32 Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem Agentic crafting requires LLMs to operate in real-world environments over multiple turns by taking actions, observing outcomes, and iteratively refining artifacts. Despite its importance, the open-source community lacks a principled, end-to-end ecosystem to streamline agent development. We introduce the Agentic Learning Ecosystem (ALE), a foundational infrastructure that optimizes the production pipeline for agent LLMs. ALE consists of three components: ROLL, a post-training framework for weight optimization; ROCK, a sandbox environment manager for trajectory generation; and iFlow CLI, an agent framework for efficient context engineering. We release ROME (ROME is Obviously an Agentic Model), an open-source agent grounded by ALE and trained on over one million trajectories. Our approach includes data composition protocols for synthesizing complex behaviors and a novel policy optimization algorithm, Interaction-based Policy Alignment (IPA), which assigns credit over semantic interaction chunks rather than individual tokens to improve long-horizon training stability. Empirically, we evaluate ROME within a structured setting and introduce Terminal Bench Pro, a benchmark with improved scale and contamination control. ROME demonstrates strong performance across benchmarks like SWE-bench Verified and Terminal Bench, proving the effectiveness of the ALE infrastructure. 88 authors · Dec 31, 2025 1
- SkyRL-Agent: Efficient RL Training for Multi-turn LLM Agent We introduce SkyRL-Agent, a framework for efficient, multi-turn, long-horizon agent training and evaluation. It provides efficient asynchronous dispatching, lightweight tool integration, and flexible backend interoperability, enabling seamless use with existing RL frameworks such as SkyRL-train, VeRL, and Tinker. Using SkyRL-Agent, we train SA-SWE-32B, a software engineering agent trained from Qwen3-32B (24.4% Pass@1) purely with reinforcement learning. We introduce two key components: an optimized asynchronous pipeline dispatcher that achieves a 1.55x speedup over naive asynchronous batching, and a tool-enhanced training recipe leveraging an AST-based search tool to facilitate code navigation, boost rollout Pass@K, and improve training efficiency. Together, these optimizations enable SA-SWE-32B to reach 39.4% Pass@1 on SWE-Bench Verified with more than 2x cost reduction compared to prior models reaching similar performance. Despite being trained solely on SWE tasks, SA-SWE-32B generalizes effectively to other agentic tasks, including Terminal-Bench, BrowseComp-Plus, and WebArena. We further demonstrate SkyRL-Agent's extensibility through case studies on deep research, computer use, and memory agents, each trained using a different training backend. 15 authors · Nov 20, 2025
- METER-ML: A Multi-Sensor Earth Observation Benchmark for Automated Methane Source Mapping Reducing methane emissions is essential for mitigating global warming. To attribute methane emissions to their sources, a comprehensive dataset of methane source infrastructure is necessary. Recent advancements with deep learning on remotely sensed imagery have the potential to identify the locations and characteristics of methane sources, but there is a substantial lack of publicly available data to enable machine learning researchers and practitioners to build automated mapping approaches. To help fill this gap, we construct a multi-sensor dataset called METER-ML containing 86,599 georeferenced NAIP, Sentinel-1, and Sentinel-2 images in the U.S. labeled for the presence or absence of methane source facilities including concentrated animal feeding operations, coal mines, landfills, natural gas processing plants, oil refineries and petroleum terminals, and wastewater treatment plants. We experiment with a variety of models that leverage different spatial resolutions, spatial footprints, image products, and spectral bands. We find that our best model achieves an area under the precision recall curve of 0.915 for identifying concentrated animal feeding operations and 0.821 for oil refineries and petroleum terminals on an expert-labeled test set, suggesting the potential for large-scale mapping. We make METER-ML freely available at https://stanfordmlgroup.github.io/projects/meter-ml/ to support future work on automated methane source mapping. 10 authors · Jul 22, 2022