-language understanding capabilities and shown potential to serve as general-purpose assistants, their abilities to solve instance-level visual-language problems beyond a single image warrant further exploration. In order to assess these unproven abilities of MLLMs, this paper proposes a new visual grounding task called multi-context visual grounding, which aims to localize instances of interest across multiple images based on open-ended text prompts. To facilitate this research, we meticulously construct a new dataset MC-Bench for benchmarking the visual grounding capabilities of MLLMs. MC-Bench features 2K high-quality and manually annotated samples, consisting of instance-level labeled image pairs and corresponding text prompts that indicate the target instances in the images. In total, there are three distinct styles of text prompts, covering 20 practical skills. We benchmark over 20 state-of-the-art MLLMs and foundation models with potential multi-context visual grounding capabilities. Our evaluation reveals a non-trivial performance gap between existing MLLMs and humans across all metrics. We also observe that existing MLLMs typically outperform foundation models without LLMs only on image-level metrics, and the specialist MLLMs trained on single images often struggle to generalize to multi-image scenarios. Moreover, a simple stepwise baseline integrating advanced MLLM and a detector can significantly surpass prior end-to-end MLLMs. We hope our MC-Bench and empirical findings can encourage the research community to further explore and enhance the untapped potentials of MLLMs in instance-level tasks, particularly in multi-image contexts. Project page: https://xuyunqiu.github.io/MC-Bench/.
Do LLMs exhibit the same commonsense capabilities across languages?
This paper explores the multilingual commonsense generation abilities of Large Language Models (LLMs). To facilitate this investigation, we introduce MULTICOM, a novel benchmark that extends the COCOTEROS dataset to four languages: English, Spanish, Dutch, and Valencian. The task involves generating a commonsensical sentence that includes a given triplet of words. We evaluate a range of open-source LLMs, including LLaMA, Qwen, Gemma, EuroLLM, and Salamandra, on this benchmark. Our evaluation combines automatic metrics, LLM-as-a-judge approaches (using Prometheus and JudgeLM), and human annotations. Results consistently show superior performance in English, with significantly lower performance in less-resourced languages. While contextual support yields mixed results, it tends to benefit underrepresented languages. These findings underscore the current limitations of LLMs in multilingual commonsense generation. The dataset is publicly available at https://huggingface.co/datasets/gplsi/MULTICOM.
QuerYD: A video dataset with high-quality text and audio narrations
We introduce QuerYD, a new large-scale dataset for retrieval and event localisation in video. A unique feature of our dataset is the availability of two audio tracks for each video: the original audio, and a high-quality spoken description of the visual content. The dataset is based on YouDescribe, a volunteer project that assists visually-impaired people by attaching voiced narrations to existing YouTube videos. This ever-growing collection of videos contains highly detailed, temporally aligned audio and text annotations. The content descriptions are more relevant than dialogue, and more detailed than previous description attempts, which can be observed to contain many superficial or uninformative descriptions. To demonstrate the utility of the QuerYD dataset, we show that it can be used to train and benchmark strong models for retrieval and event localisation. Data, code and models are made publicly available, and we hope that QuerYD inspires further research on video understanding with written and spoken natural language.
Improving Joint Speech-Text Representations Without Alignment
The last year has seen astonishing progress in text-prompted image generation premised on the idea of a cross-modal representation space in which the text and image domains are represented jointly. In ASR, this idea has found application as joint speech-text encoders that can scale to the capacities of very large parameter models by being trained on both unpaired speech and text. While these methods show promise, they have required special treatment of the sequence-length mismatch inherent in speech and text, either by up-sampling heuristics or an explicit alignment model. In this work, we offer evidence that joint speech-text encoders naturally achieve consistent representations across modalities by disregarding sequence length, and argue that consistency losses could forgive length differences and simply assume the best alignment. We show that such a loss improves downstream WER in both a large-parameter monolingual and multilingual system.
OrchestraLLM: Efficient Orchestration of Language Models for Dialogue State Tracking
Large language models (LLMs) have revolutionized the landscape of Natural Language Processing systems, but are computationally expensive. To reduce the cost without sacrificing performance, previous studies have explored various approaches to harness the potential of Small Language Models (SLMs) as cost-effective alternatives to their larger counterparts. Driven by findings that SLMs and LLMs exhibit complementary strengths in a structured knowledge extraction task, this work presents a novel SLM/LLM routing framework designed to improve computational efficiency and enhance task performance. First, exemplar pools are created to represent the types of contexts where each LM provides a more reliable answer, leveraging a sentence embedding fine-tuned so that context similarity is close to dialogue state similarity. Then, during inference, the k-nearest exemplars to the testing instance are retrieved, and the instance is routed according to majority vote. In dialogue state tracking tasks, the proposed routing framework enhances performance substantially compared to relying solely on LLMs, while reducing the computational costs by over 50%.
Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning
We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.
A Generalized Language Model as the Combination of Skipped n-grams and Modified Kneser-Ney Smoothing
We introduce a novel approach for building language models based on a systematic, recursive exploration of skip n-gram models which are interpolated using modified Kneser-Ney smoothing. Our approach generalizes language models as it contains the classical interpolation with lower order models as a special case. In this paper we motivate, formalize and present our approach. In an extensive empirical experiment over English text corpora we demonstrate that our generalized language models lead to a substantial reduction of perplexity between 3.1% and 12.7% in comparison to traditional language models using modified Kneser-Ney smoothing. Furthermore, we investigate the behaviour over three other languages and a domain specific corpus where we observed consistent improvements. Finally, we also show that the strength of our approach lies in its ability to cope in particular with sparse training data. Using a very small training data set of only 736 KB text we yield improvements of even 25.7% reduction of perplexity.
TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling
Large Language Models (LLMs) excel in text-based natural language processing tasks but remain constrained by their reliance on textual inputs and outputs. To enable more natural human-LLM interaction, recent progress have focused on deriving a spoken language model (SLM) that can not only listen but also generate speech. To achieve this, a promising direction is to conduct speech-text joint modeling. However, recent SLM still lag behind text LLM due to the modality mismatch. One significant mismatch can be the sequence lengths between speech and text tokens. To address this, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a method that directly addresses the modality gap by aligning speech token with the corresponding text transcription during the tokenization stage. We propose a method that can achieve this through the special aggregation mechanism and with speech reconstruction as the training objective. We conduct extensive experiments and show that TASTE can preserve essential paralinguistic information while dramatically reducing the token sequence length. Furthermore, by leveraging TASTE, we can adapt text-based LLMs into effective SLMs with parameter-efficient fine-tuning techniques such as Low-Rank Adaptation (LoRA). Experimental results on benchmark tasks, including SALMON and StoryCloze, demonstrate that TASTE-based SLMs perform similarly to previous full-finetuning methods. To our knowledge, TASTE is the first end-to-end approach that utilizes a reconstruction objective to automatically learn a text-aligned speech tokenization and embedding suitable for spoken language modeling. Our demo, code, and models are publicly available at https://github.com/mtkresearch/TASTE-SpokenLM.
RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing
Large Language Models (LLMs) have catalyzed significant advancements in Natural Language Processing (NLP), yet they encounter challenges such as hallucination and the need for domain-specific knowledge. To mitigate these, recent methodologies have integrated information retrieved from external resources with LLMs, substantially enhancing their performance across NLP tasks. This survey paper addresses the absence of a comprehensive overview on Retrieval-Augmented Language Models (RALMs), both Retrieval-Augmented Generation (RAG) and Retrieval-Augmented Understanding (RAU), providing an in-depth examination of their paradigm, evolution, taxonomy, and applications. The paper discusses the essential components of RALMs, including Retrievers, Language Models, and Augmentations, and how their interactions lead to diverse model structures and applications. RALMs demonstrate utility in a spectrum of tasks, from translation and dialogue systems to knowledge-intensive applications. The survey includes several evaluation methods of RALMs, emphasizing the importance of robustness, accuracy, and relevance in their assessment. It also acknowledges the limitations of RALMs, particularly in retrieval quality and computational efficiency, offering directions for future research. In conclusion, this survey aims to offer a structured insight into RALMs, their potential, and the avenues for their future development in NLP. The paper is supplemented with a Github Repository containing the surveyed works and resources for further study: https://github.com/2471023025/RALM_Survey.
The Less the Merrier? Investigating Language Representation in Multilingual Models
Multilingual Language Models offer a way to incorporate multiple languages in one model and utilize cross-language transfer learning to improve performance for different Natural Language Processing (NLP) tasks. Despite progress in multilingual models, not all languages are supported as well, particularly in low-resource settings. In this work, we investigate the linguistic representation of different languages in multilingual models. We start by asking the question which languages are supported in popular multilingual models and which languages are left behind. Then, for included languages, we look at models' learned representations based on language family and dialect and try to understand how models' learned representations for~(1) seen and~(2) unseen languages vary across different language groups. In addition, we test and analyze performance on downstream tasks such as text generation and Named Entity Recognition. We observe from our experiments that community-centered models -- models that focus on languages of a given family or geographical location and are built by communities who speak them -- perform better at distinguishing between languages in the same family for low-resource languages. Our paper contributes to the literature in understanding multilingual models and their shortcomings and offers insights on potential ways to improve them.
A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs
A primary challenge in large language model (LLM) development is their onerous pre-training cost. Typically, such pre-training involves optimizing a self-supervised objective (such as next-token prediction) over a large corpus. This paper explores a promising paradigm to improve LLM pre-training efficiency and quality by suitably leveraging a small language model (SLM). In particular, this paradigm relies on an SLM to both (1) provide soft labels as additional training supervision, and (2) select a small subset of valuable ("informative" and "hard") training examples. Put together, this enables an effective transfer of the SLM's predictive distribution to the LLM, while prioritizing specific regions of the training data distribution. Empirically, this leads to reduced LLM training time compared to standard training, while improving the overall quality. Theoretically, we develop a statistical framework to systematically study the utility of SLMs in enabling efficient training of high-quality LLMs. In particular, our framework characterizes how the SLM's seemingly low-quality supervision can enhance the training of a much more capable LLM. Furthermore, it also highlights the need for an adaptive utilization of such supervision, by striking a balance between the bias and variance introduced by the SLM-provided soft labels. We corroborate our theoretical framework by improving the pre-training of an LLM with 2.8B parameters by utilizing a smaller LM with 1.5B parameters on the Pile dataset.
Conciseness: An Overlooked Language Task
We report on novel investigations into training models that make sentences concise. We define the task and show that it is different from related tasks such as summarization and simplification. For evaluation, we release two test sets, consisting of 2000 sentences each, that were annotated by two and five human annotators, respectively. We demonstrate that conciseness is a difficult task for which zero-shot setups with large neural language models often do not perform well. Given the limitations of these approaches, we propose a synthetic data generation method based on round-trip translations. Using this data to either train Transformers from scratch or fine-tune T5 models yields our strongest baselines that can be further improved by fine-tuning on an artificial conciseness dataset that we derived from multi-annotator machine translation test sets.
REF-VLM: Triplet-Based Referring Paradigm for Unified Visual Decoding
Multimodal Large Language Models (MLLMs) demonstrate robust zero-shot capabilities across diverse vision-language tasks after training on mega-scale datasets. However, dense prediction tasks, such as semantic segmentation and keypoint detection, pose significant challenges for MLLMs when represented solely as text outputs. Simultaneously, current MLLMs utilizing latent embeddings for visual task decoding generally demonstrate limited adaptability to both multi-task learning and multi-granularity scenarios. In this work, we present REF-VLM, an end-to-end framework for unified training of various visual decoding tasks. To address complex visual decoding scenarios, we introduce the Triplet-Based Referring Paradigm (TRP), which explicitly decouples three critical dimensions in visual decoding tasks through a triplet structure: concepts, decoding types, and targets. TRP employs symbolic delimiters to enforce structured representation learning, enhancing the parsability and interpretability of model outputs. Additionally, we construct Visual-Task Instruction Following Dataset (VTInstruct), a large-scale multi-task dataset containing over 100 million multimodal dialogue samples across 25 task types. Beyond text inputs and outputs, VT-Instruct incorporates various visual prompts such as point, box, scribble, and mask, and generates outputs composed of text and visual units like box, keypoint, depth and mask. The combination of different visual prompts and visual units generates a wide variety of task types, expanding the applicability of REF-VLM significantly. Both qualitative and quantitative experiments demonstrate that our REF-VLM outperforms other MLLMs across a variety of standard benchmarks. The code, dataset, and demo available at https://github.com/MacavityT/REF-VLM.
True Multimodal In-Context Learning Needs Attention to the Visual Context
Multimodal Large Language Models (MLLMs), built on powerful language backbones, have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks from a few multimodal demonstrations consisting of images, questions, and answers. Despite showing noticeable improvement on standard vision-language datasets, current MLLMs struggle to leverage visual information in the demonstrations. Specifically, they tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation. This behavior makes MICL still unimodal and largely restricts its practical utility. More importantly, this limitation is often concealed by the improved performance on tasks that do not require understanding the visual context. As a result, how to effectively enhance MICL ability and reliably evaluate the MICL performance remains underexplored. To address these issues, we first introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context by rebalancing attention across visual and textual tokens. In addition, we present TrueMICL, an MICL-dedicated dataset with both support and test sets that explicitly requires the integration of multimodal information-particularly visual content-for correct task completion. Extensive experiments demonstrate the effectiveness of our holistic solution, showcasing substantial improvements in the true multimodal in-context learning capabilities. Code and datasets are available at https://chenxshuo.github.io/true-micl-colm .
Flamingo: a Visual Language Model for Few-Shot Learning
Building models that can be rapidly adapted to novel tasks using only a handful of annotated examples is an open challenge for multimodal machine learning research. We introduce Flamingo, a family of Visual Language Models (VLM) with this ability. We propose key architectural innovations to: (i) bridge powerful pretrained vision-only and language-only models, (ii) handle sequences of arbitrarily interleaved visual and textual data, and (iii) seamlessly ingest images or videos as inputs. Thanks to their flexibility, Flamingo models can be trained on large-scale multimodal web corpora containing arbitrarily interleaved text and images, which is key to endow them with in-context few-shot learning capabilities. We perform a thorough evaluation of our models, exploring and measuring their ability to rapidly adapt to a variety of image and video tasks. These include open-ended tasks such as visual question-answering, where the model is prompted with a question which it has to answer; captioning tasks, which evaluate the ability to describe a scene or an event; and close-ended tasks such as multiple-choice visual question-answering. For tasks lying anywhere on this spectrum, a single Flamingo model can achieve a new state of the art with few-shot learning, simply by prompting the model with task-specific examples. On numerous benchmarks, Flamingo outperforms models fine-tuned on thousands of times more task-specific data.
COSMO: COntrastive Streamlined MultimOdal Model with Interleaved Pre-Training
In the evolution of Vision-Language Pre-training, shifting from short-text comprehension to encompassing extended textual contexts is pivotal. Recent autoregressive vision-language models like flamingo, palme, leveraging the long-context capability of Large Language Models, have excelled in few-shot text generation tasks but face challenges in alignment tasks. Addressing this gap, we introduce the contrastive loss into text generation models, presenting the COntrastive-Streamlined MultimOdal framework (\ModelName), strategically partitioning the language model into dedicated unimodal text processing and adept multimodal data handling components. \ModelName, our unified framework, merges unimodal and multimodal elements, enhancing model performance for tasks involving textual and visual data while notably reducing learnable parameters. However, these models demand extensive long-text datasets, yet the availability of high-quality long-text video datasets remains limited. To bridge this gap, this work introduces \VideoDatasetName, an inaugural interleaved video-text dataset featuring comprehensive captions, marking a significant step forward. Demonstrating its impact, we illustrate how enhances model performance in image-text tasks. With 34% learnable parameters and utilizing 72\% of the available data, our model demonstrates significant superiority over OpenFlamingo~openflamingo. For instance, in the 4-shot flickr captioning task, performance notably improves from 57.2% to 65.\%. The contributions of and are underscored by notable performance gains across 14 diverse downstream datasets encompassing both image-text and video-text tasks.
Wave Network: An Ultra-Small Language Model
We propose an innovative token representation and update method in a new ultra-small language model: the Wave network. Specifically, we use a complex vector to represent each token, encoding both global and local semantics of the input text. A complex vector consists of two components: a magnitude vector representing the global semantics of the input text, and a phase vector capturing the relationships between individual tokens and global semantics. Experiments on the AG News text classification task demonstrate that, when generating complex vectors from randomly initialized token embeddings, our single-layer Wave Network achieves 90.91\% accuracy with wave interference and 91.66\% with wave modulation -- outperforming a single Transformer layer using BERT pre-trained embeddings by 19.23\% and 19.98\%, respectively, and approaching the accuracy of the pre-trained and fine-tuned BERT base model (94.64\%). Additionally, compared to BERT base, the Wave Network reduces video memory usage and training time by 77.34\% and 85.62\% during wave modulation. In summary, we used a 2.4-million-parameter small language model to achieve accuracy comparable to a 100-million-parameter BERT model in text classification.
L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi
Sentence representation from vanilla BERT models does not work well on sentence similarity tasks. Sentence-BERT models specifically trained on STS or NLI datasets are shown to provide state-of-the-art performance. However, building these models for low-resource languages is not straightforward due to the lack of these specialized datasets. This work focuses on two low-resource Indian languages, Hindi and Marathi. We train sentence-BERT models for these languages using synthetic NLI and STS datasets prepared using machine translation. We show that the strategy of NLI pre-training followed by STSb fine-tuning is effective in generating high-performance sentence-similarity models for Hindi and Marathi. The vanilla BERT models trained using this simple strategy outperform the multilingual LaBSE trained using a complex training strategy. These models are evaluated on downstream text classification and similarity tasks. We evaluate these models on real text classification datasets to show embeddings obtained from synthetic data training are generalizable to real datasets as well and thus represent an effective training strategy for low-resource languages. We also provide a comparative analysis of sentence embeddings from fast text models, multilingual BERT models (mBERT, IndicBERT, xlm-RoBERTa, MuRIL), multilingual sentence embedding models (LASER, LaBSE), and monolingual BERT models based on L3Cube-MahaBERT and HindBERT. We release L3Cube-MahaSBERT and HindSBERT, the state-of-the-art sentence-BERT models for Marathi and Hindi respectively. Our work also serves as a guide to building low-resource sentence embedding models.
Deep contextualized word representations
We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.
MultiVENT 2.0: A Massive Multilingual Benchmark for Event-Centric Video Retrieval
Efficiently retrieving and synthesizing information from large-scale multimodal collections has become a critical challenge. However, existing video retrieval datasets suffer from scope limitations, primarily focusing on matching descriptive but vague queries with small collections of professionally edited, English-centric videos. To address this gap, we introduce MultiVENT 2.0, a large-scale, multilingual event-centric video retrieval benchmark featuring a collection of more than 218,000 news videos and 3,906 queries targeting specific world events. These queries specifically target information found in the visual content, audio, embedded text, and text metadata of the videos, requiring systems leverage all these sources to succeed at the task. Preliminary results show that state-of-the-art vision-language models struggle significantly with this task, and while alternative approaches show promise, they are still insufficient to adequately address this problem. These findings underscore the need for more robust multimodal retrieval systems, as effective video retrieval is a crucial step towards multimodal content understanding and generation tasks.
2D Matryoshka Sentence Embeddings
Common approaches rely on fixed-length embedding vectors from language models as sentence embeddings for downstream tasks such as semantic textual similarity (STS). Such methods are limited in their flexibility due to unknown computational constraints and budgets across various applications. Matryoshka Representation Learning (MRL) (Kusupati et al., 2022) encodes information at finer granularities, i.e., with lower embedding dimensions, to adaptively accommodate ad hoc tasks. Similar accuracy can be achieved with a smaller embedding size, leading to speedups in downstream tasks. Despite its improved efficiency, MRL still requires traversing all Transformer layers before obtaining the embedding, which remains the dominant factor in time and memory consumption. This prompts consideration of whether the fixed number of Transformer layers affects representation quality and whether using intermediate layers for sentence representation is feasible. In this paper, we introduce a novel sentence embedding model called Two-dimensional Matryoshka Sentence Embedding (2DMSE). It supports elastic settings for both embedding sizes and Transformer layers, offering greater flexibility and efficiency than MRL. We conduct extensive experiments on STS tasks and downstream applications. The experimental results demonstrate the effectiveness of our proposed model in dynamically supporting different embedding sizes and Transformer layers, allowing it to be highly adaptable to various scenarios.
Distilling Vision-Language Models on Millions of Videos
The recent advance in vision-language models is largely attributed to the abundance of image-text data. We aim to replicate this success for video-language models, but there simply is not enough human-curated video-text data available. We thus resort to fine-tuning a video-language model from a strong image-language baseline with synthesized instructional data. The resulting video-language model is then used to auto-label millions of videos to generate high-quality captions. We show the adapted video-language model performs well on a wide range of video-language benchmarks. For instance, it surpasses the best prior result on open-ended NExT-QA by 2.8%. Besides, our model generates detailed descriptions for previously unseen videos, which provide better textual supervision than existing methods. Experiments show that a video-language dual-encoder model contrastively trained on these auto-generated captions is 3.8% better than the strongest baseline that also leverages vision-language models. Our best model outperforms state-of-the-art methods on MSR-VTT zero-shot text-to-video retrieval by 6%.
In-Context Learning for Text Classification with Many Labels
In-context learning (ICL) using large language models for tasks with many labels is challenging due to the limited context window, which makes it difficult to fit a sufficient number of examples in the prompt. In this paper, we use a pre-trained dense retrieval model to bypass this limitation, giving the model only a partial view of the full label space for each inference call. Testing with recent open-source LLMs (OPT, LLaMA), we set new state of the art performance in few-shot settings for three common intent classification datasets, with no finetuning. We also surpass fine-tuned performance on fine-grained sentiment classification in certain cases. We analyze the performance across number of in-context examples and different model scales, showing that larger models are necessary to effectively and consistently make use of larger context lengths for ICL. By running several ablations, we analyze the model's use of: a) the similarity of the in-context examples to the current input, b) the semantic content of the class names, and c) the correct correspondence between examples and labels. We demonstrate that all three are needed to varying degrees depending on the domain, contrary to certain recent works.
MMDU: A Multi-Turn Multi-Image Dialog Understanding Benchmark and Instruction-Tuning Dataset for LVLMs
Generating natural and meaningful responses to communicate with multi-modal human inputs is a fundamental capability of Large Vision-Language Models(LVLMs). While current open-source LVLMs demonstrate promising performance in simplified scenarios such as single-turn single-image input, they fall short in real-world conversation scenarios such as following instructions in a long context history with multi-turn and multi-images. Existing LVLM benchmarks primarily focus on single-choice questions or short-form responses, which do not adequately assess the capabilities of LVLMs in real-world human-AI interaction applications. Therefore, we introduce MMDU, a comprehensive benchmark, and MMDU-45k, a large-scale instruction tuning dataset, designed to evaluate and improve LVLMs' abilities in multi-turn and multi-image conversations. We employ the clustering algorithm to ffnd the relevant images and textual descriptions from the open-source Wikipedia and construct the question-answer pairs by human annotators with the assistance of the GPT-4o model. MMDU has a maximum of 18k image+text tokens, 20 images, and 27 turns, which is at least 5x longer than previous benchmarks and poses challenges to current LVLMs. Our in-depth analysis of 15 representative LVLMs using MMDU reveals that open-source LVLMs lag behind closed-source counterparts due to limited conversational instruction tuning data. We demonstrate that ffne-tuning open-source LVLMs on MMDU-45k signiffcantly address this gap, generating longer and more accurate conversations, and improving scores on MMDU and existing benchmarks (MMStar: +1.1%, MathVista: +1.5%, ChartQA:+1.2%). Our contributions pave the way for bridging the gap between current LVLM models and real-world application demands. This project is available at https://github.com/Liuziyu77/MMDU.
From Seconds to Hours: Reviewing MultiModal Large Language Models on Comprehensive Long Video Understanding
The integration of Large Language Models (LLMs) with visual encoders has recently shown promising performance in visual understanding tasks, leveraging their inherent capability to comprehend and generate human-like text for visual reasoning. Given the diverse nature of visual data, MultiModal Large Language Models (MM-LLMs) exhibit variations in model designing and training for understanding images, short videos, and long videos. Our paper focuses on the substantial differences and unique challenges posed by long video understanding compared to static image and short video understanding. Unlike static images, short videos encompass sequential frames with both spatial and within-event temporal information, while long videos consist of multiple events with between-event and long-term temporal information. In this survey, we aim to trace and summarize the advancements of MM-LLMs from image understanding to long video understanding. We review the differences among various visual understanding tasks and highlight the challenges in long video understanding, including more fine-grained spatiotemporal details, dynamic events, and long-term dependencies. We then provide a detailed summary of the advancements in MM-LLMs in terms of model design and training methodologies for understanding long videos. Finally, we compare the performance of existing MM-LLMs on video understanding benchmarks of various lengths and discuss potential future directions for MM-LLMs in long video understanding.
Multimodal Named Entity Recognition for Short Social Media Posts
We introduce a new task called Multimodal Named Entity Recognition (MNER) for noisy user-generated data such as tweets or Snapchat captions, which comprise short text with accompanying images. These social media posts often come in inconsistent or incomplete syntax and lexical notations with very limited surrounding textual contexts, bringing significant challenges for NER. To this end, we create a new dataset for MNER called SnapCaptions (Snapchat image-caption pairs submitted to public and crowd-sourced stories with fully annotated named entities). We then build upon the state-of-the-art Bi-LSTM word/character based NER models with 1) a deep image network which incorporates relevant visual context to augment textual information, and 2) a generic modality-attention module which learns to attenuate irrelevant modalities while amplifying the most informative ones to extract contexts from, adaptive to each sample and token. The proposed MNER model with modality attention significantly outperforms the state-of-the-art text-only NER models by successfully leveraging provided visual contexts, opening up potential applications of MNER on myriads of social media platforms.
Static Word Embeddings for Sentence Semantic Representation
We propose new static word embeddings optimised for sentence semantic representation. We first extract word embeddings from a pre-trained Sentence Transformer, and improve them with sentence-level principal component analysis, followed by either knowledge distillation or contrastive learning. During inference, we represent sentences by simply averaging word embeddings, which requires little computational cost. We evaluate models on both monolingual and cross-lingual tasks and show that our model substantially outperforms existing static models on sentence semantic tasks, and even rivals a basic Sentence Transformer model (SimCSE) on some data sets. Lastly, we perform a variety of analyses and show that our method successfully removes word embedding components that are irrelevant to sentence semantics, and adjusts the vector norms based on the influence of words on sentence semantics.
Generative Cross-Modal Retrieval: Memorizing Images in Multimodal Language Models for Retrieval and Beyond
The recent advancements in generative language models have demonstrated their ability to memorize knowledge from documents and recall knowledge to respond to user queries effectively. Building upon this capability, we propose to enable multimodal large language models (MLLMs) to memorize and recall images within their parameters. Given a user query for visual content, the MLLM is anticipated to "recall" the relevant image from its parameters as the response. Achieving this target presents notable challenges, including inbuilt visual memory and visual recall schemes within MLLMs. To address these challenges, we introduce a generative cross-modal retrieval framework, which assigns unique identifier strings to represent images and involves two training steps: learning to memorize and learning to retrieve. The first step focuses on training the MLLM to memorize the association between images and their respective identifiers. The latter step teaches the MLLM to generate the corresponding identifier of the target image, given the textual query input. By memorizing images in MLLMs, we introduce a new paradigm to cross-modal retrieval, distinct from previous discriminative approaches. The experiments demonstrate that the generative paradigm performs effectively and efficiently even with large-scale image candidate sets.
Scalable Performance Analysis for Vision-Language Models
Joint vision-language models have shown great performance over a diverse set of tasks. However, little is known about their limitations, as the high dimensional space learned by these models makes it difficult to identify semantic errors. Recent work has addressed this problem by designing highly controlled probing task benchmarks. Our paper introduces a more scalable solution that relies on already annotated benchmarks. Our method consists of extracting a large set of diverse features from a vision-language benchmark and measuring their correlation with the output of the target model. We confirm previous findings that CLIP behaves like a bag of words model and performs better with nouns and verbs; we also uncover novel insights such as CLIP getting confused by concrete words. Our framework is available at https://github.com/MichiganNLP/Scalable-VLM-Probing and can be used with other multimodal models and benchmarks.
How far is Language Model from 100% Few-shot Named Entity Recognition in Medical Domain
Recent advancements in language models (LMs) have led to the emergence of powerful models such as Small LMs (e.g., T5) and Large LMs (e.g., GPT-4). These models have demonstrated exceptional capabilities across a wide range of tasks, such as name entity recognition (NER) in the general domain. (We define SLMs as pre-trained models with fewer parameters compared to models like GPT-3/3.5/4, such as T5, BERT, and others.) Nevertheless, their efficacy in the medical section remains uncertain and the performance of medical NER always needs high accuracy because of the particularity of the field. This paper aims to provide a thorough investigation to compare the performance of LMs in medical few-shot NER and answer How far is LMs from 100\% Few-shot NER in Medical Domain, and moreover to explore an effective entity recognizer to help improve the NER performance. Based on our extensive experiments conducted on 16 NER models spanning from 2018 to 2023, our findings clearly indicate that LLMs outperform SLMs in few-shot medical NER tasks, given the presence of suitable examples and appropriate logical frameworks. Despite the overall superiority of LLMs in few-shot medical NER tasks, it is important to note that they still encounter some challenges, such as misidentification, wrong template prediction, etc. Building on previous findings, we introduce a simple and effective method called RT (Retrieving and Thinking), which serves as retrievers, finding relevant examples, and as thinkers, employing a step-by-step reasoning process. Experimental results show that our proposed RT framework significantly outperforms the strong open baselines on the two open medical benchmark datasets
Large Multimodal Models: Notes on CVPR 2023 Tutorial
This tutorial note summarizes the presentation on ``Large Multimodal Models: Towards Building and Surpassing Multimodal GPT-4'', a part of CVPR 2023 tutorial on ``Recent Advances in Vision Foundation Models''. The tutorial consists of three parts. We first introduce the background on recent GPT-like large models for vision-and-language modeling to motivate the research in instruction-tuned large multimodal models (LMMs). As a pre-requisite, we describe the basics of instruction-tuning in large language models, which is further extended to the multimodal space. Lastly, we illustrate how to build the minimum prototype of multimodal GPT-4 like models with the open-source resource, and review the recently emerged topics.
MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning
Since commonsense information has been recorded significantly less frequently than its existence, language models pre-trained by text generation have difficulty to learn sufficient commonsense knowledge. Several studies have leveraged text retrieval to augment the models' commonsense ability. Unlike text, images capture commonsense information inherently but little effort has been paid to effectively utilize them. In this work, we propose a novel Multi-mOdal REtrieval (MORE) augmentation framework, to leverage both text and images to enhance the commonsense ability of language models. Extensive experiments on the Common-Gen task have demonstrated the efficacy of MORE based on the pre-trained models of both single and multiple modalities.
Multi-Modal Classifiers for Open-Vocabulary Object Detection
The goal of this paper is open-vocabulary object detection (OVOD) x2013 building a model that can detect objects beyond the set of categories seen at training, thus enabling the user to specify categories of interest at inference without the need for model retraining. We adopt a standard two-stage object detector architecture, and explore three ways for specifying novel categories: via language descriptions, via image exemplars, or via a combination of the two. We make three contributions: first, we prompt a large language model (LLM) to generate informative language descriptions for object classes, and construct powerful text-based classifiers; second, we employ a visual aggregator on image exemplars that can ingest any number of images as input, forming vision-based classifiers; and third, we provide a simple method to fuse information from language descriptions and image exemplars, yielding a multi-modal classifier. When evaluating on the challenging LVIS open-vocabulary benchmark we demonstrate that: (i) our text-based classifiers outperform all previous OVOD works; (ii) our vision-based classifiers perform as well as text-based classifiers in prior work; (iii) using multi-modal classifiers perform better than either modality alone; and finally, (iv) our text-based and multi-modal classifiers yield better performance than a fully-supervised detector.
SERENGETI: Massively Multilingual Language Models for Africa
Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\href{https://github.com/UBC-NLP/serengeti{https://github.com/UBC-NLP/serengeti}}
Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs
Large Language Models (LLMs) have demonstrated impressive performance on multimodal tasks, without any multimodal finetuning. They are the building block for Large Multimodal Models, yet, we still lack a proper understanding of their success. In this work, we expose frozen LLMs to image, video, audio and text inputs and analyse their internal representation aiming to understand their generalization beyond textual inputs. Findings. Perceptual tokens (1) are easily distinguishable from textual ones inside LLMs, with significantly different representations, and complete translation to textual tokens does not exist. Yet, (2) both perceptual and textual tokens activate similar LLM weights. Despite being different, (3) perceptual and textual tokens are implicitly aligned inside LLMs, we call this the implicit multimodal alignment (IMA), and argue that this is linked to architectural design, helping LLMs to generalize. This provide more evidence to believe that the generalization of LLMs to multimodal inputs is mainly due to their architecture. Implications. (1) We find a positive correlation between the implicit alignment score and the task performance, suggesting that this could act as a proxy metric for model evaluation and selection. (2) A negative correlation exists regarding hallucinations, revealing that this problem is mainly due to misalignment between the internal perceptual and textual representations. (3) Perceptual tokens change slightly throughout the model, thus, we propose different approaches to skip computations (e.g. in FFN layers), and significantly reduce the inference cost. (4) Due to the slowly changing embeddings across layers, and the high overlap between textual and multimodal activated weights, we compress LLMs by keeping only 1 subnetwork that works well across a wide range of multimodal tasks. Paper code: https://github.com/mshukor/ima-lmms.
Representation Deficiency in Masked Language Modeling
Masked Language Modeling (MLM) has been one of the most prominent approaches for pretraining bidirectional text encoders due to its simplicity and effectiveness. One notable concern about MLM is that the special [MASK] symbol causes a discrepancy between pretraining data and downstream data as it is present only in pretraining but not in fine-tuning. In this work, we offer a new perspective on the consequence of such a discrepancy: We demonstrate empirically and theoretically that MLM pretraining allocates some model dimensions exclusively for representing [MASK] tokens, resulting in a representation deficiency for real tokens and limiting the pretrained model's expressiveness when it is adapted to downstream data without [MASK] tokens. Motivated by the identified issue, we propose MAE-LM, which pretrains the Masked Autoencoder architecture with MLM where [MASK] tokens are excluded from the encoder. Empirically, we show that MAE-LM improves the utilization of model dimensions for real token representations, and MAE-LM consistently outperforms MLM-pretrained models across different pretraining settings and model sizes when fine-tuned on the GLUE and SQuAD benchmarks.
Cross-modal Information Flow in Multimodal Large Language Models
The recent advancements in auto-regressive multimodal large language models (MLLMs) have demonstrated promising progress for vision-language tasks. While there exists a variety of studies investigating the processing of linguistic information within large language models, little is currently known about the inner working mechanism of MLLMs and how linguistic and visual information interact within these models. In this study, we aim to fill this gap by examining the information flow between different modalities -- language and vision -- in MLLMs, focusing on visual question answering. Specifically, given an image-question pair as input, we investigate where in the model and how the visual and linguistic information are combined to generate the final prediction. Conducting experiments with a series of models from the LLaVA series, we find that there are two distinct stages in the process of integration of the two modalities. In the lower layers, the model first transfers the more general visual features of the whole image into the representations of (linguistic) question tokens. In the middle layers, it once again transfers visual information about specific objects relevant to the question to the respective token positions of the question. Finally, in the higher layers, the resulting multimodal representation is propagated to the last position of the input sequence for the final prediction. Overall, our findings provide a new and comprehensive perspective on the spatial and functional aspects of image and language processing in the MLLMs, thereby facilitating future research into multimodal information localization and editing.
Wings: Learning Multimodal LLMs without Text-only Forgetting
Multimodal large language models (MLLMs), initiated with a trained LLM, first align images with text and then fine-tune on multimodal mixed inputs. However, the MLLM catastrophically forgets the text-only instructions, which do not include images and can be addressed within the initial LLM. In this paper, we present Wings, a novel MLLM that excels in both text-only dialogues and multimodal comprehension. Analyzing MLLM attention in multimodal instructions reveals that text-only forgetting is related to the attention shifts from pre-image to post-image text. From that, we construct extra modules that act as the boosted learner to compensate for the attention shift. The complementary visual and textual learners, like "wings" on either side, are connected in parallel within each layer's attention block. Initially, image and text inputs are aligned with visual learners operating alongside the main attention, balancing focus on visual elements. Textual learners are later collaboratively integrated with attention-based routing to blend the outputs of the visual and textual learners. We design the Low-Rank Residual Attention (LoRRA) to guarantee high efficiency for learners. Our experimental results demonstrate that Wings outperforms equally-scaled MLLMs in both text-only and visual question-answering tasks. On a newly constructed Interleaved Image-Text (IIT) benchmark, Wings exhibits superior performance from text-only-rich to multimodal-rich question-answering tasks.
L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT
The multilingual Sentence-BERT (SBERT) models map different languages to common representation space and are useful for cross-language similarity and mining tasks. We propose a simple yet effective approach to convert vanilla multilingual BERT models into multilingual sentence BERT models using synthetic corpus. We simply aggregate translated NLI or STS datasets of the low-resource target languages together and perform SBERT-like fine-tuning of the vanilla multilingual BERT model. We show that multilingual BERT models are inherent cross-lingual learners and this simple baseline fine-tuning approach without explicit cross-lingual training yields exceptional cross-lingual properties. We show the efficacy of our approach on 10 major Indic languages and also show the applicability of our approach to non-Indic languages German and French. Using this approach, we further present L3Cube-IndicSBERT, the first multilingual sentence representation model specifically for Indian languages Hindi, Marathi, Kannada, Telugu, Malayalam, Tamil, Gujarati, Odia, Bengali, and Punjabi. The IndicSBERT exhibits strong cross-lingual capabilities and performs significantly better than alternatives like LaBSE, LASER, and paraphrase-multilingual-mpnet-base-v2 on Indic cross-lingual and monolingual sentence similarity tasks. We also release monolingual SBERT models for each of the languages and show that IndicSBERT performs competitively with its monolingual counterparts. These models have been evaluated using embedding similarity scores and classification accuracy.
MAMMAL -- Molecular Aligned Multi-Modal Architecture and Language
Drug discovery typically consists of multiple steps, including identifying a target protein key to a disease's etiology, validating that interacting with this target could prevent symptoms or cure the disease, discovering a small molecule or biologic therapeutic to interact with it, and optimizing the candidate molecule through a complex landscape of required properties. Drug discovery related tasks often involve prediction and generation while considering multiple entities that potentially interact, which poses a challenge for typical AI models. For this purpose we present MAMMAL - Molecular Aligned Multi-Modal Architecture and Language - a method that we applied to create a versatile multi-task foundation model ibm/biomed.omics.bl.sm.ma-ted-458m that learns from large-scale biological datasets (2 billion samples) across diverse modalities, including proteins, small molecules, and genes. We introduce a prompt syntax that supports a wide range of classification, regression, and generation tasks. It allows combining different modalities and entity types as inputs and/or outputs. Our model handles combinations of tokens and scalars and enables the generation of small molecules and proteins, property prediction, and transcriptomic lab test predictions. We evaluated the model on 11 diverse downstream tasks spanning different steps within a typical drug discovery pipeline, where it reaches new SOTA in 9 tasks and is comparable to SOTA in 2 tasks. This performance is achieved while using a unified architecture serving all tasks, in contrast to the original SOTA performance achieved using tailored architectures. The model code and pretrained weights are publicly available at https://github.com/BiomedSciAI/biomed-multi-alignment and https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.
Fine-Tuning LLaMA for Multi-Stage Text Retrieval
The effectiveness of multi-stage text retrieval has been solidly demonstrated since before the era of pre-trained language models. However, most existing studies utilize models that predate recent advances in large language models (LLMs). This study seeks to explore potential improvements that state-of-the-art LLMs can bring. We conduct a comprehensive study, fine-tuning the latest LLaMA model both as a dense retriever (RepLLaMA) and as a pointwise reranker (RankLLaMA) for both passage retrieval and document retrieval using the MS MARCO datasets. Our findings demonstrate that the effectiveness of large language models indeed surpasses that of smaller models. Additionally, since LLMs can inherently handle longer contexts, they can represent entire documents holistically, obviating the need for traditional segmenting and pooling strategies. Furthermore, evaluations on BEIR demonstrate that our RepLLaMA-RankLLaMA pipeline exhibits strong zero-shot effectiveness. Model checkpoints from this study are available on HuggingFace.
Improving Multi-modal Large Language Model through Boosting Vision Capabilities
We focus on improving the visual understanding capability for boosting the vision-language models. We propose Arcana, a multiModal language model, which introduces two crucial techniques. First, we present Multimodal LoRA (MM-LoRA), a module designed to enhance the decoder. Unlike traditional language-driven decoders, MM-LoRA consists of two parallel LoRAs -- one for vision and one for language -- each with its own parameters. This disentangled parameters design allows for more specialized learning in each modality and better integration of multimodal information. Second, we introduce the Query Ladder adapter (QLadder) to improve the visual encoder. QLadder employs a learnable ``ladder'' structure to deeply aggregates the intermediate representations from the frozen pretrained visual encoder (e.g., CLIP image encoder). This enables the model to learn new and informative visual features, as well as remaining the powerful capabilities of the pretrained visual encoder. These techniques collectively enhance Arcana's visual perception power, enabling it to leverage improved visual information for more accurate and contextually relevant outputs across various multimodal scenarios. Extensive experiments and ablation studies demonstrate the effectiveness and generalization capability of our Arcana. The code and re-annotated data are available at https://arcana-project-page.github.io.
MiniGPT-5: Interleaved Vision-and-Language Generation via Generative Vokens
Large Language Models (LLMs) have garnered significant attention for their advancements in natural language processing, demonstrating unparalleled prowess in text comprehension and generation. Yet, the simultaneous generation of images with coherent textual narratives remains an evolving frontier. In response, we introduce an innovative interleaved vision-and-language generation technique anchored by the concept of "generative vokens," acting as the bridge for harmonized image-text outputs. Our approach is characterized by a distinctive two-staged training strategy focusing on description-free multimodal generation, where the training requires no comprehensive descriptions of images. To bolster model integrity, classifier-free guidance is incorporated, enhancing the effectiveness of vokens on image generation. Our model, MiniGPT-5, exhibits substantial improvement over the baseline Divter model on the MMDialog dataset and consistently delivers superior or comparable multimodal outputs in human evaluations on the VIST dataset, highlighting its efficacy across diverse benchmarks.