new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 24

AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation

Unsupervised depth completion and estimation methods are trained by minimizing reconstruction error. Block artifacts from resampling, intensity saturation, and occlusions are amongst the many undesirable by-products of common data augmentation schemes that affect image reconstruction quality, and thus the training signal. Hence, typical augmentations on images viewed as essential to training pipelines in other vision tasks have seen limited use beyond small image intensity changes and flipping. The sparse depth modality in depth completion have seen even less use as intensity transformations alter the scale of the 3D scene, and geometric transformations may decimate the sparse points during resampling. We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth completion and estimation. This is achieved by reversing, or ``undo''-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame. This enables computing the reconstruction losses using the original images and sparse depth maps, eliminating the pitfalls of naive loss computation on the augmented inputs and allowing us to scale up augmentations to boost performance. We demonstrate our method on indoor (VOID) and outdoor (KITTI) datasets, where we consistently improve upon recent methods across both datasets as well as generalization to four other datasets. Code available at: https://github.com/alexklwong/augundo.

  • 6 authors
·
Oct 15, 2023

Parametric Depth Based Feature Representation Learning for Object Detection and Segmentation in Bird's Eye View

Recent vision-only perception models for autonomous driving achieved promising results by encoding multi-view image features into Bird's-Eye-View (BEV) space. A critical step and the main bottleneck of these methods is transforming image features into the BEV coordinate frame. This paper focuses on leveraging geometry information, such as depth, to model such feature transformation. Existing works rely on non-parametric depth distribution modeling leading to significant memory consumption, or ignore the geometry information to address this problem. In contrast, we propose to use parametric depth distribution modeling for feature transformation. We first lift the 2D image features to the 3D space defined for the ego vehicle via a predicted parametric depth distribution for each pixel in each view. Then, we aggregate the 3D feature volume based on the 3D space occupancy derived from depth to the BEV frame. Finally, we use the transformed features for downstream tasks such as object detection and semantic segmentation. Existing semantic segmentation methods do also suffer from an hallucination problem as they do not take visibility information into account. This hallucination can be particularly problematic for subsequent modules such as control and planning. To mitigate the issue, our method provides depth uncertainty and reliable visibility-aware estimations. We further leverage our parametric depth modeling to present a novel visibility-aware evaluation metric that, when taken into account, can mitigate the hallucination problem. Extensive experiments on object detection and semantic segmentation on the nuScenes datasets demonstrate that our method outperforms existing methods on both tasks.

  • 4 authors
·
Jul 9, 2023

Real-time Photorealistic Dynamic Scene Representation and Rendering with 4D Gaussian Splatting

Reconstructing dynamic 3D scenes from 2D images and generating diverse views over time is challenging due to scene complexity and temporal dynamics. Despite advancements in neural implicit models, limitations persist: (i) Inadequate Scene Structure: Existing methods struggle to reveal the spatial and temporal structure of dynamic scenes from directly learning the complex 6D plenoptic function. (ii) Scaling Deformation Modeling: Explicitly modeling scene element deformation becomes impractical for complex dynamics. To address these issues, we consider the spacetime as an entirety and propose to approximate the underlying spatio-temporal 4D volume of a dynamic scene by optimizing a collection of 4D primitives, with explicit geometry and appearance modeling. Learning to optimize the 4D primitives enables us to synthesize novel views at any desired time with our tailored rendering routine. Our model is conceptually simple, consisting of a 4D Gaussian parameterized by anisotropic ellipses that can rotate arbitrarily in space and time, as well as view-dependent and time-evolved appearance represented by the coefficient of 4D spherindrical harmonics. This approach offers simplicity, flexibility for variable-length video and end-to-end training, and efficient real-time rendering, making it suitable for capturing complex dynamic scene motions. Experiments across various benchmarks, including monocular and multi-view scenarios, demonstrate our 4DGS model's superior visual quality and efficiency.

  • 5 authors
·
Oct 16, 2023

TransHuman: A Transformer-based Human Representation for Generalizable Neural Human Rendering

In this paper, we focus on the task of generalizable neural human rendering which trains conditional Neural Radiance Fields (NeRF) from multi-view videos of different characters. To handle the dynamic human motion, previous methods have primarily used a SparseConvNet (SPC)-based human representation to process the painted SMPL. However, such SPC-based representation i) optimizes under the volatile observation space which leads to the pose-misalignment between training and inference stages, and ii) lacks the global relationships among human parts that is critical for handling the incomplete painted SMPL. Tackling these issues, we present a brand-new framework named TransHuman, which learns the painted SMPL under the canonical space and captures the global relationships between human parts with transformers. Specifically, TransHuman is mainly composed of Transformer-based Human Encoding (TransHE), Deformable Partial Radiance Fields (DPaRF), and Fine-grained Detail Integration (FDI). TransHE first processes the painted SMPL under the canonical space via transformers for capturing the global relationships between human parts. Then, DPaRF binds each output token with a deformable radiance field for encoding the query point under the observation space. Finally, the FDI is employed to further integrate fine-grained information from reference images. Extensive experiments on ZJU-MoCap and H36M show that our TransHuman achieves a significantly new state-of-the-art performance with high efficiency. Project page: https://pansanity666.github.io/TransHuman/

  • 5 authors
·
Jul 23, 2023

Mono2Stereo: A Benchmark and Empirical Study for Stereo Conversion

With the rapid proliferation of 3D devices and the shortage of 3D content, stereo conversion is attracting increasing attention. Recent works introduce pretrained Diffusion Models (DMs) into this task. However, due to the scarcity of large-scale training data and comprehensive benchmarks, the optimal methodologies for employing DMs in stereo conversion and the accurate evaluation of stereo effects remain largely unexplored. In this work, we introduce the Mono2Stereo dataset, providing high-quality training data and benchmark to support in-depth exploration of stereo conversion. With this dataset, we conduct an empirical study that yields two primary findings. 1) The differences between the left and right views are subtle, yet existing metrics consider overall pixels, failing to concentrate on regions critical to stereo effects. 2) Mainstream methods adopt either one-stage left-to-right generation or warp-and-inpaint pipeline, facing challenges of degraded stereo effect and image distortion respectively. Based on these findings, we introduce a new evaluation metric, Stereo Intersection-over-Union, which prioritizes disparity and achieves a high correlation with human judgments on stereo effect. Moreover, we propose a strong baseline model, harmonizing the stereo effect and image quality simultaneously, and notably surpassing current mainstream methods. Our code and data will be open-sourced to promote further research in stereo conversion. Our models are available at mono2stereo-bench.github.io.

  • 8 authors
·
Mar 28 1

Eye2Eye: A Simple Approach for Monocular-to-Stereo Video Synthesis

The rising popularity of immersive visual experiences has increased interest in stereoscopic 3D video generation. Despite significant advances in video synthesis, creating 3D videos remains challenging due to the relative scarcity of 3D video data. We propose a simple approach for transforming a text-to-video generator into a video-to-stereo generator. Given an input video, our framework automatically produces the video frames from a shifted viewpoint, enabling a compelling 3D effect. Prior and concurrent approaches for this task typically operate in multiple phases, first estimating video disparity or depth, then warping the video accordingly to produce a second view, and finally inpainting the disoccluded regions. This approach inherently fails when the scene involves specular surfaces or transparent objects. In such cases, single-layer disparity estimation is insufficient, resulting in artifacts and incorrect pixel shifts during warping. Our work bypasses these restrictions by directly synthesizing the new viewpoint, avoiding any intermediate steps. This is achieved by leveraging a pre-trained video model's priors on geometry, object materials, optics, and semantics, without relying on external geometry models or manually disentangling geometry from the synthesis process. We demonstrate the advantages of our approach in complex, real-world scenarios featuring diverse object materials and compositions. See videos on https://video-eye2eye.github.io

  • 7 authors
·
Apr 30 1

NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized Device Coordinates Space

Monocular 3D Semantic Scene Completion (SSC) has garnered significant attention in recent years due to its potential to predict complex semantics and geometry shapes from a single image, requiring no 3D inputs. In this paper, we identify several critical issues in current state-of-the-art methods, including the Feature Ambiguity of projected 2D features in the ray to the 3D space, the Pose Ambiguity of the 3D convolution, and the Computation Imbalance in the 3D convolution across different depth levels. To address these problems, we devise a novel Normalized Device Coordinates scene completion network (NDC-Scene) that directly extends the 2D feature map to a Normalized Device Coordinates (NDC) space, rather than to the world space directly, through progressive restoration of the dimension of depth with deconvolution operations. Experiment results demonstrate that transferring the majority of computation from the target 3D space to the proposed normalized device coordinates space benefits monocular SSC tasks. Additionally, we design a Depth-Adaptive Dual Decoder to simultaneously upsample and fuse the 2D and 3D feature maps, further improving overall performance. Our extensive experiments confirm that the proposed method consistently outperforms state-of-the-art methods on both outdoor SemanticKITTI and indoor NYUv2 datasets. Our code are available at https://github.com/Jiawei-Yao0812/NDCScene.

  • 7 authors
·
Sep 25, 2023

DynVideo-E: Harnessing Dynamic NeRF for Large-Scale Motion- and View-Change Human-Centric Video Editing

Despite remarkable research advances in diffusion-based video editing, existing methods are limited to short-length videos due to the contradiction between long-range consistency and frame-wise editing. Recent approaches attempt to tackle this challenge by introducing video-2D representations to degrade video editing to image editing. However, they encounter significant difficulties in handling large-scale motion- and view-change videos especially for human-centric videos. This motivates us to introduce the dynamic Neural Radiance Fields (NeRF) as the human-centric video representation to ease the video editing problem to a 3D space editing task. As such, editing can be performed in the 3D spaces and propagated to the entire video via the deformation field. To provide finer and direct controllable editing, we propose the image-based 3D space editing pipeline with a set of effective designs. These include multi-view multi-pose Score Distillation Sampling (SDS) from both 2D personalized diffusion priors and 3D diffusion priors, reconstruction losses on the reference image, text-guided local parts super-resolution, and style transfer for 3D background space. Extensive experiments demonstrate that our method, dubbed as DynVideo-E, significantly outperforms SOTA approaches on two challenging datasets by a large margin of 50% ~ 95% in terms of human preference. Compelling video comparisons are provided in the project page https://showlab.github.io/DynVideo-E/. Our code and data will be released to the community.

  • 9 authors
·
Oct 16, 2023

LEAP: Liberate Sparse-view 3D Modeling from Camera Poses

Are camera poses necessary for multi-view 3D modeling? Existing approaches predominantly assume access to accurate camera poses. While this assumption might hold for dense views, accurately estimating camera poses for sparse views is often elusive. Our analysis reveals that noisy estimated poses lead to degraded performance for existing sparse-view 3D modeling methods. To address this issue, we present LEAP, a novel pose-free approach, therefore challenging the prevailing notion that camera poses are indispensable. LEAP discards pose-based operations and learns geometric knowledge from data. LEAP is equipped with a neural volume, which is shared across scenes and is parameterized to encode geometry and texture priors. For each incoming scene, we update the neural volume by aggregating 2D image features in a feature-similarity-driven manner. The updated neural volume is decoded into the radiance field, enabling novel view synthesis from any viewpoint. On both object-centric and scene-level datasets, we show that LEAP significantly outperforms prior methods when they employ predicted poses from state-of-the-art pose estimators. Notably, LEAP performs on par with prior approaches that use ground-truth poses while running 400times faster than PixelNeRF. We show LEAP generalizes to novel object categories and scenes, and learns knowledge closely resembles epipolar geometry. Project page: https://hwjiang1510.github.io/LEAP/

  • 4 authors
·
Oct 2, 2023

RoomTex: Texturing Compositional Indoor Scenes via Iterative Inpainting

The advancement of diffusion models has pushed the boundary of text-to-3D object generation. While it is straightforward to composite objects into a scene with reasonable geometry, it is nontrivial to texture such a scene perfectly due to style inconsistency and occlusions between objects. To tackle these problems, we propose a coarse-to-fine 3D scene texturing framework, referred to as RoomTex, to generate high-fidelity and style-consistent textures for untextured compositional scene meshes. In the coarse stage, RoomTex first unwraps the scene mesh to a panoramic depth map and leverages ControlNet to generate a room panorama, which is regarded as the coarse reference to ensure the global texture consistency. In the fine stage, based on the panoramic image and perspective depth maps, RoomTex will refine and texture every single object in the room iteratively along a series of selected camera views, until this object is completely painted. Moreover, we propose to maintain superior alignment between RGB and depth spaces via subtle edge detection methods. Extensive experiments show our method is capable of generating high-quality and diverse room textures, and more importantly, supporting interactive fine-grained texture control and flexible scene editing thanks to our inpainting-based framework and compositional mesh input. Our project page is available at https://qwang666.github.io/RoomTex/.

  • 8 authors
·
Jun 4, 2024

MTFusion: Reconstructing Any 3D Object from Single Image Using Multi-word Textual Inversion

Reconstructing 3D models from single-view images is a long-standing problem in computer vision. The latest advances for single-image 3D reconstruction extract a textual description from the input image and further utilize it to synthesize 3D models. However, existing methods focus on capturing a single key attribute of the image (e.g., object type, artistic style) and fail to consider the multi-perspective information required for accurate 3D reconstruction, such as object shape and material properties. Besides, the reliance on Neural Radiance Fields hinders their ability to reconstruct intricate surfaces and texture details. In this work, we propose MTFusion, which leverages both image data and textual descriptions for high-fidelity 3D reconstruction. Our approach consists of two stages. First, we adopt a novel multi-word textual inversion technique to extract a detailed text description capturing the image's characteristics. Then, we use this description and the image to generate a 3D model with FlexiCubes. Additionally, MTFusion enhances FlexiCubes by employing a special decoder network for Signed Distance Functions, leading to faster training and finer surface representation. Extensive evaluations demonstrate that our MTFusion surpasses existing image-to-3D methods on a wide range of synthetic and real-world images. Furthermore, the ablation study proves the effectiveness of our network designs.

  • 5 authors
·
Nov 18, 2024

DFA3D: 3D Deformable Attention For 2D-to-3D Feature Lifting

In this paper, we propose a new operator, called 3D DeFormable Attention (DFA3D), for 2D-to-3D feature lifting, which transforms multi-view 2D image features into a unified 3D space for 3D object detection. Existing feature lifting approaches, such as Lift-Splat-based and 2D attention-based, either use estimated depth to get pseudo LiDAR features and then splat them to a 3D space, which is a one-pass operation without feature refinement, or ignore depth and lift features by 2D attention mechanisms, which achieve finer semantics while suffering from a depth ambiguity problem. In contrast, our DFA3D-based method first leverages the estimated depth to expand each view's 2D feature map to 3D and then utilizes DFA3D to aggregate features from the expanded 3D feature maps. With the help of DFA3D, the depth ambiguity problem can be effectively alleviated from the root, and the lifted features can be progressively refined layer by layer, thanks to the Transformer-like architecture. In addition, we propose a mathematically equivalent implementation of DFA3D which can significantly improve its memory efficiency and computational speed. We integrate DFA3D into several methods that use 2D attention-based feature lifting with only a few modifications in code and evaluate on the nuScenes dataset. The experiment results show a consistent improvement of +1.41\% mAP on average, and up to +15.1\% mAP improvement when high-quality depth information is available, demonstrating the superiority, applicability, and huge potential of DFA3D. The code is available at https://github.com/IDEA-Research/3D-deformable-attention.git.

  • 7 authors
·
Jul 24, 2023

FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models

3D scene reconstruction is a long-standing vision task. Existing approaches can be categorized into geometry-based and learning-based methods. The former leverages multi-view geometry but can face catastrophic failures due to the reliance on accurate pixel correspondence across views. The latter was proffered to mitigate these issues by learning 2D or 3D representation directly. However, without a large-scale video or 3D training data, it can hardly generalize to diverse real-world scenarios due to the presence of tens of millions or even billions of optimization parameters in the deep network. Recently, robust monocular depth estimation models trained with large-scale datasets have been proven to possess weak 3D geometry prior, but they are insufficient for reconstruction due to the unknown camera parameters, the affine-invariant property, and inter-frame inconsistency. Here, we propose a novel test-time optimization approach that can transfer the robustness of affine-invariant depth models such as LeReS to challenging diverse scenes while ensuring inter-frame consistency, with only dozens of parameters to optimize per video frame. Specifically, our approach involves freezing the pre-trained affine-invariant depth model's depth predictions, rectifying them by optimizing the unknown scale-shift values with a geometric consistency alignment module, and employing the resulting scale-consistent depth maps to robustly obtain camera poses and achieve dense scene reconstruction, even in low-texture regions. Experiments show that our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.

  • 6 authors
·
Aug 10, 2023

WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space

Modern learning-based approaches to 3D-aware image synthesis achieve high photorealism and 3D-consistent viewpoint changes for the generated images. Existing approaches represent instances in a shared canonical space. However, for in-the-wild datasets a shared canonical system can be difficult to define or might not even exist. In this work, we instead model instances in view space, alleviating the need for posed images and learned camera distributions. We find that in this setting, existing GAN-based methods are prone to generating flat geometry and struggle with distribution coverage. We hence propose WildFusion, a new approach to 3D-aware image synthesis based on latent diffusion models (LDMs). We first train an autoencoder that infers a compressed latent representation, which additionally captures the images' underlying 3D structure and enables not only reconstruction but also novel view synthesis. To learn a faithful 3D representation, we leverage cues from monocular depth prediction. Then, we train a diffusion model in the 3D-aware latent space, thereby enabling synthesis of high-quality 3D-consistent image samples, outperforming recent state-of-the-art GAN-based methods. Importantly, our 3D-aware LDM is trained without any direct supervision from multiview images or 3D geometry and does not require posed images or learned pose or camera distributions. It directly learns a 3D representation without relying on canonical camera coordinates. This opens up promising research avenues for scalable 3D-aware image synthesis and 3D content creation from in-the-wild image data. See https://katjaschwarz.github.io/wildfusion for videos of our 3D results.

  • 6 authors
·
Nov 22, 2023 1

MIMO: Controllable Character Video Synthesis with Spatial Decomposed Modeling

Character video synthesis aims to produce realistic videos of animatable characters within lifelike scenes. As a fundamental problem in the computer vision and graphics community, 3D works typically require multi-view captures for per-case training, which severely limits their applicability of modeling arbitrary characters in a short time. Recent 2D methods break this limitation via pre-trained diffusion models, but they struggle for pose generality and scene interaction. To this end, we propose MIMO, a novel framework which can not only synthesize character videos with controllable attributes (i.e., character, motion and scene) provided by simple user inputs, but also simultaneously achieve advanced scalability to arbitrary characters, generality to novel 3D motions, and applicability to interactive real-world scenes in a unified framework. The core idea is to encode the 2D video to compact spatial codes, considering the inherent 3D nature of video occurrence. Concretely, we lift the 2D frame pixels into 3D using monocular depth estimators, and decompose the video clip to three spatial components (i.e., main human, underlying scene, and floating occlusion) in hierarchical layers based on the 3D depth. These components are further encoded to canonical identity code, structured motion code and full scene code, which are utilized as control signals of synthesis process. The design of spatial decomposed modeling enables flexible user control, complex motion expression, as well as 3D-aware synthesis for scene interactions. Experimental results demonstrate effectiveness and robustness of the proposed method.

  • 4 authors
·
Sep 24, 2024 3

Taming Feed-forward Reconstruction Models as Latent Encoders for 3D Generative Models

Recent AI-based 3D content creation has largely evolved along two paths: feed-forward image-to-3D reconstruction approaches and 3D generative models trained with 2D or 3D supervision. In this work, we show that existing feed-forward reconstruction methods can serve as effective latent encoders for training 3D generative models, thereby bridging these two paradigms. By reusing powerful pre-trained reconstruction models, we avoid computationally expensive encoder network training and obtain rich 3D latent features for generative modeling for free. However, the latent spaces of reconstruction models are not well-suited for generative modeling due to their unstructured nature. To enable flow-based model training on these latent features, we develop post-processing pipelines, including protocols to standardize the features and spatial weighting to concentrate on important regions. We further incorporate a 2D image space perceptual rendering loss to handle the high-dimensional latent spaces. Finally, we propose a multi-stream transformer-based rectified flow architecture to achieve linear scaling and high-quality text-conditioned 3D generation. Our framework leverages the advancements of feed-forward reconstruction models to enhance the scalability of 3D generative modeling, achieving both high computational efficiency and state-of-the-art performance in text-to-3D generation.

  • 4 authors
·
Dec 31, 2024

Textual Decomposition Then Sub-motion-space Scattering for Open-Vocabulary Motion Generation

Text-to-motion generation is a crucial task in computer vision, which generates the target 3D motion by the given text. The existing annotated datasets are limited in scale, resulting in most existing methods overfitting to the small datasets and unable to generalize to the motions of the open domain. Some methods attempt to solve the open-vocabulary motion generation problem by aligning to the CLIP space or using the Pretrain-then-Finetuning paradigm. However, the current annotated dataset's limited scale only allows them to achieve mapping from sub-text-space to sub-motion-space, instead of mapping between full-text-space and full-motion-space (full mapping), which is the key to attaining open-vocabulary motion generation. To this end, this paper proposes to leverage the atomic motion (simple body part motions over a short time period) as an intermediate representation, and leverage two orderly coupled steps, i.e., Textual Decomposition and Sub-motion-space Scattering, to address the full mapping problem. For Textual Decomposition, we design a fine-grained description conversion algorithm, and combine it with the generalization ability of a large language model to convert any given motion text into atomic texts. Sub-motion-space Scattering learns the compositional process from atomic motions to the target motions, to make the learned sub-motion-space scattered to form the full-motion-space. For a given motion of the open domain, it transforms the extrapolation into interpolation and thereby significantly improves generalization. Our network, DSO-Net, combines textual decomposition and sub-motion-space scattering to solve the open-vocabulary motion generation. Extensive experiments demonstrate that our DSO-Net achieves significant improvements over the state-of-the-art methods on open-vocabulary motion generation. Code is available at https://vankouf.github.io/DSONet/.

  • 9 authors
·
Nov 6, 2024

Is Pre-training Applicable to the Decoder for Dense Prediction?

Pre-trained encoders are widely employed in dense prediction tasks for their capability to effectively extract visual features from images. The decoder subsequently processes these features to generate pixel-level predictions. However, due to structural differences and variations in input data, only encoders benefit from pre-learned representations from vision benchmarks such as image classification and self-supervised learning, while decoders are typically trained from scratch. In this paper, we introduce timesNet, which facilitates a "pre-trained encoder times pre-trained decoder" collaboration through three innovative designs. timesNet enables the direct utilization of pre-trained models within the decoder, integrating pre-learned representations into the decoding process to enhance performance in dense prediction tasks. By simply coupling the pre-trained encoder and pre-trained decoder, timesNet distinguishes itself as a highly promising approach. Remarkably, it achieves this without relying on decoding-specific structures or task-specific algorithms. Despite its streamlined design, timesNet outperforms advanced methods in tasks such as monocular depth estimation and semantic segmentation, achieving state-of-the-art performance particularly in monocular depth estimation. and semantic segmentation, achieving state-of-the-art results, especially in monocular depth estimation. embedding algorithms. Despite its streamlined design, timesNet outperforms advanced methods in tasks such as monocular depth estimation and semantic segmentation, achieving state-of-the-art performance particularly in monocular depth estimation.

  • 4 authors
·
Mar 5

SparseNeRF: Distilling Depth Ranking for Few-shot Novel View Synthesis

Neural Radiance Field (NeRF) significantly degrades when only a limited number of views are available. To complement the lack of 3D information, depth-based models, such as DSNeRF and MonoSDF, explicitly assume the availability of accurate depth maps of multiple views. They linearly scale the accurate depth maps as supervision to guide the predicted depth of few-shot NeRFs. However, accurate depth maps are difficult and expensive to capture due to wide-range depth distances in the wild. In this work, we present a new Sparse-view NeRF (SparseNeRF) framework that exploits depth priors from real-world inaccurate observations. The inaccurate depth observations are either from pre-trained depth models or coarse depth maps of consumer-level depth sensors. Since coarse depth maps are not strictly scaled to the ground-truth depth maps, we propose a simple yet effective constraint, a local depth ranking method, on NeRFs such that the expected depth ranking of the NeRF is consistent with that of the coarse depth maps in local patches. To preserve the spatial continuity of the estimated depth of NeRF, we further propose a spatial continuity constraint to encourage the consistency of the expected depth continuity of NeRF with coarse depth maps. Surprisingly, with simple depth ranking constraints, SparseNeRF outperforms all state-of-the-art few-shot NeRF methods (including depth-based models) on standard LLFF and DTU datasets. Moreover, we collect a new dataset NVS-RGBD that contains real-world depth maps from Azure Kinect, ZED 2, and iPhone 13 Pro. Extensive experiments on NVS-RGBD dataset also validate the superiority and generalizability of SparseNeRF. Code and dataset are available at https://sparsenerf.github.io/.

  • 4 authors
·
Mar 28, 2023

Spherical Space Feature Decomposition for Guided Depth Map Super-Resolution

Guided depth map super-resolution (GDSR), as a hot topic in multi-modal image processing, aims to upsample low-resolution (LR) depth maps with additional information involved in high-resolution (HR) RGB images from the same scene. The critical step of this task is to effectively extract domain-shared and domain-private RGB/depth features. In addition, three detailed issues, namely blurry edges, noisy surfaces, and over-transferred RGB texture, need to be addressed. In this paper, we propose the Spherical Space feature Decomposition Network (SSDNet) to solve the above issues. To better model cross-modality features, Restormer block-based RGB/depth encoders are employed for extracting local-global features. Then, the extracted features are mapped to the spherical space to complete the separation of private features and the alignment of shared features. Shared features of RGB are fused with the depth features to complete the GDSR task. Subsequently, a spherical contrast refinement (SCR) module is proposed to further address the detail issues. Patches that are classified according to imperfect categories are input into the SCR module, where the patch features are pulled closer to the ground truth and pushed away from the corresponding imperfect samples in the spherical feature space via contrastive learning. Extensive experiments demonstrate that our method can achieve state-of-the-art results on four test datasets, as well as successfully generalize to real-world scenes. The code is available at https://github.com/Zhaozixiang1228/GDSR-SSDNet.

  • 8 authors
·
Mar 15, 2023

Dual-Space NeRF: Learning Animatable Avatars and Scene Lighting in Separate Spaces

Modeling the human body in a canonical space is a common practice for capturing and animation. But when involving the neural radiance field (NeRF), learning a static NeRF in the canonical space is not enough because the lighting of the body changes when the person moves even though the scene lighting is constant. Previous methods alleviate the inconsistency of lighting by learning a per-frame embedding, but this operation does not generalize to unseen poses. Given that the lighting condition is static in the world space while the human body is consistent in the canonical space, we propose a dual-space NeRF that models the scene lighting and the human body with two MLPs in two separate spaces. To bridge these two spaces, previous methods mostly rely on the linear blend skinning (LBS) algorithm. However, the blending weights for LBS of a dynamic neural field are intractable and thus are usually memorized with another MLP, which does not generalize to novel poses. Although it is possible to borrow the blending weights of a parametric mesh such as SMPL, the interpolation operation introduces more artifacts. In this paper, we propose to use the barycentric mapping, which can directly generalize to unseen poses and surprisingly achieves superior results than LBS with neural blending weights. Quantitative and qualitative results on the Human3.6M and the ZJU-MoCap datasets show the effectiveness of our method.

  • 4 authors
·
Aug 31, 2022

Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks

Convolutional Neural Networks (CNN) have been regarded as a powerful class of models for image recognition problems. Nevertheless, it is not trivial when utilizing a CNN for learning spatio-temporal video representation. A few studies have shown that performing 3D convolutions is a rewarding approach to capture both spatial and temporal dimensions in videos. However, the development of a very deep 3D CNN from scratch results in expensive computational cost and memory demand. A valid question is why not recycle off-the-shelf 2D networks for a 3D CNN. In this paper, we devise multiple variants of bottleneck building blocks in a residual learning framework by simulating 3times3times3 convolutions with 1times3times3 convolutional filters on spatial domain (equivalent to 2D CNN) plus 3times1times1 convolutions to construct temporal connections on adjacent feature maps in time. Furthermore, we propose a new architecture, named Pseudo-3D Residual Net (P3D ResNet), that exploits all the variants of blocks but composes each in different placement of ResNet, following the philosophy that enhancing structural diversity with going deep could improve the power of neural networks. Our P3D ResNet achieves clear improvements on Sports-1M video classification dataset against 3D CNN and frame-based 2D CNN by 5.3% and 1.8%, respectively. We further examine the generalization performance of video representation produced by our pre-trained P3D ResNet on five different benchmarks and three different tasks, demonstrating superior performances over several state-of-the-art techniques.

  • 3 authors
·
Nov 28, 2017

MonoDGP: Monocular 3D Object Detection with Decoupled-Query and Geometry-Error Priors

Perspective projection has been extensively utilized in monocular 3D object detection methods. It introduces geometric priors from 2D bounding boxes and 3D object dimensions to reduce the uncertainty of depth estimation. However, due to depth errors originating from the object's visual surface, the height of the bounding box often fails to represent the actual projected central height, which undermines the effectiveness of geometric depth. Direct prediction for the projected height unavoidably results in a loss of 2D priors, while multi-depth prediction with complex branches does not fully leverage geometric depth. This paper presents a Transformer-based monocular 3D object detection method called MonoDGP, which adopts perspective-invariant geometry errors to modify the projection formula. We also try to systematically discuss and explain the mechanisms and efficacy behind geometry errors, which serve as a simple but effective alternative to multi-depth prediction. Additionally, MonoDGP decouples the depth-guided decoder and constructs a 2D decoder only dependent on visual features, providing 2D priors and initializing object queries without the disturbance of 3D detection. To further optimize and fine-tune input tokens of the transformer decoder, we also introduce a Region Segment Head (RSH) that generates enhanced features and segment embeddings. Our monocular method demonstrates state-of-the-art performance on the KITTI benchmark without extra data. Code is available at https://github.com/PuFanqi23/MonoDGP.

  • 4 authors
·
Oct 25, 2024

WideRange4D: Enabling High-Quality 4D Reconstruction with Wide-Range Movements and Scenes

With the rapid development of 3D reconstruction technology, research in 4D reconstruction is also advancing, existing 4D reconstruction methods can generate high-quality 4D scenes. However, due to the challenges in acquiring multi-view video data, the current 4D reconstruction benchmarks mainly display actions performed in place, such as dancing, within limited scenarios. In practical scenarios, many scenes involve wide-range spatial movements, highlighting the limitations of existing 4D reconstruction datasets. Additionally, existing 4D reconstruction methods rely on deformation fields to estimate the dynamics of 3D objects, but deformation fields struggle with wide-range spatial movements, which limits the ability to achieve high-quality 4D scene reconstruction with wide-range spatial movements. In this paper, we focus on 4D scene reconstruction with significant object spatial movements and propose a novel 4D reconstruction benchmark, WideRange4D. This benchmark includes rich 4D scene data with large spatial variations, allowing for a more comprehensive evaluation of the generation capabilities of 4D generation methods. Furthermore, we introduce a new 4D reconstruction method, Progress4D, which generates stable and high-quality 4D results across various complex 4D scene reconstruction tasks. We conduct both quantitative and qualitative comparison experiments on WideRange4D, showing that our Progress4D outperforms existing state-of-the-art 4D reconstruction methods. Project: https://github.com/Gen-Verse/WideRange4D

  • 8 authors
·
Mar 17 2

Representing Long Volumetric Video with Temporal Gaussian Hierarchy

This paper aims to address the challenge of reconstructing long volumetric videos from multi-view RGB videos. Recent dynamic view synthesis methods leverage powerful 4D representations, like feature grids or point cloud sequences, to achieve high-quality rendering results. However, they are typically limited to short (1~2s) video clips and often suffer from large memory footprints when dealing with longer videos. To solve this issue, we propose a novel 4D representation, named Temporal Gaussian Hierarchy, to compactly model long volumetric videos. Our key observation is that there are generally various degrees of temporal redundancy in dynamic scenes, which consist of areas changing at different speeds. Motivated by this, our approach builds a multi-level hierarchy of 4D Gaussian primitives, where each level separately describes scene regions with different degrees of content change, and adaptively shares Gaussian primitives to represent unchanged scene content over different temporal segments, thus effectively reducing the number of Gaussian primitives. In addition, the tree-like structure of the Gaussian hierarchy allows us to efficiently represent the scene at a particular moment with a subset of Gaussian primitives, leading to nearly constant GPU memory usage during the training or rendering regardless of the video length. Extensive experimental results demonstrate the superiority of our method over alternative methods in terms of training cost, rendering speed, and storage usage. To our knowledge, this work is the first approach capable of efficiently handling minutes of volumetric video data while maintaining state-of-the-art rendering quality. Our project page is available at: https://zju3dv.github.io/longvolcap.

  • 7 authors
·
Dec 12, 2024

One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization

Single image 3D reconstruction is an important but challenging task that requires extensive knowledge of our natural world. Many existing methods solve this problem by optimizing a neural radiance field under the guidance of 2D diffusion models but suffer from lengthy optimization time, 3D inconsistency results, and poor geometry. In this work, we propose a novel method that takes a single image of any object as input and generates a full 360-degree 3D textured mesh in a single feed-forward pass. Given a single image, we first use a view-conditioned 2D diffusion model, Zero123, to generate multi-view images for the input view, and then aim to lift them up to 3D space. Since traditional reconstruction methods struggle with inconsistent multi-view predictions, we build our 3D reconstruction module upon an SDF-based generalizable neural surface reconstruction method and propose several critical training strategies to enable the reconstruction of 360-degree meshes. Without costly optimizations, our method reconstructs 3D shapes in significantly less time than existing methods. Moreover, our method favors better geometry, generates more 3D consistent results, and adheres more closely to the input image. We evaluate our approach on both synthetic data and in-the-wild images and demonstrate its superiority in terms of both mesh quality and runtime. In addition, our approach can seamlessly support the text-to-3D task by integrating with off-the-shelf text-to-image diffusion models.

  • 7 authors
·
Jun 29, 2023 7

ReSpace: Text-Driven 3D Scene Synthesis and Editing with Preference Alignment

Scene synthesis and editing has emerged as a promising direction in computer graphics. Current trained approaches for 3D indoor scenes either oversimplify object semantics through one-hot class encodings (e.g., 'chair' or 'table'), require masked diffusion for editing, ignore room boundaries, or rely on floor plan renderings that fail to capture complex layouts. In contrast, LLM-based methods enable richer semantics via natural language (e.g., 'modern studio with light wood furniture') but do not support editing, remain limited to rectangular layouts or rely on weak spatial reasoning from implicit world models. We introduce ReSpace, a generative framework for text-driven 3D indoor scene synthesis and editing using autoregressive language models. Our approach features a compact structured scene representation with explicit room boundaries that frames scene editing as a next-token prediction task. We leverage a dual-stage training approach combining supervised fine-tuning and preference alignment, enabling a specially trained language model for object addition that accounts for user instructions, spatial geometry, object semantics, and scene-level composition. For scene editing, we employ a zero-shot LLM to handle object removal and prompts for addition. We further introduce a novel voxelization-based evaluation that captures fine-grained geometry beyond 3D bounding boxes. Experimental results surpass state-of-the-art on object addition while maintaining competitive results on full scene synthesis.

  • 2 authors
·
Jun 3

Consistent Time-of-Flight Depth Denoising via Graph-Informed Geometric Attention

Depth images captured by Time-of-Flight (ToF) sensors are prone to noise, requiring denoising for reliable downstream applications. Previous works either focus on single-frame processing, or perform multi-frame processing without considering depth variations at corresponding pixels across frames, leading to undesirable temporal inconsistency and spatial ambiguity. In this paper, we propose a novel ToF depth denoising network leveraging motion-invariant graph fusion to simultaneously enhance temporal stability and spatial sharpness. Specifically, despite depth shifts across frames, graph structures exhibit temporal self-similarity, enabling cross-frame geometric attention for graph fusion. Then, by incorporating an image smoothness prior on the fused graph and data fidelity term derived from ToF noise distribution, we formulate a maximum a posterior problem for ToF denoising. Finally, the solution is unrolled into iterative filters whose weights are adaptively learned from the graph-informed geometric attention, producing a high-performance yet interpretable network. Experimental results demonstrate that the proposed scheme achieves state-of-the-art performance in terms of accuracy and consistency on synthetic DVToF dataset and exhibits robust generalization on the real Kinectv2 dataset. Source code will be released at https://github.com/davidweidawang/GIGA-ToF{https://github.com/davidweidawang/GIGA-ToF}.

  • 4 authors
·
Jun 30 2

RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline Model and DoF-based Curriculum Learning

The wide-angle lens shows appealing applications in VR technologies, but it introduces severe radial distortion into its captured image. To recover the realistic scene, previous works devote to rectifying the content of the wide-angle image. However, such a rectification solution inevitably distorts the image boundary, which potentially changes related geometric distributions and misleads the current vision perception models. In this work, we explore constructing a win-win representation on both content and boundary by contributing a new learning model, i.e., Rectangling Rectification Network (RecRecNet). In particular, we propose a thin-plate spline (TPS) module to formulate the non-linear and non-rigid transformation for rectangling images. By learning the control points on the rectified image, our model can flexibly warp the source structure to the target domain and achieves an end-to-end unsupervised deformation. To relieve the complexity of structure approximation, we then inspire our RecRecNet to learn the gradual deformation rules with a DoF (Degree of Freedom)-based curriculum learning. By increasing the DoF in each curriculum stage, namely, from similarity transformation (4-DoF) to homography transformation (8-DoF), the network is capable of investigating more detailed deformations, offering fast convergence on the final rectangling task. Experiments show the superiority of our solution over the compared methods on both quantitative and qualitative evaluations. The code and dataset will be made available.

  • 5 authors
·
Jan 4, 2023

On the Continuity of Rotation Representations in Neural Networks

In neural networks, it is often desirable to work with various representations of the same space. For example, 3D rotations can be represented with quaternions or Euler angles. In this paper, we advance a definition of a continuous representation, which can be helpful for training deep neural networks. We relate this to topological concepts such as homeomorphism and embedding. We then investigate what are continuous and discontinuous representations for 2D, 3D, and n-dimensional rotations. We demonstrate that for 3D rotations, all representations are discontinuous in the real Euclidean spaces of four or fewer dimensions. Thus, widely used representations such as quaternions and Euler angles are discontinuous and difficult for neural networks to learn. We show that the 3D rotations have continuous representations in 5D and 6D, which are more suitable for learning. We also present continuous representations for the general case of the n-dimensional rotation group SO(n). While our main focus is on rotations, we also show that our constructions apply to other groups such as the orthogonal group and similarity transforms. We finally present empirical results, which show that our continuous rotation representations outperform discontinuous ones for several practical problems in graphics and vision, including a simple autoencoder sanity test, a rotation estimator for 3D point clouds, and an inverse kinematics solver for 3D human poses.

  • 5 authors
·
Dec 17, 2018

3D^2-Actor: Learning Pose-Conditioned 3D-Aware Denoiser for Realistic Gaussian Avatar Modeling

Advancements in neural implicit representations and differentiable rendering have markedly improved the ability to learn animatable 3D avatars from sparse multi-view RGB videos. However, current methods that map observation space to canonical space often face challenges in capturing pose-dependent details and generalizing to novel poses. While diffusion models have demonstrated remarkable zero-shot capabilities in 2D image generation, their potential for creating animatable 3D avatars from 2D inputs remains underexplored. In this work, we introduce 3D^2-Actor, a novel approach featuring a pose-conditioned 3D-aware human modeling pipeline that integrates iterative 2D denoising and 3D rectifying steps. The 2D denoiser, guided by pose cues, generates detailed multi-view images that provide the rich feature set necessary for high-fidelity 3D reconstruction and pose rendering. Complementing this, our Gaussian-based 3D rectifier renders images with enhanced 3D consistency through a two-stage projection strategy and a novel local coordinate representation. Additionally, we propose an innovative sampling strategy to ensure smooth temporal continuity across frames in video synthesis. Our method effectively addresses the limitations of traditional numerical solutions in handling ill-posed mappings, producing realistic and animatable 3D human avatars. Experimental results demonstrate that 3D^2-Actor excels in high-fidelity avatar modeling and robustly generalizes to novel poses. Code is available at: https://github.com/silence-tang/GaussianActor.

  • 5 authors
·
Dec 16, 2024

LayerPano3D: Layered 3D Panorama for Hyper-Immersive Scene Generation

3D immersive scene generation is a challenging yet critical task in computer vision and graphics. A desired virtual 3D scene should 1) exhibit omnidirectional view consistency, and 2) allow for free exploration in complex scene hierarchies. Existing methods either rely on successive scene expansion via inpainting or employ panorama representation to represent large FOV scene environments. However, the generated scene suffers from semantic drift during expansion and is unable to handle occlusion among scene hierarchies. To tackle these challenges, we introduce LayerPano3D, a novel framework for full-view, explorable panoramic 3D scene generation from a single text prompt. Our key insight is to decompose a reference 2D panorama into multiple layers at different depth levels, where each layer reveals the unseen space from the reference views via diffusion prior. LayerPano3D comprises multiple dedicated designs: 1) we introduce a novel text-guided anchor view synthesis pipeline for high-quality, consistent panorama generation. 2) We pioneer the Layered 3D Panorama as underlying representation to manage complex scene hierarchies and lift it into 3D Gaussians to splat detailed 360-degree omnidirectional scenes with unconstrained viewing paths. Extensive experiments demonstrate that our framework generates state-of-the-art 3D panoramic scene in both full view consistency and immersive exploratory experience. We believe that LayerPano3D holds promise for advancing 3D panoramic scene creation with numerous applications.

  • 8 authors
·
Aug 23, 2024 2

DA^2: Depth Anything in Any Direction

Panorama has a full FoV (360^circtimes180^circ), offering a more complete visual description than perspective images. Thanks to this characteristic, panoramic depth estimation is gaining increasing traction in 3D vision. However, due to the scarcity of panoramic data, previous methods are often restricted to in-domain settings, leading to poor zero-shot generalization. Furthermore, due to the spherical distortions inherent in panoramas, many approaches rely on perspective splitting (e.g., cubemaps), which leads to suboptimal efficiency. To address these challenges, we propose DA^{2}: Depth Anything in Any Direction, an accurate, zero-shot generalizable, and fully end-to-end panoramic depth estimator. Specifically, for scaling up panoramic data, we introduce a data curation engine for generating high-quality panoramic depth data from perspective, and create sim543K panoramic RGB-depth pairs, bringing the total to sim607K. To further mitigate the spherical distortions, we present SphereViT, which explicitly leverages spherical coordinates to enforce the spherical geometric consistency in panoramic image features, yielding improved performance. A comprehensive benchmark on multiple datasets clearly demonstrates DA^{2}'s SoTA performance, with an average 38% improvement on AbsRel over the strongest zero-shot baseline. Surprisingly, DA^{2} even outperforms prior in-domain methods, highlighting its superior zero-shot generalization. Moreover, as an end-to-end solution, DA^{2} exhibits much higher efficiency over fusion-based approaches. Both the code and the curated panoramic data will be released. Project page: https://depth-any-in-any-dir.github.io/.

GenesisTex2: Stable, Consistent and High-Quality Text-to-Texture Generation

Large-scale text-guided image diffusion models have shown astonishing results in text-to-image (T2I) generation. However, applying these models to synthesize textures for 3D geometries remains challenging due to the domain gap between 2D images and textures on a 3D surface. Early works that used a projecting-and-inpainting approach managed to preserve generation diversity but often resulted in noticeable artifacts and style inconsistencies. While recent methods have attempted to address these inconsistencies, they often introduce other issues, such as blurring, over-saturation, or over-smoothing. To overcome these challenges, we propose a novel text-to-texture synthesis framework that leverages pretrained diffusion models. We first introduce a local attention reweighing mechanism in the self-attention layers to guide the model in concentrating on spatial-correlated patches across different views, thereby enhancing local details while preserving cross-view consistency. Additionally, we propose a novel latent space merge pipeline, which further ensures consistency across different viewpoints without sacrificing too much diversity. Our method significantly outperforms existing state-of-the-art techniques regarding texture consistency and visual quality, while delivering results much faster than distillation-based methods. Importantly, our framework does not require additional training or fine-tuning, making it highly adaptable to a wide range of models available on public platforms.

  • 6 authors
·
Sep 26, 2024

SpaceBlender: Creating Context-Rich Collaborative Spaces Through Generative 3D Scene Blending

There is increased interest in using generative AI to create 3D spaces for Virtual Reality (VR) applications. However, today's models produce artificial environments, falling short of supporting collaborative tasks that benefit from incorporating the user's physical context. To generate environments that support VR telepresence, we introduce SpaceBlender, a novel pipeline that utilizes generative AI techniques to blend users' physical surroundings into unified virtual spaces. This pipeline transforms user-provided 2D images into context-rich 3D environments through an iterative process consisting of depth estimation, mesh alignment, and diffusion-based space completion guided by geometric priors and adaptive text prompts. In a preliminary within-subjects study, where 20 participants performed a collaborative VR affinity diagramming task in pairs, we compared SpaceBlender with a generic virtual environment and a state-of-the-art scene generation framework, evaluating its ability to create virtual spaces suitable for collaboration. Participants appreciated the enhanced familiarity and context provided by SpaceBlender but also noted complexities in the generative environments that could detract from task focus. Drawing on participant feedback, we propose directions for improving the pipeline and discuss the value and design of blended spaces for different scenarios.

  • 5 authors
·
Sep 20, 2024 2

CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion

Masked Image Modeling (MIM) has recently been established as a potent pre-training paradigm. A pretext task is constructed by masking patches in an input image, and this masked content is then predicted by a neural network using visible patches as sole input. This pre-training leads to state-of-the-art performance when finetuned for high-level semantic tasks, e.g. image classification and object detection. In this paper we instead seek to learn representations that transfer well to a wide variety of 3D vision and lower-level geometric downstream tasks, such as depth prediction or optical flow estimation. Inspired by MIM, we propose an unsupervised representation learning task trained from pairs of images showing the same scene from different viewpoints. More precisely, we propose the pretext task of cross-view completion where the first input image is partially masked, and this masked content has to be reconstructed from the visible content and the second image. In single-view MIM, the masked content often cannot be inferred precisely from the visible portion only, so the model learns to act as a prior influenced by high-level semantics. In contrast, this ambiguity can be resolved with cross-view completion from the second unmasked image, on the condition that the model is able to understand the spatial relationship between the two images. Our experiments show that our pretext task leads to significantly improved performance for monocular 3D vision downstream tasks such as depth estimation. In addition, our model can be directly applied to binocular downstream tasks like optical flow or relative camera pose estimation, for which we obtain competitive results without bells and whistles, i.e., using a generic architecture without any task-specific design.

  • 10 authors
·
Oct 19, 2022 1

StarPose: 3D Human Pose Estimation via Spatial-Temporal Autoregressive Diffusion

Monocular 3D human pose estimation remains a challenging task due to inherent depth ambiguities and occlusions. Compared to traditional methods based on Transformers or Convolutional Neural Networks (CNNs), recent diffusion-based approaches have shown superior performance, leveraging their probabilistic nature and high-fidelity generation capabilities. However, these methods often fail to account for the spatial and temporal correlations across predicted frames, resulting in limited temporal consistency and inferior accuracy in predicted 3D pose sequences. To address these shortcomings, this paper proposes StarPose, an autoregressive diffusion framework that effectively incorporates historical 3D pose predictions and spatial-temporal physical guidance to significantly enhance both the accuracy and temporal coherence of pose predictions. Unlike existing approaches, StarPose models the 2D-to-3D pose mapping as an autoregressive diffusion process. By synergically integrating previously predicted 3D poses with 2D pose inputs via a Historical Pose Integration Module (HPIM), the framework generates rich and informative historical pose embeddings that guide subsequent denoising steps, ensuring temporally consistent predictions. In addition, a fully plug-and-play Spatial-Temporal Physical Guidance (STPG) mechanism is tailored to refine the denoising process in an iterative manner, which further enforces spatial anatomical plausibility and temporal motion dynamics, rendering robust and realistic pose estimates. Extensive experiments on benchmark datasets demonstrate that StarPose outperforms state-of-the-art methods, achieving superior accuracy and temporal consistency in 3D human pose estimation. Code is available at https://github.com/wileychan/StarPose.

  • 8 authors
·
Aug 4

Video Depth Anything: Consistent Depth Estimation for Super-Long Videos

Depth Anything has achieved remarkable success in monocular depth estimation with strong generalization ability. However, it suffers from temporal inconsistency in videos, hindering its practical applications. Various methods have been proposed to alleviate this issue by leveraging video generation models or introducing priors from optical flow and camera poses. Nonetheless, these methods are only applicable to short videos (< 10 seconds) and require a trade-off between quality and computational efficiency. We propose Video Depth Anything for high-quality, consistent depth estimation in super-long videos (over several minutes) without sacrificing efficiency. We base our model on Depth Anything V2 and replace its head with an efficient spatial-temporal head. We design a straightforward yet effective temporal consistency loss by constraining the temporal depth gradient, eliminating the need for additional geometric priors. The model is trained on a joint dataset of video depth and unlabeled images, similar to Depth Anything V2. Moreover, a novel key-frame-based strategy is developed for long video inference. Experiments show that our model can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability. Comprehensive evaluations on multiple video benchmarks demonstrate that our approach sets a new state-of-the-art in zero-shot video depth estimation. We offer models of different scales to support a range of scenarios, with our smallest model capable of real-time performance at 30 FPS.

  • 7 authors
·
Jan 21 2

Sat-DN: Implicit Surface Reconstruction from Multi-View Satellite Images with Depth and Normal Supervision

With advancements in satellite imaging technology, acquiring high-resolution multi-view satellite imagery has become increasingly accessible, enabling rapid and location-independent ground model reconstruction. However, traditional stereo matching methods struggle to capture fine details, and while neural radiance fields (NeRFs) achieve high-quality reconstructions, their training time is prohibitively long. Moreover, challenges such as low visibility of building facades, illumination and style differences between pixels, and weakly textured regions in satellite imagery further make it hard to reconstruct reasonable terrain geometry and detailed building facades. To address these issues, we propose Sat-DN, a novel framework leveraging a progressively trained multi-resolution hash grid reconstruction architecture with explicit depth guidance and surface normal consistency constraints to enhance reconstruction quality. The multi-resolution hash grid accelerates training, while the progressive strategy incrementally increases the learning frequency, using coarse low-frequency geometry to guide the reconstruction of fine high-frequency details. The depth and normal constraints ensure a clear building outline and correct planar distribution. Extensive experiments on the DFC2019 dataset demonstrate that Sat-DN outperforms existing methods, achieving state-of-the-art results in both qualitative and quantitative evaluations. The code is available at https://github.com/costune/SatDN.

  • 4 authors
·
Feb 12

GeoGen: Geometry-Aware Generative Modeling via Signed Distance Functions

We introduce a new generative approach for synthesizing 3D geometry and images from single-view collections. Most existing approaches predict volumetric density to render multi-view consistent images. By employing volumetric rendering using neural radiance fields, they inherit a key limitation: the generated geometry is noisy and unconstrained, limiting the quality and utility of the output meshes. To address this issue, we propose GeoGen, a new SDF-based 3D generative model trained in an end-to-end manner. Initially, we reinterpret the volumetric density as a Signed Distance Function (SDF). This allows us to introduce useful priors to generate valid meshes. However, those priors prevent the generative model from learning details, limiting the applicability of the method to real-world scenarios. To alleviate that problem, we make the transformation learnable and constrain the rendered depth map to be consistent with the zero-level set of the SDF. Through the lens of adversarial training, we encourage the network to produce higher fidelity details on the output meshes. For evaluation, we introduce a synthetic dataset of human avatars captured from 360-degree camera angles, to overcome the challenges presented by real-world datasets, which often lack 3D consistency and do not cover all camera angles. Our experiments on multiple datasets show that GeoGen produces visually and quantitatively better geometry than the previous generative models based on neural radiance fields.

  • 9 authors
·
Jun 6, 2024

Category-Aware 3D Object Composition with Disentangled Texture and Shape Multi-view Diffusion

In this paper, we tackle a new task of 3D object synthesis, where a 3D model is composited with another object category to create a novel 3D model. However, most existing text/image/3D-to-3D methods struggle to effectively integrate multiple content sources, often resulting in inconsistent textures and inaccurate shapes. To overcome these challenges, we propose a straightforward yet powerful approach, category+3D-to-3D (C33D), for generating novel and structurally coherent 3D models. Our method begins by rendering multi-view images and normal maps from the input 3D model, then generating a novel 2D object using adaptive text-image harmony (ATIH) with the front-view image and a text description from another object category as inputs. To ensure texture consistency, we introduce texture multi-view diffusion, which refines the textures of the remaining multi-view RGB images based on the novel 2D object. For enhanced shape accuracy, we propose shape multi-view diffusion to improve the 2D shapes of both the multi-view RGB images and the normal maps, also conditioned on the novel 2D object. Finally, these outputs are used to reconstruct a complete and novel 3D model. Extensive experiments demonstrate the effectiveness of our method, yielding impressive 3D creations, such as shark(3D)-crocodile(text) in the first row of Fig. 1. A project page is available at: https://xzr52.github.io/C33D/

  • 7 authors
·
Sep 2

Gaussian RBFNet: Gaussian Radial Basis Functions for Fast and Accurate Representation and Reconstruction of Neural Fields

Neural fields such as DeepSDF and Neural Radiance Fields have recently revolutionized novel-view synthesis and 3D reconstruction from RGB images and videos. However, achieving high-quality representation, reconstruction, and rendering requires deep neural networks, which are slow to train and evaluate. Although several acceleration techniques have been proposed, they often trade off speed for memory. Gaussian splatting-based methods, on the other hand, accelerate the rendering time but remain costly in terms of training speed and memory needed to store the parameters of a large number of Gaussians. In this paper, we introduce a novel neural representation that is fast, both at training and inference times, and lightweight. Our key observation is that the neurons used in traditional MLPs perform simple computations (a dot product followed by ReLU activation) and thus one needs to use either wide and deep MLPs or high-resolution and high-dimensional feature grids to parameterize complex nonlinear functions. We show in this paper that by replacing traditional neurons with Radial Basis Function (RBF) kernels, one can achieve highly accurate representation of 2D (RGB images), 3D (geometry), and 5D (radiance fields) signals with just a single layer of such neurons. The representation is highly parallelizable, operates on low-resolution feature grids, and is compact and memory-efficient. We demonstrate that the proposed novel representation can be trained for 3D geometry representation in less than 15 seconds and for novel view synthesis in less than 15 mins. At runtime, it can synthesize novel views at more than 60 fps without sacrificing quality.

  • 3 authors
·
Mar 9

3DIS-FLUX: simple and efficient multi-instance generation with DiT rendering

The growing demand for controllable outputs in text-to-image generation has driven significant advancements in multi-instance generation (MIG), enabling users to define both instance layouts and attributes. Currently, the state-of-the-art methods in MIG are primarily adapter-based. However, these methods necessitate retraining a new adapter each time a more advanced model is released, resulting in significant resource consumption. A methodology named Depth-Driven Decoupled Instance Synthesis (3DIS) has been introduced, which decouples MIG into two distinct phases: 1) depth-based scene construction and 2) detail rendering with widely pre-trained depth control models. The 3DIS method requires adapter training solely during the scene construction phase, while enabling various models to perform training-free detail rendering. Initially, 3DIS focused on rendering techniques utilizing U-Net architectures such as SD1.5, SD2, and SDXL, without exploring the potential of recent DiT-based models like FLUX. In this paper, we present 3DIS-FLUX, an extension of the 3DIS framework that integrates the FLUX model for enhanced rendering capabilities. Specifically, we employ the FLUX.1-Depth-dev model for depth map controlled image generation and introduce a detail renderer that manipulates the Attention Mask in FLUX's Joint Attention mechanism based on layout information. This approach allows for the precise rendering of fine-grained attributes of each instance. Our experimental results indicate that 3DIS-FLUX, leveraging the FLUX model, outperforms the original 3DIS method, which utilized SD2 and SDXL, and surpasses current state-of-the-art adapter-based methods in terms of both performance and image quality. Project Page: https://limuloo.github.io/3DIS/.

  • 4 authors
·
Jan 9 2

EnerVerse: Envisioning Embodied Future Space for Robotics Manipulation

We introduce EnerVerse, a comprehensive framework for embodied future space generation specifically designed for robotic manipulation tasks. EnerVerse seamlessly integrates convolutional and bidirectional attention mechanisms for inner-chunk space modeling, ensuring low-level consistency and continuity. Recognizing the inherent redundancy in video data, we propose a sparse memory context combined with a chunkwise unidirectional generative paradigm to enable the generation of infinitely long sequences. To further augment robotic capabilities, we introduce the Free Anchor View (FAV) space, which provides flexible perspectives to enhance observation and analysis. The FAV space mitigates motion modeling ambiguity, removes physical constraints in confined environments, and significantly improves the robot's generalization and adaptability across various tasks and settings. To address the prohibitive costs and labor intensity of acquiring multi-camera observations, we present a data engine pipeline that integrates a generative model with 4D Gaussian Splatting (4DGS). This pipeline leverages the generative model's robust generalization capabilities and the spatial constraints provided by 4DGS, enabling an iterative enhancement of data quality and diversity, thus creating a data flywheel effect that effectively narrows the sim-to-real gap. Finally, our experiments demonstrate that the embodied future space generation prior substantially enhances policy predictive capabilities, resulting in improved overall performance, particularly in long-range robotic manipulation tasks.

Focus on Neighbors and Know the Whole: Towards Consistent Dense Multiview Text-to-Image Generator for 3D Creation

Generating dense multiview images from text prompts is crucial for creating high-fidelity 3D assets. Nevertheless, existing methods struggle with space-view correspondences, resulting in sparse and low-quality outputs. In this paper, we introduce CoSER, a novel consistent dense Multiview Text-to-Image Generator for Text-to-3D, achieving both efficiency and quality by meticulously learning neighbor-view coherence and further alleviating ambiguity through the swift traversal of all views. For achieving neighbor-view consistency, each viewpoint densely interacts with adjacent viewpoints to perceive the global spatial structure, and aggregates information along motion paths explicitly defined by physical principles to refine details. To further enhance cross-view consistency and alleviate content drift, CoSER rapidly scan all views in spiral bidirectional manner to aware holistic information and then scores each point based on semantic material. Subsequently, we conduct weighted down-sampling along the spatial dimension based on scores, thereby facilitating prominent information fusion across all views with lightweight computation. Technically, the core module is built by integrating the attention mechanism with a selective state space model, exploiting the robust learning capabilities of the former and the low overhead of the latter. Extensive evaluation shows that CoSER is capable of producing dense, high-fidelity, content-consistent multiview images that can be flexibly integrated into various 3D generation models.

  • 4 authors
·
Aug 23, 2024

StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D

In the realm of text-to-3D generation, utilizing 2D diffusion models through score distillation sampling (SDS) frequently leads to issues such as blurred appearances and multi-faced geometry, primarily due to the intrinsically noisy nature of the SDS loss. Our analysis identifies the core of these challenges as the interaction among noise levels in the 2D diffusion process, the architecture of the diffusion network, and the 3D model representation. To overcome these limitations, we present StableDreamer, a methodology incorporating three advances. First, inspired by InstructNeRF2NeRF, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss. This finding provides a novel tool to debug SDS, which we use to show the impact of time-annealing noise levels on reducing multi-faced geometries. Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition. Based on this observation, StableDreamer introduces a two-stage training strategy that effectively combines these aspects, resulting in high-fidelity 3D models. Third, we adopt an anisotropic 3D Gaussians representation, replacing Neural Radiance Fields (NeRFs), to enhance the overall quality, reduce memory usage during training, and accelerate rendering speeds, and better capture semi-transparent objects. StableDreamer reduces multi-face geometries, generates fine details, and converges stably.

  • 10 authors
·
Dec 1, 2023 3

Global Spatial-Temporal Information-based Residual ConvLSTM for Video Space-Time Super-Resolution

By converting low-frame-rate, low-resolution videos into high-frame-rate, high-resolution ones, space-time video super-resolution techniques can enhance visual experiences and facilitate more efficient information dissemination. We propose a convolutional neural network (CNN) for space-time video super-resolution, namely GIRNet. To generate highly accurate features and thus improve performance, the proposed network integrates a feature-level temporal interpolation module with deformable convolutions and a global spatial-temporal information-based residual convolutional long short-term memory (convLSTM) module. In the feature-level temporal interpolation module, we leverage deformable convolution, which adapts to deformations and scale variations of objects across different scene locations. This presents a more efficient solution than conventional convolution for extracting features from moving objects. Our network effectively uses forward and backward feature information to determine inter-frame offsets, leading to the direct generation of interpolated frame features. In the global spatial-temporal information-based residual convLSTM module, the first convLSTM is used to derive global spatial-temporal information from the input features, and the second convLSTM uses the previously computed global spatial-temporal information feature as its initial cell state. This second convLSTM adopts residual connections to preserve spatial information, thereby enhancing the output features. Experiments on the Vimeo90K dataset show that the proposed method outperforms state-of-the-art techniques in peak signal-to-noise-ratio (by 1.45 dB, 1.14 dB, and 0.02 dB over STARnet, TMNet, and 3DAttGAN, respectively), structural similarity index(by 0.027, 0.023, and 0.006 over STARnet, TMNet, and 3DAttGAN, respectively), and visually.

  • 6 authors
·
Jul 11, 2024

Painting Outside as Inside: Edge Guided Image Outpainting via Bidirectional Rearrangement with Progressive Step Learning

Image outpainting is a very intriguing problem as the outside of a given image can be continuously filled by considering as the context of the image. This task has two main challenges. The first is to maintain the spatial consistency in contents of generated regions and the original input. The second is to generate a high-quality large image with a small amount of adjacent information. Conventional image outpainting methods generate inconsistent, blurry, and repeated pixels. To alleviate the difficulty of an outpainting problem, we propose a novel image outpainting method using bidirectional boundary region rearrangement. We rearrange the image to benefit from the image inpainting task by reflecting more directional information. The bidirectional boundary region rearrangement enables the generation of the missing region using bidirectional information similar to that of the image inpainting task, thereby generating the higher quality than the conventional methods using unidirectional information. Moreover, we use the edge map generator that considers images as original input with structural information and hallucinates the edges of unknown regions to generate the image. Our proposed method is compared with other state-of-the-art outpainting and inpainting methods both qualitatively and quantitatively. We further compared and evaluated them using BRISQUE, one of the No-Reference image quality assessment (IQA) metrics, to evaluate the naturalness of the output. The experimental results demonstrate that our method outperforms other methods and generates new images with 360{\deg}panoramic characteristics.

  • 6 authors
·
Oct 5, 2020

DreamSat: Towards a General 3D Model for Novel View Synthesis of Space Objects

Novel view synthesis (NVS) enables to generate new images of a scene or convert a set of 2D images into a comprehensive 3D model. In the context of Space Domain Awareness, since space is becoming increasingly congested, NVS can accurately map space objects and debris, improving the safety and efficiency of space operations. Similarly, in Rendezvous and Proximity Operations missions, 3D models can provide details about a target object's shape, size, and orientation, allowing for better planning and prediction of the target's behavior. In this work, we explore the generalization abilities of these reconstruction techniques, aiming to avoid the necessity of retraining for each new scene, by presenting a novel approach to 3D spacecraft reconstruction from single-view images, DreamSat, by fine-tuning the Zero123 XL, a state-of-the-art single-view reconstruction model, on a high-quality dataset of 190 high-quality spacecraft models and integrating it into the DreamGaussian framework. We demonstrate consistent improvements in reconstruction quality across multiple metrics, including Contrastive Language-Image Pretraining (CLIP) score (+0.33%), Peak Signal-to-Noise Ratio (PSNR) (+2.53%), Structural Similarity Index (SSIM) (+2.38%), and Learned Perceptual Image Patch Similarity (LPIPS) (+0.16%) on a test set of 30 previously unseen spacecraft images. Our method addresses the lack of domain-specific 3D reconstruction tools in the space industry by leveraging state-of-the-art diffusion models and 3D Gaussian splatting techniques. This approach maintains the efficiency of the DreamGaussian framework while enhancing the accuracy and detail of spacecraft reconstructions. The code for this work can be accessed on GitHub (https://github.com/ARCLab-MIT/space-nvs).

  • 7 authors
·
Oct 7, 2024

Relightable and Animatable Neural Avatar from Sparse-View Video

This paper tackles the challenge of creating relightable and animatable neural avatars from sparse-view (or even monocular) videos of dynamic humans under unknown illumination. Compared to studio environments, this setting is more practical and accessible but poses an extremely challenging ill-posed problem. Previous neural human reconstruction methods are able to reconstruct animatable avatars from sparse views using deformed Signed Distance Fields (SDF) but cannot recover material parameters for relighting. While differentiable inverse rendering-based methods have succeeded in material recovery of static objects, it is not straightforward to extend them to dynamic humans as it is computationally intensive to compute pixel-surface intersection and light visibility on deformed SDFs for inverse rendering. To solve this challenge, we propose a Hierarchical Distance Query (HDQ) algorithm to approximate the world space distances under arbitrary human poses. Specifically, we estimate coarse distances based on a parametric human model and compute fine distances by exploiting the local deformation invariance of SDF. Based on the HDQ algorithm, we leverage sphere tracing to efficiently estimate the surface intersection and light visibility. This allows us to develop the first system to recover animatable and relightable neural avatars from sparse view (or monocular) inputs. Experiments demonstrate that our approach is able to produce superior results compared to state-of-the-art methods. Our code will be released for reproducibility.

  • 8 authors
·
Aug 15, 2023

FlashWorld: High-quality 3D Scene Generation within Seconds

We propose FlashWorld, a generative model that produces 3D scenes from a single image or text prompt in seconds, 10~100times faster than previous works while possessing superior rendering quality. Our approach shifts from the conventional multi-view-oriented (MV-oriented) paradigm, which generates multi-view images for subsequent 3D reconstruction, to a 3D-oriented approach where the model directly produces 3D Gaussian representations during multi-view generation. While ensuring 3D consistency, 3D-oriented method typically suffers poor visual quality. FlashWorld includes a dual-mode pre-training phase followed by a cross-mode post-training phase, effectively integrating the strengths of both paradigms. Specifically, leveraging the prior from a video diffusion model, we first pre-train a dual-mode multi-view diffusion model, which jointly supports MV-oriented and 3D-oriented generation modes. To bridge the quality gap in 3D-oriented generation, we further propose a cross-mode post-training distillation by matching distribution from consistent 3D-oriented mode to high-quality MV-oriented mode. This not only enhances visual quality while maintaining 3D consistency, but also reduces the required denoising steps for inference. Also, we propose a strategy to leverage massive single-view images and text prompts during this process to enhance the model's generalization to out-of-distribution inputs. Extensive experiments demonstrate the superiority and efficiency of our method.

  • 6 authors
·
Oct 15 2

Self-Supervised Learning of Depth and Camera Motion from 360° Videos

As 360{\deg} cameras become prevalent in many autonomous systems (e.g., self-driving cars and drones), efficient 360{\deg} perception becomes more and more important. We propose a novel self-supervised learning approach for predicting the omnidirectional depth and camera motion from a 360{\deg} video. In particular, starting from the SfMLearner, which is designed for cameras with normal field-of-view, we introduce three key features to process 360{\deg} images efficiently. Firstly, we convert each image from equirectangular projection to cubic projection in order to avoid image distortion. In each network layer, we use Cube Padding (CP), which pads intermediate features from adjacent faces, to avoid image boundaries. Secondly, we propose a novel "spherical" photometric consistency constraint on the whole viewing sphere. In this way, no pixel will be projected outside the image boundary which typically happens in images with normal field-of-view. Finally, rather than naively estimating six independent camera motions (i.e., naively applying SfM-Learner to each face on a cube), we propose a novel camera pose consistency loss to ensure the estimated camera motions reaching consensus. To train and evaluate our approach, we collect a new PanoSUNCG dataset containing a large amount of 360{\deg} videos with groundtruth depth and camera motion. Our approach achieves state-of-the-art depth prediction and camera motion estimation on PanoSUNCG with faster inference speed comparing to equirectangular. In real-world indoor videos, our approach can also achieve qualitatively reasonable depth prediction by acquiring model pre-trained on PanoSUNCG.

  • 8 authors
·
Nov 13, 2018

EndoPBR: Material and Lighting Estimation for Photorealistic Surgical Simulations via Physically-based Rendering

The lack of labeled datasets in 3D vision for surgical scenes inhibits the development of robust 3D reconstruction algorithms in the medical domain. Despite the popularity of Neural Radiance Fields and 3D Gaussian Splatting in the general computer vision community, these systems have yet to find consistent success in surgical scenes due to challenges such as non-stationary lighting and non-Lambertian surfaces. As a result, the need for labeled surgical datasets continues to grow. In this work, we introduce a differentiable rendering framework for material and lighting estimation from endoscopic images and known geometry. Compared to previous approaches that model lighting and material jointly as radiance, we explicitly disentangle these scene properties for robust and photorealistic novel view synthesis. To disambiguate the training process, we formulate domain-specific properties inherent in surgical scenes. Specifically, we model the scene lighting as a simple spotlight and material properties as a bidirectional reflectance distribution function, parameterized by a neural network. By grounding color predictions in the rendering equation, we can generate photorealistic images at arbitrary camera poses. We evaluate our method with various sequences from the Colonoscopy 3D Video Dataset and show that our method produces competitive novel view synthesis results compared with other approaches. Furthermore, we demonstrate that synthetic data can be used to develop 3D vision algorithms by finetuning a depth estimation model with our rendered outputs. Overall, we see that the depth estimation performance is on par with fine-tuning with the original real images.

  • 2 authors
·
Feb 27

Relightable Full-Body Gaussian Codec Avatars

We propose Relightable Full-Body Gaussian Codec Avatars, a new approach for modeling relightable full-body avatars with fine-grained details including face and hands. The unique challenge for relighting full-body avatars lies in the large deformations caused by body articulation and the resulting impact on appearance caused by light transport. Changes in body pose can dramatically change the orientation of body surfaces with respect to lights, resulting in both local appearance changes due to changes in local light transport functions, as well as non-local changes due to occlusion between body parts. To address this, we decompose the light transport into local and non-local effects. Local appearance changes are modeled using learnable zonal harmonics for diffuse radiance transfer. Unlike spherical harmonics, zonal harmonics are highly efficient to rotate under articulation. This allows us to learn diffuse radiance transfer in a local coordinate frame, which disentangles the local radiance transfer from the articulation of the body. To account for non-local appearance changes, we introduce a shadow network that predicts shadows given precomputed incoming irradiance on a base mesh. This facilitates the learning of non-local shadowing between the body parts. Finally, we use a deferred shading approach to model specular radiance transfer and better capture reflections and highlights such as eye glints. We demonstrate that our approach successfully models both the local and non-local light transport required for relightable full-body avatars, with a superior generalization ability under novel illumination conditions and unseen poses.

ComposeAnything: Composite Object Priors for Text-to-Image Generation

Generating images from text involving complex and novel object arrangements remains a significant challenge for current text-to-image (T2I) models. Although prior layout-based methods improve object arrangements using spatial constraints with 2D layouts, they often struggle to capture 3D positioning and sacrifice quality and coherence. In this work, we introduce ComposeAnything, a novel framework for improving compositional image generation without retraining existing T2I models. Our approach first leverages the chain-of-thought reasoning abilities of LLMs to produce 2.5D semantic layouts from text, consisting of 2D object bounding boxes enriched with depth information and detailed captions. Based on this layout, we generate a spatial and depth aware coarse composite of objects that captures the intended composition, serving as a strong and interpretable prior that replaces stochastic noise initialization in diffusion-based T2I models. This prior guides the denoising process through object prior reinforcement and spatial-controlled denoising, enabling seamless generation of compositional objects and coherent backgrounds, while allowing refinement of inaccurate priors. ComposeAnything outperforms state-of-the-art methods on the T2I-CompBench and NSR-1K benchmarks for prompts with 2D/3D spatial arrangements, high object counts, and surreal compositions. Human evaluations further demonstrate that our model generates high-quality images with compositions that faithfully reflect the text.

  • 3 authors
·
May 29 3

GeoDream: Disentangling 2D and Geometric Priors for High-Fidelity and Consistent 3D Generation

Text-to-3D generation by distilling pretrained large-scale text-to-image diffusion models has shown great promise but still suffers from inconsistent 3D geometric structures (Janus problems) and severe artifacts. The aforementioned problems mainly stem from 2D diffusion models lacking 3D awareness during the lifting. In this work, we present GeoDream, a novel method that incorporates explicit generalized 3D priors with 2D diffusion priors to enhance the capability of obtaining unambiguous 3D consistent geometric structures without sacrificing diversity or fidelity. Specifically, we first utilize a multi-view diffusion model to generate posed images and then construct cost volume from the predicted image, which serves as native 3D geometric priors, ensuring spatial consistency in 3D space. Subsequently, we further propose to harness 3D geometric priors to unlock the great potential of 3D awareness in 2D diffusion priors via a disentangled design. Notably, disentangling 2D and 3D priors allows us to refine 3D geometric priors further. We justify that the refined 3D geometric priors aid in the 3D-aware capability of 2D diffusion priors, which in turn provides superior guidance for the refinement of 3D geometric priors. Our numerical and visual comparisons demonstrate that GeoDream generates more 3D consistent textured meshes with high-resolution realistic renderings (i.e., 1024 times 1024) and adheres more closely to semantic coherence.

  • 6 authors
·
Nov 29, 2023 1

MaterialFusion: Enhancing Inverse Rendering with Material Diffusion Priors

Recent works in inverse rendering have shown promise in using multi-view images of an object to recover shape, albedo, and materials. However, the recovered components often fail to render accurately under new lighting conditions due to the intrinsic challenge of disentangling albedo and material properties from input images. To address this challenge, we introduce MaterialFusion, an enhanced conventional 3D inverse rendering pipeline that incorporates a 2D prior on texture and material properties. We present StableMaterial, a 2D diffusion model prior that refines multi-lit data to estimate the most likely albedo and material from given input appearances. This model is trained on albedo, material, and relit image data derived from a curated dataset of approximately ~12K artist-designed synthetic Blender objects called BlenderVault. we incorporate this diffusion prior with an inverse rendering framework where we use score distillation sampling (SDS) to guide the optimization of the albedo and materials, improving relighting performance in comparison with previous work. We validate MaterialFusion's relighting performance on 4 datasets of synthetic and real objects under diverse illumination conditions, showing our diffusion-aided approach significantly improves the appearance of reconstructed objects under novel lighting conditions. We intend to publicly release our BlenderVault dataset to support further research in this field.

  • 7 authors
·
Sep 23, 2024 2

Manipulation as in Simulation: Enabling Accurate Geometry Perception in Robots

Modern robotic manipulation primarily relies on visual observations in a 2D color space for skill learning but suffers from poor generalization. In contrast, humans, living in a 3D world, depend more on physical properties-such as distance, size, and shape-than on texture when interacting with objects. Since such 3D geometric information can be acquired from widely available depth cameras, it appears feasible to endow robots with similar perceptual capabilities. Our pilot study found that using depth cameras for manipulation is challenging, primarily due to their limited accuracy and susceptibility to various types of noise. In this work, we propose Camera Depth Models (CDMs) as a simple plugin on daily-use depth cameras, which take RGB images and raw depth signals as input and output denoised, accurate metric depth. To achieve this, we develop a neural data engine that generates high-quality paired data from simulation by modeling a depth camera's noise pattern. Our results show that CDMs achieve nearly simulation-level accuracy in depth prediction, effectively bridging the sim-to-real gap for manipulation tasks. Notably, our experiments demonstrate, for the first time, that a policy trained on raw simulated depth, without the need for adding noise or real-world fine-tuning, generalizes seamlessly to real-world robots on two challenging long-horizon tasks involving articulated, reflective, and slender objects, with little to no performance degradation. We hope our findings will inspire future research in utilizing simulation data and 3D information in general robot policies.

Urban Architect: Steerable 3D Urban Scene Generation with Layout Prior

Text-to-3D generation has achieved remarkable success via large-scale text-to-image diffusion models. Nevertheless, there is no paradigm for scaling up the methodology to urban scale. Urban scenes, characterized by numerous elements, intricate arrangement relationships, and vast scale, present a formidable barrier to the interpretability of ambiguous textual descriptions for effective model optimization. In this work, we surmount the limitations by introducing a compositional 3D layout representation into text-to-3D paradigm, serving as an additional prior. It comprises a set of semantic primitives with simple geometric structures and explicit arrangement relationships, complementing textual descriptions and enabling steerable generation. Upon this, we propose two modifications -- (1) We introduce Layout-Guided Variational Score Distillation to address model optimization inadequacies. It conditions the score distillation sampling process with geometric and semantic constraints of 3D layouts. (2) To handle the unbounded nature of urban scenes, we represent 3D scene with a Scalable Hash Grid structure, incrementally adapting to the growing scale of urban scenes. Extensive experiments substantiate the capability of our framework to scale text-to-3D generation to large-scale urban scenes that cover over 1000m driving distance for the first time. We also present various scene editing demonstrations, showing the powers of steerable urban scene generation. Website: https://urbanarchitect.github.io.

  • 6 authors
·
Apr 10, 2024 1

Depth-Aware Generative Adversarial Network for Talking Head Video Generation

Talking head video generation aims to produce a synthetic human face video that contains the identity and pose information respectively from a given source image and a driving video.Existing works for this task heavily rely on 2D representations (e.g. appearance and motion) learned from the input images. However, dense 3D facial geometry (e.g. pixel-wise depth) is extremely important for this task as it is particularly beneficial for us to essentially generate accurate 3D face structures and distinguish noisy information from the possibly cluttered background. Nevertheless, dense 3D geometry annotations are prohibitively costly for videos and are typically not available for this video generation task. In this paper, we first introduce a self-supervised geometry learning method to automatically recover the dense 3D geometry (i.e.depth) from the face videos without the requirement of any expensive 3D annotation data. Based on the learned dense depth maps, we further propose to leverage them to estimate sparse facial keypoints that capture the critical movement of the human head. In a more dense way, the depth is also utilized to learn 3D-aware cross-modal (i.e. appearance and depth) attention to guide the generation of motion fields for warping source image representations. All these contributions compose a novel depth-aware generative adversarial network (DaGAN) for talking head generation. Extensive experiments conducted demonstrate that our proposed method can generate highly realistic faces, and achieve significant results on the unseen human faces.

  • 4 authors
·
Mar 13, 2022

NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects

Dynamic Neural Radiance Field (NeRF) is a powerful algorithm capable of rendering photo-realistic novel view images from a monocular RGB video of a dynamic scene. Although it warps moving points across frames from the observation spaces to a common canonical space for rendering, dynamic NeRF does not model the change of the reflected color during the warping. As a result, this approach often fails drastically on challenging specular objects in motion. We address this limitation by reformulating the neural radiance field function to be conditioned on surface position and orientation in the observation space. This allows the specular surface at different poses to keep the different reflected colors when mapped to the common canonical space. Additionally, we add the mask of moving objects to guide the deformation field. As the specular surface changes color during motion, the mask mitigates the problem of failure to find temporal correspondences with only RGB supervision. We evaluate our model based on the novel view synthesis quality with a self-collected dataset of different moving specular objects in realistic environments. The experimental results demonstrate that our method significantly improves the reconstruction quality of moving specular objects from monocular RGB videos compared to the existing NeRF models. Our code and data are available at the project website https://github.com/JokerYan/NeRF-DS.

  • 3 authors
·
Mar 25, 2023

OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection

Accurate depth information is crucial for enhancing the performance of multi-view 3D object detection. Despite the success of some existing multi-view 3D detectors utilizing pixel-wise depth supervision, they overlook two significant phenomena: 1) the depth supervision obtained from LiDAR points is usually distributed on the surface of the object, which is not so friendly to existing DETR-based 3D detectors due to the lack of the depth of 3D object center; 2) for distant objects, fine-grained depth estimation of the whole object is more challenging. Therefore, we argue that the object-wise depth (or 3D center of the object) is essential for accurate detection. In this paper, we propose a new multi-view 3D object detector named OPEN, whose main idea is to effectively inject object-wise depth information into the network through our proposed object-wise position embedding. Specifically, we first employ an object-wise depth encoder, which takes the pixel-wise depth map as a prior, to accurately estimate the object-wise depth. Then, we utilize the proposed object-wise position embedding to encode the object-wise depth information into the transformer decoder, thereby producing 3D object-aware features for final detection. Extensive experiments verify the effectiveness of our proposed method. Furthermore, OPEN achieves a new state-of-the-art performance with 64.4% NDS and 56.7% mAP on the nuScenes test benchmark.

  • 9 authors
·
Jul 15, 2024

TransRef: Multi-Scale Reference Embedding Transformer for Reference-Guided Image Inpainting

Image inpainting for completing complicated semantic environments and diverse hole patterns of corrupted images is challenging even for state-of-the-art learning-based inpainting methods trained on large-scale data. A reference image capturing the same scene of a corrupted image offers informative guidance for completing the corrupted image as it shares similar texture and structure priors to that of the holes of the corrupted image. In this work, we propose a transformer-based encoder-decoder network, named TransRef, for reference-guided image inpainting. Specifically, the guidance is conducted progressively through a reference embedding procedure, in which the referencing features are subsequently aligned and fused with the features of the corrupted image. For precise utilization of the reference features for guidance, a reference-patch alignment (Ref-PA) module is proposed to align the patch features of the reference and corrupted images and harmonize their style differences, while a reference-patch transformer (Ref-PT) module is proposed to refine the embedded reference feature. Moreover, to facilitate the research of reference-guided image restoration tasks, we construct a publicly accessible benchmark dataset containing 50K pairs of input and reference images. Both quantitative and qualitative evaluations demonstrate the efficacy of the reference information and the proposed method over the state-of-the-art methods in completing complex holes. Code and dataset can be accessed at https://github.com/Cameltr/TransRef.

  • 7 authors
·
Jun 20, 2023