1 Well, that escalated quickly: The Single-Turn Crescendo Attack (STCA) This paper introduces a new method for adversarial attacks on large language models (LLMs) called the Single-Turn Crescendo Attack (STCA). Building on the multi-turn crescendo attack method introduced by Russinovich, Salem, and Eldan (2024), which gradually escalates the context to provoke harmful responses, the STCA achieves similar outcomes in a single interaction. By condensing the escalation into a single, well-crafted prompt, the STCA bypasses typical moderation filters that LLMs use to prevent inappropriate outputs. This technique reveals vulnerabilities in current LLMs and emphasizes the importance of stronger safeguards in responsible AI (RAI). The STCA offers a novel method that has not been previously explored. 2 authors · Sep 4, 2024
- An indicator for effectiveness of text-to-image guardrails utilizing the Single-Turn Crescendo Attack (STCA) The Single-Turn Crescendo Attack (STCA), first introduced in Aqrawi and Abbasi [2024], is an innovative method designed to bypass the ethical safeguards of text-to-text AI models, compelling them to generate harmful content. This technique leverages a strategic escalation of context within a single prompt, combined with trust-building mechanisms, to subtly deceive the model into producing unintended outputs. Extending the application of STCA to text-to-image models, we demonstrate its efficacy by compromising the guardrails of a widely-used model, DALL-E 3, achieving outputs comparable to outputs from the uncensored model Flux Schnell, which served as a baseline control. This study provides a framework for researchers to rigorously evaluate the robustness of guardrails in text-to-image models and benchmark their resilience against adversarial attacks. 5 authors · Nov 27, 2024
2 Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models Warning: This paper contains examples of harmful language, and reader discretion is recommended. The increasing open release of powerful large language models (LLMs) has facilitated the development of downstream applications by reducing the essential cost of data annotation and computation. To ensure AI safety, extensive safety-alignment measures have been conducted to armor these models against malicious use (primarily hard prompt attack). However, beneath the seemingly resilient facade of the armor, there might lurk a shadow. By simply tuning on 100 malicious examples with 1 GPU hour, these safely aligned LLMs can be easily subverted to generate harmful content. Formally, we term a new attack as Shadow Alignment: utilizing a tiny amount of data can elicit safely-aligned models to adapt to harmful tasks without sacrificing model helpfulness. Remarkably, the subverted models retain their capability to respond appropriately to regular inquiries. Experiments across 8 models released by 5 different organizations (LLaMa-2, Falcon, InternLM, BaiChuan2, Vicuna) demonstrate the effectiveness of shadow alignment attack. Besides, the single-turn English-only attack successfully transfers to multi-turn dialogue and other languages. This study serves as a clarion call for a collective effort to overhaul and fortify the safety of open-source LLMs against malicious attackers. 7 authors · Oct 4, 2023
1 RED QUEEN: Safeguarding Large Language Models against Concealed Multi-Turn Jailbreaking The rapid progress of Large Language Models (LLMs) has opened up new opportunities across various domains and applications; yet it also presents challenges related to potential misuse. To mitigate such risks, red teaming has been employed as a proactive security measure to probe language models for harmful outputs via jailbreak attacks. However, current jailbreak attack approaches are single-turn with explicit malicious queries that do not fully capture the complexity of real-world interactions. In reality, users can engage in multi-turn interactions with LLM-based chat assistants, allowing them to conceal their true intentions in a more covert manner. To bridge this gap, we, first, propose a new jailbreak approach, RED QUEEN ATTACK. This method constructs a multi-turn scenario, concealing the malicious intent under the guise of preventing harm. We craft 40 scenarios that vary in turns and select 14 harmful categories to generate 56k multi-turn attack data points. We conduct comprehensive experiments on the RED QUEEN ATTACK with four representative LLM families of different sizes. Our experiments reveal that all LLMs are vulnerable to RED QUEEN ATTACK, reaching 87.62% attack success rate on GPT-4o and 75.4% on Llama3-70B. Further analysis reveals that larger models are more susceptible to the RED QUEEN ATTACK, with multi-turn structures and concealment strategies contributing to its success. To prioritize safety, we introduce a straightforward mitigation strategy called RED QUEEN GUARD, which aligns LLMs to effectively counter adversarial attacks. This approach reduces the attack success rate to below 1% while maintaining the model's performance across standard benchmarks. Full implementation and dataset are publicly accessible at https://github.com/kriti-hippo/red_queen. 6 authors · Sep 25, 2024