new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 31

Predicting and generating antibiotics against future pathogens with ApexOracle

Antimicrobial resistance (AMR) is escalating and outpacing current antibiotic development. Thus, discovering antibiotics effective against emerging pathogens is becoming increasingly critical. However, existing approaches cannot rapidly identify effective molecules against novel pathogens or emerging drug-resistant strains. Here, we introduce ApexOracle, an artificial intelligence (AI) model that both predicts the antibacterial potency of existing compounds and designs de novo molecules active against strains it has never encountered. Departing from models that rely solely on molecular features, ApexOracle incorporates pathogen-specific context through the integration of molecular features captured via a foundational discrete diffusion language model and a dual-embedding framework that combines genomic- and literature-derived strain representations. Across diverse bacterial species and chemical modalities, ApexOracle consistently outperformed state-of-the-art approaches in activity prediction and demonstrated reliable transferability to novel pathogens with little or no antimicrobial data. Its unified representation-generation architecture further enables the in silico creation of "new-to-nature" molecules with high predicted efficacy against priority threats. By pairing rapid activity prediction with targeted molecular generation, ApexOracle offers a scalable strategy for countering AMR and preparing for future infectious-disease outbreaks.

Graph2MDA: a multi-modal variational graph embedding model for predicting microbe-drug associations

Accumulated clinical studies show that microbes living in humans interact closely with human hosts, and get involved in modulating drug efficacy and drug toxicity. Microbes have become novel targets for the development of antibacterial agents. Therefore, screening of microbe-drug associations can benefit greatly drug research and development. With the increase of microbial genomic and pharmacological datasets, we are greatly motivated to develop an effective computational method to identify new microbe-drug associations. In this paper, we proposed a novel method, Graph2MDA, to predict microbe-drug associations by using variational graph autoencoder (VGAE). We constructed multi-modal attributed graphs based on multiple features of microbes and drugs, such as molecular structures, microbe genetic sequences, and function annotations. Taking as input the multi-modal attribute graphs, VGAE was trained to learn the informative and interpretable latent representations of each node and the whole graph, and then a deep neural network classifier was used to predict microbe-drug associations. The hyperparameter analysis and model ablation studies showed the sensitivity and robustness of our model. We evaluated our method on three independent datasets and the experimental results showed that our proposed method outperformed six existing state-of-the-art methods. We also explored the meaningness of the learned latent representations of drugs and found that the drugs show obvious clustering patterns that are significantly consistent with drug ATC classification. Moreover, we conducted case studies on two microbes and two drugs and found 75\%-95\% predicted associations have been reported in PubMed literature. Our extensive performance evaluations validated the effectiveness of our proposed method.\