Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOmniSep: Unified Omni-Modality Sound Separation with Query-Mixup
The scaling up has brought tremendous success in the fields of vision and language in recent years. When it comes to audio, however, researchers encounter a major challenge in scaling up the training data, as most natural audio contains diverse interfering signals. To address this limitation, we introduce Omni-modal Sound Separation (OmniSep), a novel framework capable of isolating clean soundtracks based on omni-modal queries, encompassing both single-modal and multi-modal composed queries. Specifically, we introduce the Query-Mixup strategy, which blends query features from different modalities during training. This enables OmniSep to optimize multiple modalities concurrently, effectively bringing all modalities under a unified framework for sound separation. We further enhance this flexibility by allowing queries to influence sound separation positively or negatively, facilitating the retention or removal of specific sounds as desired. Finally, OmniSep employs a retrieval-augmented approach known as Query-Aug, which enables open-vocabulary sound separation. Experimental evaluations on MUSIC, VGGSOUND-CLEAN+, and MUSIC-CLEAN+ datasets demonstrate effectiveness of OmniSep, achieving state-of-the-art performance in text-, image-, and audio-queried sound separation tasks. For samples and further information, please visit the demo page at https://omnisep.github.io/.
Qwen3-Omni Technical Report
We present Qwen3-Omni, a single multimodal model that, for the first time, maintains state-of-the-art performance across text, image, audio, and video without any degradation relative to single-modal counterparts. Qwen3-Omni matches the performance of same-sized single-modal models within the Qwen series and excels particularly on audio tasks. Across 36 audio and audio-visual benchmarks, Qwen3-Omni achieves open-source SOTA on 32 benchmarks and overall SOTA on 22, outperforming strong closed-source models such as Gemini-2.5-Pro, Seed-ASR, and GPT-4o-Transcribe. Qwen3-Omni adopts a Thinker-Talker MoE architecture that unifies perception and generation across text, images, audio, and video, yielding fluent text and natural real-time speech. It supports text interaction in 119 languages, speech understanding in 19 languages, and speech generation in 10 languages. To reduce first-packet latency in streaming synthesis, Talker autoregressively predicts discrete speech codecs using a multi-codebook scheme. Leveraging the representational capacity of these codebooks, we replace computationally intensive block-wise diffusion with a lightweight causal ConvNet, enabling streaming from the first codec frame. In cold-start settings, Qwen3-Omni achieves a theoretical end-to-end first-packet latency of 234 ms. To further strengthen multimodal reasoning, we introduce a Thinking model that explicitly reasons over inputs from any modality. Since the research community currently lacks a general-purpose audio captioning model, we fine-tuned Qwen3-Omni-30B-A3B to obtain Qwen3-Omni-30B-A3B-Captioner, which produces detailed, low-hallucination captions for arbitrary audio inputs. Qwen3-Omni-30B-A3B, Qwen3-Omni-30B-A3B-Thinking, and Qwen3-Omni-30B-A3B-Captioner are publicly released under the Apache 2.0 license.
Qwen2.5-Omni Technical Report
In this report, we present Qwen2.5-Omni, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. To enable the streaming of multimodal information inputs, both audio and visual encoders utilize a block-wise processing approach. To synchronize the timestamps of video inputs with audio, we organize the audio and video sequentially in an interleaved manner and propose a novel position embedding approach, named TMRoPE(Time-aligned Multimodal RoPE). To concurrently generate text and speech while avoiding interference between the two modalities, we propose Thinker-Talker architecture. In this framework, Thinker functions as a large language model tasked with text generation, while Talker is a dual-track autoregressive model that directly utilizes the hidden representations from the Thinker to produce audio tokens as output. Both the Thinker and Talker models are designed to be trained and inferred in an end-to-end manner. For decoding audio tokens in a streaming manner, we introduce a sliding-window DiT that restricts the receptive field, aiming to reduce the initial package delay. Qwen2.5-Omni is comparable with the similarly sized Qwen2.5-VL and outperforms Qwen2-Audio. Furthermore, Qwen2.5-Omni achieves state-of-the-art performance on multimodal benchmarks like Omni-Bench. Notably, Qwen2.5-Omni's performance in end-to-end speech instruction following is comparable to its capabilities with text inputs, as evidenced by benchmarks such as MMLU and GSM8K. As for speech generation, Qwen2.5-Omni's streaming Talker outperforms most existing streaming and non-streaming alternatives in robustness and naturalness.
Omni-ID: Holistic Identity Representation Designed for Generative Tasks
We introduce Omni-ID, a novel facial representation designed specifically for generative tasks. Omni-ID encodes holistic information about an individual's appearance across diverse expressions and poses within a fixed-size representation. It consolidates information from a varied number of unstructured input images into a structured representation, where each entry represents certain global or local identity features. Our approach uses a few-to-many identity reconstruction training paradigm, where a limited set of input images is used to reconstruct multiple target images of the same individual in various poses and expressions. A multi-decoder framework is further employed to leverage the complementary strengths of diverse decoders during training. Unlike conventional representations, such as CLIP and ArcFace, which are typically learned through discriminative or contrastive objectives, Omni-ID is optimized with a generative objective, resulting in a more comprehensive and nuanced identity capture for generative tasks. Trained on our MFHQ dataset -- a multi-view facial image collection, Omni-ID demonstrates substantial improvements over conventional representations across various generative tasks.
Omni-Emotion: Extending Video MLLM with Detailed Face and Audio Modeling for Multimodal Emotion Analysis
Understanding emotions accurately is essential for fields like human-computer interaction. Due to the complexity of emotions and their multi-modal nature (e.g., emotions are influenced by facial expressions and audio), researchers have turned to using multi-modal models to understand human emotions rather than single-modality. However, current video multi-modal large language models (MLLMs) encounter difficulties in effectively integrating audio and identifying subtle facial micro-expressions. Furthermore, the lack of detailed emotion analysis datasets also limits the development of multimodal emotion analysis. To address these issues, we introduce a self-reviewed dataset and a human-reviewed dataset, comprising 24,137 coarse-grained samples and 3,500 manually annotated samples with detailed emotion annotations, respectively. These datasets allow models to learn from diverse scenarios and better generalize to real-world applications. Moreover, in addition to the audio modeling, we propose to explicitly integrate facial encoding models into the existing advanced Video MLLM, enabling the MLLM to effectively unify audio and the subtle facial cues for emotion understanding. By aligning these features within a unified space and employing instruction tuning in our proposed datasets, our Omni-Emotion achieves state-of-the-art performance in both emotion recognition and reasoning tasks.
LLaMA-Omni: Seamless Speech Interaction with Large Language Models
Models like GPT-4o enable real-time interaction with large language models (LLMs) through speech, significantly enhancing user experience compared to traditional text-based interaction. However, there is still a lack of exploration on how to build speech interaction models based on open-source LLMs. To address this, we propose LLaMA-Omni, a novel model architecture designed for low-latency and high-quality speech interaction with LLMs. LLaMA-Omni integrates a pretrained speech encoder, a speech adaptor, an LLM, and a streaming speech decoder. It eliminates the need for speech transcription, and can simultaneously generate text and speech responses directly from speech instructions with extremely low latency. We build our model based on the latest Llama-3.1-8B-Instruct model. To align the model with speech interaction scenarios, we construct a dataset named InstructS2S-200K, which includes 200K speech instructions and corresponding speech responses. Experimental results show that compared to previous speech-language models, LLaMA-Omni provides better responses in both content and style, with a response latency as low as 226ms. Additionally, training LLaMA-Omni takes less than 3 days on just 4 GPUs, paving the way for the efficient development of speech-language models in the future.
M2-omni: Advancing Omni-MLLM for Comprehensive Modality Support with Competitive Performance
We present M2-omni, a cutting-edge, open-source omni-MLLM that achieves competitive performance to GPT-4o. M2-omni employs a unified multimodal sequence modeling framework, which empowers Large Language Models(LLMs) to acquire comprehensive cross-modal understanding and generation capabilities. Specifically, M2-omni can process arbitrary combinations of audio, video, image, and text modalities as input, generating multimodal sequences interleaving with audio, image, or text outputs, thereby enabling an advanced and interactive real-time experience. The training of such an omni-MLLM is challenged by significant disparities in data quantity and convergence rates across modalities. To address these challenges, we propose a step balance strategy during pre-training to handle the quantity disparities in modality-specific data. Additionally, a dynamically adaptive balance strategy is introduced during the instruction tuning stage to synchronize the modality-wise training progress, ensuring optimal convergence. Notably, we prioritize preserving strong performance on pure text tasks to maintain the robustness of M2-omni's language understanding capability throughout the training process. To our best knowledge, M2-omni is currently a very competitive open-source model to GPT-4o, characterized by its comprehensive modality and task support, as well as its exceptional performance. We expect M2-omni will advance the development of omni-MLLMs, thus facilitating future research in this domain.
Baichuan-Omni-1.5 Technical Report
We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.
HumanOmniV2: From Understanding to Omni-Modal Reasoning with Context
With the rapid evolution of multimodal large language models, the capacity to deeply understand and interpret human intentions has emerged as a critical capability, which demands detailed and thoughtful reasoning. In recent studies, Reinforcement Learning (RL) has demonstrated potential in enhancing the reasoning capabilities of Large Language Models (LLMs). Nonetheless, the challenges associated with adapting RL to multimodal data and formats remain largely unaddressed. In this paper, we identify two issues in existing multimodal reasoning models: insufficient global context understanding and shortcut problems. Insufficient context understanding can happen when a model misinterprets multimodal context, resulting in incorrect answers. The shortcut problem occurs when the model overlooks crucial clues in multimodal inputs, directly addressing the query without considering the multimodal information. To tackle these issues, we emphasize the necessity for the model to reason with a clear understanding of the global context within multimodal inputs. This global context understanding can effectively prevent the model from overlooking key multimodal cues and ensure a thorough reasoning process. To ensure the accurate interpretation of multimodal context information, we implement a context reward judged by a large language model, alongside format and accuracy rewards. Additionally, to improve complex reasoning capability, we employ the LLM to assess the logical reward, determining whether the reasoning process successfully integrates multimodal information with logical methods. We also introduce a reasoning omni-modal benchmark, IntentBench, aimed at evaluating models in understanding complex human intentions and emotions. Our proposed method demonstrates advanced performance across multiple omni-modal benchmarks compared to other open-source omni-modal models.
OD-VAE: An Omni-dimensional Video Compressor for Improving Latent Video Diffusion Model
Variational Autoencoder (VAE), compressing videos into latent representations, is a crucial preceding component of Latent Video Diffusion Models (LVDMs). With the same reconstruction quality, the more sufficient the VAE's compression for videos is, the more efficient the LVDMs are. However, most LVDMs utilize 2D image VAE, whose compression for videos is only in the spatial dimension and often ignored in the temporal dimension. How to conduct temporal compression for videos in a VAE to obtain more concise latent representations while promising accurate reconstruction is seldom explored. To fill this gap, we propose an omni-dimension compression VAE, named OD-VAE, which can temporally and spatially compress videos. Although OD-VAE's more sufficient compression brings a great challenge to video reconstruction, it can still achieve high reconstructed accuracy by our fine design. To obtain a better trade-off between video reconstruction quality and compression speed, four variants of OD-VAE are introduced and analyzed. In addition, a novel tail initialization is designed to train OD-VAE more efficiently, and a novel inference strategy is proposed to enable OD-VAE to handle videos of arbitrary length with limited GPU memory. Comprehensive experiments on video reconstruction and LVDM-based video generation demonstrate the effectiveness and efficiency of our proposed methods.
OralGPT-Omni: A Versatile Dental Multimodal Large Language Model
Multimodal Large Language Models (MLLMs) have exhibited immense potential across numerous medical specialties; yet, dentistry remains underexplored, in part due to limited domain-specific data, scarce dental expert annotations, insufficient modality-specific modeling, and challenges in reliability. In this paper, we present OralGPT-Omni, the first dental-specialized MLLM designed for comprehensive and trustworthy analysis across diverse dental imaging modalities and clinical tasks. To explicitly capture dentists' diagnostic reasoning, we construct TRACE-CoT, a clinically grounded chain-of-thought dataset that mirrors dental radiologists' decision-making processes. This reasoning supervision, combined with our proposed four-stage training paradigm, substantially strengthens the model's capacity for dental image understanding and analysis. In parallel, we introduce MMOral-Uni, the first unified multimodal benchmark for dental image analysis. It comprises 2,809 open-ended question-answer pairs spanning five modalities and five tasks, offering a comprehensive evaluation suite to date for MLLMs in digital dentistry. OralGPT-Omni achieves an overall score of 51.84 on the MMOral-Uni benchmark and 45.31 on the MMOral-OPG benchmark, dramatically outperforming the scores of GPT-5. Our work promotes intelligent dentistry and paves the way for future advances in dental image analysis. All code, benchmark, and models will be made publicly available.
Nexus-O: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
Human beings perceive the real world through a spectrum of sensory modalities, encompassing auditory, visual, and linguistic faculties. The journey towards achieving Artificial General Intelligence (AGI) necessitates the development of models that can emulate these multifaceted perceptual capabilities and comprehensively understand these diversified data. To this end, we introduce Nexus-O, an industry-level omni-perceptive and -interactive model capable of efficiently processing Audio, Image, Video, and Text data in any combination and output audio/text in an end-to-end way. We systematically investigate Nexus-O by addressing three key research questions: First, how can models be efficiently designed and trained to achieve tri-modal alignment, understanding and reasoning capabilities across multiple modalities? Second, what approaches can be implemented to evaluate tri-modal model robustness, ensuring reliable performance and applicability in real-world scenarios? Third, what strategies can be employed to curate and obtain high-quality, real-life scenario speech datasets? For the first question, we design and pre-train Nexus-O based on the vision-language model, rather than the language model. By pre-training the model over high-quality synthetic audio data, our model is capable of tri-modal perception and interaction. For the second question, we introduce a new audio testbed, Nexus-O-audio, comprising diverse Automatic Speech Recognition (ASR) samples, spanning various real-world scenarios, such as corporate meetings and live stream. For the third question, we design the speech data synthesis pipeline to obtain high-quality speech training datasets, covering various real-world scenarios. Comprehensive experimentation and an in-depth analysis of tri-modal alignment over latent space demonstrate the advantages of our model on downstream tasks.
VideoDPO: Omni-Preference Alignment for Video Diffusion Generation
Recent progress in generative diffusion models has greatly advanced text-to-video generation. While text-to-video models trained on large-scale, diverse datasets can produce varied outputs, these generations often deviate from user preferences, highlighting the need for preference alignment on pre-trained models. Although Direct Preference Optimization (DPO) has demonstrated significant improvements in language and image generation, we pioneer its adaptation to video diffusion models and propose a VideoDPO pipeline by making several key adjustments. Unlike previous image alignment methods that focus solely on either (i) visual quality or (ii) semantic alignment between text and videos, we comprehensively consider both dimensions and construct a preference score accordingly, which we term the OmniScore. We design a pipeline to automatically collect preference pair data based on the proposed OmniScore and discover that re-weighting these pairs based on the score significantly impacts overall preference alignment. Our experiments demonstrate substantial improvements in both visual quality and semantic alignment, ensuring that no preference aspect is neglected. Code and data will be shared at https://videodpo.github.io/.
AudioGen-Omni: A Unified Multimodal Diffusion Transformer for Video-Synchronized Audio, Speech, and Song Generation
We present AudioGen-Omni - a unified approach based on multimodal diffusion transformers (MMDit), capable of generating high-fidelity audio, speech, and song coherently synchronized with the input video. AudioGen-Omni introduces a novel joint training paradigm that seamlessly integrates large-scale video-text-audio corpora, enabling a model capable of generating semantically rich, acoustically diverse audio conditioned on multimodal inputs and adaptable to a wide range of audio generation tasks. AudioGen-Omni employs a unified lyrics-transcription encoder that encodes graphemes and phonemes from both song and spoken inputs into dense frame-level representations. Dense frame-level representations are fused using an AdaLN-based joint attention mechanism enhanced with phase-aligned anisotropic positional infusion (PAAPI), wherein RoPE is selectively applied to temporally structured modalities to ensure precise and robust cross-modal alignment. By unfreezing all modalities and masking missing inputs, AudioGen-Omni mitigates the semantic constraints of text-frozen paradigms, enabling effective cross-modal conditioning. This joint training approach enhances audio quality, semantic alignment, and lip-sync accuracy, while also achieving state-of-the-art results on Text-to-Audio/Speech/Song tasks. With an inference time of 1.91 seconds for 8 seconds of audio, it offers substantial improvements in both efficiency and generality.
Omni-Recon: Harnessing Image-based Rendering for General-Purpose Neural Radiance Fields
Recent breakthroughs in Neural Radiance Fields (NeRFs) have sparked significant demand for their integration into real-world 3D applications. However, the varied functionalities required by different 3D applications often necessitate diverse NeRF models with various pipelines, leading to tedious NeRF training for each target task and cumbersome trial-and-error experiments. Drawing inspiration from the generalization capability and adaptability of emerging foundation models, our work aims to develop one general-purpose NeRF for handling diverse 3D tasks. We achieve this by proposing a framework called Omni-Recon, which is capable of (1) generalizable 3D reconstruction and zero-shot multitask scene understanding, and (2) adaptability to diverse downstream 3D applications such as real-time rendering and scene editing. Our key insight is that an image-based rendering pipeline, with accurate geometry and appearance estimation, can lift 2D image features into their 3D counterparts, thus extending widely explored 2D tasks to the 3D world in a generalizable manner. Specifically, our Omni-Recon features a general-purpose NeRF model using image-based rendering with two decoupled branches: one complex transformer-based branch that progressively fuses geometry and appearance features for accurate geometry estimation, and one lightweight branch for predicting blending weights of source views. This design achieves state-of-the-art (SOTA) generalizable 3D surface reconstruction quality with blending weights reusable across diverse tasks for zero-shot multitask scene understanding. In addition, it can enable real-time rendering after baking the complex geometry branch into meshes, swift adaptation to achieve SOTA generalizable 3D understanding performance, and seamless integration with 2D diffusion models for text-guided 3D editing.
OmniBench: Towards The Future of Universal Omni-Language Models
Recent advancements in multimodal large language models (MLLMs) have aimed to integrate and interpret data across diverse modalities. However, the capacity of these models to concurrently process and reason about multiple modalities remains inadequately explored, partly due to the lack of comprehensive modality-wise benchmarks. We introduce OmniBench, a novel benchmark designed to rigorously evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define models capable of such tri-modal processing as omni-language models (OLMs). OmniBench is distinguished by high-quality human annotations, ensuring that accurate responses require integrated understanding and reasoning across all three modalities. Our main findings reveal that: i) open-source OLMs exhibit critical limitations in instruction-following and reasoning capabilities within tri-modal contexts; and ii) the baseline models perform poorly (below 50% accuracy) even when provided with alternative textual representations of images and audio. These results suggest that the ability to construct a consistent context from text, image, and audio is often overlooked in existing MLLM training paradigms. We advocate for future research to focus on developing more robust tri-modal integration techniques and training strategies to enhance OLM performance across diverse modalities. The codes and live leaderboard could be found at https://m-a-p.ai/OmniBench.
Omni-Video: Democratizing Unified Video Understanding and Generation
Notable breakthroughs in unified understanding and generation modeling have led to remarkable advancements in image understanding, reasoning, production and editing, yet current foundational models predominantly focus on processing images, creating a gap in the development of unified models for video understanding and generation. This report presents Omni-Video, an efficient and effective unified framework for video understanding, generation, as well as instruction-based editing. Our key insight is to teach existing multimodal large language models (MLLMs) to produce continuous visual clues that are used as the input of diffusion decoders, which produce high-quality videos conditioned on these visual clues. To fully unlock the potential of our system for unified video modeling, we integrate several technical improvements: 1) a lightweight architectural design that respectively attaches a vision head on the top of MLLMs and a adapter before the input of diffusion decoders, the former produce visual tokens for the latter, which adapts these visual tokens to the conditional space of diffusion decoders; and 2) an efficient multi-stage training scheme that facilitates a fast connection between MLLMs and diffusion decoders with limited data and computational resources. We empirically demonstrate that our model exhibits satisfactory generalization abilities across video generation, editing and understanding tasks.
Lumina-DiMOO: An Omni Diffusion Large Language Model for Multi-Modal Generation and Understanding
We introduce Lumina-DiMOO, an open-source foundational model for seamless multi-modal generation and understanding. Lumina-DiMOO sets itself apart from prior unified models by utilizing a fully discrete diffusion modeling to handle inputs and outputs across various modalities. This innovative approach allows Lumina-DiMOO to achieve higher sampling efficiency compared to previous autoregressive (AR) or hybrid AR-Diffusion paradigms and adeptly support a broad spectrum of multi-modal tasks, including text-to-image generation, image-to-image generation (e.g., image editing, subject-driven generation, and image inpainting, etc.), as well as image understanding. Lumina-DiMOO achieves state-of-the-art performance on multiple benchmarks, surpassing existing open-source unified multi-modal models. To foster further advancements in multi-modal and discrete diffusion model research, we release our code and checkpoints to the community. Project Page: https://synbol.github.io/Lumina-DiMOO.
SkyReels-Audio: Omni Audio-Conditioned Talking Portraits in Video Diffusion Transformers
The generation and editing of audio-conditioned talking portraits guided by multimodal inputs, including text, images, and videos, remains under explored. In this paper, we present SkyReels-Audio, a unified framework for synthesizing high-fidelity and temporally coherent talking portrait videos. Built upon pretrained video diffusion transformers, our framework supports infinite-length generation and editing, while enabling diverse and controllable conditioning through multimodal inputs. We employ a hybrid curriculum learning strategy to progressively align audio with facial motion, enabling fine-grained multimodal control over long video sequences. To enhance local facial coherence, we introduce a facial mask loss and an audio-guided classifier-free guidance mechanism. A sliding-window denoising approach further fuses latent representations across temporal segments, ensuring visual fidelity and temporal consistency across extended durations and diverse identities. More importantly, we construct a dedicated data pipeline for curating high-quality triplets consisting of synchronized audio, video, and textual descriptions. Comprehensive benchmark evaluations show that SkyReels-Audio achieves superior performance in lip-sync accuracy, identity consistency, and realistic facial dynamics, particularly under complex and challenging conditions.
Omni-View: Unlocking How Generation Facilitates Understanding in Unified 3D Model based on Multiview images
This paper presents Omni-View, which extends the unified multimodal understanding and generation to 3D scenes based on multiview images, exploring the principle that "generation facilitates understanding". Consisting of understanding model, texture module, and geometry module, Omni-View jointly models scene understanding, novel view synthesis, and geometry estimation, enabling synergistic interaction between 3D scene understanding and generation tasks. By design, it leverages the spatiotemporal modeling capabilities of its texture module responsible for appearance synthesis, alongside the explicit geometric constraints provided by its dedicated geometry module, thereby enriching the model's holistic understanding of 3D scenes. Trained with a two-stage strategy, Omni-View achieves a state-of-the-art score of 55.4 on the VSI-Bench benchmark, outperforming existing specialized 3D understanding models, while simultaneously delivering strong performance in both novel view synthesis and 3D scene generation.
OmniVideoBench: Towards Audio-Visual Understanding Evaluation for Omni MLLMs
Recent advances in multimodal large language models (MLLMs) have demonstrated substantial potential in video understanding. However, existing benchmarks fail to comprehensively evaluate synergistic reasoning capabilities across audio and visual modalities, often neglecting either one of the modalities or integrating them in a logically inconsistent manner. To bridge this gap, we introduce OmniVideoBench, a large-scale and rigorously designed benchmark dedicated to assessing synergistic audio-visual understanding, with a strong emphasis on modality complementarity and logical consistency. Specifically, OmniVideoBench comprises 1000 high-quality question-answer(QA) pairs, each annotated with step-by-step reasoning traces, derived from 628 diverse videos ranging from several seconds to 30 minutes, and manually verified to guarantee complete correctness and uniqueness. Moreover, OmniVideoBench encompasses 13 carefully designed question types, covering temporal reasoning, spatial localization, counting, causal inference, summarization, and beyond, thereby capturing the essential challenges of video understanding. Evaluation of multiple MLLMs on OmniVideoBench reveals a pronounced gap between model performance and human reasoning, with open-source models lagging significantly behind their closed-source counterparts, underscoring the inherent difficulty of genuine audio-visual reasoning. We will release OmniVideoBench to foster the development of MLLMs with stronger and more generalizable reasoning capabilities.
X-Omni: Reinforcement Learning Makes Discrete Autoregressive Image Generative Models Great Again
Numerous efforts have been made to extend the ``next token prediction'' paradigm to visual contents, aiming to create a unified approach for both image generation and understanding. Nevertheless, attempts to generate images through autoregressive modeling with discrete tokens have been plagued by issues such as low visual fidelity, distorted outputs, and failure to adhere to complex instructions when rendering intricate details. These shortcomings are likely attributed to cumulative errors during autoregressive inference or information loss incurred during the discretization process. Probably due to this challenge, recent research has increasingly shifted toward jointly training image generation with diffusion objectives and language generation with autoregressive objectives, moving away from unified modeling approaches. In this work, we demonstrate that reinforcement learning can effectively mitigate artifacts and largely enhance the generation quality of a discrete autoregressive modeling method, thereby enabling seamless integration of image and language generation. Our framework comprises a semantic image tokenizer, a unified autoregressive model for both language and images, and an offline diffusion decoder for image generation, termed X-Omni. X-Omni achieves state-of-the-art performance in image generation tasks using a 7B language model, producing images with high aesthetic quality while exhibiting strong capabilities in following instructions and rendering long texts.
Omni-MATH: A Universal Olympiad Level Mathematic Benchmark For Large Language Models
Recent advancements in large language models (LLMs) have led to significant breakthroughs in mathematical reasoning capabilities. However, existing benchmarks like GSM8K or MATH are now being solved with high accuracy (e.g., OpenAI o1 achieves 94.8% on MATH dataset), indicating their inadequacy for truly challenging these models. To bridge this gap, we propose a comprehensive and challenging benchmark specifically designed to assess LLMs' mathematical reasoning at the Olympiad level. Unlike existing Olympiad-related benchmarks, our dataset focuses exclusively on mathematics and comprises a vast collection of 4428 competition-level problems with rigorous human annotation. These problems are meticulously categorized into over 33 sub-domains and span more than 10 distinct difficulty levels, enabling a holistic assessment of model performance in Olympiad-mathematical reasoning. Furthermore, we conducted an in-depth analysis based on this benchmark. Our experimental results show that even the most advanced models, OpenAI o1-mini and OpenAI o1-preview, struggle with highly challenging Olympiad-level problems, with 60.54% and 52.55% accuracy, highlighting significant challenges in Olympiad-level mathematical reasoning.
Ming-Omni: A Unified Multimodal Model for Perception and Generation
We propose Ming-Omni, a unified multimodal model capable of processing images, text, audio, and video, while demonstrating strong proficiency in both speech and image generation. Ming-Omni employs dedicated encoders to extract tokens from different modalities, which are then processed by Ling, an MoE architecture equipped with newly proposed modality-specific routers. This design enables a single model to efficiently process and fuse multimodal inputs within a unified framework, thereby facilitating diverse tasks without requiring separate models, task-specific fine-tuning, or structural redesign. Importantly, Ming-Omni extends beyond conventional multimodal models by supporting audio and image generation. This is achieved through the integration of an advanced audio decoder for natural-sounding speech and Ming-Lite-Uni for high-quality image generation, which also allow the model to engage in context-aware chatting, perform text-to-speech conversion, and conduct versatile image editing. Our experimental results showcase Ming-Omni offers a powerful solution for unified perception and generation across all modalities. Notably, our proposed Ming-Omni is the first open-source model we are aware of to match GPT-4o in modality support, and we release all code and model weights to encourage further research and development in the community.
Stream-Omni: Simultaneous Multimodal Interactions with Large Language-Vision-Speech Model
The emergence of GPT-4o-like large multimodal models (LMMs) has raised the exploration of integrating text, vision, and speech modalities to support more flexible multimodal interaction. Existing LMMs typically concatenate representation of modalities along the sequence dimension and feed them into a large language model (LLM) backbone. While sequence-dimension concatenation is straightforward for modality integration, it often relies heavily on large-scale data to learn modality alignments. In this paper, we aim to model the relationships between modalities more purposefully, thereby achieving more efficient and flexible modality alignments. To this end, we propose Stream-Omni, a large language-vision-speech model with efficient modality alignments, which can simultaneously support interactions under various modality combinations. Stream-Omni employs LLM as the backbone and aligns the vision and speech to the text based on their relationships. For vision that is semantically complementary to text, Stream-Omni uses sequence-dimension concatenation to achieve vision-text alignment. For speech that is semantically consistent with text, Stream-Omni introduces a CTC-based layer-dimension mapping to achieve speech-text alignment. In this way, Stream-Omni can achieve modality alignments with less data (especially speech), enabling the transfer of text capabilities to other modalities. Experiments on various benchmarks demonstrate that Stream-Omni achieves strong performance on visual understanding, speech interaction, and vision-grounded speech interaction tasks. Owing to the layer-dimensional mapping, Stream-Omni can simultaneously provide intermediate text outputs (such as ASR transcriptions and model responses) during speech interaction, offering users a comprehensive multimodal experience.
Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards
The advancement of general-purpose artificial intelligence relies on large language models (LLMs) that excel across a wide range of tasks, from structured reasoning to creative generation. However, post-training methods like Supervised Fine-Tuning (SFT) often struggle with generalization, favoring memorization over transferable learning. In this work, we introduce Omni-Thinker, a unified reinforcement learning (RL) framework that enhances LLM performance across diverse tasks by combining rule-based verifiable rewards with generative preference signals via LLM-as-a-Judge evaluations. Our approach enables consistent optimization across task types and scales RL-based training to subjective domains. We further investigate training strategies, demonstrating that a curriculum-based progression that orders tasks from structured to open-ended improves performance and reduces forgetting. Experimental results across four domains reveal that curriculum learning improves performance by 5.2% over joint training and 9.1% over model merging. These results highlight the importance of task-aware sampling and hybrid supervision in scaling RL-based post-training for general-purpose LLMs.
From Specific-MLLM to Omni-MLLM: A Survey about the MLLMs alligned with Multi-Modality
From the Specific-MLLM, which excels in single-modal tasks, to the Omni-MLLM, which extends the range of general modalities, this evolution aims to achieve understanding and generation of multimodal information. Omni-MLLM treats the features of different modalities as different "foreign languages," enabling cross-modal interaction and understanding within a unified space. To promote the advancement of related research, we have compiled 47 relevant papers to provide the community with a comprehensive introduction to Omni-MLLM. We first explain the four core components of Omni-MLLM for unified modeling and interaction of multiple modalities. Next, we introduce the effective integration achieved through "alignment pretraining" and "instruction fine-tuning," and discuss open-source datasets and testing of interaction capabilities. Finally, we summarize the main challenges facing current Omni-MLLM and outline future directions.
OmniVGGT: Omni-Modality Driven Visual Geometry Grounded
General 3D foundation models have started to lead the trend of unifying diverse vision tasks, yet most assume RGB-only inputs and ignore readily available geometric cues (e.g., camera intrinsics, poses, and depth maps). To address this issue, we introduce OmniVGGT, a novel framework that can effectively benefit from an arbitrary number of auxiliary geometric modalities during both training and inference. In our framework, a GeoAdapter is proposed to encode depth and camera intrinsics/extrinsics into a spatial foundation model. It employs zero-initialized convolutions to progressively inject geometric information without disrupting the foundation model's representation space. This design ensures stable optimization with negligible overhead, maintaining inference speed comparable to VGGT even with multiple additional inputs. Additionally, a stochastic multimodal fusion regimen is proposed, which randomly samples modality subsets per instance during training. This enables an arbitrary number of modality inputs during testing and promotes learning robust spatial representations instead of overfitting to auxiliary cues. Comprehensive experiments on monocular/multi-view depth estimation, multi-view stereo, and camera pose estimation demonstrate that OmniVGGT outperforms prior methods with auxiliary inputs and achieves state-of-the-art results even with RGB-only input. To further highlight its practical utility, we integrated OmniVGGT into vision-language-action (VLA) models. The enhanced VLA model by OmniVGGT not only outperforms the vanilla point-cloud-based baseline on mainstream benchmarks, but also effectively leverages accessible auxiliary inputs to achieve consistent gains on robotic tasks.
Phi-Omni-ST: A multimodal language model for direct speech-to-speech translation
Speech-aware language models (LMs) have demonstrated capabilities in understanding spoken language while generating text-based responses. However, enabling them to produce speech output efficiently and effectively remains a challenge. In this paper, we present Phi-Omni-ST, a multimodal LM for direct speech-to-speech translation (ST), built on the open-source Phi-4 MM model. Phi-Omni-ST extends its predecessor by generating translated speech using an audio transformer head that predicts audio tokens with a delay relative to text tokens, followed by a streaming vocoder for waveform synthesis. Our experimental results on the CVSS-C dataset demonstrate Phi-Omni-ST's superior performance, significantly surpassing existing baseline models trained on the same dataset. Furthermore, when we scale up the training data and the model size, Phi-Omni-ST reaches on-par performance with the current SOTA model.
Capybara-OMNI: An Efficient Paradigm for Building Omni-Modal Language Models
With the development of Multimodal Large Language Models (MLLMs), numerous outstanding accomplishments have emerged within the open-source community. Due to the complexity of creating and training multimodal data pairs, it is still a computational and time-consuming process to build powerful MLLMs. In this work, we introduce Capybara-OMNI, an MLLM that trains in a lightweight and efficient manner and supports understanding text, image, video, and audio modalities. We present in detail the framework design, the data construction, and the training recipe, to develop an MLLM step-by-step to obtain competitive performance. We also provide exclusive benchmarks utilized in our experiments to show how to properly verify understanding capabilities across different modalities. Results show that by following our guidance, we can efficiently build an MLLM that achieves competitive performance among models of the same scale on various multimodal benchmarks. Additionally, to enhance the multimodal instruction following and conversational capabilities of the model, we further discuss how to train the chat version upon an MLLM understanding model, which is more in line with user habits for tasks like real-time interaction with humans. We publicly disclose the Capybara-OMNI model, along with its chat-based version. The disclosure includes both the model weights, a portion of the training data, and the inference codes, which are made available on GitHub.
Lyra: An Efficient and Speech-Centric Framework for Omni-Cognition
As Multi-modal Large Language Models (MLLMs) evolve, expanding beyond single-domain capabilities is essential to meet the demands for more versatile and efficient AI. However, previous omni-models have insufficiently explored speech, neglecting its integration with multi-modality. We introduce Lyra, an efficient MLLM that enhances multimodal abilities, including advanced long-speech comprehension, sound understanding, cross-modality efficiency, and seamless speech interaction. To achieve efficiency and speech-centric capabilities, Lyra employs three strategies: (1) leveraging existing open-source large models and a proposed multi-modality LoRA to reduce training costs and data requirements; (2) using a latent multi-modality regularizer and extractor to strengthen the relationship between speech and other modalities, thereby enhancing model performance; and (3) constructing a high-quality, extensive dataset that includes 1.5M multi-modal (language, vision, audio) data samples and 12K long speech samples, enabling Lyra to handle complex long speech inputs and achieve more robust omni-cognition. Compared to other omni-methods, Lyra achieves state-of-the-art performance on various vision-language, vision-speech, and speech-language benchmarks, while also using fewer computational resources and less training data.
Hunyuan3D-Omni: A Unified Framework for Controllable Generation of 3D Assets
Recent advances in 3D-native generative models have accelerated asset creation for games, film, and design. However, most methods still rely primarily on image or text conditioning and lack fine-grained, cross-modal controls, which limits controllability and practical adoption. To address this gap, we present Hunyuan3D-Omni, a unified framework for fine-grained, controllable 3D asset generation built on Hunyuan3D 2.1. In addition to images, Hunyuan3D-Omni accepts point clouds, voxels, bounding boxes, and skeletal pose priors as conditioning signals, enabling precise control over geometry, topology, and pose. Instead of separate heads for each modality, our model unifies all signals in a single cross-modal architecture. We train with a progressive, difficulty-aware sampling strategy that selects one control modality per example and biases sampling toward harder signals (e.g., skeletal pose) while downweighting easier ones (e.g., point clouds), encouraging robust multi-modal fusion and graceful handling of missing inputs. Experiments show that these additional controls improve generation accuracy, enable geometry-aware transformations, and increase robustness for production workflows.
O-Mem: Omni Memory System for Personalized, Long Horizon, Self-Evolving Agents
Recent advancements in LLM-powered agents have demonstrated significant potential in generating human-like responses; however, they continue to face challenges in maintaining long-term interactions within complex environments, primarily due to limitations in contextual consistency and dynamic personalization. Existing memory systems often depend on semantic grouping prior to retrieval, which can overlook semantically irrelevant yet critical user information and introduce retrieval noise. In this report, we propose the initial design of O-Mem, a novel memory framework based on active user profiling that dynamically extracts and updates user characteristics and event records from their proactive interactions with agents. O-Mem supports hierarchical retrieval of persona attributes and topic-related context, enabling more adaptive and coherent personalized responses. O-Mem achieves 51.67% on the public LoCoMo benchmark, a nearly 3% improvement upon LangMem,the previous state-of-the-art, and it achieves 62.99% on PERSONAMEM, a 3.5% improvement upon A-Mem,the previous state-of-the-art. O-Mem also boosts token and interaction response time efficiency compared to previous memory frameworks. Our work opens up promising directions for developing efficient and human-like personalized AI assistants in the future.
Ming-Flash-Omni: A Sparse, Unified Architecture for Multimodal Perception and Generation
We propose Ming-Flash-Omni, an upgraded version of Ming-Omni, built upon a sparser Mixture-of-Experts (MoE) variant of Ling-Flash-2.0 with 100 billion total parameters, of which only 6.1 billion are active per token. This architecture enables highly efficient scaling (dramatically improving computational efficiency while significantly expanding model capacity) and empowers stronger unified multimodal intelligence across vision, speech, and language, representing a key step toward Artificial General Intelligence (AGI). Compared to its predecessor, the upgraded version exhibits substantial improvements across multimodal understanding and generation. We significantly advance speech recognition capabilities, achieving state-of-the-art performance in contextual ASR and highly competitive results in dialect-aware ASR. In image generation, Ming-Flash-Omni introduces high-fidelity text rendering and demonstrates marked gains in scene consistency and identity preservation during image editing. Furthermore, Ming-Flash-Omni introduces generative segmentation, a capability that not only achieves strong standalone segmentation performance but also enhances spatial control in image generation and improves editing consistency. Notably, Ming-Flash-Omni achieves state-of-the-art results in text-to-image generation and generative segmentation, and sets new records on all 12 contextual ASR benchmarks, all within a single unified architecture.
SAIL-Embedding Technical Report: Omni-modal Embedding Foundation Model
Multimodal embedding models aim to yield informative unified representations that empower diverse cross-modal tasks. Despite promising developments in the evolution from CLIP-based dual-tower architectures to large vision-language models, prior works still face unavoidable challenges in real-world applications and business scenarios, such as the limited modality support, unstable training mechanisms, and industrial domain gaps. In this work, we introduce SAIL-Embedding, an omni-modal embedding foundation model that addresses these issues through tailored training strategies and architectural design. In the optimization procedure, we propose a multi-stage training scheme to boost the multifaceted effectiveness of representation learning. Specifically, the content-aware progressive training aims to enhance the model's adaptability to diverse downstream tasks and master enriched cross-modal proficiency. The collaboration-aware recommendation enhancement training further adapts multimodal representations for recommendation scenarios by distilling knowledge from sequence-to-item and ID-to-item embeddings while mining user historical interests. Concurrently, we develop the stochastic specialization and dataset-driven pattern matching to strengthen model training flexibility and generalizability. Experimental results show that SAIL-Embedding achieves SOTA performance compared to other methods in different retrieval tasks. In online experiments across various real-world scenarios integrated with our model, we observe a significant increase in Lifetime (LT), which is a crucial indicator for the recommendation experience. For instance, the model delivers the 7-day LT gain of +0.158% and the 14-day LT gain of +0.144% in the Douyin-Selected scenario. For the Douyin feed rank model, the match features produced by SAIL-Embedding yield a +0.08% AUC gain.
LongVALE: Vision-Audio-Language-Event Benchmark Towards Time-Aware Omni-Modal Perception of Long Videos
Despite impressive advancements in video understanding, most efforts remain limited to coarse-grained or visual-only video tasks. However, real-world videos encompass omni-modal information (vision, audio, and speech) with a series of events forming a cohesive storyline. The lack of multi-modal video data with fine-grained event annotations and the high cost of manual labeling are major obstacles to comprehensive omni-modality video perception. To address this gap, we propose an automatic pipeline consisting of high-quality multi-modal video filtering, semantically coherent omni-modal event boundary detection, and cross-modal correlation-aware event captioning. In this way, we present LongVALE, the first-ever Vision-Audio-Language Event understanding benchmark comprising 105K omni-modal events with precise temporal boundaries and detailed relation-aware captions within 8.4K high-quality long videos. Further, we build a baseline that leverages LongVALE to enable video large language models (LLMs) for omni-modality fine-grained temporal video understanding for the first time. Extensive experiments demonstrate the effectiveness and great potential of LongVALE in advancing comprehensive multi-modal video understanding.
RoboOmni: Proactive Robot Manipulation in Omni-modal Context
Recent advances in Multimodal Large Language Models (MLLMs) have driven rapid progress in Vision-Language-Action (VLA) models for robotic manipulation. Although effective in many scenarios, current approaches largely rely on explicit instructions, whereas in real-world interactions, humans rarely issue instructions directly. Effective collaboration requires robots to infer user intentions proactively. In this work, we introduce cross-modal contextual instructions, a new setting where intent is derived from spoken dialogue, environmental sounds, and visual cues rather than explicit commands. To address this new setting, we present RoboOmni, a Perceiver-Thinker-Talker-Executor framework based on end-to-end omni-modal LLMs that unifies intention recognition, interaction confirmation, and action execution. RoboOmni fuses auditory and visual signals spatiotemporally for robust intention recognition, while supporting direct speech interaction. To address the absence of training data for proactive intention recognition in robotic manipulation, we build OmniAction, comprising 140k episodes, 5k+ speakers, 2.4k event sounds, 640 backgrounds, and six contextual instruction types. Experiments in simulation and real-world settings show that RoboOmni surpasses text- and ASR-based baselines in success rate, inference speed, intention recognition, and proactive assistance.
LongCat-Flash-Omni Technical Report
We introduce LongCat-Flash-Omni, a state-of-the-art open-source omni-modal model with 560 billion parameters, excelling at real-time audio-visual interaction. By adopting a curriculum-inspired progressive training strategy that transitions from simpler to increasingly complex modality sequence modeling tasks, LongCat-Flash-Omni attains comprehensive multimodal capabilities while maintaining strong unimodal capability. Building upon LongCat-Flash, which adopts a high-performance Shortcut-connected Mixture-of-Experts (MoE) architecture with zero-computation experts, LongCat-Flash-Omni integrates efficient multimodal perception and speech reconstruction modules. Despite its immense size of 560B parameters (with 27B activated), LongCat-Flash-Omni achieves low-latency real-time audio-visual interaction. For training infrastructure, we developed a modality-decoupled parallelism scheme specifically designed to manage the data and model heterogeneity inherent in large-scale multimodal training. This innovative approach demonstrates exceptional efficiency by sustaining over 90% of the throughput achieved by text-only training. Extensive evaluations show that LongCat-Flash-Omni achieves state-of-the-art performance on omni-modal benchmarks among open-source models. Furthermore, it delivers highly competitive results across a wide range of modality-specific tasks, including text, image, and video understanding, as well as audio understanding and generation. We provide a comprehensive overview of the model architecture design, training procedures, and data strategies, and open-source the model to foster future research and development in the community.
SegMAN: Omni-scale Context Modeling with State Space Models and Local Attention for Semantic Segmentation
High-quality semantic segmentation relies on three key capabilities: global context modeling, local detail encoding, and multi-scale feature extraction. However, recent methods struggle to possess all these capabilities simultaneously. Hence, we aim to empower segmentation networks to simultaneously carry out efficient global context modeling, high-quality local detail encoding, and rich multi-scale feature representation for varying input resolutions. In this paper, we introduce SegMAN, a novel linear-time model comprising a hybrid feature encoder dubbed SegMAN Encoder, and a decoder based on state space models. Specifically, the SegMAN Encoder synergistically integrates sliding local attention with dynamic state space models, enabling highly efficient global context modeling while preserving fine-grained local details. Meanwhile, the MMSCopE module in our decoder enhances multi-scale context feature extraction and adaptively scales with the input resolution. Our SegMAN-B Encoder achieves 85.1% ImageNet-1k accuracy (+1.5% over VMamba-S with fewer parameters). When paired with our decoder, the full SegMAN-B model achieves 52.6% mIoU on ADE20K (+1.6% over SegNeXt-L with 15% fewer GFLOPs), 83.8% mIoU on Cityscapes (+2.1% over SegFormer-B3 with half the GFLOPs), and 1.6% higher mIoU than VWFormer-B3 on COCO-Stuff with lower GFLOPs. Our code is available at https://github.com/yunxiangfu2001/SegMAN.
Omni-R1: Do You Really Need Audio to Fine-Tune Your Audio LLM?
We propose Omni-R1 which fine-tunes a recent multi-modal LLM, Qwen2.5-Omni, on an audio question answering dataset with the reinforcement learning method GRPO. This leads to new State-of-the-Art performance on the recent MMAU benchmark. Omni-R1 achieves the highest accuracies on the sounds, music, speech, and overall average categories, both on the Test-mini and Test-full splits. To understand the performance improvement, we tested models both with and without audio and found that much of the performance improvement from GRPO could be attributed to better text-based reasoning. We also made a surprising discovery that fine-tuning without audio on a text-only dataset was effective at improving the audio-based performance.
Leveraging LLM-Assisted Query Understanding for Live Retrieval-Augmented Generation
Real-world live retrieval-augmented generation (RAG) systems face significant challenges when processing user queries that are often noisy, ambiguous, and contain multiple intents. While RAG enhances large language models (LLMs) with external knowledge, current systems typically struggle with such complex inputs, as they are often trained or evaluated on cleaner data. This paper introduces Omni-RAG, a novel framework designed to improve the robustness and effectiveness of RAG systems in live, open-domain settings. Omni-RAG employs LLM-assisted query understanding to preprocess user inputs through three key modules: (1) Deep Query Understanding and Decomposition, which utilizes LLMs with tailored prompts to denoise queries (e.g., correcting spelling errors) and decompose multi-intent queries into structured sub-queries; (2) Intent-Aware Knowledge Retrieval, which performs retrieval for each sub-query from a corpus (i.e., FineWeb using OpenSearch) and aggregates the results; and (3) Reranking and Generation, where a reranker (i.e., BGE) refines document selection before a final response is generated by an LLM (i.e., Falcon-10B) using a chain-of-thought prompt. Omni-RAG aims to bridge the gap between current RAG capabilities and the demands of real-world applications, such as those highlighted by the SIGIR 2025 LiveRAG Challenge, by robustly handling complex and noisy queries.
3D-GOI: 3D GAN Omni-Inversion for Multifaceted and Multi-object Editing
The current GAN inversion methods typically can only edit the appearance and shape of a single object and background while overlooking spatial information. In this work, we propose a 3D editing framework, 3D-GOI, to enable multifaceted editing of affine information (scale, translation, and rotation) on multiple objects. 3D-GOI realizes the complex editing function by inverting the abundance of attribute codes (object shape/appearance/scale/rotation/translation, background shape/appearance, and camera pose) controlled by GIRAFFE, a renowned 3D GAN. Accurately inverting all the codes is challenging, 3D-GOI solves this challenge following three main steps. First, we segment the objects and the background in a multi-object image. Second, we use a custom Neural Inversion Encoder to obtain coarse codes of each object. Finally, we use a round-robin optimization algorithm to get precise codes to reconstruct the image. To the best of our knowledge, 3D-GOI is the first framework to enable multifaceted editing on multiple objects. Both qualitative and quantitative experiments demonstrate that 3D-GOI holds immense potential for flexible, multifaceted editing in complex multi-object scenes.Our project and code are released at https://3d-goi.github.io .
Omni-DPO: A Dual-Perspective Paradigm for Dynamic Preference Learning of LLMs
Direct Preference Optimization (DPO) has become a cornerstone of reinforcement learning from human feedback (RLHF) due to its simplicity and efficiency. However, existing DPO-based approaches typically treat all preference pairs uniformly, ignoring critical variations in their inherent quality and learning utility, leading to suboptimal data utilization and performance. To address this challenge, we propose Omni-DPO, a dual-perspective optimization framework that jointly accounts for (1) the inherent quality of each preference pair and (2) the model's evolving performance on those pairs. By adaptively weighting samples according to both data quality and the model's learning dynamics during training, Omni-DPO enables more effective training data utilization and achieves better performance. Experimental results on various models and benchmarks demonstrate the superiority and generalization capabilities of Omni-DPO. On textual understanding tasks, Gemma-2-9b-it finetuned with Omni-DPO beats the leading LLM, Claude 3 Opus, by a significant margin of 6.7 points on the Arena-Hard benchmark. On mathematical reasoning tasks, Omni-DPO consistently outperforms the baseline methods across all benchmarks, providing strong empirical evidence for the effectiveness and robustness of our approach. Code and models will be available at https://github.com/pspdada/Omni-DPO.
Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data
We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.
OMNI: Open-endedness via Models of human Notions of Interestingness
Open-ended algorithms aim to learn new, interesting behaviors forever. That requires a vast environment search space, but there are thus infinitely many possible tasks. Even after filtering for tasks the current agent can learn (i.e., learning progress), countless learnable yet uninteresting tasks remain (e.g., minor variations of previously learned tasks). An Achilles Heel of open-endedness research is the inability to quantify (and thus prioritize) tasks that are not just learnable, but also interesting (e.g., worthwhile and novel). We propose solving this problem by Open-endedness via Models of human Notions of Interestingness (OMNI). The insight is that we can utilize foundation models (FMs) as a model of interestingness (MoI), because they already internalize human concepts of interestingness from training on vast amounts of human-generated data, where humans naturally write about what they find interesting or boring. We show that FM-based MoIs improve open-ended learning by focusing on tasks that are both learnable and interesting, outperforming baselines based on uniform task sampling or learning progress alone. This approach has the potential to dramatically advance the ability to intelligently select which tasks to focus on next (i.e., auto-curricula), and could be seen as AI selecting its own next task to learn, facilitating self-improving AI and AI-Generating Algorithms. Project website at https://www.jennyzhangzt.com/omni/
Ambient Diffusion Omni: Training Good Models with Bad Data
We show how to use low-quality, synthetic, and out-of-distribution images to improve the quality of a diffusion model. Typically, diffusion models are trained on curated datasets that emerge from highly filtered data pools from the Web and other sources. We show that there is immense value in the lower-quality images that are often discarded. We present Ambient Diffusion Omni, a simple, principled framework to train diffusion models that can extract signal from all available images during training. Our framework exploits two properties of natural images -- spectral power law decay and locality. We first validate our framework by successfully training diffusion models with images synthetically corrupted by Gaussian blur, JPEG compression, and motion blur. We then use our framework to achieve state-of-the-art ImageNet FID, and we show significant improvements in both image quality and diversity for text-to-image generative modeling. The core insight is that noise dampens the initial skew between the desired high-quality distribution and the mixed distribution we actually observe. We provide rigorous theoretical justification for our approach by analyzing the trade-off between learning from biased data versus limited unbiased data across diffusion times.
UGC-VideoCaptioner: An Omni UGC Video Detail Caption Model and New Benchmarks
Real-world user-generated videos, especially on platforms like TikTok, often feature rich and intertwined audio visual content. However, existing video captioning benchmarks and models remain predominantly visual centric, overlooking the crucial role of audio in conveying scene dynamics, speaker intent, and narrative context. This lack of omni datasets and lightweight, capable models hampers progress in fine grained, multimodal video understanding. To address these challenges, we introduce UGC-VideoCap, a new benchmark and model framework specifically designed for detailed omnimodal captioning of short form user-generated videos. Unlike prior datasets, UGC-VideoCap emphasizes balanced integration of audio and visual modalities, featuring 1000 TikTok videos annotated through a structured three stage human-in-the-loop pipeline covering audio only, visual only, and joint audio visual semantics. The benchmark also includes 4000 carefully crafted QA pairs probing both unimodal and cross modal understanding. Alongside the dataset, we propose UGC-VideoCaptioner(3B), a 3B parameter captioning model distilled from Gemini 2.5 Flash. Using a novel two-stage training strategy supervised fine tuning followed by Group Relative Policy Optimization (GRPO), our approach enables efficient adaptation from limited data while maintaining competitive performance. Together, our benchmark and model offer a high-quality foundation and a data-efficient solution for advancing omnimodal video captioning in unconstrained real-world UGC settings.
OMCAT: Omni Context Aware Transformer
Large Language Models (LLMs) have made significant strides in text generation and comprehension, with recent advancements extending into multimodal LLMs that integrate visual and audio inputs. However, these models continue to struggle with fine-grained, cross-modal temporal understanding, particularly when correlating events across audio and video streams. We address these challenges with two key contributions: a new dataset and model, called OCTAV and OMCAT respectively. OCTAV (Omni Context and Temporal Audio Video) is a novel dataset designed to capture event transitions across audio and video. Second, OMCAT (Omni Context Aware Transformer) is a powerful model that leverages RoTE (Rotary Time Embeddings), an innovative extension of RoPE, to enhance temporal grounding and computational efficiency in time-anchored tasks. Through a robust three-stage training pipeline-feature alignment, instruction tuning, and OCTAV-specific training-OMCAT excels in cross-modal temporal understanding. Our model demonstrates state-of-the-art performance on Audio-Visual Question Answering (AVQA) tasks and the OCTAV benchmark, showcasing significant gains in temporal reasoning and cross-modal alignment, as validated through comprehensive experiments and ablation studies. Our dataset and code will be made publicly available. The link to our demo page is https://om-cat.github.io.
Omni-Captioner: Data Pipeline, Models, and Benchmark for Omni Detailed Perception
Fine-grained perception of multimodal information is critical for advancing human-AI interaction. With recent progress in audio-visual technologies, Omni Language Models (OLMs), capable of processing audio and video signals in parallel, have emerged as a promising paradigm for achieving richer understanding and reasoning. However, their capacity to capture and describe fine-grained details remains limited explored. In this work, we present a systematic and comprehensive investigation of omni detailed perception from the perspectives of the data pipeline, models, and benchmark. We first identify an inherent "co-growth" between detail and hallucination in current OLMs. To address this, we propose Omni-Detective, an agentic data generation pipeline integrating tool-calling, to autonomously produce highly detailed yet minimally hallucinatory multimodal data. Based on the data generated with Omni-Detective, we train two captioning models: Audio-Captioner for audio-only detailed perception, and Omni-Captioner for audio-visual detailed perception. Under the cascade evaluation protocol, Audio-Captioner achieves the best performance on MMAU and MMAR among all open-source models, surpassing Gemini 2.5 Flash and delivering performance comparable to Gemini 2.5 Pro. On existing detailed captioning benchmarks, Omni-Captioner sets a new state-of-the-art on VDC and achieves the best trade-off between detail and hallucination on the video-SALMONN 2 testset. Given the absence of a dedicated benchmark for omni detailed perception, we design Omni-Cloze, a novel cloze-style evaluation for detailed audio, visual, and audio-visual captioning that ensures stable, efficient, and reliable assessment. Experimental results and analysis demonstrate the effectiveness of Omni-Detective in generating high-quality detailed captions, as well as the superiority of Omni-Cloze in evaluating such detailed captions.
ViT-Lens: Towards Omni-modal Representations
Though the success of CLIP-based training recipes in vision-language models, their scalability to more modalities (e.g., 3D, audio, etc.) is limited to large-scale data, which is expensive or even inapplicable for rare modalities. In this paper, we present ViT-Lens that facilitates efficient omni-modal representation learning by perceiving novel modalities with a pretrained ViT and aligning to a pre-defined space. Specifically, the modality-specific lens is tuned to project multimodal signals to the shared embedding space, which are then processed by a strong ViT that carries pre-trained image knowledge. The encoded multimodal representations are optimized toward aligning with the modal-independent space, pre-defined by off-the-shelf foundation models. A well-trained lens with a ViT backbone has the potential to serve as one of these foundation models, supervising the learning of subsequent modalities. ViT-Lens provides a unified solution for representation learning of increasing modalities with two appealing benefits: (i) Exploiting the pretrained ViT across tasks and domains effectively with efficient data regime; (ii) Emergent downstream capabilities of novel modalities are demonstrated due to the modality alignment space. We evaluate ViT-Lens in the context of 3D as an initial verification. In zero-shot 3D classification, ViT-Lens achieves substantial improvements over previous state-of-the-art, showing 52.0% accuracy on Objaverse-LVIS, 87.4% on ModelNet40, and 60.6% on ScanObjectNN. Furthermore, we enable zero-shot 3D question-answering by simply integrating the trained 3D lens into the InstructBLIP model without any adaptation. We will release the results of ViT-Lens on more modalities in the near future.
OneIG-Bench: Omni-dimensional Nuanced Evaluation for Image Generation
Text-to-image (T2I) models have garnered significant attention for generating high-quality images aligned with text prompts. However, rapid T2I model advancements reveal limitations in early benchmarks, lacking comprehensive evaluations, for example, the evaluation on reasoning, text rendering and style. Notably, recent state-of-the-art models, with their rich knowledge modeling capabilities, show promising results on the image generation problems requiring strong reasoning ability, yet existing evaluation systems have not adequately addressed this frontier. To systematically address these gaps, we introduce OneIG-Bench, a meticulously designed comprehensive benchmark framework for fine-grained evaluation of T2I models across multiple dimensions, including prompt-image alignment, text rendering precision, reasoning-generated content, stylization, and diversity. By structuring the evaluation, this benchmark enables in-depth analysis of model performance, helping researchers and practitioners pinpoint strengths and bottlenecks in the full pipeline of image generation. Specifically, OneIG-Bench enables flexible evaluation by allowing users to focus on a particular evaluation subset. Instead of generating images for the entire set of prompts, users can generate images only for the prompts associated with the selected dimension and complete the corresponding evaluation accordingly. Our codebase and dataset are now publicly available to facilitate reproducible evaluation studies and cross-model comparisons within the T2I research community.
ShapeLLM-Omni: A Native Multimodal LLM for 3D Generation and Understanding
Recently, the powerful text-to-image capabilities of ChatGPT-4o have led to growing appreciation for native multimodal large language models. However, its multimodal capabilities remain confined to images and text. Yet beyond images, the ability to understand and generate 3D content is equally crucial. To address this gap, we propose ShapeLLM-Omni-a native 3D large language model capable of understanding and generating 3D assets and text in any sequence. First, we train a 3D vector-quantized variational autoencoder (VQVAE), which maps 3D objects into a discrete latent space to achieve efficient and accurate shape representation and reconstruction. Building upon the 3D-aware discrete tokens, we innovatively construct a large-scale continuous training dataset named 3D-Alpaca, encompassing generation, comprehension, and editing, thus providing rich resources for future research and training. Finally, by performing instruction-based training of the Qwen-2.5-vl-7B-Instruct model on the 3D-Alpaca dataset. Our work provides an effective attempt at extending multimodal models with basic 3D capabilities, which contributes to future research in 3D-native AI. Project page: https://github.com/JAMESYJL/ShapeLLM-Omni
Omni-Embed-Nemotron: A Unified Multimodal Retrieval Model for Text, Image, Audio, and Video
We present Omni-Embed-Nemotron, a unified multimodal retrieval embedding model developed to handle the increasing complexity of real-world information needs. While Retrieval-Augmented Generation (RAG) has significantly advanced language models by incorporating external knowledge, existing text-based retrievers rely on clean, structured input and struggle with the visually and semantically rich content found in real-world documents such as PDFs, slides, or videos. Recent work such as ColPali has shown that preserving document layout using image-based representations can improve retrieval quality. Building on this, and inspired by the capabilities of recent multimodal models such as Qwen2.5-Omni, we extend retrieval beyond text and images to also support audio and video modalities. Omni-Embed-Nemotron enables both cross-modal (e.g., text - video) and joint-modal (e.g., text - video+audio) retrieval using a single model. We describe the architecture, training setup, and evaluation results of Omni-Embed-Nemotron, and demonstrate its effectiveness in text, image, and video retrieval.
Jamendo-QA: A Large-Scale Music Question Answering Dataset
We introduce Jamendo-QA, a large-scale dataset for Music Question Answering (Music-QA). The dataset is built on freely licensed tracks from the Jamendo platform and is automatically annotated using the Qwen-Omni model. Jamendo-QA provides question-answer pairs and captions aligned with music audio, enabling both supervised training and zero-shot evaluation. Our resource aims to fill the gap of music-specific QA datasets and foster further research in music understanding, retrieval, and generative applications. In addition to its scale, Jamendo-QA covers a diverse range of genres, instruments, and metadata attributes, allowing robust model benchmarking across varied musical contexts. We also provide detailed dataset statistics and highlight potential biases such as genre and gender imbalance to guide fair evaluation. We position Jamendo-QA as a scalable and publicly available benchmark that can facilitate future research in music understanding, multimodal modeling, and fair evaluation of music-oriented QA systems.
Omni-Dish: Photorealistic and Faithful Image Generation and Editing for Arbitrary Chinese Dishes
Dish images play a crucial role in the digital era, with the demand for culturally distinctive dish images continuously increasing due to the digitization of the food industry and e-commerce. In general cases, existing text-to-image generation models excel in producing high-quality images; however, they struggle to capture diverse characteristics and faithful details of specific domains, particularly Chinese dishes. To address this limitation, we propose Omni-Dish, the first text-to-image generation model specifically tailored for Chinese dishes. We develop a comprehensive dish curation pipeline, building the largest dish dataset to date. Additionally, we introduce a recaption strategy and employ a coarse-to-fine training scheme to help the model better learn fine-grained culinary nuances. During inference, we enhance the user's textual input using a pre-constructed high-quality caption library and a large language model, enabling more photorealistic and faithful image generation. Furthermore, to extend our model's capability for dish editing tasks, we propose Concept-Enhanced P2P. Based on this approach, we build a dish editing dataset and train a specialized editing model. Extensive experiments demonstrate the superiority of our methods.
QuantumLLMInstruct: A 500k LLM Instruction-Tuning Dataset with Problem-Solution Pairs for Quantum Computing
We present QuantumLLMInstruct (QLMMI), an innovative dataset featuring over 500,000 meticulously curated instruction-following problem-solution pairs designed specifically for quantum computing - the largest and most comprehensive dataset of its kind. Originating from over 90 primary seed domains and encompassing hundreds of subdomains autonomously generated by LLMs, QLMMI marks a transformative step in the diversity and richness of quantum computing datasets. Designed for instruction fine-tuning, QLMMI seeks to significantly improve LLM performance in addressing complex quantum computing challenges across a wide range of quantum physics topics. While Large Language Models (LLMs) have propelled advancements in computational science with datasets like Omni-MATH and OpenMathInstruct, these primarily target Olympiad-level mathematics, leaving quantum computing largely unexplored. The creation of QLMMI follows a rigorous four-stage methodology. Initially, foundational problems are developed using predefined templates, focusing on critical areas such as synthetic Hamiltonians, QASM code generation, Jordan-Wigner transformations, and Trotter-Suzuki quantum circuit decompositions. Next, detailed and domain-specific solutions are crafted to ensure accuracy and relevance. In the third stage, the dataset is enriched through advanced reasoning techniques, including Chain-of-Thought (CoT) and Task-Oriented Reasoning and Action (ToRA), which enhance problem-solution diversity while adhering to strict mathematical standards. Lastly, a zero-shot Judge LLM performs self-assessments to validate the dataset's quality and reliability, minimizing human oversight requirements.
OmniVinci: Enhancing Architecture and Data for Omni-Modal Understanding LLM
Advancing machine intelligence requires developing the ability to perceive across multiple modalities, much as humans sense the world. We introduce OmniVinci, an initiative to build a strong, open-source, omni-modal LLM. We carefully study the design choices across model architecture and data curation. For model architecture, we present three key innovations: (i) OmniAlignNet for strengthening alignment between vision and audio embeddings in a shared omni-modal latent space; (ii) Temporal Embedding Grouping for capturing relative temporal alignment between vision and audio signals; and (iii) Constrained Rotary Time Embedding for encoding absolute temporal information in omni-modal embeddings. We introduce a curation and synthesis pipeline that generates 24M single-modal and omni-modal conversations. We find that modalities reinforce one another in both perception and reasoning. Our model, OmniVinci, outperforms Qwen2.5-Omni with +19.05 on DailyOmni (cross-modal understanding), +1.7 on MMAR (audio), and +3.9 on Video-MME (vision), while using just 0.2T training tokens - a 6 times reduction compared to Qwen2.5-Omni's 1.2T. We finally demonstrate omni-modal advantages in downstream applications spanning robotics, medical AI, and smart factory.
Is Extending Modality The Right Path Towards Omni-Modality?
Omni-modal language models (OLMs) aim to integrate and reason over diverse input modalities--such as text, images, video, and audio--while maintaining strong language capabilities. Despite recent advancements, existing models, especially open-source ones, remain far from true omni-modality, struggling to generalize beyond the specific modality pairs they are trained on or to achieve strong performance when processing multi-modal inputs. We study the effect of extending modality, the dominant technique for training multimodal models, where an off-the-shelf language model is fine-tuned on target-domain and language data. Specifically, we investigate three key questions: (1) Does modality extension compromise core language abilities? (2) Can model merging effectively integrate independently fine-tuned modality-specific models to achieve omni-modality? (3) Does omni-modality extension lead to better knowledge sharing and generalization compared to sequential extension? Through extensive experiments, we analyze these trade-offs and provide insights into the feasibility of achieving true omni-modality using current approaches.
OmniBind: Large-scale Omni Multimodal Representation via Binding Spaces
Recently, human-computer interaction with various modalities has shown promising applications, like GPT-4o and Gemini. Given the foundational role of multimodal joint representation in understanding and generation pipelines, high-quality omni joint representations would be a step toward co-processing more diverse multimodal information. In this work, we present OmniBind, large-scale multimodal joint representation models ranging in scale from 7 billion to 30 billion parameters, which support 3D, audio, image, and language inputs. Due to the scarcity of data pairs across all modalities, instead of training large models from scratch, we propose remapping and binding the spaces of various pre-trained specialist models together. This approach enables "scaling up" by indirectly increasing the model parameters and the amount of seen data. To effectively integrate various spaces, we dynamically assign weights to different spaces by learning routers with two objectives: cross-modal overall alignment and language representation decoupling. Notably, since binding and routing spaces both only require lightweight networks, OmniBind is extremely training-efficient. Learning the largest 30B model requires merely unpaired unimodal data and approximately 3 days on a single 8-4090 node. Extensive experiments demonstrate the versatility and superiority of OmniBind as an omni representation model, highlighting its great potential for diverse applications, such as any-query and composable multimodal understanding.
XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models
Omni-modal large language models (OLLMs) aim to unify audio, vision, and text understanding within a single framework. While existing benchmarks primarily evaluate general cross-modal question-answering ability, it remains unclear whether OLLMs achieve modality-invariant reasoning or exhibit modality-specific biases. We introduce XModBench, a large-scale tri-modal benchmark explicitly designed to measure cross-modal consistency. XModBench comprises 60,828 multiple-choice questions spanning five task families and systematically covers all six modality compositions in question-answer pairs, enabling fine-grained diagnosis of an OLLM's modality-invariant reasoning, modality disparity, and directional imbalance. Experiments show that even the strongest model, Gemini 2.5 Pro, (i) struggles with spatial and temporal reasoning, achieving less than 60% accuracy, (ii) reveals persistent modality disparities, with performance dropping substantially when the same semantic content is conveyed through audio rather than text, and (iii) shows systematic directional imbalance, exhibiting lower consistency when vision serves as context compared to text. These findings indicate that current OLLMs remain far from truly modality-invariant reasoning and position XModBench as a fundamental diagnostic tool for evaluating and improving cross-modal competence. All data and evaluation tools will be available at https://xingruiwang.github.io/projects/XModBench/.
VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation
Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We propose VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework for real-time voice interaction. Departing from the conventional next-token prediction (NTP), we introduce multi-token prediction (MTP), a novel approach optimized for speech LLMs that simultaneously improves generation speed and quality. Experiments show that VocalNet outperforms mainstream Omni LLMs despite using significantly less training data, while also surpassing existing open-source speech LLMs by a substantial margin. To support reproducibility and community advancement, we will open-source all model weights, inference code, training data, and framework implementations upon publication.
OmnixR: Evaluating Omni-modality Language Models on Reasoning across Modalities
We introduce OmnixR, an evaluation suite designed to benchmark SoTA Omni-modality Language Models, such as GPT-4o and Gemini. Evaluating OLMs, which integrate multiple modalities such as text, vision, and audio, presents unique challenges. Particularly, the user message might often consist of multiple modalities, such that OLMs have to establish holistic understanding and reasoning across modalities to accomplish the task. Existing benchmarks are limited to single modality or dual-modality tasks, overlooking comprehensive multi-modal assessments of model reasoning. To address this, OmnixR offers two evaluation variants: (1)synthetic subset: a synthetic dataset generated automatically by translating text into multiple modalities--audio, images, video, and hybrids (Omnify). (2)realistic subset: a real-world dataset, manually curated and annotated by experts, for evaluating cross-modal reasoning in natural settings. OmnixR presents a unique evaluation towards assessing OLMs over a diverse mix of modalities, such as a question that involves video, audio, and text, providing a rigorous cross-modal reasoning testbed unlike any existing benchmarks. Our experiments find that all state-of-the-art OLMs struggle with OmnixR questions that require integrating information from multiple modalities to answer. Further analysis highlights differences in reasoning behavior, underscoring the challenges of omni-modal AI alignment.
S2ST-Omni: An Efficient Multilingual Speech-to-Speech Translation Framework via Seamless Speech-Text Alignment and Progressive Fine-tuning
Despite recent advances in multilingual speech-to-speech translation (S2ST), several critical challenges persist: 1) achieving high-quality translation remains a major hurdle, and 2) most existing methods heavily rely on large-scale parallel speech corpora, which are costly and difficult to obtain. To address these issues, we propose S2ST-Omni, an efficient and scalable framework for multilingual S2ST. Specifically, we decompose the S2ST task into speech-to-text translation (S2TT) and text-to-speech synthesis (TTS). For S2TT, we propose an effective speech language model that integrates the pretrained Whisper encoder for robust audio understanding and Qwen 3.0 for advanced text comprehension. A lightweight speech adapter is employed to bridge the modality gap between speech and text representations. To further facilitate the multimodal knowledge learning, a two-stage fine-tuning strategy is introduced. In the TTS stage, we adopt a streaming autoregressive generation approach to produce natural and fluent target speech. Experiments on the CVSS benchmark show that S2ST-Omni consistently outperforms existing state-of-the-art S2ST systems in translation quality, highlighting its effectiveness and superiority.
OmniRe: Omni Urban Scene Reconstruction
We introduce OmniRe, a holistic approach for efficiently reconstructing high-fidelity dynamic urban scenes from on-device logs. Recent methods for modeling driving sequences using neural radiance fields or Gaussian Splatting have demonstrated the potential of reconstructing challenging dynamic scenes, but often overlook pedestrians and other non-vehicle dynamic actors, hindering a complete pipeline for dynamic urban scene reconstruction. To that end, we propose a comprehensive 3DGS framework for driving scenes, named OmniRe, that allows for accurate, full-length reconstruction of diverse dynamic objects in a driving log. OmniRe builds dynamic neural scene graphs based on Gaussian representations and constructs multiple local canonical spaces that model various dynamic actors, including vehicles, pedestrians, and cyclists, among many others. This capability is unmatched by existing methods. OmniRe allows us to holistically reconstruct different objects present in the scene, subsequently enabling the simulation of reconstructed scenarios with all actors participating in real-time (~60Hz). Extensive evaluations on the Waymo dataset show that our approach outperforms prior state-of-the-art methods quantitatively and qualitatively by a large margin. We believe our work fills a critical gap in driving reconstruction.
OMNI-EPIC: Open-endedness via Models of human Notions of Interestingness with Environments Programmed in Code
Open-ended and AI-generating algorithms aim to continuously generate and solve increasingly complex tasks indefinitely, offering a promising path toward more general intelligence. To accomplish this grand vision, learning must occur within a vast array of potential tasks. Existing approaches to automatically generating environments are constrained within manually predefined, often narrow distributions of environment, limiting their ability to create any learning environment. To address this limitation, we introduce a novel framework, OMNI-EPIC, that augments previous work in Open-endedness via Models of human Notions of Interestingness (OMNI) with Environments Programmed in Code (EPIC). OMNI-EPIC leverages foundation models to autonomously generate code specifying the next learnable (i.e., not too easy or difficult for the agent's current skill set) and interesting (e.g., worthwhile and novel) tasks. OMNI-EPIC generates both environments (e.g., an obstacle course) and reward functions (e.g., progress through the obstacle course quickly without touching red objects), enabling it, in principle, to create any simulatable learning task. We showcase the explosive creativity of OMNI-EPIC, which continuously innovates to suggest new, interesting learning challenges. We also highlight how OMNI-EPIC can adapt to reinforcement learning agents' learning progress, generating tasks that are of suitable difficulty. Overall, OMNI-EPIC can endlessly create learnable and interesting environments, further propelling the development of self-improving AI systems and AI-Generating Algorithms. Project website with videos: https://dub.sh/omniepic
HERO: Hierarchical Encoder for Video+Language Omni-representation Pre-training
We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.
Freeze-Omni: A Smart and Low Latency Speech-to-speech Dialogue Model with Frozen LLM
Rapidly developing large language models (LLMs) have brought tremendous intelligent applications. Especially, the GPT-4o's excellent duplex speech interaction ability has brought impressive experience to users. Researchers have recently proposed several multi-modal LLMs in this direction that can achieve user-agent speech-to-speech conversations. This paper proposes a novel speech-text multimodal LLM architecture called Freeze-Omni. Our main contribution is that the speech input and output modalities can be easily connected to a textual LLM while keeping the LLM's parameters frozen throughout the training process. We design a three-stage training strategy for modeling both the speech input and output, enabling Freeze-Omni to obtain speech-to-speech conversation ability using text-speech paired data (such as ASR and TTS data) and only 60,000 multi-round text Q&A data on 8 GPUs. Moreover, we can effectively ensure that the intelligence of the Freeze-Omni in the speech modality is at the same level compared with that in the text modality of its backbone LLM, while achieving low latency end-to-end spoken response. In addition, we also designed a method to achieve duplex dialogue ability through multi-task training, giving Freeze-Omni a more natural style of dialogue ability between users and agents. In summary, Freeze-Omni holds great potential to conduct speech-to-speech dialogue based on a multimodal LLM under the condition of a frozen LLM, avoiding the catastrophic forgetting problem caused by limited data and training resources.
InteractiveOmni: A Unified Omni-modal Model for Audio-Visual Multi-turn Dialogue
We introduce InteractiveOmni, a unified and open-source omni-modal large language model for audio-visual multi-turn interaction, ranging from 4B to 8B parameters, designed to lead the field of lightweight models by offering comprehensive omni-modal understanding and speech generation capabilities. To achieve this, we integrate the vision encoder, audio encoder, large language model, and speech decoder into a unified model for understanding and generation tasks. We design a multi-stage training strategy to ensure robust cross-modal capabilities, including pre-training for omni-modal understanding, followed by post-training with speech conversation and audio-visual interaction. To enable human-like long-term conversational ability, we meticulously curate a multi-turn training dataset that enhances the model's ability to handle complex and multi-turn interactions. To effectively evaluate the multi-turn memory and speech interaction capabilities, we construct the multi-modal multi-turn memory benchmark and the multi-turn speech interaction benchmark. Experiments demonstrate that InteractiveOmni significantly outperforms leading open-source models and provides a more intelligent multi-turn audio-visual experience, particularly in its long-term memory capabilities. Notably, InteractiveOmni-4B is comparable to the much larger model like Qwen2.5-Omni-7B on general benchmarks, and it can retain 97% of the performance of the InteractiveOmni-8B while utilizing only 50% of the model size. Achieving state-of-the-art results against similarly sized models across image, audio, video understanding, and speech generation tasks, InteractiveOmni is an accessible, open-source foundation for next-generation intelligent interactive systems.
EasyRef: Omni-Generalized Group Image Reference for Diffusion Models via Multimodal LLM
Significant achievements in personalization of diffusion models have been witnessed. Conventional tuning-free methods mostly encode multiple reference images by averaging their image embeddings as the injection condition, but such an image-independent operation cannot perform interaction among images to capture consistent visual elements within multiple references. Although the tuning-based Low-Rank Adaptation (LoRA) can effectively extract consistent elements within multiple images through the training process, it necessitates specific finetuning for each distinct image group. This paper introduces EasyRef, a novel plug-and-play adaptation method that enables diffusion models to be conditioned on multiple reference images and the text prompt. To effectively exploit consistent visual elements within multiple images, we leverage the multi-image comprehension and instruction-following capabilities of the multimodal large language model (MLLM), prompting it to capture consistent visual elements based on the instruction. Besides, injecting the MLLM's representations into the diffusion process through adapters can easily generalize to unseen domains, mining the consistent visual elements within unseen data. To mitigate computational costs and enhance fine-grained detail preservation, we introduce an efficient reference aggregation strategy and a progressive training scheme. Finally, we introduce MRBench, a new multi-reference image generation benchmark. Experimental results demonstrate EasyRef surpasses both tuning-free methods like IP-Adapter and tuning-based methods like LoRA, achieving superior aesthetic quality and robust zero-shot generalization across diverse domains.
VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset
In this paper, we propose a Vision-Audio-Language Omni-peRception pretraining model (VALOR) for multi-modal understanding and generation. Different from widely-studied vision-language pretraining models, VALOR jointly models relationships of vision, audio and language in an end-to-end manner. It contains three separate encoders for single modality representations, and a decoder for multimodal conditional text generation. We design two pretext tasks to pretrain VALOR model, including Multimodal Grouping Alignment (MGA) and Multimodal Grouping Captioning (MGC). MGA projects vision, language and audio to the same common space, building vision-language, audio-language and audiovisual-language alignment simultaneously. MGC learns how to generate text tokens in conditions of vision, audio or their both. To promote vision-audio-language pretraining research, we construct a large-scale high-quality tri-modality dataset named VALOR-1M, which contains 1M audiable videos with human annotated audiovisual captions. Extensive experiments show that VALOR can learn strong multimodal correlations and be generalized to various downstream tasks (e.g., retrieval, captioning and question answering), with different input modalities (e.g., vision-language, audio-language and audiovisual-language). VALOR achieves new state-of-the-art performances on series of public cross-modality benchmarks. Code and data are available at project page https://casia-iva-group.github.io/projects/VALOR.
H3AE: High Compression, High Speed, and High Quality AutoEncoder for Video Diffusion Models
Autoencoder (AE) is the key to the success of latent diffusion models for image and video generation, reducing the denoising resolution and improving efficiency. However, the power of AE has long been underexplored in terms of network design, compression ratio, and training strategy. In this work, we systematically examine the architecture design choices and optimize the computation distribution to obtain a series of efficient and high-compression video AEs that can decode in real time even on mobile devices. We also propose an omni-training objective to unify the design of plain Autoencoder and image-conditioned I2V VAE, achieving multifunctionality in a single VAE network but with enhanced quality. In addition, we propose a novel latent consistency loss that provides stable improvements in reconstruction quality. Latent consistency loss outperforms prior auxiliary losses including LPIPS, GAN and DWT in terms of both quality improvements and simplicity. H3AE achieves ultra-high compression ratios and real-time decoding speed on GPU and mobile, and outperforms prior arts in terms of reconstruction metrics by a large margin. We finally validate our AE by training a DiT on its latent space and demonstrate fast, high-quality text-to-video generation capability.
SLAM-Omni: Timbre-Controllable Voice Interaction System with Single-Stage Training
Recent advancements highlight the potential of end-to-end real-time spoken dialogue systems, showcasing their low latency and high quality. In this paper, we introduce SLAM-Omni, a timbre-controllable, end-to-end voice interaction system with single-stage training. SLAM-Omni achieves zero-shot timbre control by modeling spoken language with semantic tokens and decoupling speaker information to a vocoder. By predicting grouped speech semantic tokens at each step, our method significantly reduces the sequence length of audio tokens, accelerating both training and inference. Additionally, we propose historical text prompting to compress dialogue history, facilitating efficient multi-round interactions. Comprehensive evaluations reveal that SLAM-Omni outperforms prior models of similar scale, requiring only 15 hours of training on 4 GPUs with limited data. Notably, it is the first spoken dialogue system to achieve competitive performance with a single-stage training approach, eliminating the need for pre-training on TTS or ASR tasks. Further experiments validate its multilingual and multi-turn dialogue capabilities on larger datasets.
SALMONN-omni: A Codec-free LLM for Full-duplex Speech Understanding and Generation
Full-duplex multimodal large language models (LLMs) provide a unified framework for addressing diverse speech understanding and generation tasks, enabling more natural and seamless human-machine conversations. Unlike traditional modularised conversational AI systems, which separate speech recognition, understanding, and text-to-speech generation into distinct components, multimodal LLMs operate as single end-to-end models. This streamlined design eliminates error propagation across components and fully leverages the rich non-verbal information embedded in input speech signals. We introduce SALMONN-omni, a codec-free, full-duplex speech understanding and generation model capable of simultaneously listening to its own generated speech and background sounds while speaking. To support this capability, we propose a novel duplex spoken dialogue framework incorporating a ``thinking'' mechanism that facilitates asynchronous text and speech generation relying on embeddings instead of codecs (quantized speech and audio tokens). Experimental results demonstrate SALMONN-omni's versatility across a broad range of streaming speech tasks, including speech recognition, speech enhancement, and spoken question answering. Additionally, SALMONN-omni excels at managing turn-taking, barge-in, and echo cancellation scenarios, establishing its potential as a robust prototype for full-duplex conversational AI systems. To the best of our knowledge, SALMONN-omni is the first codec-free model of its kind. A full technical report along with model checkpoints will be released soon.
Empathy Omni: Enabling Empathetic Speech Response Generation through Large Language Models
With the development of speech large language models (speech LLMs), users can now interact directly with assistants via speech. However, most existing models only convert response content into speech without fully capturing the rich emotional cues in user queries, where the same sentence may convey different meanings depending on the expression. Emotional understanding is thus essential for improving human-machine interaction. Most empathetic speech LLMs rely on massive datasets, demanding high computational cost. A key challenge is to build models that generate empathetic responses with limited data and without large-scale training. To this end, we propose Emotion Omni, a model that understands emotional content in user speech and generates empathetic responses. We further developed a data pipeline to construct a 200k emotional dialogue dataset supporting empathetic speech assistants. Experiments show that Emotion Omni achieves comparable instruction-following ability without large-scale pretraining, while surpassing existing models in speech quality (UTMOS:4.41) and empathy (Emotion GPT Score: 3.97). These results confirm its improvements in both speech fidelity and emotional expressiveness. Demos are available at https://w311411.github.io/omni_demo/.
OPERA: Omni-Supervised Representation Learning with Hierarchical Supervisions
The pretrain-finetune paradigm in modern computer vision facilitates the success of self-supervised learning, which tends to achieve better transferability than supervised learning. However, with the availability of massive labeled data, a natural question emerges: how to train a better model with both self and full supervision signals? In this paper, we propose Omni-suPErvised Representation leArning with hierarchical supervisions (OPERA) as a solution. We provide a unified perspective of supervisions from labeled and unlabeled data and propose a unified framework of fully supervised and self-supervised learning. We extract a set of hierarchical proxy representations for each image and impose self and full supervisions on the corresponding proxy representations. Extensive experiments on both convolutional neural networks and vision transformers demonstrate the superiority of OPERA in image classification, segmentation, and object detection. Code is available at: https://github.com/wangck20/OPERA.
AnyCap Project: A Unified Framework, Dataset, and Benchmark for Controllable Omni-modal Captioning
Controllable captioning is essential for precise multimodal alignment and instruction following, yet existing models often lack fine-grained control and reliable evaluation protocols. To address this gap, we present the AnyCap Project, an integrated solution spanning model, dataset, and evaluation. We introduce AnyCapModel (ACM), a lightweight plug-and-play framework that enhances the controllability of existing foundation models for omni-modal captioning without retraining the base model. ACM reuses the original captions from base models while incorporating user instructions and modality features to generate improved captions. To remedy the data scarcity in controllable multimodal captioning, we build AnyCapDataset (ACD), covering three modalities, 28 user-instruction types, and 300\,k high-quality data entries. We further propose AnyCapEval, a new benchmark that provides more reliable evaluation metrics for controllable captioning by decoupling content accuracy and stylistic fidelity. ACM markedly improves caption quality across a diverse set of base models on AnyCapEval. Notably, ACM-8B raises GPT-4o\'s content scores by 45\% and style scores by 12\%, and it also achieves substantial gains on widely used benchmarks such as MIA-Bench and VidCapBench.
Explore the Limits of Omni-modal Pretraining at Scale
We propose to build omni-modal intelligence, which is capable of understanding any modality and learning universal representations. In specific, we propose a scalable pretraining paradigm, named Multimodal Context (MiCo), which can scale up the numbers of modalities and amount of data, together with the model parameters, in the pretraining process. With MiCo, the pretrained models show significant emergent abilities in multimodal learning, which are evaluated on the following tasks: i) single-modality perception benchmarks of 10 different modalities, ii) 25 cross-modality understanding tasks of retrieval, question-answering, captioning, and iii) 18 multimodal large language model benchmarks. Our models establish 37 new records for state-of-the-art performance. We hope that our research could contribute to the development of omni-modal intelligence. Code and Models are at https://github.com/invictus717/MiCo
Mogao: An Omni Foundation Model for Interleaved Multi-Modal Generation
Recent progress in unified models for image understanding and generation has been impressive, yet most approaches remain limited to single-modal generation conditioned on multiple modalities. In this paper, we present Mogao, a unified framework that advances this paradigm by enabling interleaved multi-modal generation through a causal approach. Mogao integrates a set of key technical improvements in architecture design, including a deep-fusion design, dual vision encoders, interleaved rotary position embeddings, and multi-modal classifier-free guidance, which allow it to harness the strengths of both autoregressive models for text generation and diffusion models for high-quality image synthesis. These practical improvements also make Mogao particularly effective to process interleaved sequences of text and images arbitrarily. To further unlock the potential of unified models, we introduce an efficient training strategy on a large-scale, in-house dataset specifically curated for joint text and image generation. Extensive experiments show that Mogao not only achieves state-of-the-art performance in multi-modal understanding and text-to-image generation, but also excels in producing high-quality, coherent interleaved outputs. Its emergent capabilities in zero-shot image editing and compositional generation highlight Mogao as a practical omni-modal foundation model, paving the way for future development and scaling the unified multi-modal systems.
LL3DA: Visual Interactive Instruction Tuning for Omni-3D Understanding, Reasoning, and Planning
Recent advances in Large Multimodal Models (LMM) have made it possible for various applications in human-machine interactions. However, developing LMMs that can comprehend, reason, and plan in complex and diverse 3D environments remains a challenging topic, especially considering the demand for understanding permutation-invariant point cloud 3D representations of the 3D scene. Existing works seek help from multi-view images, and project 2D features to 3D space as 3D scene representations. This, however, leads to huge computational overhead and performance degradation. In this paper, we present LL3DA, a Large Language 3D Assistant that takes point cloud as direct input and respond to both textual-instructions and visual-prompts. This help LMMs better comprehend human interactions and further help to remove the ambiguities in cluttered 3D scenes. Experiments show that LL3DA achieves remarkable results, and surpasses various 3D vision-language models on both 3D Dense Captioning and 3D Question Answering.
UNO-Bench: A Unified Benchmark for Exploring the Compositional Law Between Uni-modal and Omni-modal in OmniModels
Multimodal Large Languages models have been progressing from uni-modal understanding toward unifying visual, audio and language modalities, collectively termed omni models. However, the correlation between uni-modal and omni-modal remains unclear, which requires comprehensive evaluation to drive omni model's intelligence evolution. In this work, we propose a novel, high quality and UNified Omni model benchmark, UNO-Bench, which effectively assesses both UNi-modal and Omni-modal capabilities. The benchmark consists of 3730 human curated samples, with 98% cross-modality solvability, across 44 task types, and an innovative multi-step open-ended question type for assessing complex reasoning. Besides, a general scoring model supporting 6 question types is proposed for automated evaluation with 95% accuracy. Experimental result shows the Compositional Law between omni-modal and uni-modal performance and the omni-modal capability manifests as a bottleneck effect on weak models, while exhibiting synergistic promotion on strong models. The code and data are available at https://github.com/meituan-longcat/UNO-Bench
LLaMA-Omni2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis
Real-time, intelligent, and natural speech interaction is an essential part of the next-generation human-computer interaction. Recent advancements have showcased the potential of building intelligent spoken chatbots based on large language models (LLMs). In this paper, we introduce LLaMA-Omni 2, a series of speech language models (SpeechLMs) ranging from 0.5B to 14B parameters, capable of achieving high-quality real-time speech interaction. LLaMA-Omni 2 is built upon the Qwen2.5 series models, integrating a speech encoder and an autoregressive streaming speech decoder. Despite being trained on only 200K multi-turn speech dialogue samples, LLaMA-Omni 2 demonstrates strong performance on several spoken question answering and speech instruction following benchmarks, surpassing previous state-of-the-art SpeechLMs like GLM-4-Voice, which was trained on millions of hours of speech data.
Detect Anything via Next Point Prediction
Object detection has long been dominated by traditional coordinate regression-based models, such as YOLO, DETR, and Grounding DINO. Although recent efforts have attempted to leverage MLLMs to tackle this task, they face challenges like low recall rate, duplicate predictions, coordinate misalignment, etc. In this work, we bridge this gap and propose Rex-Omni, a 3B-scale MLLM that achieves state-of-the-art object perception performance. On benchmarks like COCO and LVIS, Rex-Omni attains performance comparable to or exceeding regression-based models (e.g., DINO, Grounding DINO) in a zero-shot setting. This is enabled by three key designs: 1) Task Formulation: we use special tokens to represent quantized coordinates from 0 to 999, reducing the model's learning difficulty and improving token efficiency for coordinate prediction; 2) Data Engines: we construct multiple data engines to generate high-quality grounding, referring, and pointing data, providing semantically rich supervision for training; \3) Training Pipelines: we employ a two-stage training process, combining supervised fine-tuning on 22 million data with GRPO-based reinforcement post-training. This RL post-training leverages geometry-aware rewards to effectively bridge the discrete-to-continuous coordinate prediction gap, improve box accuracy, and mitigate undesirable behaviors like duplicate predictions that stem from the teacher-guided nature of the initial SFT stage. Beyond conventional detection, Rex-Omni's inherent language understanding enables versatile capabilities such as object referring, pointing, visual prompting, GUI grounding, spatial referring, OCR and key-pointing, all systematically evaluated on dedicated benchmarks. We believe that Rex-Omni paves the way for more versatile and language-aware visual perception systems.
SoundMind: RL-Incentivized Logic Reasoning for Audio-Language Models
While large language models have shown reasoning capabilities, their application to the audio modality, particularly in large audio-language models (ALMs), remains significantly underdeveloped. Addressing this gap requires a systematic approach, involving a capable base model, high-quality reasoning-oriented audio data, and effective training algorithms. In this study, we present a comprehensive solution: we introduce the Audio Logical Reasoning (ALR) dataset, consisting of 6,446 text-audio annotated samples specifically designed for complex reasoning tasks. Building on this resource, we propose SoundMind, a rule-based reinforcement learning (RL) algorithm tailored to endow ALMs with deep bimodal reasoning abilities. By training Qwen2.5-Omni-7B on the ALR dataset using SoundMind, our approach achieves state-of-the-art performance in audio logical reasoning. This work highlights the impact of combining high-quality, reasoning-focused datasets with specialized RL techniques, advancing the frontier of auditory intelligence in language models. Our code and the proposed dataset are available at https://github.com/xid32/SoundMind.
OmniAvatar: Efficient Audio-Driven Avatar Video Generation with Adaptive Body Animation
Significant progress has been made in audio-driven human animation, while most existing methods focus mainly on facial movements, limiting their ability to create full-body animations with natural synchronization and fluidity. They also struggle with precise prompt control for fine-grained generation. To tackle these challenges, we introduce OmniAvatar, an innovative audio-driven full-body video generation model that enhances human animation with improved lip-sync accuracy and natural movements. OmniAvatar introduces a pixel-wise multi-hierarchical audio embedding strategy to better capture audio features in the latent space, enhancing lip-syncing across diverse scenes. To preserve the capability for prompt-driven control of foundation models while effectively incorporating audio features, we employ a LoRA-based training approach. Extensive experiments show that OmniAvatar surpasses existing models in both facial and semi-body video generation, offering precise text-based control for creating videos in various domains, such as podcasts, human interactions, dynamic scenes, and singing. Our project page is https://omni-avatar.github.io/.
VeOmni: Scaling Any Modality Model Training with Model-Centric Distributed Recipe Zoo
Recent advances in large language models (LLMs) have driven impressive progress in omni-modal understanding and generation. However, training omni-modal LLMs remains a significant challenge due to the heterogeneous model architectures required to process diverse modalities, necessitating sophisticated system design for efficient large-scale training. Existing frameworks typically entangle model definition with parallel logic, incurring limited scalability and substantial engineering overhead for end-to-end omni-modal training. % We present \veomni, a modular and efficient training framework to accelerate the development of omni-modal LLMs. \veomni introduces model-centric distributed recipes that decouples communication from computation, enabling efficient 3D parallelism on omni-modal LLMs. \veomni also features a flexible configuration interface supporting seamless integration of new modalities with minimal code change. % Using \veomni, a omni-modal mixture-of-experts (MoE) model with 30B parameters can be trained with over 2,800 tokens/sec/GPU throughput and scale to 160K context lengths via 3D parallelism on 128 GPUs, showcasing its superior efficiency and scalability for training large omni-modal LLMs.
Look before Transcription: End-to-End SlideASR with Visually-Anchored Policy Optimization
Automatic speech recognition (ASR) systems often struggle with domain-specific terminology, especially in specialized settings such as academic lectures. To address this, we define the SlideASR task, which leverages the rich visual information from presentation slides to improve transcription accuracy. Existing pipeline methods for this task tend to be complex and underperform. Although omni-modal large language models (OLLMs) provide a promising end-to-end framework, they frequently fail in practice by degenerating into simple optical character recognition (OCR) systems. To overcome this, we propose Visually-Anchored Policy Optimization (VAPO), a novel post-training method designed to control the model's reasoning process. Drawing on the Chain-of-Thought reasoning paradigm, VAPO enforces a structured "Look before Transcription" procedure using a <think><answer> format. Specifically, the model first performs OCR on the slide content within the think step, then generates the transcription by referencing this recognized visual information in the answer step. This reasoning process is optimized via reinforcement learning with four distinct rewards targeting format compliance, OCR accuracy, ASR quality, and visual anchoring consistency. To support further research, we construct SlideASR-Bench, a new entity-rich benchmark consisting of a synthetic dataset for training and testing, and a challenging real-world set for evaluation. Extensive experiments demonstrate that VAPO significantly improves recognition of domain-specific terms, establishing an effective end-to-end paradigm for SlideASR.
HumanSense: From Multimodal Perception to Empathetic Context-Aware Responses through Reasoning MLLMs
While Multimodal Large Language Models (MLLMs) show immense promise for achieving truly human-like interactions, progress is hindered by the lack of fine-grained evaluation frameworks for human-centered scenarios, encompassing both the understanding of complex human intentions and the provision of empathetic, context-aware responses. Here we introduce HumanSense, a comprehensive benchmark designed to evaluate the human-centered perception and interaction capabilities of MLLMs, with a particular focus on deep understanding of extended multimodal contexts and the formulation of rational feedback. Our evaluation reveals that leading MLLMs still have considerable room for improvement, particularly for advanced interaction-oriented tasks. Supplementing visual input with audio and text information yields substantial improvements, and Omni-modal models show advantages on these tasks. Furthermore, we argue that appropriate feedback stems from a contextual analysis of the interlocutor's needs and emotions, with reasoning ability serving as the key to unlocking it. Accordingly, we employ a multi-stage, modality-progressive reinforcement learning to enhance the reasoning abilities of an Omni model, achieving substantial gains on evaluation results. Additionally, we observe that successful reasoning processes exhibit highly consistent thought patterns. By designing corresponding prompts, we also enhance the performance of non-reasoning models in a training-free manner. Project page: brightpinkhttps://digital-avatar.github.io/ai/HumanSense/
HumanOmni: A Large Vision-Speech Language Model for Human-Centric Video Understanding
In human-centric scenes, the ability to simultaneously understand visual and auditory information is crucial. While recent omni models can process multiple modalities, they generally lack effectiveness in human-centric scenes due to the absence of large-scale, specialized datasets and non-targeted architectures. In this work, we developed HumanOmni, the industry's first human-centric Omni-multimodal large language model. We constructed a dataset containing over 2.4 million human-centric video clips with detailed captions and more than 14 million instructions, facilitating the understanding of diverse human-centric scenes. HumanOmni includes three specialized branches for understanding different types of scenes. It adaptively fuses features from these branches based on user instructions, significantly enhancing visual understanding in scenes centered around individuals. Moreover, HumanOmni integrates audio features to ensure a comprehensive understanding of environments and individuals. Our experiments validate HumanOmni's advanced capabilities in handling human-centric scenes across a variety of tasks, including emotion recognition, facial expression description, and action understanding. Our model will be open-sourced to facilitate further development and collaboration within both academia and industry.
MDAR: A Multi-scene Dynamic Audio Reasoning Benchmark
The ability to reason from audio, including speech, paralinguistic cues, environmental sounds, and music, is essential for AI agents to interact effectively in real-world scenarios. Existing benchmarks mainly focus on static or single-scene settings and do not fully capture scenarios where multiple speakers, unfolding events, and heterogeneous audio sources interact. To address these challenges, we introduce MDAR, a benchmark for evaluating models on complex, multi-scene, and dynamically evolving audio reasoning tasks. MDAR comprises 3,000 carefully curated question-answer pairs linked to diverse audio clips, covering five categories of complex reasoning and spanning three question types. We benchmark 26 state-of-the-art audio language models on MDAR and observe that they exhibit limitations in complex reasoning tasks. On single-choice questions, Qwen2.5-Omni (open-source) achieves 76.67% accuracy, whereas GPT-4o Audio (closed-source) reaches 68.47%; however, GPT-4o Audio substantially outperforms Qwen2.5-Omni on the more challenging multiple-choice and open-ended tasks. Across all three question types, no model achieves 80% performance. These findings underscore the unique challenges posed by MDAR and its value as a benchmark for advancing audio reasoning research.Code and benchmark can be found at https://github.com/luckyerr/MDAR.
Advancing Speech Language Models by Scaling Supervised Fine-Tuning with Over 60,000 Hours of Synthetic Speech Dialogue Data
The GPT-4o represents a significant milestone in enabling real-time interaction with large language models (LLMs) through speech, its remarkable low latency and high fluency not only capture attention but also stimulate research interest in the field. This real-time speech interaction is particularly valuable in scenarios requiring rapid feedback and immediate responses, dramatically enhancing user experience. However, there is a notable lack of research focused on real-time large speech language models, particularly for Chinese. In this work, we present KE-Omni, a seamless large speech language model built upon Ke-SpeechChat, a large-scale high-quality synthetic speech interaction dataset consisting of 7 million Chinese and English conversations, featuring 42,002 speakers, and totaling over 60,000 hours, This contributes significantly to the advancement of research and development in this field. The demos can be accessed at https://huggingface.co/spaces/KE-Team/KE-Omni.
RBench-V: A Primary Assessment for Visual Reasoning Models with Multi-modal Outputs
The rapid advancement of native multi-modal models and omni-models, exemplified by GPT-4o, Gemini, and o3, with their capability to process and generate content across modalities such as text and images, marks a significant milestone in the evolution of intelligence. Systematic evaluation of their multi-modal output capabilities in visual thinking processes (also known as multi-modal chain of thought, M-CoT) becomes critically important. However, existing benchmarks for evaluating multi-modal models primarily focus on assessing multi-modal inputs and text-only reasoning while neglecting the importance of reasoning through multi-modal outputs. In this paper, we present a benchmark, dubbed RBench-V, designed to assess models' vision-indispensable reasoning abilities. To construct RBench-V, we carefully hand-pick 803 questions covering math, physics, counting, and games. Unlike previous benchmarks that typically specify certain input modalities, RBench-V presents problems centered on multi-modal outputs, which require image manipulation such as generating novel images and constructing auxiliary lines to support the reasoning process. We evaluate numerous open- and closed-source models on RBench-V, including o3, Gemini 2.5 Pro, Qwen2.5-VL, etc. Even the best-performing model, o3, achieves only 25.8% accuracy on RBench-V, far below the human score of 82.3%, highlighting that current models struggle to leverage multi-modal reasoning. Data and code are available at https://evalmodels.github.io/rbenchv
HI-TransPA: Hearing Impairments Translation Personal Assistant
To provide a unified and flexible solution for daily communication among hearing-impaired individuals, we introduce the Omni-Model paradigm into assistive technology and present HI-TransPA, an instruction-driven audio-visual personal assistant. The model fuses indistinct speech with high-frame-rate lip dynamics, enabling both translation and dialogue within a single multimodal framework. To tackle the challenges of noisy and heterogeneous raw data and the limited adaptability of existing Omni-Models to hearing-impaired speech, we construct a comprehensive preprocessing and curation pipeline that detects facial landmarks, isolates and stabilizes the lip region, and quantitatively assesses multimodal sample quality. These quality scores guide a curriculum learning strategy that first trains on clean, high-confidence samples and progressively incorporates harder cases to strengthen model robustness. We further adopt a SigLIP encoder combined with a Unified 3D-Resampler to efficiently encode high-frame-rate lip motion. Experiments on our purpose-built HI-Dialogue dataset show that HI-TransPA achieves state-of-the-art performance in both literal accuracy and semantic fidelity. This work establishes a foundation for applying Omni-Models to assistive communication technology, providing an end-to-end modeling framework and essential processing tools for future research.
RealMAN: A Real-Recorded and Annotated Microphone Array Dataset for Dynamic Speech Enhancement and Localization
The training of deep learning-based multichannel speech enhancement and source localization systems relies heavily on the simulation of room impulse response and multichannel diffuse noise, due to the lack of large-scale real-recorded datasets. However, the acoustic mismatch between simulated and real-world data could degrade the model performance when applying in real-world scenarios. To bridge this simulation-to-real gap, this paper presents a new relatively large-scale Real-recorded and annotated Microphone Array speech&Noise (RealMAN) dataset. The proposed dataset is valuable in two aspects: 1) benchmarking speech enhancement and localization algorithms in real scenarios; 2) offering a substantial amount of real-world training data for potentially improving the performance of real-world applications. Specifically, a 32-channel array with high-fidelity microphones is used for recording. A loudspeaker is used for playing source speech signals. A total of 83-hour speech signals (48 hours for static speaker and 35 hours for moving speaker) are recorded in 32 different scenes, and 144 hours of background noise are recorded in 31 different scenes. Both speech and noise recording scenes cover various common indoor, outdoor, semi-outdoor and transportation environments, which enables the training of general-purpose speech enhancement and source localization networks. To obtain the task-specific annotations, the azimuth angle of the loudspeaker is annotated with an omni-direction fisheye camera by automatically detecting the loudspeaker. The direct-path signal is set as the target clean speech for speech enhancement, which is obtained by filtering the source speech signal with an estimated direct-path propagation filter.
ViSpeak: Visual Instruction Feedback in Streaming Videos
Recent advances in Large Multi-modal Models (LMMs) are primarily focused on offline video understanding. Instead, streaming video understanding poses great challenges to recent models due to its time-sensitive, omni-modal and interactive characteristics. In this work, we aim to extend the streaming video understanding from a new perspective and propose a novel task named Visual Instruction Feedback in which models should be aware of visual contents and learn to extract instructions from them. For example, when users wave their hands to agents, agents should recognize the gesture and start conversations with welcome information. Thus, following instructions in visual modality greatly enhances user-agent interactions. To facilitate research, we define seven key subtasks highly relevant to visual modality and collect the ViSpeak-Instruct dataset for training and the ViSpeak-Bench for evaluation. Further, we propose the ViSpeak model, which is a SOTA streaming video understanding LMM with GPT-4o-level performance on various streaming video understanding benchmarks. After finetuning on our ViSpeak-Instruct dataset, ViSpeak is equipped with basic visual instruction feedback ability, serving as a solid baseline for future research.
Z-Image: An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer
The landscape of high-performance image generation models is currently dominated by proprietary systems, such as Nano Banana Pro and Seedream 4.0. Leading open-source alternatives, including Qwen-Image, Hunyuan-Image-3.0 and FLUX.2, are characterized by massive parameter counts (20B to 80B), making them impractical for inference, and fine-tuning on consumer-grade hardware. To address this gap, we propose Z-Image, an efficient 6B-parameter foundation generative model built upon a Scalable Single-Stream Diffusion Transformer (S3-DiT) architecture that challenges the "scale-at-all-costs" paradigm. By systematically optimizing the entire model lifecycle -- from a curated data infrastructure to a streamlined training curriculum -- we complete the full training workflow in just 314K H800 GPU hours (approx. $630K). Our few-step distillation scheme with reward post-training further yields Z-Image-Turbo, offering both sub-second inference latency on an enterprise-grade H800 GPU and compatibility with consumer-grade hardware (<16GB VRAM). Additionally, our omni-pre-training paradigm also enables efficient training of Z-Image-Edit, an editing model with impressive instruction-following capabilities. Both qualitative and quantitative experiments demonstrate that our model achieves performance comparable to or surpassing that of leading competitors across various dimensions. Most notably, Z-Image exhibits exceptional capabilities in photorealistic image generation and bilingual text rendering, delivering results that rival top-tier commercial models, thereby demonstrating that state-of-the-art results are achievable with significantly reduced computational overhead. We publicly release our code, weights, and online demo to foster the development of accessible, budget-friendly, yet state-of-the-art generative models.
GPT-4o System Card
GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions
GPT-4o, an omni-modal model that enables vocal conversations with diverse emotions and tones, marks a milestone for omni-modal foundation models. However, empowering Large Language Models to perceive and generate images, texts, and speeches end-to-end with publicly available data remains challenging in the open-source community. Existing vision-language models rely on external tools for the speech processing, while speech-language models still suffer from limited or even without vision-understanding abilities. To address this gap, we propose EMOVA (EMotionally Omni-present Voice Assistant), to enable Large Language Models with end-to-end speech capabilities while maintaining the leading vision-language performance. With a semantic-acoustic disentangled speech tokenizer, we notice surprisingly that omni-modal alignment can further enhance vision-language and speech abilities compared with the corresponding bi-modal aligned counterparts. Moreover, a lightweight style module is proposed for flexible speech style controls (e.g., emotions and pitches). For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks, and meanwhile, supporting omni-modal spoken dialogue with vivid emotions.
Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining
We present Lumina-mGPT, a family of multimodal autoregressive models capable of various vision and language tasks, particularly excelling in generating flexible photorealistic images from text descriptions. Unlike existing autoregressive image generation approaches, Lumina-mGPT employs a pretrained decoder-only transformer as a unified framework for modeling multimodal token sequences. Our key insight is that a simple decoder-only transformer with multimodal Generative PreTraining (mGPT), utilizing the next-token prediction objective on massive interleaved text-image sequences, can learn broad and general multimodal capabilities, thereby illuminating photorealistic text-to-image generation. Building on these pretrained models, we propose Flexible Progressive Supervised Finetuning (FP-SFT) on high-quality image-text pairs to fully unlock their potential for high-aesthetic image synthesis at any resolution while maintaining their general multimodal capabilities. Furthermore, we introduce Ominiponent Supervised Finetuning (Omni-SFT), transforming Lumina-mGPT into a foundation model that seamlessly achieves omnipotent task unification. The resulting model demonstrates versatile multimodal capabilities, including visual generation tasks like flexible text-to-image generation and controllable generation, visual recognition tasks like segmentation and depth estimation, and vision-language tasks like multiturn visual question answering. Additionally, we analyze the differences and similarities between diffusion-based and autoregressive methods in a direct comparison.
PixWizard: Versatile Image-to-Image Visual Assistant with Open-Language Instructions
This paper presents a versatile image-to-image visual assistant, PixWizard, designed for image generation, manipulation, and translation based on free-from language instructions. To this end, we tackle a variety of vision tasks into a unified image-text-to-image generation framework and curate an Omni Pixel-to-Pixel Instruction-Tuning Dataset. By constructing detailed instruction templates in natural language, we comprehensively include a large set of diverse vision tasks such as text-to-image generation, image restoration, image grounding, dense image prediction, image editing, controllable generation, inpainting/outpainting, and more. Furthermore, we adopt Diffusion Transformers (DiT) as our foundation model and extend its capabilities with a flexible any resolution mechanism, enabling the model to dynamically process images based on the aspect ratio of the input, closely aligning with human perceptual processes. The model also incorporates structure-aware and semantic-aware guidance to facilitate effective fusion of information from the input image. Our experiments demonstrate that PixWizard not only shows impressive generative and understanding abilities for images with diverse resolutions but also exhibits promising generalization capabilities with unseen tasks and human instructions. The code and related resources are available at https://github.com/AFeng-x/PixWizard
Judge Anything: MLLM as a Judge Across Any Modality
Evaluating generative foundation models on open-ended multimodal understanding (MMU) and generation (MMG) tasks across diverse modalities (e.g., images, audio, video) poses significant challenges due to the complexity of cross-modal interactions. To this end, the idea of utilizing Multimodal LLMs (MLLMs) as automated judges has emerged, with encouraging results in assessing vision-language understanding tasks. Moving further, this paper extends MLLM-as-a-Judge across modalities to a unified manner by introducing two benchmarks, TaskAnything and JudgeAnything, to respectively evaluate the overall performance and judging capabilities of MLLMs across any-to-any modality tasks. Specifically, TaskAnything evaluates the MMU and MMG capabilities across 15 any-to-any modality categories, employing 1,500 queries curated from well-established benchmarks. Furthermore, JudgeAnything evaluates the judging capabilities of 5 advanced (e.g., GPT-4o and Gemini-2.0-Flash) from the perspectives of Pair Comparison and Score Evaluation, providing a standardized testbed that incorporates human judgments and detailed rubrics. Our extensive experiments reveal that while these MLLMs show promise in assessing MMU (i.e., achieving an average of 66.55% in Pair Comparison setting and 42.79% in Score Evaluation setting), they encounter significant challenges with MMG tasks (i.e., averaging only 53.37% in Pair Comparison setting and 30.05% in Score Evaluation setting), exposing cross-modality biases and hallucination issues. To address this, we present OmniArena, an automated platform for evaluating omni-models and multimodal reward models. Our work highlights the need for fairer evaluation protocols and stronger alignment with human preferences. The source code and dataset are publicly available at: https://urrealhero.github.io/judgeanythingweb/.
Ming-Lite-Uni: Advancements in Unified Architecture for Natural Multimodal Interaction
We introduce Ming-Lite-Uni, an open-source multimodal framework featuring a newly designed unified visual generator and a native multimodal autoregressive model tailored for unifying vision and language. Specifically, this project provides an open-source implementation of the integrated MetaQueries and M2-omni framework, while introducing the novel multi-scale learnable tokens and multi-scale representation alignment strategy. By leveraging a fixed MLLM and a learnable diffusion model, Ming-Lite-Uni enables native multimodal AR models to perform both text-to-image generation and instruction based image editing tasks, expanding their capabilities beyond pure visual understanding. Our experimental results demonstrate the strong performance of Ming-Lite-Uni and illustrate the impressive fluid nature of its interactive process. All code and model weights are open-sourced to foster further exploration within the community. Notably, this work aligns with concurrent multimodal AI milestones - such as ChatGPT-4o with native image generation updated in March 25, 2025 - underscoring the broader significance of unified models like Ming-Lite-Uni on the path toward AGI. Ming-Lite-Uni is in alpha stage and will soon be further refined.
MME-Emotion: A Holistic Evaluation Benchmark for Emotional Intelligence in Multimodal Large Language Models
Recent advances in multimodal large language models (MLLMs) have catalyzed transformative progress in affective computing, enabling models to exhibit emergent emotional intelligence. Despite substantial methodological progress, current emotional benchmarks remain limited, as it is still unknown: (a) the generalization abilities of MLLMs across distinct scenarios, and (b) their reasoning capabilities to identify the triggering factors behind emotional states. To bridge these gaps, we present MME-Emotion, a systematic benchmark that assesses both emotional understanding and reasoning capabilities of MLLMs, enjoying scalable capacity, diverse settings, and unified protocols. As the largest emotional intelligence benchmark for MLLMs, MME-Emotion contains over 6,000 curated video clips with task-specific questioning-answering (QA) pairs, spanning broad scenarios to formulate eight emotional tasks. It further incorporates a holistic evaluation suite with hybrid metrics for emotion recognition and reasoning, analyzed through a multi-agent system framework. Through a rigorous evaluation of 20 advanced MLLMs, we uncover both their strengths and limitations, yielding several key insights: 182 Current MLLMs exhibit unsatisfactory emotional intelligence, with the best-performing model achieving only 39.3% recognition score and 56.0% Chain-of-Thought (CoT) score on our benchmark. 183 Generalist models (e.g., Gemini-2.5-Pro) derive emotional intelligence from generalized multimodal understanding capabilities, while specialist models (e.g., R1-Omni) can achieve comparable performance through domain-specific post-training adaptation. By introducing MME-Emotion, we hope that it can serve as a foundation for advancing MLLMs' emotional intelligence in the future.
EchoInk-R1: Exploring Audio-Visual Reasoning in Multimodal LLMs via Reinforcement Learning
Multimodal large language models (MLLMs) have advanced perception across text, vision, and audio, yet they often struggle with structured cross-modal reasoning, particularly when integrating audio and visual signals. We introduce EchoInk-R1, a reinforcement learning framework that enhances such reasoning in MLLMs. Built upon the Qwen2.5-Omni-7B foundation and optimized with Group Relative Policy Optimization (GRPO), EchoInk-R1 tackles multiple-choice question answering over synchronized audio-image pairs. To enable this, we curate AVQA-R1-6K, a dataset pairing such audio-image inputs with multiple-choice questions derived from OmniInstruct-v1. EchoInk-R1-7B achieves 85.77% accuracy on the validation set, outperforming the base model, which scores 80.53%, using only 562 reinforcement learning steps. Beyond accuracy, EchoInk-R1 demonstrates reflective reasoning by revisiting initial interpretations and refining responses when facing ambiguous multimodal inputs. These results suggest that lightweight reinforcement learning fine-tuning enhances cross-modal reasoning in MLLMs. EchoInk-R1 is the first framework to unify audio, visual, and textual modalities for general open-world reasoning via reinforcement learning. Code and data are publicly released to facilitate further research.
See, Hear, and Understand: Benchmarking Audiovisual Human Speech Understanding in Multimodal Large Language Models
Multimodal large language models (MLLMs) are expected to jointly interpret vision, audio, and language, yet existing video benchmarks rarely assess fine-grained reasoning about human speech. Many tasks remain visually solvable or only coarsely evaluate speech, offering limited insight into whether models can align who speaks, what is said, and when it occurs. We introduce AV-SpeakerBench, a curated benchmark of 3,212 multiple-choice questions focused on speaker-centric audiovisual reasoning in real-world videos. It features: (1) a speaker-centered formulation that treats speakers-not scenes-as the core reasoning unit; (2) fusion-grounded question design embedding audiovisual dependencies into question semantics; and (3) expert-curated annotations ensuring temporal precision and cross-modal validity. Comprehensive evaluations show that the Gemini family consistently outperforms open-source systems, with Gemini 2.5 Pro achieving the best results. Among open models, Qwen3-Omni-30B approaches Gemini 2.0 Flash but remains far behind Gemini 2.5 Pro, primarily due to weaker audiovisual fusion rather than visual perception. We believe AV-SpeakerBench establishes a rigorous foundation for advancing fine-grained audiovisual reasoning in future multimodal systems.
AVATAR: Reinforcement Learning to See, Hear, and Reason Over Video
Multimodal reasoning over long-horizon video is challenging due to the need for precise spatiotemporal fusion and alignment across modalities. While recent methods such as Group Relative Policy Optimization (GRPO) have shown promise in this domain, they suffer from three key limitations: (1) data inefficiency from their on-policy design, (2) a vanishing advantage problem, where identical or near-identical rewards within a group eliminate the learning signal by producing zero-valued advantages, and (3) uniform credit assignment that fails to emphasize critical reasoning steps. We introduce AVATAR (Audio-Video Agent for Alignment and Reasoning), a framework that addresses these limitations through two core components: (1) an off-policy training architecture that improves sample efficiency and resolves vanishing advantages by reusing past experiences with greater reward diversity, and (2) Temporal Advantage Shaping (TAS), a novel credit assignment strategy that upweights key reasoning phases during learning. AVATAR achieves strong performance across various benchmarks, outperforming the Qwen2.5-Omni baseline by +5.4on MMVU, +4.9 on OmniBench, and +4.5 on Video-Holmes, while demonstrating over 35% higher sample efficiency.
SARI: Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning
Recent work shows that reinforcement learning(RL) can markedly sharpen the reasoning ability of large language models (LLMs) by prompting them to "think before answering." Yet whether and how these gains transfer to audio-language reasoning remains largely unexplored. We extend the Group-Relative Policy Optimization (GRPO) framework from DeepSeek-R1 to a Large Audio-Language Model (LALM), and construct a 32k sample multiple-choice corpus. Using a two-stage regimen supervised fine-tuning on structured and unstructured chains-of-thought, followed by curriculum-guided GRPO, we systematically compare implicit vs. explicit, and structured vs. free form reasoning under identical architectures. Our structured audio reasoning model, SARI (Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning), achieves a 16.35% improvement in average accuracy over the base model Qwen2-Audio-7B-Instruct. Furthermore, the variant built upon Qwen2.5-Omni reaches state-of-the-art performance of 67.08% on the MMAU test-mini benchmark. Ablation experiments show that on the base model we use: (i) SFT warm-up is important for stable RL training, (ii) structured chains yield more robust generalization than unstructured ones, and (iii) easy-to-hard curricula accelerate convergence and improve final performance. These findings demonstrate that explicit, structured reasoning and curriculum learning substantially enhances audio-language understanding.
Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks. However, existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling. While reinforcement learning (RL) holds promise for enabling self-exploration and learning from feedback, recent attempts yield only modest improvements in complex reasoning. In this paper, we present T1 to scale RL by encouraging exploration and understand inference scaling. We first initialize the LLM using synthesized chain-of-thought data that integrates trial-and-error and self-verification. To scale RL training, we promote increased sampling diversity through oversampling. We further employ an entropy bonus as an auxiliary loss, alongside a dynamic anchor for regularization to facilitate reward optimization. We demonstrate that T1 with open LLMs as its base exhibits inference scaling behavior and achieves superior performance on challenging math reasoning benchmarks. For example, T1 with Qwen2.5-32B as the base model outperforms the recent Qwen QwQ-32B-Preview model on MATH500, AIME2024, and Omni-math-500. More importantly, we present a simple strategy to examine inference scaling, where increased inference budgets directly lead to T1's better performance without any additional verification. We will open-source the T1 models and the data used to train them at https://github.com/THUDM/T1.
WavReward: Spoken Dialogue Models With Generalist Reward Evaluators
End-to-end spoken dialogue models such as GPT-4o-audio have recently garnered significant attention in the speech domain. However, the evaluation of spoken dialogue models' conversational performance has largely been overlooked. This is primarily due to the intelligent chatbots convey a wealth of non-textual information which cannot be easily measured using text-based language models like ChatGPT. To address this gap, we propose WavReward, a reward feedback model based on audio language models that can evaluate both the IQ and EQ of spoken dialogue systems with speech input. Specifically, 1) based on audio language models, WavReward incorporates the deep reasoning process and the nonlinear reward mechanism for post-training. By utilizing multi-sample feedback via the reinforcement learning algorithm, we construct a specialized evaluator tailored to spoken dialogue models. 2) We introduce ChatReward-30K, a preference dataset used to train WavReward. ChatReward-30K includes both comprehension and generation aspects of spoken dialogue models. These scenarios span various tasks, such as text-based chats, nine acoustic attributes of instruction chats, and implicit chats. WavReward outperforms previous state-of-the-art evaluation models across multiple spoken dialogue scenarios, achieving a substantial improvement about Qwen2.5-Omni in objective accuracy from 55.1% to 91.5%. In subjective A/B testing, WavReward also leads by a margin of 83%. Comprehensive ablation studies confirm the necessity of each component of WavReward. All data and code will be publicly at https://github.com/jishengpeng/WavReward after the paper is accepted.
When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs
As large language models become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that can manipulate state-of-the-art audio language models to generate harmful content. Our method uses imperceptible perturbations in audio inputs that remain benign to human listeners. The first stage uses a novel reward-based optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to guide the target model to circumvent its own safety protocols and generate harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use Projected Gradient Descent (PGD) to optimize subtle perturbations that are embedded into benign audio carriers, such as weather queries or greeting messages. Validated under the rigorous StrongREJECT, LlamaGuard, as well as Human Evaluation safety evaluation framework, our experiments demonstrate a success rate exceeding 86% across Qwen2.5-Omni-3B, Qwen2.5-Omni-7B, and Phi-4-Multimodal. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating AI behavior.
WorldSense: Evaluating Real-world Omnimodal Understanding for Multimodal LLMs
In this paper, we introduce WorldSense, the first benchmark to assess the multi-modal video understanding, that simultaneously encompasses visual, audio, and text inputs. In contrast to existing benchmarks, our WorldSense has several features: (i) collaboration of omni-modality, we design the evaluation tasks to feature a strong coupling of audio and video, requiring models to effectively utilize the synergistic perception of omni-modality; (ii) diversity of videos and tasks, WorldSense encompasses a diverse collection of 1,662 audio-visual synchronised videos, systematically categorized into 8 primary domains and 67 fine-grained subcategories to cover the broad scenarios, and 3,172 multi-choice QA pairs across 26 distinct tasks to enable the comprehensive evaluation; (iii) high-quality annotations, all the QA pairs are manually labeled by 80 expert annotators with multiple rounds of correction to ensure quality. Based on our WorldSense, we extensively evaluate various state-of-the-art models. The experimental results indicate that existing models face significant challenges in understanding real-world scenarios (48.0% best accuracy). We hope our WorldSense can provide a platform for evaluating the ability in constructing and understanding coherent contexts from omni-modality.
SpeechJudge: Towards Human-Level Judgment for Speech Naturalness
Aligning large generative models with human feedback is a critical challenge. In speech synthesis, this is particularly pronounced due to the lack of a large-scale human preference dataset, which hinders the development of models that truly align with human perception. To address this, we introduce SpeechJudge, a comprehensive suite comprising a dataset, a benchmark, and a reward model centered on naturalness--one of the most fundamental subjective metrics for speech synthesis. First, we present SpeechJudge-Data, a large-scale human feedback corpus of 99K speech pairs. The dataset is constructed using a diverse set of advanced zero-shot text-to-speech (TTS) models across diverse speech styles and multiple languages, with human annotations for both intelligibility and naturalness preference. From this, we establish SpeechJudge-Eval, a challenging benchmark for speech naturalness judgment. Our evaluation reveals that existing metrics and AudioLLMs struggle with this task; the leading model, Gemini-2.5-Flash, achieves less than 70% agreement with human judgment, highlighting a significant gap for improvement. To bridge this gap, we develop SpeechJudge-GRM, a generative reward model (GRM) based on Qwen2.5-Omni-7B. It is trained on SpeechJudge-Data via a two-stage post-training process: Supervised Fine-Tuning (SFT) with Chain-of-Thought rationales followed by Reinforcement Learning (RL) with GRPO on challenging cases. On the SpeechJudge-Eval benchmark, the proposed SpeechJudge-GRM demonstrates superior performance, achieving 77.2% accuracy (and 79.4% after inference-time scaling @10) compared to a classic Bradley-Terry reward model (72.7%). Furthermore, SpeechJudge-GRM can be also employed as a reward function during the post-training of speech generation models to facilitate their alignment with human preferences.
OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models
Large language models (LLMs) have revolutionized natural language processing tasks. However, their practical deployment is hindered by their immense memory and computation requirements. Although recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM, they hand-craft quantization parameters, which leads to low performance and fails to deal with extremely low-bit quantization. To tackle this issue, we introduce an Omnidirectionally calibrated Quantization (OmniQuant) technique for LLMs, which achieves good performance in diverse quantization settings while maintaining the computational efficiency of PTQ by efficiently optimizing various quantization parameters. OmniQuant comprises two innovative components including Learnable Weight Clipping (LWC) and Learnable Equivalent Transformation (LET). LWC modulates the extreme values of weights by optimizing the clipping threshold. Meanwhile, LET tackles activation outliers by shifting the challenge of quantization from activations to weights through a learnable equivalent transformation. Operating within a differentiable framework using block-wise error minimization, OmniQuant can optimize the quantization process efficiently for both weight-only and weight-activation quantization. For instance, the LLaMA-2 model family with the size of 7-70B can be processed with OmniQuant on a single A100-40G GPU within 1-16 hours using 128 samples. Extensive experiments validate OmniQuant's superior performance across diverse quantization configurations such as W4A4, W6A6, W4A16, W3A16, and W2A16. Additionally, OmniQuant demonstrates effectiveness in instruction-tuned models and delivers notable improvements in inference speed and memory reduction on real devices. Codes and models are available at https://github.com/OpenGVLab/OmniQuant.
OmniQuality-R: Advancing Reward Models Through All-Encompassing Quality Assessment
Current visual evaluation approaches are typically constrained to a single task. To address this, we propose OmniQuality-R, a unified reward modeling framework that transforms multi-task quality reasoning into continuous and interpretable reward signals for policy optimization. Inspired by subjective experiments, where participants are given task-specific instructions outlining distinct assessment principles prior to evaluation, we propose OmniQuality-R, a structured reward modeling framework that transforms multi-dimensional reasoning into continuous and interpretable reward signals. To enable this, we construct a reasoning-enhanced reward modeling dataset by sampling informative plan-reason trajectories via rejection sampling, forming a reliable chain-of-thought (CoT) dataset for supervised fine-tuning (SFT). Building on this, we apply Group Relative Policy Optimization (GRPO) for post-training, using a Gaussian-based reward to support continuous score prediction. To further stabilize the training and improve downstream generalization, we incorporate standard deviation (STD) filtering and entropy gating mechanisms during reinforcement learning. These techniques suppress unstable updates and reduce variance in policy optimization. We evaluate OmniQuality-R on three key IQA tasks: aesthetic quality assessment, technical quality evaluation, and text-image alignment.
OmniQuery: Contextually Augmenting Captured Multimodal Memory to Enable Personal Question Answering
People often capture memories through photos, screenshots, and videos. While existing AI-based tools enable querying this data using natural language, they mostly only support retrieving individual pieces of information like certain objects in photos and struggle with answering more complex queries that involve interpreting interconnected memories like event sequences. We conducted a one-month diary study to collect realistic user queries and generated a taxonomy of necessary contextual information for integrating with captured memories. We then introduce OmniQuery, a novel system that is able to answer complex personal memory-related questions that require extracting and inferring contextual information. OmniQuery augments single captured memories through integrating scattered contextual information from multiple interconnected memories, retrieves relevant memories, and uses a large language model (LLM) to comprehensive answers. In human evaluations, we show the effectiveness of OmniQuery with an accuracy of 71.5%, and it outperformed a conventional RAG system, winning or tying in 74.5% of the time.
SpikeLLM: Scaling up Spiking Neural Network to Large Language Models via Saliency-based Spiking
Recent advancements in large language models (LLMs) with billions of parameters have improved performance in various applications, but their inference processes demand significant energy and computational resources. In contrast, the human brain, with approximately 86 billion neurons, is much more energy-efficient than LLMs with similar parameters. Inspired by this, we redesign 7sim70 billion parameter LLMs using bio-plausible spiking mechanisms, emulating the efficient behavior of the human brain. We propose the first spiking large language model, SpikeLLM. Coupled with the proposed model, two essential approaches are proposed to improve spike training efficiency: Generalized Integrate-and-Fire (GIF) neurons to compress spike length from T to T{L} log_2 L bits, and an Optimal Brain Spiking framework to divide outlier channels and allocate different T for GIF neurons, which further compresses spike length to approximate log_2T bits. The necessity of spike-driven LLM is proved by comparison with quantized LLMs with similar operations. In the OmniQuant pipeline, SpikeLLM reduces 11.01% WikiText2 perplexity and improves 2.55% accuracy of common scene reasoning on a LLAMA-7B W4A4 model. In the GPTQ pipeline, SpikeLLM achieves direct additive in linear layers, significantly exceeding PB-LLMs.
AffineQuant: Affine Transformation Quantization for Large Language Models
The significant resource requirements associated with Large-scale Language Models (LLMs) have generated considerable interest in the development of techniques aimed at compressing and accelerating neural networks. Among these techniques, Post-Training Quantization (PTQ) has emerged as a subject of considerable interest due to its noteworthy compression efficiency and cost-effectiveness in the context of training. Existing PTQ methods for LLMs limit the optimization scope to scaling transformations between pre- and post-quantization weights. In this paper, we advocate for the direct optimization using equivalent Affine transformations in PTQ (AffineQuant). This approach extends the optimization scope and thus significantly minimizing quantization errors. Additionally, by employing the corresponding inverse matrix, we can ensure equivalence between the pre- and post-quantization outputs of PTQ, thereby maintaining its efficiency and generalization capabilities. To ensure the invertibility of the transformation during optimization, we further introduce a gradual mask optimization method. This method initially focuses on optimizing the diagonal elements and gradually extends to the other elements. Such an approach aligns with the Levy-Desplanques theorem, theoretically ensuring invertibility of the transformation. As a result, significant performance improvements are evident across different LLMs on diverse datasets. To illustrate, we attain a C4 perplexity of 15.76 (2.26 lower vs 18.02 in OmniQuant) on the LLaMA2-7B model of W4A4 quantization without overhead. On zero-shot tasks, AffineQuant achieves an average of 58.61 accuracy (1.98 lower vs 56.63 in OmniQuant) when using 4/4-bit quantization for LLaMA-30B, which setting a new state-of-the-art benchmark for PTQ in LLMs.
Matryoshka Quantization
Quantizing model weights is critical for reducing the communication and inference costs of large models. However, quantizing models -- especially to low precisions like int4 or int2 -- requires a trade-off in model quality; int2, in particular, is known to severely degrade model quality. Consequently, practitioners are often forced to maintain multiple models with different quantization levels or serve a single model that best satisfies the quality-latency trade-off. On the other hand, integer data types, such as int8, inherently possess a nested (Matryoshka) structure where smaller bit-width integers, like int4 or int2, are nested within the most significant bits. This paper proposes Matryoshka Quantization (MatQuant), a novel multi-scale quantization technique that addresses the challenge of needing multiple quantized models. It allows training and maintaining just one model, which can then be served at different precision levels. Furthermore, due to the co-training and co-distillation regularization provided by MatQuant, the int2 precision models extracted by MatQuant can be up to 10% more accurate than standard int2 quantization (using techniques like QAT or OmniQuant). This represents significant progress in model quantization, demonstrated by the fact that, with the same recipe, an int2 FFN-quantized Gemma-2 9B model is more accurate than an int8 FFN-quantized Gemma-2 2B model.
