Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCorrCLIP: Reconstructing Patch Correlations in CLIP for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation aims to assign semantic labels to each pixel without being constrained by a predefined set of categories. While Contrastive Language-Image Pre-training (CLIP) excels in zero-shot classification, it struggles to align image patches with category embeddings because of its incoherent patch correlations. This study reveals that inter-class correlations are the main reason for impairing CLIP's segmentation performance. Accordingly, we propose CorrCLIP, which reconstructs the scope and value of patch correlations. Specifically, CorrCLIP leverages the Segment Anything Model (SAM) to define the scope of patch interactions, reducing inter-class correlations. To mitigate the problem that SAM-generated masks may contain patches belonging to different classes, CorrCLIP incorporates self-supervised models to compute coherent similarity values, suppressing the weight of inter-class correlations. Additionally, we introduce two additional branches to strengthen patch features' spatial details and semantic representation. Finally, we update segmentation maps with SAM-generated masks to improve spatial consistency. Based on the improvement across patch correlations, feature representations, and segmentation maps, CorrCLIP achieves superior performance across eight benchmarks. Codes are available at: https://github.com/zdk258/CorrCLIP.
AttrSeg: Open-Vocabulary Semantic Segmentation via Attribute Decomposition-Aggregation
Open-vocabulary semantic segmentation is a challenging task that requires segmenting novel object categories at inference time. Recent studies have explored vision-language pre-training to handle this task, but suffer from unrealistic assumptions in practical scenarios, i.e., low-quality textual category names. For example, this paradigm assumes that new textual categories will be accurately and completely provided, and exist in lexicons during pre-training. However, exceptions often happen when encountering ambiguity for brief or incomplete names, new words that are not present in the pre-trained lexicons, and difficult-to-describe categories for users. To address these issues, this work proposes a novel attribute decomposition-aggregation framework, AttrSeg, inspired by human cognition in understanding new concepts. Specifically, in the decomposition stage, we decouple class names into diverse attribute descriptions to complement semantic contexts from multiple perspectives. Two attribute construction strategies are designed: using large language models for common categories, and involving manually labeling for human-invented categories. In the aggregation stage, we group diverse attributes into an integrated global description, to form a discriminative classifier that distinguishes the target object from others. One hierarchical aggregation architecture is further proposed to achieve multi-level aggregations, leveraging the meticulously designed clustering module. The final results are obtained by computing the similarity between aggregated attributes and images embeddings. To evaluate the effectiveness, we annotate three types of datasets with attribute descriptions, and conduct extensive experiments and ablation studies. The results show the superior performance of attribute decomposition-aggregation.
Open-vocabulary Semantic Segmentation with Frozen Vision-Language Models
When trained at a sufficient scale, self-supervised learning has exhibited a notable ability to solve a wide range of visual or language understanding tasks. In this paper, we investigate simple, yet effective approaches for adapting the pre-trained foundation models to the downstream task of interest, namely, open-vocabulary semantic segmentation. To this end, we make the following contributions: (i) we introduce Fusioner, with a lightweight, transformer-based fusion module, that pairs the frozen visual representation with language concept through a handful of image segmentation data. As a consequence, the model gains the capability of zero-shot transfer to segment novel categories; (ii) without loss of generality, we experiment on a broad range of self-supervised models that have been pre-trained with different schemes, e.g. visual-only models (MoCo v3, DINO), language-only models (BERT), visual-language model (CLIP), and show that, the proposed fusion approach is effective to any pair of visual and language models, even those pre-trained on a corpus of uni-modal data; (iii) we conduct thorough ablation studies to analyze the critical components in our proposed Fusioner, while evaluating on standard benchmarks, e.g. PASCAL-5i and COCO-20i , it surpasses existing state-of-the-art models by a large margin, despite only being trained on frozen visual and language features; (iv) to measure the model's robustness on learning visual-language correspondence, we further evaluate on synthetic dataset, named Mosaic-4, where images are constructed by mosaicking the samples from FSS-1000. Fusioner demonstrates superior performance over previous models.
Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP
Open-vocabulary semantic segmentation aims to segment an image into semantic regions according to text descriptions, which may not have been seen during training. Recent two-stage methods first generate class-agnostic mask proposals and then leverage pre-trained vision-language models, e.g., CLIP, to classify masked regions. We identify the performance bottleneck of this paradigm to be the pre-trained CLIP model, since it does not perform well on masked images. To address this, we propose to finetune CLIP on a collection of masked image regions and their corresponding text descriptions. We collect training data by mining an existing image-caption dataset (e.g., COCO Captions), using CLIP to match masked image regions to nouns in the image captions. Compared with the more precise and manually annotated segmentation labels with fixed classes (e.g., COCO-Stuff), we find our noisy but diverse dataset can better retain CLIP's generalization ability. Along with finetuning the entire model, we utilize the "blank" areas in masked images using a method we dub mask prompt tuning. Experiments demonstrate mask prompt tuning brings significant improvement without modifying any weights of CLIP, and it can further improve a fully finetuned model. In particular, when trained on COCO and evaluated on ADE20K-150, our best model achieves 29.6% mIoU, which is +8.5% higher than the previous state-of-the-art. For the first time, open-vocabulary generalist models match the performance of supervised specialist models in 2017 without dataset-specific adaptations.
DPSeg: Dual-Prompt Cost Volume Learning for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation aims to segment images into distinct semantic regions for both seen and unseen categories at the pixel level. Current methods utilize text embeddings from pre-trained vision-language models like CLIP but struggle with the inherent domain gap between image and text embeddings, even after extensive alignment during training. Additionally, relying solely on deep text-aligned features limits shallow-level feature guidance, which is crucial for detecting small objects and fine details, ultimately reducing segmentation accuracy. To address these limitations, we propose a dual prompting framework, DPSeg, for this task. Our approach combines dual-prompt cost volume generation, a cost volume-guided decoder, and a semantic-guided prompt refinement strategy that leverages our dual prompting scheme to mitigate alignment issues in visual prompt generation. By incorporating visual embeddings from a visual prompt encoder, our approach reduces the domain gap between text and image embeddings while providing multi-level guidance through shallow features. Extensive experiments demonstrate that our method significantly outperforms existing state-of-the-art approaches on multiple public datasets.
Open-Vocabulary Semantic Segmentation with Decoupled One-Pass Network
Recently, the open-vocabulary semantic segmentation problem has attracted increasing attention and the best performing methods are based on two-stream networks: one stream for proposal mask generation and the other for segment classification using a pretrained visual-language model. However, existing two-stream methods require passing a great number of (up to a hundred) image crops into the visual-language model, which is highly inefficient. To address the problem, we propose a network that only needs a single pass through the visual-language model for each input image. Specifically, we first propose a novel network adaptation approach, termed patch severance, to restrict the harmful interference between the patch embeddings in the pre-trained visual encoder. We then propose classification anchor learning to encourage the network to spatially focus on more discriminative features for classification. Extensive experiments demonstrate that the proposed method achieves outstanding performance, surpassing state-of-the-art methods while being 4 to 7 times faster at inference. Code: https://github.com/CongHan0808/DeOP.git
Towards Open-Vocabulary Semantic Segmentation Without Semantic Labels
Large-scale vision-language models like CLIP have demonstrated impressive open-vocabulary capabilities for image-level tasks, excelling in recognizing what objects are present. However, they struggle with pixel-level recognition tasks like semantic segmentation, which additionally require understanding where the objects are located. In this work, we propose a novel method, PixelCLIP, to adapt the CLIP image encoder for pixel-level understanding by guiding the model on where, which is achieved using unlabeled images and masks generated from vision foundation models such as SAM and DINO. To address the challenges of leveraging masks without semantic labels, we devise an online clustering algorithm using learnable class names to acquire general semantic concepts. PixelCLIP shows significant performance improvements over CLIP and competitive results compared to caption-supervised methods in open-vocabulary semantic segmentation. Project page is available at https://cvlab-kaist.github.io/PixelCLIP
Exploring Open-Vocabulary Semantic Segmentation without Human Labels
Semantic segmentation is a crucial task in computer vision that involves segmenting images into semantically meaningful regions at the pixel level. However, existing approaches often rely on expensive human annotations as supervision for model training, limiting their scalability to large, unlabeled datasets. To address this challenge, we present ZeroSeg, a novel method that leverages the existing pretrained vision-language (VL) model (e.g. CLIP) to train open-vocabulary zero-shot semantic segmentation models. Although acquired extensive knowledge of visual concepts, it is non-trivial to exploit knowledge from these VL models to the task of semantic segmentation, as they are usually trained at an image level. ZeroSeg overcomes this by distilling the visual concepts learned by VL models into a set of segment tokens, each summarizing a localized region of the target image. We evaluate ZeroSeg on multiple popular segmentation benchmarks, including PASCAL VOC 2012, PASCAL Context, and COCO, in a zero-shot manner (i.e., no training or adaption on target segmentation datasets). Our approach achieves state-of-the-art performance when compared to other zero-shot segmentation methods under the same training data, while also performing competitively compared to strongly supervised methods. Finally, we also demonstrated the effectiveness of ZeroSeg on open-vocabulary segmentation, through both human studies and qualitative visualizations.
Explore the Potential of CLIP for Training-Free Open Vocabulary Semantic Segmentation
CLIP, as a vision-language model, has significantly advanced Open-Vocabulary Semantic Segmentation (OVSS) with its zero-shot capabilities. Despite its success, its application to OVSS faces challenges due to its initial image-level alignment training, which affects its performance in tasks requiring detailed local context. Our study delves into the impact of CLIP's [CLS] token on patch feature correlations, revealing a dominance of "global" patches that hinders local feature discrimination. To overcome this, we propose CLIPtrase, a novel training-free semantic segmentation strategy that enhances local feature awareness through recalibrated self-correlation among patches. This approach demonstrates notable improvements in segmentation accuracy and the ability to maintain semantic coherence across objects.Experiments show that we are 22.3% ahead of CLIP on average on 9 segmentation benchmarks, outperforming existing state-of-the-art training-free methods.The code are made publicly available at: https://github.com/leaves162/CLIPtrase.
Open-RGBT: Open-vocabulary RGB-T Zero-shot Semantic Segmentation in Open-world Environments
Semantic segmentation is a critical technique for effective scene understanding. Traditional RGB-T semantic segmentation models often struggle to generalize across diverse scenarios due to their reliance on pretrained models and predefined categories. Recent advancements in Visual Language Models (VLMs) have facilitated a shift from closed-set to open-vocabulary semantic segmentation methods. However, these models face challenges in dealing with intricate scenes, primarily due to the heterogeneity between RGB and thermal modalities. To address this gap, we present Open-RGBT, a novel open-vocabulary RGB-T semantic segmentation model. Specifically, we obtain instance-level detection proposals by incorporating visual prompts to enhance category understanding. Additionally, we employ the CLIP model to assess image-text similarity, which helps correct semantic consistency and mitigates ambiguities in category identification. Empirical evaluations demonstrate that Open-RGBT achieves superior performance in diverse and challenging real-world scenarios, even in the wild, significantly advancing the field of RGB-T semantic segmentation.
Side Adapter Network for Open-Vocabulary Semantic Segmentation
This paper presents a new framework for open-vocabulary semantic segmentation with the pre-trained vision-language model, named Side Adapter Network (SAN). Our approach models the semantic segmentation task as a region recognition problem. A side network is attached to a frozen CLIP model with two branches: one for predicting mask proposals, and the other for predicting attention bias which is applied in the CLIP model to recognize the class of masks. This decoupled design has the benefit CLIP in recognizing the class of mask proposals. Since the attached side network can reuse CLIP features, it can be very light. In addition, the entire network can be trained end-to-end, allowing the side network to be adapted to the frozen CLIP model, which makes the predicted mask proposals CLIP-aware. Our approach is fast, accurate, and only adds a few additional trainable parameters. We evaluate our approach on multiple semantic segmentation benchmarks. Our method significantly outperforms other counterparts, with up to 18 times fewer trainable parameters and 19 times faster inference speed. We hope our approach will serve as a solid baseline and help ease future research in open-vocabulary semantic segmentation. The code will be available at https://github.com/MendelXu/SAN.
SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary Semantic Segmentation
Recently, the contrastive language-image pre-training, e.g., CLIP, has demonstrated promising results on various downstream tasks. The pre-trained model can capture enriched visual concepts for images by learning from a large scale of text-image data. However, transferring the learned visual knowledge to open-vocabulary semantic segmentation is still under-explored. In this paper, we propose a CLIP-based model named SegCLIP for the topic of open-vocabulary segmentation in an annotation-free manner. The SegCLIP achieves segmentation based on ViT and the main idea is to gather patches with learnable centers to semantic regions through training on text-image pairs. The gathering operation can dynamically capture the semantic groups, which can be used to generate the final segmentation results. We further propose a reconstruction loss on masked patches and a superpixel-based KL loss with pseudo-labels to enhance the visual representation. Experimental results show that our model achieves comparable or superior segmentation accuracy on the PASCAL VOC 2012 (+0.3% mIoU), PASCAL Context (+2.3% mIoU), and COCO (+2.2% mIoU) compared with baselines. We release the code at https://github.com/ArrowLuo/SegCLIP.
LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation
We propose a training-free method for open-vocabulary semantic segmentation using Vision-and-Language Models (VLMs). Our approach enhances the initial per-patch predictions of VLMs through label propagation, which jointly optimizes predictions by incorporating patch-to-patch relationships. Since VLMs are primarily optimized for cross-modal alignment and not for intra-modal similarity, we use a Vision Model (VM) that is observed to better capture these relationships. We address resolution limitations inherent to patch-based encoders by applying label propagation at the pixel level as a refinement step, significantly improving segmentation accuracy near class boundaries. Our method, called LPOSS+, performs inference over the entire image, avoiding window-based processing and thereby capturing contextual interactions across the full image. LPOSS+ achieves state-of-the-art performance among training-free methods, across a diverse set of datasets. Code: https://github.com/vladan-stojnic/LPOSS
XMask3D: Cross-modal Mask Reasoning for Open Vocabulary 3D Semantic Segmentation
Existing methodologies in open vocabulary 3D semantic segmentation primarily concentrate on establishing a unified feature space encompassing 3D, 2D, and textual modalities. Nevertheless, traditional techniques such as global feature alignment or vision-language model distillation tend to impose only approximate correspondence, struggling notably with delineating fine-grained segmentation boundaries. To address this gap, we propose a more meticulous mask-level alignment between 3D features and the 2D-text embedding space through a cross-modal mask reasoning framework, XMask3D. In our approach, we developed a mask generator based on the denoising UNet from a pre-trained diffusion model, leveraging its capability for precise textual control over dense pixel representations and enhancing the open-world adaptability of the generated masks. We further integrate 3D global features as implicit conditions into the pre-trained 2D denoising UNet, enabling the generation of segmentation masks with additional 3D geometry awareness. Subsequently, the generated 2D masks are employed to align mask-level 3D representations with the vision-language feature space, thereby augmenting the open vocabulary capability of 3D geometry embeddings. Finally, we fuse complementary 2D and 3D mask features, resulting in competitive performance across multiple benchmarks for 3D open vocabulary semantic segmentation. Code is available at https://github.com/wangzy22/XMask3D.
CLIPer: Hierarchically Improving Spatial Representation of CLIP for Open-Vocabulary Semantic Segmentation
Contrastive Language-Image Pre-training (CLIP) exhibits strong zero-shot classification ability on various image-level tasks, leading to the research to adapt CLIP for pixel-level open-vocabulary semantic segmentation without additional training. The key is to improve spatial representation of image-level CLIP, such as replacing self-attention map at last layer with self-self attention map or vision foundation model based attention map. In this paper, we present a novel hierarchical framework, named CLIPer, that hierarchically improves spatial representation of CLIP. The proposed CLIPer includes an early-layer fusion module and a fine-grained compensation module. We observe that, the embeddings and attention maps at early layers can preserve spatial structural information. Inspired by this, we design the early-layer fusion module to generate segmentation map with better spatial coherence. Afterwards, we employ a fine-grained compensation module to compensate the local details using the self-attention maps of diffusion model. We conduct the experiments on seven segmentation datasets. Our proposed CLIPer achieves the state-of-the-art performance on these datasets. For instance, using ViT-L, CLIPer has the mIoU of 69.8% and 43.3% on VOC and COCO Object, outperforming ProxyCLIP by 9.2% and 4.1% respectively.
Training-Free Open-Vocabulary Segmentation with Offline Diffusion-Augmented Prototype Generation
Open-vocabulary semantic segmentation aims at segmenting arbitrary categories expressed in textual form. Previous works have trained over large amounts of image-caption pairs to enforce pixel-level multimodal alignments. However, captions provide global information about the semantics of a given image but lack direct localization of individual concepts. Further, training on large-scale datasets inevitably brings significant computational costs. In this paper, we propose FreeDA, a training-free diffusion-augmented method for open-vocabulary semantic segmentation, which leverages the ability of diffusion models to visually localize generated concepts and local-global similarities to match class-agnostic regions with semantic classes. Our approach involves an offline stage in which textual-visual reference embeddings are collected, starting from a large set of captions and leveraging visual and semantic contexts. At test time, these are queried to support the visual matching process, which is carried out by jointly considering class-agnostic regions and global semantic similarities. Extensive analyses demonstrate that FreeDA achieves state-of-the-art performance on five datasets, surpassing previous methods by more than 7.0 average points in terms of mIoU and without requiring any training.
Collaborative Vision-Text Representation Optimizing for Open-Vocabulary Segmentation
Pre-trained vision-language models, e.g. CLIP, have been increasingly used to address the challenging Open-Vocabulary Segmentation (OVS) task, benefiting from their well-aligned vision-text embedding space. Typical solutions involve either freezing CLIP during training to unilaterally maintain its zero-shot capability, or fine-tuning CLIP vision encoder to achieve perceptual sensitivity to local regions. However, few of them incorporate vision-text collaborative optimization. Based on this, we propose the Content-Dependent Transfer to adaptively enhance each text embedding by interacting with the input image, which presents a parameter-efficient way to optimize the text representation. Besides, we additionally introduce a Representation Compensation strategy, reviewing the original CLIP-V representation as compensation to maintain the zero-shot capability of CLIP. In this way, the vision and text representation of CLIP are optimized collaboratively, enhancing the alignment of the vision-text feature space. To the best of our knowledge, we are the first to establish the collaborative vision-text optimizing mechanism within the OVS field. Extensive experiments demonstrate our method achieves superior performance on popular OVS benchmarks. In open-vocabulary semantic segmentation, our method outperforms the previous state-of-the-art approaches by +0.5, +2.3, +3.4, +0.4 and +1.1 mIoU, respectively on A-847, A-150, PC-459, PC-59 and PAS-20. Furthermore, in a panoptic setting on ADE20K, we achieve the performance of 27.1 PQ, 73.5 SQ, and 32.9 RQ. Code will be available at https://github.com/jiaosiyu1999/MAFT-Plus.git .
Global Knowledge Calibration for Fast Open-Vocabulary Segmentation
Recent advancements in pre-trained vision-language models, such as CLIP, have enabled the segmentation of arbitrary concepts solely from textual inputs, a process commonly referred to as open-vocabulary semantic segmentation (OVS). However, existing OVS techniques confront a fundamental challenge: the trained classifier tends to overfit on the base classes observed during training, resulting in suboptimal generalization performance to unseen classes. To mitigate this issue, recent studies have proposed the use of an additional frozen pre-trained CLIP for classification. Nonetheless, this approach incurs heavy computational overheads as the CLIP vision encoder must be repeatedly forward-passed for each mask, rendering it impractical for real-world applications. To address this challenge, our objective is to develop a fast OVS model that can perform comparably or better without the extra computational burden of the CLIP image encoder during inference. To this end, we propose a core idea of preserving the generalizable representation when fine-tuning on known classes. Specifically, we introduce a text diversification strategy that generates a set of synonyms for each training category, which prevents the learned representation from collapsing onto specific known category names. Additionally, we employ a text-guided knowledge distillation method to preserve the generalizable knowledge of CLIP. Extensive experiments demonstrate that our proposed model achieves robust generalization performance across various datasets. Furthermore, we perform a preliminary exploration of open-vocabulary video segmentation and present a benchmark that can facilitate future open-vocabulary research in the video domain.
OV-PARTS: Towards Open-Vocabulary Part Segmentation
Segmenting and recognizing diverse object parts is a crucial ability in applications spanning various computer vision and robotic tasks. While significant progress has been made in object-level Open-Vocabulary Semantic Segmentation (OVSS), i.e., segmenting objects with arbitrary text, the corresponding part-level research poses additional challenges. Firstly, part segmentation inherently involves intricate boundaries, while limited annotated data compounds the challenge. Secondly, part segmentation introduces an open granularity challenge due to the diverse and often ambiguous definitions of parts in the open world. Furthermore, the large-scale vision and language models, which play a key role in the open vocabulary setting, struggle to recognize parts as effectively as objects. To comprehensively investigate and tackle these challenges, we propose an Open-Vocabulary Part Segmentation (OV-PARTS) benchmark. OV-PARTS includes refined versions of two publicly available datasets: Pascal-Part-116 and ADE20K-Part-234. And it covers three specific tasks: Generalized Zero-Shot Part Segmentation, Cross-Dataset Part Segmentation, and Few-Shot Part Segmentation, providing insights into analogical reasoning, open granularity and few-shot adapting abilities of models. Moreover, we analyze and adapt two prevailing paradigms of existing object-level OVSS methods for OV-PARTS. Extensive experimental analysis is conducted to inspire future research in leveraging foundational models for OV-PARTS. The code and dataset are available at https://github.com/OpenRobotLab/OV_PARTS.
Convolutions Die Hard: Open-Vocabulary Segmentation with Single Frozen Convolutional CLIP
Open-vocabulary segmentation is a challenging task requiring segmenting and recognizing objects from an open set of categories. One way to address this challenge is to leverage multi-modal models, such as CLIP, to provide image and text features in a shared embedding space, which bridges the gap between closed-vocabulary and open-vocabulary recognition. Hence, existing methods often adopt a two-stage framework to tackle the problem, where the inputs first go through a mask generator and then through the CLIP model along with the predicted masks. This process involves extracting features from images multiple times, which can be ineffective and inefficient. By contrast, we propose to build everything into a single-stage framework using a shared Frozen Convolutional CLIP backbone, which not only significantly simplifies the current two-stage pipeline, but also remarkably yields a better accuracy-cost trade-off. The proposed FC-CLIP, benefits from the following observations: the frozen CLIP backbone maintains the ability of open-vocabulary classification and can also serve as a strong mask generator, and the convolutional CLIP generalizes well to a larger input resolution than the one used during contrastive image-text pretraining. When training on COCO panoptic data only and testing in a zero-shot manner, FC-CLIP achieve 26.8 PQ, 16.8 AP, and 34.1 mIoU on ADE20K, 18.2 PQ, 27.9 mIoU on Mapillary Vistas, 44.0 PQ, 26.8 AP, 56.2 mIoU on Cityscapes, outperforming the prior art by +4.2 PQ, +2.4 AP, +4.2 mIoU on ADE20K, +4.0 PQ on Mapillary Vistas and +20.1 PQ on Cityscapes, respectively. Additionally, the training and testing time of FC-CLIP is 7.5x and 6.6x significantly faster than the same prior art, while using 5.9x fewer parameters. FC-CLIP also sets a new state-of-the-art performance across various open-vocabulary semantic segmentation datasets. Code at https://github.com/bytedance/fc-clip
Beyond-Labels: Advancing Open-Vocabulary Segmentation With Vision-Language Models
Self-supervised learning can resolve numerous image or linguistic processing problems when effectively trained. This study investigated simple yet efficient methods for adapting previously learned foundation models for open-vocabulary semantic segmentation tasks. Our research proposed "Beyond-Labels," a lightweight transformer-based fusion module that uses a handful of image segmentation data to fuse frozen image representations with language concepts. This strategy allows the model to successfully actualize enormous knowledge from pretrained models without requiring extensive retraining, making the model data-efficient and scalable. Furthermore, we efficiently captured positional information in images using Fourier embeddings, thus improving the generalization across various image sizes, addressing one of the key limitations of previous methods. Extensive ablation tests were performed to investigate the important components of our proposed method; when tested against the common benchmark PASCAL-5i, it demonstrated superior performance despite being trained on frozen image and language characteristics.
Test-Time Optimization for Domain Adaptive Open Vocabulary Segmentation
We present Seg-TTO, a novel framework for zero-shot, open-vocabulary semantic segmentation (OVSS), designed to excel in specialized domain tasks. While current open vocabulary approaches show impressive performance on standard segmentation benchmarks under zero-shot settings, they fall short of supervised counterparts on highly domain-specific datasets. We focus on segmentation-specific test-time optimization to address this gap. Segmentation requires an understanding of multiple concepts within a single image while retaining the locality and spatial structure of representations. We propose a novel self-supervised objective adhering to these requirements and use it to align the model parameters with input images at test time. In the textual modality, we learn multiple embeddings for each category to capture diverse concepts within an image, while in the visual modality, we calculate pixel-level losses followed by embedding aggregation operations specific to preserving spatial structure. Our resulting framework termed Seg-TTO is a plug-in-play module. We integrate Seg-TTO with three state-of-the-art OVSS approaches and evaluate across 22 challenging OVSS tasks covering a range of specialized domains. Our Seg-TTO demonstrates clear performance improvements across these establishing new state-of-the-art. Code: https://github.com/UlinduP/SegTTO.
SegEarth-OV: Towards Traning-Free Open-Vocabulary Segmentation for Remote Sensing Images
Remote sensing image plays an irreplaceable role in fields such as agriculture, water resources, military, and disaster relief. Pixel-level interpretation is a critical aspect of remote sensing image applications; however, a prevalent limitation remains the need for extensive manual annotation. For this, we try to introduce open-vocabulary semantic segmentation (OVSS) into the remote sensing context. However, due to the sensitivity of remote sensing images to low-resolution features, distorted target shapes and ill-fitting boundaries are exhibited in the prediction mask. To tackle this issue, we propose a simple and general upsampler, SimFeatUp, to restore lost spatial information in deep features in a training-free style. Further, based on the observation of the abnormal response of local patch tokens to [CLS] token in CLIP, we propose to execute a straightforward subtraction operation to alleviate the global bias in patch tokens. Extensive experiments are conducted on 17 remote sensing datasets spanning semantic segmentation, building extraction, road detection, and flood detection tasks. Our method achieves an average of 5.8%, 8.2%, 4%, and 15.3% improvement over state-of-the-art methods on 4 tasks. All codes are released. https://earth-insights.github.io/SegEarth-OV
Open Panoramic Segmentation
Panoramic images, capturing a 360{\deg} field of view (FoV), encompass omnidirectional spatial information crucial for scene understanding. However, it is not only costly to obtain training-sufficient dense-annotated panoramas but also application-restricted when training models in a close-vocabulary setting. To tackle this problem, in this work, we define a new task termed Open Panoramic Segmentation (OPS), where models are trained with FoV-restricted pinhole images in the source domain in an open-vocabulary setting while evaluated with FoV-open panoramic images in the target domain, enabling the zero-shot open panoramic semantic segmentation ability of models. Moreover, we propose a model named OOOPS with a Deformable Adapter Network (DAN), which significantly improves zero-shot panoramic semantic segmentation performance. To further enhance the distortion-aware modeling ability from the pinhole source domain, we propose a novel data augmentation method called Random Equirectangular Projection (RERP) which is specifically designed to address object deformations in advance. Surpassing other state-of-the-art open-vocabulary semantic segmentation approaches, a remarkable performance boost on three panoramic datasets, WildPASS, Stanford2D3D, and Matterport3D, proves the effectiveness of our proposed OOOPS model with RERP on the OPS task, especially +2.2% on outdoor WildPASS and +2.4% mIoU on indoor Stanford2D3D. The source code is publicly available at https://junweizheng93.github.io/publications/OPS/OPS.html.
ITACLIP: Boosting Training-Free Semantic Segmentation with Image, Text, and Architectural Enhancements
Recent advances in foundational Vision Language Models (VLMs) have reshaped the evaluation paradigm in computer vision tasks. These foundational models, especially CLIP, have accelerated research in open-vocabulary computer vision tasks, including Open-Vocabulary Semantic Segmentation (OVSS). Although the initial results are promising, the dense prediction capabilities of VLMs still require further improvement. In this study, we enhance the semantic segmentation performance of CLIP by introducing new modules and modifications: 1) architectural changes in the last layer of ViT and the incorporation of attention maps from the middle layers with the last layer, 2) Image Engineering: applying data augmentations to enrich input image representations, and 3) using Large Language Models (LLMs) to generate definitions and synonyms for each class name to leverage CLIP's open-vocabulary capabilities. Our training-free method, ITACLIP, outperforms current state-of-the-art approaches on segmentation benchmarks such as COCO-Stuff, COCO-Object, Pascal Context, and Pascal VOC. Our code is available at https://github.com/m-arda-aydn/ITACLIP.
OVGaussian: Generalizable 3D Gaussian Segmentation with Open Vocabularies
Open-vocabulary scene understanding using 3D Gaussian (3DGS) representations has garnered considerable attention. However, existing methods mostly lift knowledge from large 2D vision models into 3DGS on a scene-by-scene basis, restricting the capabilities of open-vocabulary querying within their training scenes so that lacking the generalizability to novel scenes. In this work, we propose OVGaussian, a generalizable Open-Vocabulary 3D semantic segmentation framework based on the 3D Gaussian representation. We first construct a large-scale 3D scene dataset based on 3DGS, dubbed SegGaussian, which provides detailed semantic and instance annotations for both Gaussian points and multi-view images. To promote semantic generalization across scenes, we introduce Generalizable Semantic Rasterization (GSR), which leverages a 3D neural network to learn and predict the semantic property for each 3D Gaussian point, where the semantic property can be rendered as multi-view consistent 2D semantic maps. In the next, we propose a Cross-modal Consistency Learning (CCL) framework that utilizes open-vocabulary annotations of 2D images and 3D Gaussians within SegGaussian to train the 3D neural network capable of open-vocabulary semantic segmentation across Gaussian-based 3D scenes. Experimental results demonstrate that OVGaussian significantly outperforms baseline methods, exhibiting robust cross-scene, cross-domain, and novel-view generalization capabilities. Code and the SegGaussian dataset will be released. (https://github.com/runnanchen/OVGaussian).
CLIP-DINOiser: Teaching CLIP a few DINO tricks
The popular CLIP model displays impressive zero-shot capabilities thanks to its seamless interaction with arbitrary text prompts. However, its lack of spatial awareness makes it unsuitable for dense computer vision tasks, e.g., semantic segmentation, without an additional fine-tuning step that often uses annotations and can potentially suppress its original open-vocabulary properties. Meanwhile, self-supervised representation methods have demonstrated good localization properties without human-made annotations nor explicit supervision. In this work, we take the best of both worlds and propose a zero-shot open-vocabulary semantic segmentation method, which does not require any annotations. We propose to locally improve dense MaskCLIP features, computed with a simple modification of CLIP's last pooling layer, by integrating localization priors extracted from self-supervised features. By doing so, we greatly improve the performance of MaskCLIP and produce smooth outputs. Moreover, we show that the used self-supervised feature properties can directly be learnt from CLIP features therefore allowing us to obtain the best results with a single pass through CLIP model. Our method CLIP-DINOiser needs only a single forward pass of CLIP and two light convolutional layers at inference, no extra supervision nor extra memory and reaches state-of-the-art results on challenging and fine-grained benchmarks such as COCO, Pascal Context, Cityscapes and ADE20k. The code to reproduce our results is available at https://github.com/wysoczanska/clip_dinoiser.
RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning, rely on low-resolution images, and offer limited interpretability in attention mechanisms. To address these challenges, we introduce RadZero, a novel similarity-based cross-attention framework for vision-language alignment in radiology with zero-shot multi-task capability. RadZero leverages large language models to extract minimal semantic sentences from radiology reports and employs a multi-positive contrastive learning strategy to effectively capture relationships between images and multiple relevant textual descriptions. It also utilizes a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, RadZero enables zero-shot inference with similarity probability for classification and pixel-level cross-modal similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, cross-modal similarity map analysis highlights its potential for improving explainability in vision-language alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
EAGLE: Efficient Adaptive Geometry-based Learning in Cross-view Understanding
Unsupervised Domain Adaptation has been an efficient approach to transferring the semantic segmentation model across data distributions. Meanwhile, the recent Open-vocabulary Semantic Scene understanding based on large-scale vision language models is effective in open-set settings because it can learn diverse concepts and categories. However, these prior methods fail to generalize across different camera views due to the lack of cross-view geometric modeling. At present, there are limited studies analyzing cross-view learning. To address this problem, we introduce a novel Unsupervised Cross-view Adaptation Learning approach to modeling the geometric structural change across views in Semantic Scene Understanding. First, we introduce a novel Cross-view Geometric Constraint on Unpaired Data to model structural changes in images and segmentation masks across cameras. Second, we present a new Geodesic Flow-based Correlation Metric to efficiently measure the geometric structural changes across camera views. Third, we introduce a novel view-condition prompting mechanism to enhance the view-information modeling of the open-vocabulary segmentation network in cross-view adaptation learning. The experiments on different cross-view adaptation benchmarks have shown the effectiveness of our approach in cross-view modeling, demonstrating that we achieve State-of-the-Art (SOTA) performance compared to prior unsupervised domain adaptation and open-vocabulary semantic segmentation methods.
DINOv2 Meets Text: A Unified Framework for Image- and Pixel-Level Vision-Language Alignment
Self-supervised visual foundation models produce powerful embeddings that achieve remarkable performance on a wide range of downstream tasks. However, unlike vision-language models such as CLIP, self-supervised visual features are not readily aligned with language, hindering their adoption in open-vocabulary tasks. Our method, named dino.txt, unlocks this new ability for DINOv2, a widely used self-supervised visual encoder. We build upon the LiT training strategy, which trains a text encoder to align with a frozen vision model but leads to unsatisfactory results on dense tasks. We propose several key ingredients to improve performance on both global and dense tasks, such as concatenating the [CLS] token with the patch average to train the alignment and curating data using both text and image modalities. With these, we successfully train a CLIP-like model with only a fraction of the computational cost compared to CLIP while achieving state-of-the-art results in zero-shot classification and open-vocabulary semantic segmentation.
SegPoint: Segment Any Point Cloud via Large Language Model
Despite significant progress in 3D point cloud segmentation, existing methods primarily address specific tasks and depend on explicit instructions to identify targets, lacking the capability to infer and understand implicit user intentions in a unified framework. In this work, we propose a model, called SegPoint, that leverages the reasoning capabilities of a multi-modal Large Language Model (LLM) to produce point-wise segmentation masks across a diverse range of tasks: 1) 3D instruction segmentation, 2) 3D referring segmentation, 3) 3D semantic segmentation, and 4) 3D open-vocabulary semantic segmentation. To advance 3D instruction research, we introduce a new benchmark, Instruct3D, designed to evaluate segmentation performance from complex and implicit instructional texts, featuring 2,565 point cloud-instruction pairs. Our experimental results demonstrate that SegPoint achieves competitive performance on established benchmarks such as ScanRefer for referring segmentation and ScanNet for semantic segmentation, while delivering outstanding outcomes on the Instruct3D dataset. To our knowledge, SegPoint is the first model to address these varied segmentation tasks within a single framework, achieving satisfactory performance.
Open-Vocabulary Camouflaged Object Segmentation
Recently, the emergence of the large-scale vision-language model (VLM), such as CLIP, has opened the way towards open-world object perception. Many works have explored the utilization of pre-trained VLM for the challenging open-vocabulary dense prediction task that requires perceiving diverse objects with novel classes at inference time. Existing methods construct experiments based on the public datasets of related tasks, which are not tailored for open vocabulary and rarely involve imperceptible objects camouflaged in complex scenes due to data collection bias and annotation costs. To fill in the gaps, we introduce a new task, open-vocabulary camouflaged object segmentation (OVCOS), and construct a large-scale complex scene dataset (OVCamo) containing 11,483 hand-selected images with fine annotations and corresponding object classes. Further, we build a strong single-stage open-vocabulary camouflaged object segmentation transformer baseline OVCoser attached to the parameter-fixed CLIP with iterative semantic guidance and structure enhancement. By integrating the guidance of class semantic knowledge and the supplement of visual structure cues from the edge and depth information, the proposed method can efficiently capture camouflaged objects. Moreover, this effective framework also surpasses previous state-of-the-arts of open-vocabulary semantic image segmentation by a large margin on our OVCamo dataset. With the proposed dataset and baseline, we hope that this new task with more practical value can further expand the research on open-vocabulary dense prediction tasks. Our code and data can be found in the https://github.com/lartpang/OVCamo{link}.
Masked Point-Entity Contrast for Open-Vocabulary 3D Scene Understanding
Open-vocabulary 3D scene understanding is pivotal for enhancing physical intelligence, as it enables embodied agents to interpret and interact dynamically within real-world environments. This paper introduces MPEC, a novel Masked Point-Entity Contrastive learning method for open-vocabulary 3D semantic segmentation that leverages both 3D entity-language alignment and point-entity consistency across different point cloud views to foster entity-specific feature representations. Our method improves semantic discrimination and enhances the differentiation of unique instances, achieving state-of-the-art results on ScanNet for open-vocabulary 3D semantic segmentation and demonstrating superior zero-shot scene understanding capabilities. Extensive fine-tuning experiments on 8 datasets, spanning from low-level perception to high-level reasoning tasks, showcase the potential of learned 3D features, driving consistent performance gains across varied 3D scene understanding tasks. Project website: https://mpec-3d.github.io/
Open-Vocabulary Audio-Visual Semantic Segmentation
Audio-visual semantic segmentation (AVSS) aims to segment and classify sounding objects in videos with acoustic cues. However, most approaches operate on the close-set assumption and only identify pre-defined categories from training data, lacking the generalization ability to detect novel categories in practical applications. In this paper, we introduce a new task: open-vocabulary audio-visual semantic segmentation, extending AVSS task to open-world scenarios beyond the annotated label space. This is a more challenging task that requires recognizing all categories, even those that have never been seen nor heard during training. Moreover, we propose the first open-vocabulary AVSS framework, OV-AVSS, which mainly consists of two parts: 1) a universal sound source localization module to perform audio-visual fusion and locate all potential sounding objects and 2) an open-vocabulary classification module to predict categories with the help of the prior knowledge from large-scale pre-trained vision-language models. To properly evaluate the open-vocabulary AVSS, we split zero-shot training and testing subsets based on the AVSBench-semantic benchmark, namely AVSBench-OV. Extensive experiments demonstrate the strong segmentation and zero-shot generalization ability of our model on all categories. On the AVSBench-OV dataset, OV-AVSS achieves 55.43% mIoU on base categories and 29.14% mIoU on novel categories, exceeding the state-of-the-art zero-shot method by 41.88%/20.61% and open-vocabulary method by 10.2%/11.6%. The code is available at https://github.com/ruohaoguo/ovavss.
Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models
We present ODISE: Open-vocabulary DIffusion-based panoptic SEgmentation, which unifies pre-trained text-image diffusion and discriminative models to perform open-vocabulary panoptic segmentation. Text-to-image diffusion models have the remarkable ability to generate high-quality images with diverse open-vocabulary language descriptions. This demonstrates that their internal representation space is highly correlated with open concepts in the real world. Text-image discriminative models like CLIP, on the other hand, are good at classifying images into open-vocabulary labels. We leverage the frozen internal representations of both these models to perform panoptic segmentation of any category in the wild. Our approach outperforms the previous state of the art by significant margins on both open-vocabulary panoptic and semantic segmentation tasks. In particular, with COCO training only, our method achieves 23.4 PQ and 30.0 mIoU on the ADE20K dataset, with 8.3 PQ and 7.9 mIoU absolute improvement over the previous state of the art. We open-source our code and models at https://github.com/NVlabs/ODISE .
PLA: Language-Driven Open-Vocabulary 3D Scene Understanding
Open-vocabulary scene understanding aims to localize and recognize unseen categories beyond the annotated label space. The recent breakthrough of 2D open-vocabulary perception is largely driven by Internet-scale paired image-text data with rich vocabulary concepts. However, this success cannot be directly transferred to 3D scenarios due to the inaccessibility of large-scale 3D-text pairs. To this end, we propose to distill knowledge encoded in pre-trained vision-language (VL) foundation models through captioning multi-view images from 3D, which allows explicitly associating 3D and semantic-rich captions. Further, to foster coarse-to-fine visual-semantic representation learning from captions, we design hierarchical 3D-caption pairs, leveraging geometric constraints between 3D scenes and multi-view images. Finally, by employing contrastive learning, the model learns language-aware embeddings that connect 3D and text for open-vocabulary tasks. Our method not only remarkably outperforms baseline methods by 25.8% sim 44.7% hIoU and 14.5% sim 50.4% hAP_{50} in open-vocabulary semantic and instance segmentation, but also shows robust transferability on challenging zero-shot domain transfer tasks. See the project website at https://dingry.github.io/projects/PLA.
Open-Vocabulary Attention Maps with Token Optimization for Semantic Segmentation in Diffusion Models
Diffusion models represent a new paradigm in text-to-image generation. Beyond generating high-quality images from text prompts, models such as Stable Diffusion have been successfully extended to the joint generation of semantic segmentation pseudo-masks. However, current extensions primarily rely on extracting attentions linked to prompt words used for image synthesis. This approach limits the generation of segmentation masks derived from word tokens not contained in the text prompt. In this work, we introduce Open-Vocabulary Attention Maps (OVAM)-a training-free method for text-to-image diffusion models that enables the generation of attention maps for any word. In addition, we propose a lightweight optimization process based on OVAM for finding tokens that generate accurate attention maps for an object class with a single annotation. We evaluate these tokens within existing state-of-the-art Stable Diffusion extensions. The best-performing model improves its mIoU from 52.1 to 86.6 for the synthetic images' pseudo-masks, demonstrating that our optimized tokens are an efficient way to improve the performance of existing methods without architectural changes or retraining.
OpenMask3D: Open-Vocabulary 3D Instance Segmentation
We introduce the task of open-vocabulary 3D instance segmentation. Traditional approaches for 3D instance segmentation largely rely on existing 3D annotated datasets, which are restricted to a closed-set of object categories. This is an important limitation for real-life applications where one might need to perform tasks guided by novel, open-vocabulary queries related to objects from a wide variety. Recently, open-vocabulary 3D scene understanding methods have emerged to address this problem by learning queryable features per each point in the scene. While such a representation can be directly employed to perform semantic segmentation, existing methods have limitations in their ability to identify object instances. In this work, we address this limitation, and propose OpenMask3D, which is a zero-shot approach for open-vocabulary 3D instance segmentation. Guided by predicted class-agnostic 3D instance masks, our model aggregates per-mask features via multi-view fusion of CLIP-based image embeddings. We conduct experiments and ablation studies on the ScanNet200 dataset to evaluate the performance of OpenMask3D, and provide insights about the open-vocabulary 3D instance segmentation task. We show that our approach outperforms other open-vocabulary counterparts, particularly on the long-tail distribution. Furthermore, OpenMask3D goes beyond the limitations of close-vocabulary approaches, and enables the segmentation of object instances based on free-form queries describing object properties such as semantics, geometry, affordances, and material properties.
Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting
Open-vocabulary 3D scene understanding presents a significant challenge in computer vision, withwide-ranging applications in embodied agents and augmented reality systems. Previous approaches haveadopted Neural Radiance Fields (NeRFs) to analyze 3D scenes. In this paper, we introduce SemanticGaussians, a novel open-vocabulary scene understanding approach based on 3D Gaussian Splatting. Our keyidea is distilling pre-trained 2D semantics into 3D Gaussians. We design a versatile projection approachthat maps various 2Dsemantic features from pre-trained image encoders into a novel semantic component of 3D Gaussians, withoutthe additional training required by NeRFs. We further build a 3D semantic network that directly predictsthe semantic component from raw 3D Gaussians for fast inference. We explore several applications ofSemantic Gaussians: semantic segmentation on ScanNet-20, where our approach attains a 4.2% mIoU and 4.0%mAcc improvement over prior open-vocabulary scene understanding counterparts; object part segmentation,sceneediting, and spatial-temporal segmentation with better qualitative results over 2D and 3D baselines,highlighting its versatility and effectiveness on supporting diverse downstream tasks.
Open-vocabulary Object Segmentation with Diffusion Models
The goal of this paper is to extract the visual-language correspondence from a pre-trained text-to-image diffusion model, in the form of segmentation map, i.e., simultaneously generating images and segmentation masks for the corresponding visual entities described in the text prompt. We make the following contributions: (i) we pair the existing Stable Diffusion model with a novel grounding module, that can be trained to align the visual and textual embedding space of the diffusion model with only a small number of object categories; (ii) we establish an automatic pipeline for constructing a dataset, that consists of {image, segmentation mask, text prompt} triplets, to train the proposed grounding module; (iii) we evaluate the performance of open-vocabulary grounding on images generated from the text-to-image diffusion model and show that the module can well segment the objects of categories beyond seen ones at training time; (iv) we adopt the augmented diffusion model to build a synthetic semantic segmentation dataset, and show that, training a standard segmentation model on such dataset demonstrates competitive performance on the zero-shot segmentation(ZS3) benchmark, which opens up new opportunities for adopting the powerful diffusion model for discriminative tasks.
USE: Universal Segment Embeddings for Open-Vocabulary Image Segmentation
The open-vocabulary image segmentation task involves partitioning images into semantically meaningful segments and classifying them with flexible text-defined categories. The recent vision-based foundation models such as the Segment Anything Model (SAM) have shown superior performance in generating class-agnostic image segments. The main challenge in open-vocabulary image segmentation now lies in accurately classifying these segments into text-defined categories. In this paper, we introduce the Universal Segment Embedding (USE) framework to address this challenge. This framework is comprised of two key components: 1) a data pipeline designed to efficiently curate a large amount of segment-text pairs at various granularities, and 2) a universal segment embedding model that enables precise segment classification into a vast range of text-defined categories. The USE model can not only help open-vocabulary image segmentation but also facilitate other downstream tasks (e.g., querying and ranking). Through comprehensive experimental studies on semantic segmentation and part segmentation benchmarks, we demonstrate that the USE framework outperforms state-of-the-art open-vocabulary segmentation methods.
Hierarchical Open-vocabulary Universal Image Segmentation
Open-vocabulary image segmentation aims to partition an image into semantic regions according to arbitrary text descriptions. However, complex visual scenes can be naturally decomposed into simpler parts and abstracted at multiple levels of granularity, introducing inherent segmentation ambiguity. Unlike existing methods that typically sidestep this ambiguity and treat it as an external factor, our approach actively incorporates a hierarchical representation encompassing different semantic-levels into the learning process. We propose a decoupled text-image fusion mechanism and representation learning modules for both "things" and "stuff". Additionally, we systematically examine the differences that exist in the textual and visual features between these types of categories. Our resulting model, named HIPIE, tackles HIerarchical, oPen-vocabulary, and unIvErsal segmentation tasks within a unified framework. Benchmarked on over 40 datasets, e.g., ADE20K, COCO, Pascal-VOC Part, RefCOCO/RefCOCOg, ODinW and SeginW, HIPIE achieves the state-of-the-art results at various levels of image comprehension, including semantic-level (e.g., semantic segmentation), instance-level (e.g., panoptic/referring segmentation and object detection), as well as part-level (e.g., part/subpart segmentation) tasks. Our code is released at https://github.com/berkeley-hipie/HIPIE.
Mosaic3D: Foundation Dataset and Model for Open-Vocabulary 3D Segmentation
We tackle open-vocabulary 3D scene understanding by introducing a novel data generation pipeline and training framework. Our method addresses three critical requirements for effective training: precise 3D region segmentation, comprehensive textual descriptions, and sufficient dataset scale. By leveraging state-of-the-art open-vocabulary image segmentation models and region-aware Vision-Language Models, we develop an automatic pipeline that generates high-quality 3D mask-text pairs. Applying this pipeline to multiple 3D scene datasets, we create Mosaic3D-5.6M, a dataset of over 30K annotated scenes with 5.6M mask-text pairs, significantly larger than existing datasets. Building upon this data, we propose Mosaic3D, a foundation model combining a 3D encoder trained with contrastive learning and a lightweight mask decoder for open-vocabulary 3D semantic and instance segmentation. Our approach achieves state-of-the-art results on open-vocabulary 3D semantic and instance segmentation tasks including ScanNet200, Matterport3D, and ScanNet++, with ablation studies validating the effectiveness of our large-scale training data.
Harnessing Vision Foundation Models for High-Performance, Training-Free Open Vocabulary Segmentation
While Contrastive Language-Image Pre-training (CLIP) has advanced open-vocabulary predictions, its performance on semantic segmentation remains suboptimal. This shortfall primarily stems from its spatial-invariant semantic features and constrained resolution. While previous adaptations addressed spatial invariance semantic by modifying the self-attention in CLIP's image encoder, the issue of limited resolution remains unexplored. Different from previous segment-then-splice methods that segment sub-images via a sliding window and splice the results, we introduce a splice-then-segment paradigm that incorporates Segment-Anything Model (SAM) to tackle the resolution issue since SAM excels at extracting fine-grained semantic correlations from high-resolution images. Specifically, we introduce Trident, a training-free framework that first splices features extracted by CLIP and DINO from sub-images, then leverages SAM's encoder to create a correlation matrix for global aggregation, enabling a broadened receptive field for effective segmentation. Besides, we propose a refinement strategy for CLIP's coarse segmentation outputs by transforming them into prompts for SAM, further enhancing the segmentation performance. Trident achieves a significant improvement in the mIoU across eight benchmarks compared with the current SOTA, increasing from 44.4 to 48.6.Code is available at https://github.com/YuHengsss/Trident.
FreeSeg: Unified, Universal and Open-Vocabulary Image Segmentation
Recently, open-vocabulary learning has emerged to accomplish segmentation for arbitrary categories of text-based descriptions, which popularizes the segmentation system to more general-purpose application scenarios. However, existing methods devote to designing specialized architectures or parameters for specific segmentation tasks. These customized design paradigms lead to fragmentation between various segmentation tasks, thus hindering the uniformity of segmentation models. Hence in this paper, we propose FreeSeg, a generic framework to accomplish Unified, Universal and Open-Vocabulary Image Segmentation. FreeSeg optimizes an all-in-one network via one-shot training and employs the same architecture and parameters to handle diverse segmentation tasks seamlessly in the inference procedure. Additionally, adaptive prompt learning facilitates the unified model to capture task-aware and category-sensitive concepts, improving model robustness in multi-task and varied scenarios. Extensive experimental results demonstrate that FreeSeg establishes new state-of-the-art results in performance and generalization on three segmentation tasks, which outperforms the best task-specific architectures by a large margin: 5.5% mIoU on semantic segmentation, 17.6% mAP on instance segmentation, 20.1% PQ on panoptic segmentation for the unseen class on COCO.
Show or Tell? A Benchmark To Evaluate Visual and Textual Prompts in Semantic Segmentation
Prompt engineering has shown remarkable success with large language models, yet its systematic exploration in computer vision remains limited. In semantic segmentation, both textual and visual prompts offer distinct advantages: textual prompts through open-vocabulary methods allow segmentation of arbitrary categories, while visual reference prompts provide intuitive reference examples. However, existing benchmarks evaluate these modalities in isolation, without direct comparison under identical conditions. We present Show or Tell (SoT), a novel benchmark specifically designed to evaluate both visual and textual prompts for semantic segmentation across 14 datasets spanning 7 diverse domains (common scenes, urban, food, waste, parts, tools, and land-cover). We evaluate 5 open-vocabulary methods and 4 visual reference prompt approaches, adapting the latter to handle multi-class segmentation through a confidence-based mask merging strategy. Our extensive experiments reveal that open-vocabulary methods excel with common concepts easily described by text but struggle with complex domains like tools, while visual reference prompt methods achieve good average results but exhibit high variability depending on the input prompt. Through comprehensive quantitative and qualitative analysis, we identify the strengths and weaknesses of both prompting modalities, providing valuable insights to guide future research in vision foundation models for segmentation tasks.
DiffuMask: Synthesizing Images with Pixel-level Annotations for Semantic Segmentation Using Diffusion Models
Collecting and annotating images with pixel-wise labels is time-consuming and laborious. In contrast, synthetic data can be freely available using a generative model (e.g., DALL-E, Stable Diffusion). In this paper, we show that it is possible to automatically obtain accurate semantic masks of synthetic images generated by the Off-the-shelf Stable Diffusion model, which uses only text-image pairs during training. Our approach, called DiffuMask, exploits the potential of the cross-attention map between text and image, which is natural and seamless to extend the text-driven image synthesis to semantic mask generation. DiffuMask uses text-guided cross-attention information to localize class/word-specific regions, which are combined with practical techniques to create a novel high-resolution and class-discriminative pixel-wise mask. The methods help to reduce data collection and annotation costs obviously. Experiments demonstrate that the existing segmentation methods trained on synthetic data of DiffuMask can achieve a competitive performance over the counterpart of real data (VOC 2012, Cityscapes). For some classes (e.g., bird), DiffuMask presents promising performance, close to the stateof-the-art result of real data (within 3% mIoU gap). Moreover, in the open-vocabulary segmentation (zero-shot) setting, DiffuMask achieves a new SOTA result on Unseen class of VOC 2012. The project website can be found at https://weijiawu.github.io/DiffusionMask/.
DeCLIP: Decoupled Learning for Open-Vocabulary Dense Perception
Dense visual prediction tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense prediction often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. The ``content'' features are aligned with image crop representations to improve local discriminability, while ``context'' features learn to retain the spatial correlations under the guidance of vision foundation models, such as DINO. Extensive experiments demonstrate that DeCLIP significantly outperforms existing methods across multiple open-vocabulary dense prediction tasks, including object detection and semantic segmentation. Code is available at magenta{https://github.com/xiaomoguhz/DeCLIP}.
Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation
The Diffusion Model has not only garnered noteworthy achievements in the realm of image generation but has also demonstrated its potential as an effective pretraining method utilizing unlabeled data. Drawing from the extensive potential unveiled by the Diffusion Model in both semantic correspondence and open vocabulary segmentation, our work initiates an investigation into employing the Latent Diffusion Model for Few-shot Semantic Segmentation. Recently, inspired by the in-context learning ability of large language models, Few-shot Semantic Segmentation has evolved into In-context Segmentation tasks, morphing into a crucial element in assessing generalist segmentation models. In this context, we concentrate on Few-shot Semantic Segmentation, establishing a solid foundation for the future development of a Diffusion-based generalist model for segmentation. Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework. Subsequently, we delve deeper into optimizing the infusion of information from the support mask and simultaneously re-evaluating how to provide reasonable supervision from the query mask. Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework and effectively utilizing the pre-training prior. Experimental results demonstrate that our method significantly outperforms the previous SOTA models in multiple settings.
CLIPSelf: Vision Transformer Distills Itself for Open-Vocabulary Dense Prediction
Open-vocabulary dense prediction tasks including object detection and image segmentation have been advanced by the success of Contrastive Language-Image Pre-training (CLIP). CLIP models, particularly those incorporating vision transformers (ViTs), have exhibited remarkable generalization ability in zero-shot image classification. However, when transferring the vision-language alignment of CLIP from global image representation to local region representation for the open-vocabulary dense prediction tasks, CLIP ViTs suffer from the domain shift from full images to local image regions. In this paper, we embark on an in-depth analysis of the region-language alignment in CLIP models, which is essential for downstream open-vocabulary dense prediction tasks. Subsequently, we propose an approach named CLIPSelf, which adapts the image-level recognition ability of CLIP ViT to local image regions without needing any region-text pairs. CLIPSelf empowers ViTs to distill itself by aligning a region representation extracted from its dense feature map with the image-level representation of the corresponding image crop. With the enhanced CLIP ViTs, we achieve new state-of-the-art performance on open-vocabulary object detection, semantic segmentation, and panoptic segmentation across various benchmarks. Models and code will be available at https://github.com/wusize/CLIPSelf.
Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition
This work proposes POMP, a prompt pre-training method for vision-language models. Being memory and computation efficient, POMP enables the learned prompt to condense semantic information for a rich set of visual concepts with over twenty-thousand classes. Once pre-trained, the prompt with a strong transferable ability can be directly plugged into a variety of visual recognition tasks including image classification, semantic segmentation, and object detection, to boost recognition performances in a zero-shot manner. Empirical evaluation shows that POMP achieves state-of-the-art performances on 21 downstream datasets, e.g., 67.0% average accuracy on 10 classification dataset (+3.1% compared to CoOp) and 84.4 hIoU on open-vocabulary Pascal VOC segmentation (+6.9 compared to ZSSeg).
CLIP-FO3D: Learning Free Open-world 3D Scene Representations from 2D Dense CLIP
Training a 3D scene understanding model requires complicated human annotations, which are laborious to collect and result in a model only encoding close-set object semantics. In contrast, vision-language pre-training models (e.g., CLIP) have shown remarkable open-world reasoning properties. To this end, we propose directly transferring CLIP's feature space to 3D scene understanding model without any form of supervision. We first modify CLIP's input and forwarding process so that it can be adapted to extract dense pixel features for 3D scene contents. We then project multi-view image features to the point cloud and train a 3D scene understanding model with feature distillation. Without any annotations or additional training, our model achieves promising annotation-free semantic segmentation results on open-vocabulary semantics and long-tailed concepts. Besides, serving as a cross-modal pre-training framework, our method can be used to improve data efficiency during fine-tuning. Our model outperforms previous SOTA methods in various zero-shot and data-efficient learning benchmarks. Most importantly, our model successfully inherits CLIP's rich-structured knowledge, allowing 3D scene understanding models to recognize not only object concepts but also open-world semantics.
LangSplat: 3D Language Gaussian Splatting
Human lives in a 3D world and commonly uses natural language to interact with a 3D scene. Modeling a 3D language field to support open-ended language queries in 3D has gained increasing attention recently. This paper introduces LangSplat, which constructs a 3D language field that enables precise and efficient open-vocabulary querying within 3D spaces. Unlike existing methods that ground CLIP language embeddings in a NeRF model, LangSplat advances the field by utilizing a collection of 3D Gaussians, each encoding language features distilled from CLIP, to represent the language field. By employing a tile-based splatting technique for rendering language features, we circumvent the costly rendering process inherent in NeRF. Instead of directly learning CLIP embeddings, LangSplat first trains a scene-wise language autoencoder and then learns language features on the scene-specific latent space, thereby alleviating substantial memory demands imposed by explicit modeling. Existing methods struggle with imprecise and vague 3D language fields, which fail to discern clear boundaries between objects. We delve into this issue and propose to learn hierarchical semantics using SAM, thereby eliminating the need for extensively querying the language field across various scales and the regularization of DINO features. Extensive experiments on open-vocabulary 3D object localization and semantic segmentation demonstrate that LangSplat significantly outperforms the previous state-of-the-art method LERF by a large margin. Notably, LangSplat is extremely efficient, achieving a {\speed} times speedup compared to LERF at the resolution of 1440 times 1080. We strongly recommend readers to check out our video results at https://langsplat.github.io
Grounding Everything: Emerging Localization Properties in Vision-Language Transformers
Vision-language foundation models have shown remarkable performance in various zero-shot settings such as image retrieval, classification, or captioning. But so far, those models seem to fall behind when it comes to zero-shot localization of referential expressions and objects in images. As a result, they need to be fine-tuned for this task. In this paper, we show that pretrained vision-language (VL) models allow for zero-shot open-vocabulary object localization without any fine-tuning. To leverage those capabilities, we propose a Grounding Everything Module (GEM) that generalizes the idea of value-value attention introduced by CLIPSurgery to a self-self attention path. We show that the concept of self-self attention corresponds to clustering, thus enforcing groups of tokens arising from the same object to be similar while preserving the alignment with the language space. To further guide the group formation, we propose a set of regularizations that allows the model to finally generalize across datasets and backbones. We evaluate the proposed GEM framework on various benchmark tasks and datasets for semantic segmentation. It shows that GEM not only outperforms other training-free open-vocabulary localization methods, but also achieves state-of-the-art results on the recently proposed OpenImagesV7 large-scale segmentation benchmark.
Open-Vocabulary Universal Image Segmentation with MaskCLIP
In this paper, we tackle an emerging computer vision task, open-vocabulary universal image segmentation, that aims to perform semantic/instance/panoptic segmentation (background semantic labeling + foreground instance segmentation) for arbitrary categories of text-based descriptions in inference time. We first build a baseline method by directly adopting pre-trained CLIP models without finetuning or distillation. We then develop MaskCLIP, a Transformer-based approach with a MaskCLIP Visual Encoder, which is an encoder-only module that seamlessly integrates mask tokens with a pre-trained ViT CLIP model for semantic/instance segmentation and class prediction. MaskCLIP learns to efficiently and effectively utilize pre-trained partial/dense CLIP features within the MaskCLIP Visual Encoder that avoids the time-consuming student-teacher training process. MaskCLIP outperforms previous methods for semantic/instance/panoptic segmentation on ADE20K and PASCAL datasets. We show qualitative illustrations for MaskCLIP with online custom categories. Project website: https://maskclip.github.io.
Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation
Recent open-vocabulary segmentation methods adopt mask generators to predict segmentation masks and leverage pre-trained vision-language models, e.g., CLIP, to classify these masks via mask pooling. Although these approaches show promising results, it is counterintuitive that accurate masks often fail to yield accurate classification results through pooling CLIP image embeddings within the mask regions. In this paper, we reveal the performance limitations of mask pooling and introduce Mask-Adapter, a simple yet effective method to address these challenges in open-vocabulary segmentation. Compared to directly using proposal masks, our proposed Mask-Adapter extracts semantic activation maps from proposal masks, providing richer contextual information and ensuring alignment between masks and CLIP. Additionally, we propose a mask consistency loss that encourages proposal masks with similar IoUs to obtain similar CLIP embeddings to enhance models' robustness to varying predicted masks. Mask-Adapter integrates seamlessly into open-vocabulary segmentation methods based on mask pooling in a plug-and-play manner, delivering more accurate classification results. Extensive experiments across several zero-shot benchmarks demonstrate significant performance gains for the proposed Mask-Adapter on several well-established methods. Notably, Mask-Adapter also extends effectively to SAM and achieves impressive results on several open-vocabulary segmentation datasets. Code and models are available at https://github.com/hustvl/MaskAdapter.
OpenSD: Unified Open-Vocabulary Segmentation and Detection
Recently, a few open-vocabulary methods have been proposed by employing a unified architecture to tackle generic segmentation and detection tasks. However, their performance still lags behind the task-specific models due to the conflict between different tasks, and their open-vocabulary capability is limited due to the inadequate use of CLIP. To address these challenges, we present a universal transformer-based framework, abbreviated as OpenSD, which utilizes the same architecture and network parameters to handle open-vocabulary segmentation and detection tasks. First, we introduce a decoder decoupled learning strategy to alleviate the semantic conflict between thing and staff categories so that each individual task can be learned more effectively under the same framework. Second, to better leverage CLIP for end-to-end segmentation and detection, we propose dual classifiers to handle the in-vocabulary domain and out-of-vocabulary domain, respectively. The text encoder is further trained to be region-aware for both thing and stuff categories through decoupled prompt learning, enabling them to filter out duplicated and low-quality predictions, which is important to end-to-end segmentation and detection. Extensive experiments are conducted on multiple datasets under various circumstances. The results demonstrate that OpenSD outperforms state-of-the-art open-vocabulary segmentation and detection methods in both closed- and open-vocabulary settings. Code is available at https://github.com/strongwolf/OpenSD
FrozenSeg: Harmonizing Frozen Foundation Models for Open-Vocabulary Segmentation
Open-vocabulary segmentation poses significant challenges, as it requires segmenting and recognizing objects across an open set of categories in unconstrained environments. Building on the success of powerful vision-language (ViL) foundation models, such as CLIP, recent efforts sought to harness their zero-short capabilities to recognize unseen categories. Despite notable performance improvements, these models still encounter the critical issue of generating precise mask proposals for unseen categories and scenarios, resulting in inferior segmentation performance eventually. To address this challenge, we introduce a novel approach, FrozenSeg, designed to integrate spatial knowledge from a localization foundation model (e.g., SAM) and semantic knowledge extracted from a ViL model (e.g., CLIP), in a synergistic framework. Taking the ViL model's visual encoder as the feature backbone, we inject the space-aware feature into the learnable queries and CLIP features within the transformer decoder. In addition, we devise a mask proposal ensemble strategy for further improving the recall rate and mask quality. To fully exploit pre-trained knowledge while minimizing training overhead, we freeze both foundation models, focusing optimization efforts solely on a lightweight transformer decoder for mask proposal generation-the performance bottleneck. Extensive experiments demonstrate that FrozenSeg advances state-of-the-art results across various segmentation benchmarks, trained exclusively on COCO panoptic data, and tested in a zero-shot manner. Code is available at https://github.com/chenxi52/FrozenSeg.
Going Denser with Open-Vocabulary Part Segmentation
Object detection has been expanded from a limited number of categories to open vocabulary. Moving forward, a complete intelligent vision system requires understanding more fine-grained object descriptions, object parts. In this paper, we propose a detector with the ability to predict both open-vocabulary objects and their part segmentation. This ability comes from two designs. First, we train the detector on the joint of part-level, object-level and image-level data to build the multi-granularity alignment between language and image. Second, we parse the novel object into its parts by its dense semantic correspondence with the base object. These two designs enable the detector to largely benefit from various data sources and foundation models. In open-vocabulary part segmentation experiments, our method outperforms the baseline by 3.3sim7.3 mAP in cross-dataset generalization on PartImageNet, and improves the baseline by 7.3 novel AP_{50} in cross-category generalization on Pascal Part. Finally, we train a detector that generalizes to a wide range of part segmentation datasets while achieving better performance than dataset-specific training.
A Simple Framework for Open-Vocabulary Segmentation and Detection
We present OpenSeeD, a simple Open-vocabulary Segmentation and Detection framework that jointly learns from different segmentation and detection datasets. To bridge the gap of vocabulary and annotation granularity, we first introduce a pre-trained text encoder to encode all the visual concepts in two tasks and learn a common semantic space for them. This gives us reasonably good results compared with the counterparts trained on segmentation task only. To further reconcile them, we locate two discrepancies: i) task discrepancy -- segmentation requires extracting masks for both foreground objects and background stuff, while detection merely cares about the former; ii) data discrepancy -- box and mask annotations are with different spatial granularity, and thus not directly interchangeable. To address these issues, we propose a decoupled decoding to reduce the interference between foreground/background and a conditioned mask decoding to assist in generating masks for given boxes. To this end, we develop a simple encoder-decoder model encompassing all three techniques and train it jointly on COCO and Objects365. After pre-training, our model exhibits competitive or stronger zero-shot transferability for both segmentation and detection. Specifically, OpenSeeD beats the state-of-the-art method for open-vocabulary instance and panoptic segmentation across 5 datasets, and outperforms previous work for open-vocabulary detection on LVIS and ODinW under similar settings. When transferred to specific tasks, our model achieves new SoTA for panoptic segmentation on COCO and ADE20K, and instance segmentation on ADE20K and Cityscapes. Finally, we note that OpenSeeD is the first to explore the potential of joint training on segmentation and detection, and hope it can be received as a strong baseline for developing a single model for both tasks in open world.
What You Perceive Is What You Conceive: A Cognition-Inspired Framework for Open Vocabulary Image Segmentation
Open vocabulary image segmentation tackles the challenge of recognizing dynamically adjustable, predefined novel categories at inference time by leveraging vision-language alignment. However, existing paradigms typically perform class-agnostic region segmentation followed by category matching, which deviates from the human visual system's process of recognizing objects based on semantic concepts, leading to poor alignment between region segmentation and target concepts. To bridge this gap, we propose a novel Cognition-Inspired Framework for open vocabulary image segmentation that emulates the human visual recognition process: first forming a conceptual understanding of an object, then perceiving its spatial extent. The framework consists of three core components: (1) A Generative Vision-Language Model (G-VLM) that mimics human cognition by generating object concepts to provide semantic guidance for region segmentation. (2) A Concept-Aware Visual Enhancer Module that fuses textual concept features with global visual representations, enabling adaptive visual perception based on target concepts. (3) A Cognition-Inspired Decoder that integrates local instance features with G-VLM-provided semantic cues, allowing selective classification over a subset of relevant categories. Extensive experiments demonstrate that our framework achieves significant improvements, reaching 27.2 PQ, 17.0 mAP, and 35.3 mIoU on A-150. It further attains 56.2, 28.2, 15.4, 59.2, 18.7, and 95.8 mIoU on Cityscapes, Mapillary Vistas, A-847, PC-59, PC-459, and PAS-20, respectively. In addition, our framework supports vocabulary-free segmentation, offering enhanced flexibility in recognizing unseen categories. Code will be public.
Vocabulary-Free 3D Instance Segmentation with Vision and Language Assistant
Most recent 3D instance segmentation methods are open vocabulary, offering a greater flexibility than closed-vocabulary methods. Yet, they are limited to reasoning within a specific set of concepts, \ie the vocabulary, prompted by the user at test time. In essence, these models cannot reason in an open-ended fashion, i.e., answering "List the objects in the scene.''. We introduce the first method to address 3D instance segmentation in a setting that is void of any vocabulary prior, namely a vocabulary-free setting. We leverage a large vision-language assistant and an open-vocabulary 2D instance segmenter to discover and ground semantic categories on the posed images. To form 3D instance mask, we first partition the input point cloud into dense superpoints, which are then merged into 3D instance masks. We propose a novel superpoint merging strategy via spectral clustering, accounting for both mask coherence and semantic coherence that are estimated from the 2D object instance masks. We evaluate our method using ScanNet200 and Replica, outperforming existing methods in both vocabulary-free and open-vocabulary settings. Code will be made available. Project page: https://gfmei.github.io/PoVo
OVO-SLAM: Open-Vocabulary Online Simultaneous Localization and Mapping
This paper presents the first Open-Vocabulary Online 3D semantic SLAM pipeline, that we denote as OVO-SLAM. Our primary contribution is in the pipeline itself, particularly in the mapping thread. Given a set of posed RGB-D frames, we detect and track 3D segments, which we describe using CLIP vectors, calculated through a novel aggregation from the viewpoints where these 3D segments are observed. Notably, our OVO-SLAM pipeline is not only faster but also achieves better segmentation metrics compared to offline approaches in the literature. Along with superior segmentation performance, we show experimental results of our contributions integrated with Gaussian-SLAM, being the first ones demonstrating end-to-end open-vocabulary online 3D reconstructions without relying on ground-truth camera poses or scene geometry.
DCSEG: Decoupled 3D Open-Set Segmentation using Gaussian Splatting
Open-set 3D segmentation represents a major point of interest for multiple downstream robotics and augmented/virtual reality applications. We present a decoupled 3D segmentation pipeline to ensure modularity and adaptability to novel 3D representations as well as semantic segmentation foundation models. We first reconstruct a scene with 3D Gaussians and learn class-agnostic features through contrastive supervision from a 2D instance proposal network. These 3D features are then clustered to form coarse object- or part-level masks. Finally, we match each 3D cluster to class-aware masks predicted by a 2D open-vocabulary segmentation model, assigning semantic labels without retraining the 3D representation. Our decoupled design (1) provides a plug-and-play interface for swapping different 2D or 3D modules, (2) ensures multi-object instance segmentation at no extra cost, and (3) leverages rich 3D geometry for robust scene understanding. We evaluate on synthetic and real-world indoor datasets, demonstrating improved performance over comparable NeRF-based pipelines on mIoU and mAcc, particularly for challenging or long-tail classes. We also show how varying the 2D backbone affects the final segmentation, highlighting the modularity of our framework. These results confirm that decoupling 3D mask proposal and semantic classification can deliver flexible, efficient, and open-vocabulary 3D segmentation.
Articulate AnyMesh: Open-Vocabulary 3D Articulated Objects Modeling
3D articulated objects modeling has long been a challenging problem, since it requires to capture both accurate surface geometries and semantically meaningful and spatially precise structures, parts, and joints. Existing methods heavily depend on training data from a limited set of handcrafted articulated object categories (e.g., cabinets and drawers), which restricts their ability to model a wide range of articulated objects in an open-vocabulary context. To address these limitations, we propose Articulate Anymesh, an automated framework that is able to convert any rigid 3D mesh into its articulated counterpart in an open-vocabulary manner. Given a 3D mesh, our framework utilizes advanced Vision-Language Models and visual prompting techniques to extract semantic information, allowing for both the segmentation of object parts and the construction of functional joints. Our experiments show that Articulate Anymesh can generate large-scale, high-quality 3D articulated objects, including tools, toys, mechanical devices, and vehicles, significantly expanding the coverage of existing 3D articulated object datasets. Additionally, we show that these generated assets can facilitate the acquisition of new articulated object manipulation skills in simulation, which can then be transferred to a real robotic system. Our Github website is https://articulate-anymesh.github.io.
ReStyle3D: Scene-Level Appearance Transfer with Semantic Correspondences
We introduce ReStyle3D, a novel framework for scene-level appearance transfer from a single style image to a real-world scene represented by multiple views. The method combines explicit semantic correspondences with multi-view consistency to achieve precise and coherent stylization. Unlike conventional stylization methods that apply a reference style globally, ReStyle3D uses open-vocabulary segmentation to establish dense, instance-level correspondences between the style and real-world images. This ensures that each object is stylized with semantically matched textures. It first transfers the style to a single view using a training-free semantic-attention mechanism in a diffusion model. It then lifts the stylization to additional views via a learned warp-and-refine network guided by monocular depth and pixel-wise correspondences. Experiments show that ReStyle3D consistently outperforms prior methods in structure preservation, perceptual style similarity, and multi-view coherence. User studies further validate its ability to produce photo-realistic, semantically faithful results. Our code, pretrained models, and dataset will be publicly released, to support new applications in interior design, virtual staging, and 3D-consistent stylization.
StableSemantics: A Synthetic Language-Vision Dataset of Semantic Representations in Naturalistic Images
Understanding the semantics of visual scenes is a fundamental challenge in Computer Vision. A key aspect of this challenge is that objects sharing similar semantic meanings or functions can exhibit striking visual differences, making accurate identification and categorization difficult. Recent advancements in text-to-image frameworks have led to models that implicitly capture natural scene statistics. These frameworks account for the visual variability of objects, as well as complex object co-occurrences and sources of noise such as diverse lighting conditions. By leveraging large-scale datasets and cross-attention conditioning, these models generate detailed and contextually rich scene representations. This capability opens new avenues for improving object recognition and scene understanding in varied and challenging environments. Our work presents StableSemantics, a dataset comprising 224 thousand human-curated prompts, processed natural language captions, over 2 million synthetic images, and 10 million attention maps corresponding to individual noun chunks. We explicitly leverage human-generated prompts that correspond to visually interesting stable diffusion generations, provide 10 generations per phrase, and extract cross-attention maps for each image. We explore the semantic distribution of generated images, examine the distribution of objects within images, and benchmark captioning and open vocabulary segmentation methods on our data. To the best of our knowledge, we are the first to release a diffusion dataset with semantic attributions. We expect our proposed dataset to catalyze advances in visual semantic understanding and provide a foundation for developing more sophisticated and effective visual models. Website: https://stablesemantics.github.io/StableSemantics
OMG-Seg: Is One Model Good Enough For All Segmentation?
In this work, we address various segmentation tasks, each traditionally tackled by distinct or partially unified models. We propose OMG-Seg, One Model that is Good enough to efficiently and effectively handle all the segmentation tasks, including image semantic, instance, and panoptic segmentation, as well as their video counterparts, open vocabulary settings, prompt-driven, interactive segmentation like SAM, and video object segmentation. To our knowledge, this is the first model to handle all these tasks in one model and achieve satisfactory performance. We show that OMG-Seg, a transformer-based encoder-decoder architecture with task-specific queries and outputs, can support over ten distinct segmentation tasks and yet significantly reduce computational and parameter overhead across various tasks and datasets. We rigorously evaluate the inter-task influences and correlations during co-training. Code and models are available at https://github.com/lxtGH/OMG-Seg.
Segment Everything Everywhere All at Once
In this work, we present SEEM, a promptable and interactive model for segmenting everything everywhere all at once in an image, as shown in Fig.1. In SEEM, we propose a novel decoding mechanism that enables diverse prompting for all types of segmentation tasks, aiming at a universal segmentation interface that behaves like large language models (LLMs). More specifically, SEEM is designed with four desiderata: i) Versatility. We introduce a new visual prompt to unify different spatial queries including points, boxes, scribbles and masks, which can further generalize to a different referring image; ii) Compositionality. We learn a joint visual-semantic space between text and visual prompts, which facilitates the dynamic composition of two prompt types required for various segmentation tasks; iii) Interactivity. We further incorporate learnable memory prompts into the decoder to retain segmentation history through mask-guided cross-attention from decoder to image features; and iv) Semantic-awareness. We use a text encoder to encode text queries and mask labels into the same semantic space for open-vocabulary segmentation. We conduct a comprehensive empirical study to validate the effectiveness of SEEM across diverse segmentation tasks. Notably, our single SEEM model achieves competitive performance across interactive segmentation, generic segmentation, referring segmentation, and video object segmentation on 9 datasets with minimum 1/100 supervision. Furthermore, SEEM showcases a remarkable capacity for generalization to novel prompts or their combinations, rendering it a readily universal image segmentation interface.
Rethinking Open-Vocabulary Segmentation of Radiance Fields in 3D Space
Understanding the 3D semantics of a scene is a fundamental problem for various scenarios such as embodied agents. While NeRFs and 3DGS excel at novel-view synthesis, previous methods for understanding their semantics have been limited to incomplete 3D understanding: their segmentation results are 2D masks and their supervision is anchored at 2D pixels. This paper revisits the problem set to pursue a better 3D understanding of a scene modeled by NeRFs and 3DGS as follows. 1) We directly supervise the 3D points to train the language embedding field. It achieves state-of-the-art accuracy without relying on multi-scale language embeddings. 2) We transfer the pre-trained language field to 3DGS, achieving the first real-time rendering speed without sacrificing training time or accuracy. 3) We introduce a 3D querying and evaluation protocol for assessing the reconstructed geometry and semantics together. Code, checkpoints, and annotations will be available online. Project page: https://hyunji12.github.io/Open3DRF