new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 14

Reversible Column Networks

We propose a new neural network design paradigm Reversible Column Network (RevCol). The main body of RevCol is composed of multiple copies of subnetworks, named columns respectively, between which multi-level reversible connections are employed. Such architectural scheme attributes RevCol very different behavior from conventional networks: during forward propagation, features in RevCol are learned to be gradually disentangled when passing through each column, whose total information is maintained rather than compressed or discarded as other network does. Our experiments suggest that CNN-style RevCol models can achieve very competitive performances on multiple computer vision tasks such as image classification, object detection and semantic segmentation, especially with large parameter budget and large dataset. For example, after ImageNet-22K pre-training, RevCol-XL obtains 88.2% ImageNet-1K accuracy. Given more pre-training data, our largest model RevCol-H reaches 90.0% on ImageNet-1K, 63.8% APbox on COCO detection minival set, 61.0% mIoU on ADE20k segmentation. To our knowledge, it is the best COCO detection and ADE20k segmentation result among pure (static) CNN models. Moreover, as a general macro architecture fashion, RevCol can also be introduced into transformers or other neural networks, which is demonstrated to improve the performances in both computer vision and NLP tasks. We release code and models at https://github.com/megvii-research/RevCol

  • 7 authors
·
Dec 22, 2022

Is the Reversal Curse a Binding Problem? Uncovering Limitations of Transformers from a Basic Generalization Failure

Despite their impressive capabilities, LLMs exhibit a basic generalization failure known as the Reversal Curse, where they struggle to learn reversible factual associations. Understanding why this occurs could help identify weaknesses in current models and advance their generalization and robustness. In this paper, we conjecture that the Reversal Curse in LLMs is a manifestation of the long-standing binding problem in cognitive science, neuroscience and AI. Specifically, we identify two primary causes of the Reversal Curse stemming from transformers' limitations in conceptual binding: the inconsistency and entanglements of concept representations. We perform a series of experiments that support these conjectures. Our exploration leads to a model design based on JEPA (Joint-Embedding Predictive Architecture) that for the first time breaks the Reversal Curse without side-stepping it with specialized data augmentation or non-causal masking, and moreover, generalization could be further improved by incorporating special memory layers that support disentangled concept representations. We demonstrate that the skill of reversal unlocks a new kind of memory integration that enables models to solve large-scale arithmetic reasoning problems via parametric forward-chaining, outperforming frontier LLMs based on non-parametric memory and prolonged explicit reasoning.

  • 2 authors
·
Apr 2

Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System

Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce Mem4Nav, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.

  • 6 authors
·
Jun 24 1

GraphGPT: Generative Pre-trained Graph Eulerian Transformer

We introduceGraphGPT, a novel self-supervised generative pre-trained model for graph learning based on the Graph Eulerian Transformer (GET). First, we propose GET, which combines a standard transformer encoder or decoder architecture with an innovative graph-to-sequence transformation method. This method converts graphs or sampled subgraphs into sequences of tokens representing nodes, edges, and attributes in a reversible manner using Eulerian paths. We pre-train GET using either of the two self-supervised tasks: next-token prediction (NTP) and scheduled masked-token prediction (SMTP). The pre-trained model is then fine-tuned for downstream tasks such as graph-, edge-, and node-level prediction. Despite its simplicity, GraphGPT achieves performance comparable to or surpassing state-of-the-art methods on multiple large-scale Open Graph Benchmark (OGB) datasets. It demonstrates exceptional results on the molecular property prediction dataset PCQM4Mv2 and the protein-protein interaction dataset ogbl-ppa. Notably, generative pre-training enables scaling GraphGPT to 2 billion parameters while maintaining performance gains - a breakthrough that overcomes the scalability limitations of traditional Graph Neural Networks (GNNs) and prior graph transformers (GTs). To advance research in graph foundation models and facilitate scientific discovery in chemistry, materials science, and related fields, we will release the source code (https://github.com/alibaba/graph-gpt) and pre-trained checkpoints.

  • 6 authors
·
Dec 31, 2023