new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 18

MS-Occ: Multi-Stage LiDAR-Camera Fusion for 3D Semantic Occupancy Prediction

Accurate 3D semantic occupancy perception is essential for autonomous driving in complex environments with diverse and irregular objects. While vision-centric methods suffer from geometric inaccuracies, LiDAR-based approaches often lack rich semantic information. To address these limitations, MS-Occ, a novel multi-stage LiDAR-camera fusion framework which includes middle-stage fusion and late-stage fusion, is proposed, integrating LiDAR's geometric fidelity with camera-based semantic richness via hierarchical cross-modal fusion. The framework introduces innovations at two critical stages: (1) In the middle-stage feature fusion, the Gaussian-Geo module leverages Gaussian kernel rendering on sparse LiDAR depth maps to enhance 2D image features with dense geometric priors, and the Semantic-Aware module enriches LiDAR voxels with semantic context via deformable cross-attention; (2) In the late-stage voxel fusion, the Adaptive Fusion (AF) module dynamically balances voxel features across modalities, while the High Classification Confidence Voxel Fusion (HCCVF) module resolves semantic inconsistencies using self-attention-based refinement. Experiments on the nuScenes-OpenOccupancy benchmark show that MS-Occ achieves an Intersection over Union (IoU) of 32.1% and a mean IoU (mIoU) of 25.3%, surpassing the state-of-the-art by +0.7% IoU and +2.4% mIoU. Ablation studies further validate the contribution of each module, with substantial improvements in small-object perception, demonstrating the practical value of MS-Occ for safety-critical autonomous driving scenarios.

  • 7 authors
·
Apr 22

OccMamba: Semantic Occupancy Prediction with State Space Models

Training deep learning models for semantic occupancy prediction is challenging due to factors such as a large number of occupancy cells, severe occlusion, limited visual cues, complicated driving scenarios, etc. Recent methods often adopt transformer-based architectures given their strong capability in learning input-conditioned weights and long-range relationships. However, transformer-based networks are notorious for their quadratic computation complexity, seriously undermining their efficacy and deployment in semantic occupancy prediction. Inspired by the global modeling and linear computation complexity of the Mamba architecture, we present the first Mamba-based network for semantic occupancy prediction, termed OccMamba. Specifically, we first design the hierarchical Mamba module and local context processor to better aggregate global and local contextual information, respectively. Besides, to relieve the inherent domain gap between the linguistic and 3D domains, we present a simple yet effective 3D-to-1D reordering scheme, i.e., height-prioritized 2D Hilbert expansion. It can maximally retain the spatial structure of 3D voxels as well as facilitate the processing of Mamba blocks. Endowed with the aforementioned designs, our OccMamba is capable of directly and efficiently processing large volumes of dense scene grids, achieving state-of-the-art performance across three prevalent occupancy prediction benchmarks, including OpenOccupancy, SemanticKITTI, and SemanticPOSS. Notably, on OpenOccupancy, our OccMamba outperforms the previous state-of-the-art Co-Occ by 5.1% IoU and 4.3% mIoU, respectively. Our implementation is open-sourced and available at: https://github.com/USTCLH/OccMamba.

  • 6 authors
·
Aug 19, 2024