- The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech We present our system (denoted as T05) for the VoiceMOS Challenge (VMC) 2024. Our system was designed for the VMC 2024 Track 1, which focused on the accurate prediction of naturalness mean opinion score (MOS) for high-quality synthetic speech. In addition to a pretrained self-supervised learning (SSL)-based speech feature extractor, our system incorporates a pretrained image feature extractor to capture the difference of synthetic speech observed in speech spectrograms. We first separately train two MOS predictors that use either of an SSL-based or spectrogram-based feature. Then, we fine-tune the two predictors for better MOS prediction using the fusion of two extracted features. In the VMC 2024 Track 1, our T05 system achieved first place in 7 out of 16 evaluation metrics and second place in the remaining 9 metrics, with a significant difference compared to those ranked third and below. We also report the results of our ablation study to investigate essential factors of our system. 4 authors · Sep 14, 2024
- Entities, Dates, and Languages: Zero-Shot on Historical Texts with T0 In this work, we explore whether the recently demonstrated zero-shot abilities of the T0 model extend to Named Entity Recognition for out-of-distribution languages and time periods. Using a historical newspaper corpus in 3 languages as test-bed, we use prompts to extract possible named entities. Our results show that a naive approach for prompt-based zero-shot multilingual Named Entity Recognition is error-prone, but highlights the potential of such an approach for historical languages lacking labeled datasets. Moreover, we also find that T0-like models can be probed to predict the publication date and language of a document, which could be very relevant for the study of historical texts. 7 authors · Apr 11, 2022
- Model-Generated Pretraining Signals Improves Zero-Shot Generalization of Text-to-Text Transformers This paper explores the effectiveness of model-generated signals in improving zero-shot generalization of text-to-text Transformers such as T5. We study various designs to pretrain T5 using an auxiliary model to construct more challenging token replacements for the main model to denoise. Key aspects under study include the decoding target, the location of the RTD head, and the masking pattern. Based on these studies, we develop a new model, METRO-T0, which is pretrained using the redesigned ELECTRA-Style pretraining strategies and then prompt-finetuned on a mixture of NLP tasks. METRO-T0 outperforms all similar-sized baselines on prompted NLP benchmarks, such as T0 Eval and MMLU, and rivals the state-of-the-art T0-11B model with only 8% of its parameters. Our analysis on model's neural activation and parameter sensitivity reveals that the effectiveness of METRO-T0 stems from more balanced contribution of parameters and better utilization of their capacity. The code and model checkpoints are available at https://github.com/gonglinyuan/metro_t0. 8 authors · May 21, 2023
- Fine-tuned Language Models are Continual Learners Recent work on large language models relies on the intuition that most natural language processing tasks can be described via natural language instructions. Language models trained on these instructions show strong zero-shot performance on several standard datasets. However, these models even though impressive still perform poorly on a wide range of tasks outside of their respective training and evaluation sets. To address this limitation, we argue that a model should be able to keep extending its knowledge and abilities, without forgetting previous skills. In spite of the limited success of Continual Learning we show that Language Models can be continual learners. We empirically investigate the reason for this success and conclude that Continual Learning emerges from self-supervision pre-training. Our resulting model Continual-T0 (CT0) is able to learn diverse new tasks, while still maintaining good performance on previous tasks, spanning remarkably through 70 datasets in total. Finally, we show that CT0 is able to combine instructions in ways it was never trained for, demonstrating some compositionality. 3 authors · May 24, 2022