Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePhysics-Learning AI Datamodel (PLAID) datasets: a collection of physics simulations for machine learning
Machine learning-based surrogate models have emerged as a powerful tool to accelerate simulation-driven scientific workflows. However, their widespread adoption is hindered by the lack of large-scale, diverse, and standardized datasets tailored to physics-based simulations. While existing initiatives provide valuable contributions, many are limited in scope-focusing on specific physics domains, relying on fragmented tooling, or adhering to overly simplistic datamodels that restrict generalization. To address these limitations, we introduce PLAID (Physics-Learning AI Datamodel), a flexible and extensible framework for representing and sharing datasets of physics simulations. PLAID defines a unified standard for describing simulation data and is accompanied by a library for creating, reading, and manipulating complex datasets across a wide range of physical use cases (gitlab.com/drti/plaid). We release six carefully crafted datasets under the PLAID standard, covering structural mechanics and computational fluid dynamics, and provide baseline benchmarks using representative learning methods. Benchmarking tools are made available on Hugging Face, enabling direct participation by the community and contribution to ongoing evaluation efforts (huggingface.co/PLAIDcompetitions).
Machine Learning for Shipwreck Segmentation from Side Scan Sonar Imagery: Dataset and Benchmark
Open-source benchmark datasets have been a critical component for advancing machine learning for robot perception in terrestrial applications. Benchmark datasets enable the widespread development of state-of-the-art machine learning methods, which require large datasets for training, validation, and thorough comparison to competing approaches. Underwater environments impose several operational challenges that hinder efforts to collect large benchmark datasets for marine robot perception. Furthermore, a low abundance of targets of interest relative to the size of the search space leads to increased time and cost required to collect useful datasets for a specific task. As a result, there is limited availability of labeled benchmark datasets for underwater applications. We present the AI4Shipwrecks dataset, which consists of 24 distinct shipwreck sites totaling 286 high-resolution labeled side scan sonar images to advance the state-of-the-art in autonomous sonar image understanding. We leverage the unique abundance of targets in Thunder Bay National Marine Sanctuary in Lake Huron, MI, to collect and compile a sonar imagery benchmark dataset through surveys with an autonomous underwater vehicle (AUV). We consulted with expert marine archaeologists for the labeling of robotically gathered data. We then leverage this dataset to perform benchmark experiments for comparison of state-of-the-art supervised segmentation methods, and we present insights on opportunities and open challenges for the field. The dataset and benchmarking tools will be released as an open-source benchmark dataset to spur innovation in machine learning for Great Lakes and ocean exploration. The dataset and accompanying software are available at https://umfieldrobotics.github.io/ai4shipwrecks/.
Multi-Head RAG: Solving Multi-Aspect Problems with LLMs
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs) by enabling the retrieval of documents into the LLM context to provide more accurate and relevant responses. Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents. Such queries occur frequently, but are challenging because the embeddings of these documents may be distant in the embedding space, making it hard to retrieve them all. This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea: leveraging activations of Transformer's multi-head attention layer, instead of the decoder layer, as keys for fetching multi-aspect documents. The driving motivation is that different attention heads can learn to capture different data aspects. Harnessing the corresponding activations results in embeddings that represent various facets of data items and queries, improving the retrieval accuracy for complex queries. We provide an evaluation methodology and metrics, synthetic datasets, and real-world use cases to demonstrate MRAG's effectiveness, showing improvements of up to 20% in relevance over standard RAG baselines. MRAG can be seamlessly integrated with existing RAG frameworks and benchmarking tools like RAGAS as well as different classes of data stores.
MatText: Do Language Models Need More than Text & Scale for Materials Modeling?
Effectively representing materials as text has the potential to leverage the vast advancements of large language models (LLMs) for discovering new materials. While LLMs have shown remarkable success in various domains, their application to materials science remains underexplored. A fundamental challenge is the lack of understanding of how to best utilize text-based representations for materials modeling. This challenge is further compounded by the absence of a comprehensive benchmark to rigorously evaluate the capabilities and limitations of these text representations in capturing the complexity of material systems. To address this gap, we propose MatText, a suite of benchmarking tools and datasets designed to systematically evaluate the performance of language models in modeling materials. MatText encompasses nine distinct text-based representations for material systems, including several novel representations. Each representation incorporates unique inductive biases that capture relevant information and integrate prior physical knowledge about materials. Additionally, MatText provides essential tools for training and benchmarking the performance of language models in the context of materials science. These tools include standardized dataset splits for each representation, probes for evaluating sensitivity to geometric factors, and tools for seamlessly converting crystal structures into text. Using MatText, we conduct an extensive analysis of the capabilities of language models in modeling materials. Our findings reveal that current language models consistently struggle to capture the geometric information crucial for materials modeling across all representations. Instead, these models tend to leverage local information, which is emphasized in some of our novel representations. Our analysis underscores MatText's ability to reveal shortcomings of text-based methods for materials design.
A Manually Annotated Image-Caption Dataset for Detecting Children in the Wild
Platforms and the law regulate digital content depicting minors (defined as individuals under 18 years of age) differently from other types of content. Given the sheer amount of content that needs to be assessed, machine learning-based automation tools are commonly used to detect content depicting minors. To our knowledge, no dataset or benchmark currently exists for detecting these identification methods in a multi-modal environment. To fill this gap, we release the Image-Caption Children in the Wild Dataset (ICCWD), an image-caption dataset aimed at benchmarking tools that detect depictions of minors. Our dataset is richer than previous child image datasets, containing images of children in a variety of contexts, including fictional depictions and partially visible bodies. ICCWD contains 10,000 image-caption pairs manually labeled to indicate the presence or absence of a child in the image. To demonstrate the possible utility of our dataset, we use it to benchmark three different detectors, including a commercial age estimation system applied to images. Our results suggest that child detection is a challenging task, with the best method achieving a 75.3% true positive rate. We hope the release of our dataset will aid in the design of better minor detection methods in a wide range of scenarios.
NerfBaselines: Consistent and Reproducible Evaluation of Novel View Synthesis Methods
Novel view synthesis is an important problem with many applications, including AR/VR, gaming, and simulations for robotics. With the recent rapid development of Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) methods, it is becoming difficult to keep track of the current state of the art (SoTA) due to methods using different evaluation protocols, codebases being difficult to install and use, and methods not generalizing well to novel 3D scenes. Our experiments support this claim by showing that tiny differences in evaluation protocols of various methods can lead to inconsistent reported metrics. To address these issues, we propose a framework called NerfBaselines, which simplifies the installation of various methods, provides consistent benchmarking tools, and ensures reproducibility. We validate our implementation experimentally by reproducing numbers reported in the original papers. To further improve the accessibility, we release a web platform where commonly used methods are compared on standard benchmarks. Web: https://jkulhanek.com/nerfbaselines
DISL: Fueling Research with A Large Dataset of Solidity Smart Contracts
The DISL dataset features a collection of 514,506 unique Solidity files that have been deployed to Ethereum mainnet. It caters to the need for a large and diverse dataset of real-world smart contracts. DISL serves as a resource for developing machine learning systems and for benchmarking software engineering tools designed for smart contracts. By aggregating every verified smart contract from Etherscan up to January 15, 2024, DISL surpasses existing datasets in size and recency.
Working Memory Capacity of ChatGPT: An Empirical Study
Working memory is a critical aspect of both human intelligence and artificial intelligence, serving as a workspace for the temporary storage and manipulation of information. In this paper, we systematically assess the working memory capacity of ChatGPT (gpt-3.5-turbo), a large language model developed by OpenAI, by examining its performance in verbal and spatial n-back tasks under various conditions. Our experiments reveal that ChatGPT experiences significant declines in performance as n increases (which necessitates more information to be stored in working memory), suggesting a limit to the working memory capacity strikingly similar to that of humans. Furthermore, we investigate the impact of different instruction strategies on ChatGPT's performance and observe that the fundamental patterns of a capacity limit persist. From our empirical findings, we propose that n-back tasks may serve as tools for benchmarking the working memory capacity of large language models and hold potential for informing future efforts aimed at enhancing AI working memory and deepening our understanding of human working memory through AI models.
MatTools: Benchmarking Large Language Models for Materials Science Tools
Large language models (LLMs) are increasingly applied to materials science questions, including literature comprehension, property prediction, materials discovery and alloy design. At the same time, a wide range of physics-based computational approaches have been developed in which materials properties can be calculated. Here, we propose a benchmark application to evaluate the proficiency of LLMs to answer materials science questions through the generation and safe execution of codes based on such physics-based computational materials science packages. MatTools is built on two complementary components: a materials simulation tool question-answer (QA) benchmark and a real-world tool-usage benchmark. We designed an automated methodology to efficiently collect real-world materials science tool-use examples. The QA benchmark, derived from the pymatgen (Python Materials Genomics) codebase and documentation, comprises 69,225 QA pairs that assess the ability of an LLM to understand materials science tools. The real-world benchmark contains 49 tasks (138 subtasks) requiring the generation of functional Python code for materials property calculations. Our evaluation of diverse LLMs yields three key insights: (1)Generalists outshine specialists;(2)AI knows AI; and (3)Simpler is better. MatTools provides a standardized framework for assessing and improving LLM capabilities for materials science tool applications, facilitating the development of more effective AI systems for materials science and general scientific research.
Benchmarking Detection Transfer Learning with Vision Transformers
Object detection is a central downstream task used to test if pre-trained network parameters confer benefits, such as improved accuracy or training speed. The complexity of object detection methods can make this benchmarking non-trivial when new architectures, such as Vision Transformer (ViT) models, arrive. These difficulties (e.g., architectural incompatibility, slow training, high memory consumption, unknown training formulae, etc.) have prevented recent studies from benchmarking detection transfer learning with standard ViT models. In this paper, we present training techniques that overcome these challenges, enabling the use of standard ViT models as the backbone of Mask R-CNN. These tools facilitate the primary goal of our study: we compare five ViT initializations, including recent state-of-the-art self-supervised learning methods, supervised initialization, and a strong random initialization baseline. Our results show that recent masking-based unsupervised learning methods may, for the first time, provide convincing transfer learning improvements on COCO, increasing box AP up to 4% (absolute) over supervised and prior self-supervised pre-training methods. Moreover, these masking-based initializations scale better, with the improvement growing as model size increases.
Tools and Benchmarks for Automated Log Parsing
Logs are imperative in the development and maintenance process of many software systems. They record detailed runtime information that allows developers and support engineers to monitor their systems and dissect anomalous behaviors and errors. The increasing scale and complexity of modern software systems, however, make the volume of logs explodes. In many cases, the traditional way of manual log inspection becomes impractical. Many recent studies, as well as industrial tools, resort to powerful text search and machine learning-based analytics solutions. Due to the unstructured nature of logs, a first crucial step is to parse log messages into structured data for subsequent analysis. In recent years, automated log parsing has been widely studied in both academia and industry, producing a series of log parsers by different techniques. To better understand the characteristics of these log parsers, in this paper, we present a comprehensive evaluation study on automated log parsing and further release the tools and benchmarks for easy reuse. More specifically, we evaluate 13 log parsers on a total of 16 log datasets spanning distributed systems, supercomputers, operating systems, mobile systems, server applications, and standalone software. We report the benchmarking results in terms of accuracy, robustness, and efficiency, which are of practical importance when deploying automated log parsing in production. We also share the success stories and lessons learned in an industrial application at Huawei. We believe that our work could serve as the basis and provide valuable guidance to future research and deployment of automated log parsing.
VerifyBench: Benchmarking Reference-based Reward Systems for Large Language Models
Large reasoning models such as OpenAI o1 and DeepSeek-R1 have achieved remarkable performance in the domain of reasoning. A key component of their training is the incorporation of verifiable rewards within reinforcement learning (RL). However, existing reward benchmarks do not evaluate reference-based reward systems, leaving researchers with limited understanding of the accuracy of verifiers used in RL. In this paper, we introduce two benchmarks, VerifyBench and VerifyBench-Hard, designed to assess the performance of reference-based reward systems. These benchmarks are constructed through meticulous data collection and curation, followed by careful human annotation to ensure high quality. Current models still show considerable room for improvement on both VerifyBench and VerifyBench-Hard, especially smaller-scale models. Furthermore, we conduct a thorough and comprehensive analysis of evaluation results, offering insights for understanding and developing reference-based reward systems. Our proposed benchmarks serve as effective tools for guiding the development of verifier accuracy and the reasoning capabilities of models trained via RL in reasoning tasks.
CausalGym: Benchmarking causal interpretability methods on linguistic tasks
Language models (LMs) have proven to be powerful tools for psycholinguistic research, but most prior work has focused on purely behavioural measures (e.g., surprisal comparisons). At the same time, research in model interpretability has begun to illuminate the abstract causal mechanisms shaping LM behavior. To help bring these strands of research closer together, we introduce CausalGym. We adapt and expand the SyntaxGym suite of tasks to benchmark the ability of interpretability methods to causally affect model behaviour. To illustrate how CausalGym can be used, we study the pythia models (14M--6.9B) and assess the causal efficacy of a wide range of interpretability methods, including linear probing and distributed alignment search (DAS). We find that DAS outperforms the other methods, and so we use it to study the learning trajectory of two difficult linguistic phenomena in pythia-1b: negative polarity item licensing and filler--gap dependencies. Our analysis shows that the mechanism implementing both of these tasks is learned in discrete stages, not gradually.
DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models
The emergence of groundbreaking large language models capable of performing complex reasoning tasks holds significant promise for addressing various scientific challenges, including those arising in complex clinical scenarios. To enable their safe and effective deployment in real-world healthcare settings, it is urgently necessary to benchmark the diagnostic capabilities of current models systematically. Given the limitations of existing medical benchmarks in evaluating advanced diagnostic reasoning, we present DiagnosisArena, a comprehensive and challenging benchmark designed to rigorously assess professional-level diagnostic competence. DiagnosisArena consists of 1,113 pairs of segmented patient cases and corresponding diagnoses, spanning 28 medical specialties, deriving from clinical case reports published in 10 top-tier medical journals. The benchmark is developed through a meticulous construction pipeline, involving multiple rounds of screening and review by both AI systems and human experts, with thorough checks conducted to prevent data leakage. Our study reveals that even the most advanced reasoning models, o3-mini, o1, and DeepSeek-R1, achieve only 45.82%, 31.09%, and 17.79% accuracy, respectively. This finding highlights a significant generalization bottleneck in current large language models when faced with clinical diagnostic reasoning challenges. Through DiagnosisArena, we aim to drive further advancements in AIs diagnostic reasoning capabilities, enabling more effective solutions for real-world clinical diagnostic challenges. We provide the benchmark and evaluation tools for further research and development https://github.com/SPIRAL-MED/DiagnosisArena.
Accelerating Data Processing and Benchmarking of AI Models for Pathology
Advances in foundation modeling have reshaped computational pathology. However, the increasing number of available models and lack of standardized benchmarks make it increasingly complex to assess their strengths, limitations, and potential for further development. To address these challenges, we introduce a new suite of software tools for whole-slide image processing, foundation model benchmarking, and curated publicly available tasks. We anticipate that these resources will promote transparency, reproducibility, and continued progress in the field.
MobileAIBench: Benchmarking LLMs and LMMs for On-Device Use Cases
The deployment of Large Language Models (LLMs) and Large Multimodal Models (LMMs) on mobile devices has gained significant attention due to the benefits of enhanced privacy, stability, and personalization. However, the hardware constraints of mobile devices necessitate the use of models with fewer parameters and model compression techniques like quantization. Currently, there is limited understanding of quantization's impact on various task performances, including LLM tasks, LMM tasks, and, critically, trust and safety. There is a lack of adequate tools for systematically testing these models on mobile devices. To address these gaps, we introduce MobileAIBench, a comprehensive benchmarking framework for evaluating mobile-optimized LLMs and LMMs. MobileAIBench assesses models across different sizes, quantization levels, and tasks, measuring latency and resource consumption on real devices. Our two-part open-source framework includes a library for running evaluations on desktops and an iOS app for on-device latency and hardware utilization measurements. Our thorough analysis aims to accelerate mobile AI research and deployment by providing insights into the performance and feasibility of deploying LLMs and LMMs on mobile platforms.
Benchmarking and Improving Detail Image Caption
Image captioning has long been regarded as a fundamental task in visual understanding. Recently, however, few large vision-language model (LVLM) research discusses model's image captioning performance because of the outdated short-caption benchmarks and unreliable evaluation metrics. In this work, we propose to benchmark detail image caption task by curating high-quality evaluation datasets annotated by human experts, GPT-4V and Gemini-1.5-Pro. We also design a more reliable caption evaluation metric called CAPTURE (CAPtion evaluation by exTracting and coUpling coRE information). CAPTURE extracts visual elements, e.g., objects, attributes and relations from captions, and then matches these elements through three stages, achieving the highest consistency with expert judgements over other rule-based or model-based caption metrics. The proposed benchmark and metric provide reliable evaluation for LVLM's detailed image captioning ability. Guided by this evaluation, we further explore to unleash LVLM's detail caption capabilities by synthesizing high-quality data through a five-stage data construction pipeline. Our pipeline only uses a given LVLM itself and other open-source tools, without any human or GPT-4V annotation in the loop. Experiments show that the proposed data construction strategy significantly improves model-generated detail caption data quality for LVLMs with leading performance, and the data quality can be further improved in a self-looping paradigm. All code and dataset will be publicly available at https://github.com/foundation-multimodal-models/CAPTURE.
BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions
Automated software engineering has been greatly empowered by the recent advances in Large Language Models (LLMs) for programming. While current benchmarks have shown that LLMs can perform various software engineering tasks like human developers, the majority of their evaluations are limited to short and self-contained algorithmic tasks. Solving challenging and practical programming tasks requires the capability of utilizing diverse function calls as tools to efficiently implement functionalities like data analysis and web development. In addition, using multiple tools to solve a task needs compositional reasoning by accurately understanding complex instructions. Fulfilling both of these characteristics can pose a great challenge for LLMs. To assess how well LLMs can solve challenging and practical programming tasks, we introduce Bench, a benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained programming tasks. To evaluate LLMs rigorously, each programming task encompasses 5.6 test cases with an average branch coverage of 99%. In addition, we propose a natural-language-oriented variant of Bench, Benchi, that automatically transforms the original docstrings into short instructions only with essential information. Our extensive evaluation of 60 LLMs shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%. The results underscore the need for further advancements in this area.
MedBrowseComp: Benchmarking Medical Deep Research and Computer Use
Large language models (LLMs) are increasingly envisioned as decision-support tools in clinical practice, yet safe clinical reasoning demands integrating heterogeneous knowledge bases -- trials, primary studies, regulatory documents, and cost data -- under strict accuracy constraints. Existing evaluations often rely on synthetic prompts, reduce the task to single-hop factoid queries, or conflate reasoning with open-ended generation, leaving their real-world utility unclear. To close this gap, we present MedBrowseComp, the first benchmark that systematically tests an agent's ability to reliably retrieve and synthesize multi-hop medical facts from live, domain-specific knowledge bases. MedBrowseComp contains more than 1,000 human-curated questions that mirror clinical scenarios where practitioners must reconcile fragmented or conflicting information to reach an up-to-date conclusion. Applying MedBrowseComp to frontier agentic systems reveals performance shortfalls as low as ten percent, exposing a critical gap between current LLM capabilities and the rigor demanded in clinical settings. MedBrowseComp therefore offers a clear testbed for reliable medical information seeking and sets concrete goals for future model and toolchain upgrades. You can visit our project page at: https://moreirap12.github.io/mbc-browse-app/
FlowBench: Revisiting and Benchmarking Workflow-Guided Planning for LLM-based Agents
LLM-based agents have emerged as promising tools, which are crafted to fulfill complex tasks by iterative planning and action. However, these agents are susceptible to undesired planning hallucinations when lacking specific knowledge for expertise-intensive tasks. To address this, preliminary attempts are made to enhance planning reliability by incorporating external workflow-related knowledge. Despite the promise, such infused knowledge is mostly disorganized and diverse in formats, lacking rigorous formalization and comprehensive comparisons. Motivated by this, we formalize different formats of workflow knowledge and present FlowBench, the first benchmark for workflow-guided planning. FlowBench covers 51 different scenarios from 6 domains, with knowledge presented in diverse formats. To assess different LLMs on FlowBench, we design a multi-tiered evaluation framework. We evaluate the efficacy of workflow knowledge across multiple formats, and the results indicate that current LLM agents need considerable improvements for satisfactory planning. We hope that our challenging benchmark can pave the way for future agent planning research.
Benchmarking Multi-modal Semantic Segmentation under Sensor Failures: Missing and Noisy Modality Robustness
Multi-modal semantic segmentation (MMSS) addresses the limitations of single-modality data by integrating complementary information across modalities. Despite notable progress, a significant gap persists between research and real-world deployment due to variability and uncertainty in multi-modal data quality. Robustness has thus become essential for practical MMSS applications. However, the absence of standardized benchmarks for evaluating robustness hinders further advancement. To address this, we first survey existing MMSS literature and categorize representative methods to provide a structured overview. We then introduce a robustness benchmark that evaluates MMSS models under three scenarios: Entire-Missing Modality (EMM), Random-Missing Modality (RMM), and Noisy Modality (NM). From a probabilistic standpoint, we model modality failure under two conditions: (1) all damaged combinations are equally probable; (2) each modality fails independently following a Bernoulli distribution. Based on these, we propose four metrics-mIoU^{Avg}_{EMM}, mIoU^{E}_{EMM}, mIoU^{Avg}_{RMM}, and mIoU^{E}_{RMM}-to assess model robustness under EMM and RMM. This work provides the first dedicated benchmark for MMSS robustness, offering new insights and tools to advance the field. Source code is available at https://github.com/Chenfei-Liao/Multi-Modal-Semantic-Segmentation-Robustness-Benchmark.
StableToolBench: Towards Stable Large-Scale Benchmarking on Tool Learning of Large Language Models
Large Language Models (LLMs) have witnessed remarkable advancements in recent years, prompting the exploration of tool learning, which integrates LLMs with external tools to address diverse real-world challenges. Assessing the capability of LLMs to utilise tools necessitates large-scale and stable benchmarks. However, previous works relied on either hand-crafted online tools with limited scale, or large-scale real online APIs suffering from instability of API status. To address this problem, we introduce StableToolBench, a benchmark evolving from ToolBench, proposing a virtual API server and stable evaluation system. The virtual API server contains a caching system and API simulators which are complementary to alleviate the change in API status. Meanwhile, the stable evaluation system designs solvable pass and win rates using GPT-4 as the automatic evaluator to eliminate the randomness during evaluation. Experimental results demonstrate the stability of StableToolBench, and further discuss the effectiveness of API simulators, the caching system, and the evaluator system.
Benchmarking Procedural Language Understanding for Low-Resource Languages: A Case Study on Turkish
Understanding procedural natural language (e.g., step-by-step instructions) is a crucial step to execution and planning. However, while there are ample corpora and downstream tasks available in English, the field lacks such resources for most languages. To address this gap, we conduct a case study on Turkish procedural texts. We first expand the number of tutorials in Turkish wikiHow from 2,000 to 52,000 using automated translation tools, where the translation quality and loyalty to the original meaning are validated by a team of experts on a random set. Then, we generate several downstream tasks on the corpus, such as linking actions, goal inference, and summarization. To tackle these tasks, we implement strong baseline models via fine-tuning large language-specific models such as TR-BART and BERTurk, as well as multilingual models such as mBART, mT5, and XLM. We find that language-specific models consistently outperform their multilingual models by a significant margin across most procedural language understanding (PLU) tasks. We release our corpus, downstream tasks and the baseline models with https://github.com/ GGLAB-KU/turkish-plu.
Benchmarking the Pedagogical Knowledge of Large Language Models
Benchmarks like Massive Multitask Language Understanding (MMLU) have played a pivotal role in evaluating AI's knowledge and abilities across diverse domains. However, existing benchmarks predominantly focus on content knowledge, leaving a critical gap in assessing models' understanding of pedagogy - the method and practice of teaching. This paper introduces The Pedagogy Benchmark, a novel dataset designed to evaluate large language models on their Cross-Domain Pedagogical Knowledge (CDPK) and Special Education Needs and Disability (SEND) pedagogical knowledge. These benchmarks are built on a carefully curated set of questions sourced from professional development exams for teachers, which cover a range of pedagogical subdomains such as teaching strategies and assessment methods. Here we outline the methodology and development of these benchmarks. We report results for 97 models, with accuracies spanning a range from 28% to 89% on the pedagogical knowledge questions. We consider the relationship between cost and accuracy and chart the progression of the Pareto value frontier over time. We provide online leaderboards at https://rebrand.ly/pedagogy which are updated with new models and allow interactive exploration and filtering based on various model properties, such as cost per token and open-vs-closed weights, as well as looking at performance in different subjects. LLMs and generative AI have tremendous potential to influence education and help to address the global learning crisis. Education-focused benchmarks are crucial to measure models' capacities to understand pedagogical concepts, respond appropriately to learners' needs, and support effective teaching practices across diverse contexts. They are needed for informing the responsible and evidence-based deployment of LLMs and LLM-based tools in educational settings, and for guiding both development and policy decisions.
CSR-Bench: Benchmarking LLM Agents in Deployment of Computer Science Research Repositories
The increasing complexity of computer science research projects demands more effective tools for deploying code repositories. Large Language Models (LLMs), such as Anthropic Claude and Meta Llama, have demonstrated significant advancements across various fields of computer science research, including the automation of diverse software engineering tasks. To evaluate the effectiveness of LLMs in handling complex code development tasks of research projects, particularly for NLP/CV/AI/ML/DM topics, we introduce CSR-Bench, a benchmark for Computer Science Research projects. This benchmark assesses LLMs from various aspects including accuracy, efficiency, and deployment script quality, aiming to explore their potential in conducting computer science research autonomously. We also introduce a novel framework, CSR-Agents, that utilizes multiple LLM agents to automate the deployment of GitHub code repositories of computer science research projects. Specifically, by checking instructions from markdown files and interpreting repository structures, the model generates and iteratively improves bash commands that set up the experimental environments and deploy the code to conduct research tasks. Preliminary results from CSR-Bench indicate that LLM agents can significantly enhance the workflow of repository deployment, thereby boosting developer productivity and improving the management of developmental workflows.
Simulation-Based Benchmarking of Reinforcement Learning Agents for Personalized Retail Promotions
The development of open benchmarking platforms could greatly accelerate the adoption of AI agents in retail. This paper presents comprehensive simulations of customer shopping behaviors for the purpose of benchmarking reinforcement learning (RL) agents that optimize coupon targeting. The difficulty of this learning problem is largely driven by the sparsity of customer purchase events. We trained agents using offline batch data comprising summarized customer purchase histories to help mitigate this effect. Our experiments revealed that contextual bandit and deep RL methods that are less prone to over-fitting the sparse reward distributions significantly outperform static policies. This study offers a practical framework for simulating AI agents that optimize the entire retail customer journey. It aims to inspire the further development of simulation tools for retail AI systems.
Benchmarking Large Language Models for Multi-Language Software Vulnerability Detection
Recent advancements in generative AI have led to the widespread adoption of large language models (LLMs) in software engineering, addressing numerous long-standing challenges. However, a comprehensive study examining the capabilities of LLMs in software vulnerability detection (SVD), a crucial aspect of software security, is currently lacking. Existing research primarily focuses on evaluating LLMs using C/C++ datasets. It typically explores only one or two strategies among prompt engineering, instruction tuning, and sequence classification fine-tuning for open-source LLMs. Consequently, there is a significant knowledge gap regarding the effectiveness of diverse LLMs in detecting vulnerabilities across various programming languages. To address this knowledge gap, we present a comprehensive empirical study evaluating the performance of LLMs on the SVD task. We have compiled a comprehensive dataset comprising 8,260 vulnerable functions in Python, 7,505 in Java, and 28,983 in JavaScript. We assess five open-source LLMs using multiple approaches, including prompt engineering, instruction tuning, and sequence classification fine-tuning. These LLMs are benchmarked against five fine-tuned small language models and two open-source static application security testing tools. Furthermore, we explore two avenues to improve LLM performance on SVD: a) Data perspective: Retraining models using downsampled balanced datasets. b) Model perspective: Investigating ensemble learning methods that combine predictions from multiple LLMs. Our comprehensive experiments demonstrate that SVD remains a challenging task for LLMs. This study provides a thorough understanding of the role of LLMs in SVD and offers practical insights for future advancements in leveraging generative AI to enhance software security practices.
DrafterBench: Benchmarking Large Language Models for Tasks Automation in Civil Engineering
Large Language Model (LLM) agents have shown great potential for solving real-world problems and promise to be a solution for tasks automation in industry. However, more benchmarks are needed to systematically evaluate automation agents from an industrial perspective, for example, in Civil Engineering. Therefore, we propose DrafterBench for the comprehensive evaluation of LLM agents in the context of technical drawing revision, a representation task in civil engineering. DrafterBench contains twelve types of tasks summarized from real-world drawing files, with 46 customized functions/tools and 1920 tasks in total. DrafterBench is an open-source benchmark to rigorously test AI agents' proficiency in interpreting intricate and long-context instructions, leveraging prior knowledge, and adapting to dynamic instruction quality via implicit policy awareness. The toolkit comprehensively assesses distinct capabilities in structured data comprehension, function execution, instruction following, and critical reasoning. DrafterBench offers detailed analysis of task accuracy and error statistics, aiming to provide deeper insight into agent capabilities and identify improvement targets for integrating LLMs in engineering applications. Our benchmark is available at https://github.com/Eason-Li-AIS/DrafterBench, with the test set hosted at https://huggingface.co/datasets/Eason666/DrafterBench.
Retrieval Models Aren't Tool-Savvy: Benchmarking Tool Retrieval for Large Language Models
Tool learning aims to augment large language models (LLMs) with diverse tools, enabling them to act as agents for solving practical tasks. Due to the limited context length of tool-using LLMs, adopting information retrieval (IR) models to select useful tools from large toolsets is a critical initial step. However, the performance of IR models in tool retrieval tasks remains underexplored and unclear. Most tool-use benchmarks simplify this step by manually pre-annotating a small set of relevant tools for each task, which is far from the real-world scenarios. In this paper, we propose ToolRet, a heterogeneous tool retrieval benchmark comprising 7.6k diverse retrieval tasks, and a corpus of 43k tools, collected from existing datasets. We benchmark six types of models on ToolRet. Surprisingly, even the models with strong performance in conventional IR benchmarks, exhibit poor performance on ToolRet. This low retrieval quality degrades the task pass rate of tool-use LLMs. As a further step, we contribute a large-scale training dataset with over 200k instances, which substantially optimizes the tool retrieval ability of IR models.
AQuA: A Benchmarking Tool for Label Quality Assessment
Machine learning (ML) models are only as good as the data they are trained on. But recent studies have found datasets widely used to train and evaluate ML models, e.g. ImageNet, to have pervasive labeling errors. Erroneous labels on the train set hurt ML models' ability to generalize, and they impact evaluation and model selection using the test set. Consequently, learning in the presence of labeling errors is an active area of research, yet this field lacks a comprehensive benchmark to evaluate these methods. Most of these methods are evaluated on a few computer vision datasets with significant variance in the experimental protocols. With such a large pool of methods and inconsistent evaluation, it is also unclear how ML practitioners can choose the right models to assess label quality in their data. To this end, we propose a benchmarking environment AQuA to rigorously evaluate methods that enable machine learning in the presence of label noise. We also introduce a design space to delineate concrete design choices of label error detection models. We hope that our proposed design space and benchmark enable practitioners to choose the right tools to improve their label quality and that our benchmark enables objective and rigorous evaluation of machine learning tools facing mislabeled data.
Automatic benchmarking of large multimodal models via iterative experiment programming
Assessing the capabilities of large multimodal models (LMMs) often requires the creation of ad-hoc evaluations. Currently, building new benchmarks requires tremendous amounts of manual work for each specific analysis. This makes the evaluation process tedious and costly. In this paper, we present APEx, Automatic Programming of Experiments, the first framework for automatic benchmarking of LMMs. Given a research question expressed in natural language, APEx leverages a large language model (LLM) and a library of pre-specified tools to generate a set of experiments for the model at hand, and progressively compile a scientific report. The report drives the testing procedure: based on the current status of the investigation, APEx chooses which experiments to perform and whether the results are sufficient to draw conclusions. Finally, the LLM refines the report, presenting the results to the user in natural language. Thanks to its modularity, our framework is flexible and extensible as new tools become available. Empirically, APEx reproduces the findings of existing studies while allowing for arbitrary analyses and hypothesis testing.
Benchmarking Label Noise in Instance Segmentation: Spatial Noise Matters
Obtaining accurate labels for instance segmentation is particularly challenging due to the complex nature of the task. Each image necessitates multiple annotations, encompassing not only the object's class but also its precise spatial boundaries. These requirements elevate the likelihood of errors and inconsistencies in both manual and automated annotation processes. By simulating different noise conditions, we provide a realistic scenario for assessing the robustness and generalization capabilities of instance segmentation models in different segmentation tasks, introducing COCO-N and Cityscapes-N. We also propose a benchmark for weakly annotation noise, dubbed COCO-WAN, which utilizes foundation models and weak annotations to simulate semi-automated annotation tools and their noisy labels. This study sheds light on the quality of segmentation masks produced by various models and challenges the efficacy of popular methods designed to address learning with label noise.
EditVal: Benchmarking Diffusion Based Text-Guided Image Editing Methods
A plethora of text-guided image editing methods have recently been developed by leveraging the impressive capabilities of large-scale diffusion-based generative models such as Imagen and Stable Diffusion. A standardized evaluation protocol, however, does not exist to compare methods across different types of fine-grained edits. To address this gap, we introduce EditVal, a standardized benchmark for quantitatively evaluating text-guided image editing methods. EditVal consists of a curated dataset of images, a set of editable attributes for each image drawn from 13 possible edit types, and an automated evaluation pipeline that uses pre-trained vision-language models to assess the fidelity of generated images for each edit type. We use EditVal to benchmark 8 cutting-edge diffusion-based editing methods including SINE, Imagic and Instruct-Pix2Pix. We complement this with a large-scale human study where we show that EditVall's automated evaluation pipeline is strongly correlated with human-preferences for the edit types we considered. From both the human study and automated evaluation, we find that: (i) Instruct-Pix2Pix, Null-Text and SINE are the top-performing methods averaged across different edit types, however {\it only} Instruct-Pix2Pix and Null-Text are able to preserve original image properties; (ii) Most of the editing methods fail at edits involving spatial operations (e.g., changing the position of an object). (iii) There is no `winner' method which ranks the best individually across a range of different edit types. We hope that our benchmark can pave the way to developing more reliable text-guided image editing tools in the future. We will publicly release EditVal, and all associated code and human-study templates to support these research directions in https://deep-ml-research.github.io/editval/.
Benchmarking emergency department triage prediction models with machine learning and large public electronic health records
The demand for emergency department (ED) services is increasing across the globe, particularly during the current COVID-19 pandemic. Clinical triage and risk assessment have become increasingly challenging due to the shortage of medical resources and the strain on hospital infrastructure caused by the pandemic. As a result of the widespread use of electronic health records (EHRs), we now have access to a vast amount of clinical data, which allows us to develop predictive models and decision support systems to address these challenges. To date, however, there are no widely accepted benchmark ED triage prediction models based on large-scale public EHR data. An open-source benchmarking platform would streamline research workflows by eliminating cumbersome data preprocessing, and facilitate comparisons among different studies and methodologies. In this paper, based on the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) database, we developed a publicly available benchmark suite for ED triage predictive models and created a benchmark dataset that contains over 400,000 ED visits from 2011 to 2019. We introduced three ED-based outcomes (hospitalization, critical outcomes, and 72-hour ED reattendance) and implemented a variety of popular methodologies, ranging from machine learning methods to clinical scoring systems. We evaluated and compared the performance of these methods against benchmark tasks. Our codes are open-source, allowing anyone with MIMIC-IV-ED data access to perform the same steps in data processing, benchmark model building, and experiments. This study provides future researchers with insights, suggestions, and protocols for managing raw data and developing risk triaging tools for emergency care.
Benchmarking the Spectrum of Agent Capabilities
Evaluating the general abilities of intelligent agents requires complex simulation environments. Existing benchmarks typically evaluate only one narrow task per environment, requiring researchers to perform expensive training runs on many different environments. We introduce Crafter, an open world survival game with visual inputs that evaluates a wide range of general abilities within a single environment. Agents either learn from the provided reward signal or through intrinsic objectives and are evaluated by semantically meaningful achievements that can be unlocked during each episode, such as discovering resources and crafting tools. Consistently unlocking all achievements requires strong generalization, deep exploration, and long-term reasoning. We experimentally verify that Crafter is of appropriate difficulty to drive future research and provide baselines scores of reward agents and unsupervised agents. Furthermore, we observe sophisticated behaviors emerging from maximizing the reward signal, such as building tunnel systems, bridges, houses, and plantations. We hope that Crafter will accelerate research progress by quickly evaluating a wide spectrum of abilities.
TaskBench: Benchmarking Large Language Models for Task Automation
Recently, the incredible progress of large language models (LLMs) has ignited the spark of task automation, which decomposes the complex tasks described by user instructions into sub-tasks, and invokes external tools to execute them, and plays a central role in autonomous agents. However, there lacks a systematic and standardized benchmark to foster the development of LLMs in task automation. To this end, we introduce TaskBench to evaluate the capability of LLMs in task automation. Specifically, task automation can be formulated into three critical stages: task decomposition, tool invocation, and parameter prediction to fulfill user intent. This complexity makes data collection and evaluation more challenging compared to common NLP tasks. To generate high-quality evaluation datasets, we introduce the concept of Tool Graph to represent the decomposed tasks in user intent, and adopt a back-instruct method to simulate user instruction and annotations. Furthermore, we propose TaskEval to evaluate the capability of LLMs from different aspects, including task decomposition, tool invocation, and parameter prediction. Experimental results demonstrate that TaskBench can effectively reflects the capability of LLMs in task automation. Benefiting from the mixture of automated data construction and human verification, TaskBench achieves a high consistency compared to the human evaluation, which can be utilized as a comprehensive and faithful benchmark for LLM-based autonomous agents.
NbBench: Benchmarking Language Models for Comprehensive Nanobody Tasks
Nanobodies, single-domain antibody fragments derived from camelid heavy-chain-only antibodies, exhibit unique advantages such as compact size, high stability, and strong binding affinity, making them valuable tools in therapeutics and diagnostics. While recent advances in pretrained protein and antibody language models (PPLMs and PALMs) have greatly enhanced biomolecular understanding, nanobody-specific modeling remains underexplored and lacks a unified benchmark. To address this gap, we introduce NbBench, the first comprehensive benchmark suite for nanobody representation learning. Spanning eight biologically meaningful tasks across nine curated datasets, NbBench encompasses structure annotation, binding prediction, and developability assessment. We systematically evaluate eleven representative models--including general-purpose protein LMs, antibody-specific LMs, and nanobody-specific LMs--in a frozen setting. Our analysis reveals that antibody language models excel in antigen-related tasks, while performance on regression tasks such as thermostability and affinity remains challenging across all models. Notably, no single model consistently outperforms others across all tasks. By standardizing datasets, task definitions, and evaluation protocols, NbBench offers a reproducible foundation for assessing and advancing nanobody modeling.
WebCanvas: Benchmarking Web Agents in Online Environments
For web agents to be practically useful, they must adapt to the continuously evolving web environment characterized by frequent updates to user interfaces and content. However, most existing benchmarks only capture the static aspects of the web. To bridge this gap, we introduce WebCanvas, an innovative online evaluation framework for web agents that effectively addresses the dynamic nature of web interactions. WebCanvas contains three main components to facilitate realistic assessments: (1) A novel evaluation metric which reliably capture critical intermediate actions or states necessary for task completions while disregarding noise caused by insignificant events or changed web-elements. (2) A benchmark dataset called Mind2Web-Live, a refined version of original Mind2Web static dataset containing 542 tasks with 2439 intermediate evaluation states; (3) Lightweight and generalizable annotation tools and testing pipelines that enables the community to collect and maintain the high-quality, up-to-date dataset. Building on WebCanvas, we open-source an agent framework with extensible modules for reasoning, providing a foundation for the community to conduct online inference and evaluations. Our best-performing agent achieves a task success rate of 23.1% and a task completion rate of 48.8% on the Mind2Web-Live test set. Additionally, we analyze the performance discrepancies across various websites, domains, and experimental environments. We encourage the community to contribute further insights on online agent evaluation, thereby advancing this field of research.
What Are Tools Anyway? A Survey from the Language Model Perspective
Language models (LMs) are powerful yet mostly for text generation tasks. Tools have substantially enhanced their performance for tasks that require complex skills. However, many works adopt the term "tool" in different ways, raising the question: What is a tool anyway? Subsequently, where and how do tools help LMs? In this survey, we provide a unified definition of tools as external programs used by LMs, and perform a systematic review of LM tooling scenarios and approaches. Grounded on this review, we empirically study the efficiency of various tooling methods by measuring their required compute and performance gains on various benchmarks, and highlight some challenges and potential future research in the field.
$\text{R}^2$-Bench: Benchmarking the Robustness of Referring Perception Models under Perturbations
Referring perception, which aims at grounding visual objects with multimodal referring guidance, is essential for bridging the gap between humans, who provide instructions, and the environment where intelligent systems perceive. Despite progress in this field, the robustness of referring perception models (RPMs) against disruptive perturbations is not well explored. This work thoroughly assesses the resilience of RPMs against various perturbations in both general and specific contexts. Recognizing the complex nature of referring perception tasks, we present a comprehensive taxonomy of perturbations, and then develop a versatile toolbox for synthesizing and evaluating the effects of composite disturbances. Employing this toolbox, we construct R^2-Bench, a benchmark for assessing the Robustness of Referring perception models under noisy conditions across five key tasks. Moreover, we propose the R^2-Agent, an LLM-based agent that simplifies and automates model evaluation via natural language instructions. Our investigation uncovers the vulnerabilities of current RPMs to various perturbations and provides tools for assessing model robustness, potentially promoting the safe and resilient integration of intelligent systems into complex real-world scenarios.
GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
Evaluation in machine learning is usually informed by past choices, for example which datasets or metrics to use. This standardization enables the comparison on equal footing using leaderboards, but the evaluation choices become sub-optimal as better alternatives arise. This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims. To make following best model evaluation practices easier, we introduce GEMv2. The new version of the Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers to benefit from each others work. GEMv2 supports 40 documented datasets in 51 languages. Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark.
TransBench: Benchmarking Machine Translation for Industrial-Scale Applications
Machine translation (MT) has become indispensable for cross-border communication in globalized industries like e-commerce, finance, and legal services, with recent advancements in large language models (LLMs) significantly enhancing translation quality. However, applying general-purpose MT models to industrial scenarios reveals critical limitations due to domain-specific terminology, cultural nuances, and stylistic conventions absent in generic benchmarks. Existing evaluation frameworks inadequately assess performance in specialized contexts, creating a gap between academic benchmarks and real-world efficacy. To address this, we propose a three-level translation capability framework: (1) Basic Linguistic Competence, (2) Domain-Specific Proficiency, and (3) Cultural Adaptation, emphasizing the need for holistic evaluation across these dimensions. We introduce TransBench, a benchmark tailored for industrial MT, initially targeting international e-commerce with 17,000 professionally translated sentences spanning 4 main scenarios and 33 language pairs. TransBench integrates traditional metrics (BLEU, TER) with Marco-MOS, a domain-specific evaluation model, and provides guidelines for reproducible benchmark construction. Our contributions include: (1) a structured framework for industrial MT evaluation, (2) the first publicly available benchmark for e-commerce translation, (3) novel metrics probing multi-level translation quality, and (4) open-sourced evaluation tools. This work bridges the evaluation gap, enabling researchers and practitioners to systematically assess and enhance MT systems for industry-specific needs.
API-BLEND: A Comprehensive Corpora for Training and Benchmarking API LLMs
There is a growing need for Large Language Models (LLMs) to effectively use tools and external Application Programming Interfaces (APIs) to plan and complete tasks. As such, there is tremendous interest in methods that can acquire sufficient quantities of train and test data that involve calls to tools / APIs. Two lines of research have emerged as the predominant strategies for addressing this challenge. The first has focused on synthetic data generation techniques, while the second has involved curating task-adjacent datasets which can be transformed into API / Tool-based tasks. In this paper, we focus on the task of identifying, curating, and transforming existing datasets and, in turn, introduce API-BLEND, a large corpora for training and systematic testing of tool-augmented LLMs. The datasets mimic real-world scenarios involving API-tasks such as API / tool detection, slot filling, and sequencing of the detected APIs. We demonstrate the utility of the API-BLEND dataset for both training and benchmarking purposes.
NATURAL PLAN: Benchmarking LLMs on Natural Language Planning
We introduce NATURAL PLAN, a realistic planning benchmark in natural language containing 3 key tasks: Trip Planning, Meeting Planning, and Calendar Scheduling. We focus our evaluation on the planning capabilities of LLMs with full information on the task, by providing outputs from tools such as Google Flights, Google Maps, and Google Calendar as contexts to the models. This eliminates the need for a tool-use environment for evaluating LLMs on Planning. We observe that NATURAL PLAN is a challenging benchmark for state of the art models. For example, in Trip Planning, GPT-4 and Gemini 1.5 Pro could only achieve 31.1% and 34.8% solve rate respectively. We find that model performance drops drastically as the complexity of the problem increases: all models perform below 5% when there are 10 cities, highlighting a significant gap in planning in natural language for SoTA LLMs. We also conduct extensive ablation studies on NATURAL PLAN to further shed light on the (in)effectiveness of approaches such as self-correction, few-shot generalization, and in-context planning with long-contexts on improving LLM planning.
PL-Guard: Benchmarking Language Model Safety for Polish
Despite increasing efforts to ensure the safety of large language models (LLMs), most existing safety assessments and moderation tools remain heavily biased toward English and other high-resource languages, leaving majority of global languages underexamined. To address this gap, we introduce a manually annotated benchmark dataset for language model safety classification in Polish. We also create adversarially perturbed variants of these samples designed to challenge model robustness. We conduct a series of experiments to evaluate LLM-based and classifier-based models of varying sizes and architectures. Specifically, we fine-tune three models: Llama-Guard-3-8B, a HerBERT-based classifier (a Polish BERT derivative), and PLLuM, a Polish-adapted Llama-8B model. We train these models using different combinations of annotated data and evaluate their performance, comparing it against publicly available guard models. Results demonstrate that the HerBERT-based classifier achieves the highest overall performance, particularly under adversarial conditions.
Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios
The recent trend of using Large Language Models (LLMs) as intelligent agents in real-world applications underscores the necessity for comprehensive evaluations of their capabilities, particularly in complex scenarios involving planning, creating, and using tools. However, existing benchmarks typically focus on simple synthesized queries that do not reflect real-world complexity, thereby offering limited perspectives in evaluating tool utilization. To address this issue, we present UltraTool, a novel benchmark designed to improve and evaluate LLMs' ability in tool utilization within real-world scenarios. UltraTool focuses on the entire process of using tools - from planning and creating to applying them in complex tasks. It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving. A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage and simplifies the task solving by mapping out the intermediate steps. Thus, unlike previous work, it eliminates the restriction of pre-defined toolset during planning. Through extensive experiments on various LLMs, we offer novel insights into the evaluation of capabilities of LLMs in tool utilization, thereby contributing a fresh perspective to this rapidly evolving field. The benchmark is publicly available at https://github.com/JoeYing1019/UltraTool.
Multiphysics Bench: Benchmarking and Investigating Scientific Machine Learning for Multiphysics PDEs
Solving partial differential equations (PDEs) with machine learning has recently attracted great attention, as PDEs are fundamental tools for modeling real-world systems that range from fundamental physical science to advanced engineering disciplines. Most real-world physical systems across various disciplines are actually involved in multiple coupled physical fields rather than a single field. However, previous machine learning studies mainly focused on solving single-field problems, but overlooked the importance and characteristics of multiphysics problems in real world. Multiphysics PDEs typically entail multiple strongly coupled variables, thereby introducing additional complexity and challenges, such as inter-field coupling. Both benchmarking and solving multiphysics problems with machine learning remain largely unexamined. To identify and address the emerging challenges in multiphysics problems, we mainly made three contributions in this work. First, we collect the first general multiphysics dataset, the Multiphysics Bench, that focuses on multiphysics PDE solving with machine learning. Multiphysics Bench is also the most comprehensive PDE dataset to date, featuring the broadest range of coupling types, the greatest diversity of PDE formulations, and the largest dataset scale. Second, we conduct the first systematic investigation on multiple representative learning-based PDE solvers, such as PINNs, FNO, DeepONet, and DiffusionPDE solvers, on multiphysics problems. Unfortunately, naively applying these existing solvers usually show very poor performance for solving multiphysics. Third, through extensive experiments and discussions, we report multiple insights and a bag of useful tricks for solving multiphysics with machine learning, motivating future directions in the study and simulation of complex, coupled physical systems.
Agent Security Bench (ASB): Formalizing and Benchmarking Attacks and Defenses in LLM-based Agents
Although LLM-based agents, powered by Large Language Models (LLMs), can use external tools and memory mechanisms to solve complex real-world tasks, they may also introduce critical security vulnerabilities. However, the existing literature does not comprehensively evaluate attacks and defenses against LLM-based agents. To address this, we introduce Agent Security Bench (ASB), a comprehensive framework designed to formalize, benchmark, and evaluate the attacks and defenses of LLM-based agents, including 10 scenarios (e.g., e-commerce, autonomous driving, finance), 10 agents targeting the scenarios, over 400 tools, 23 different types of attack/defense methods, and 8 evaluation metrics. Based on ASB, we benchmark 10 prompt injection attacks, a memory poisoning attack, a novel Plan-of-Thought backdoor attack, a mixed attack, and 10 corresponding defenses across 13 LLM backbones with nearly 90,000 testing cases in total. Our benchmark results reveal critical vulnerabilities in different stages of agent operation, including system prompt, user prompt handling, tool usage, and memory retrieval, with the highest average attack success rate of 84.30\%, but limited effectiveness shown in current defenses, unveiling important works to be done in terms of agent security for the community. Our code can be found at https://github.com/agiresearch/ASB.
Healthy LLMs? Benchmarking LLM Knowledge of UK Government Public Health Information
As Large Language Models (LLMs) become widely accessible, a detailed understanding of their knowledge within specific domains becomes necessary for successful real world use. This is particularly critical in public health, where failure to retrieve relevant, accurate, and current information could significantly impact UK residents. However, currently little is known about LLM knowledge of UK Government public health information. To address this issue, this paper introduces a new benchmark, PubHealthBench, with over 8000 questions for evaluating LLMs' Multiple Choice Question Answering (MCQA) and free form responses to public health queries, created via an automated pipeline. We also release a new dataset of the extracted UK Government public health guidance documents used as source text for PubHealthBench. Assessing 24 LLMs on PubHealthBench we find the latest private LLMs (GPT-4.5, GPT-4.1 and o1) have a high degree of knowledge, achieving >90% in the MCQA setup, and outperform humans with cursory search engine use. However, in the free form setup we see lower performance with no model scoring >75%. Therefore, whilst there are promising signs that state of the art (SOTA) LLMs are an increasingly accurate source of public health information, additional safeguards or tools may still be needed when providing free form responses on public health topics.
Interpretable graph-based models on multimodal biomedical data integration: A technical review and benchmarking
Integrating heterogeneous biomedical data including imaging, omics, and clinical records supports accurate diagnosis and personalised care. Graph-based models fuse such non-Euclidean data by capturing spatial and relational structure, yet clinical uptake requires regulator-ready interpretability. We present the first technical survey of interpretable graph based models for multimodal biomedical data, covering 26 studies published between Jan 2019 and Sep 2024. Most target disease classification, notably cancer and rely on static graphs from simple similarity measures, while graph-native explainers are rare; post-hoc methods adapted from non-graph domains such as gradient saliency, and SHAP predominate. We group existing approaches into four interpretability families, outline trends such as graph-in-graph hierarchies, knowledge-graph edges, and dynamic topology learning, and perform a practical benchmark. Using an Alzheimer disease cohort, we compare Sensitivity Analysis, Gradient Saliency, SHAP and Graph Masking. SHAP and Sensitivity Analysis recover the broadest set of known AD pathways and Gene-Ontology terms, whereas Gradient Saliency and Graph Masking surface complementary metabolic and transport signatures. Permutation tests show all four beat random gene sets, but with distinct trade-offs: SHAP and Graph Masking offer deeper biology at higher compute cost, while Gradient Saliency and Sensitivity Analysis are quicker though coarser. We also provide a step-by-step flowchart covering graph construction, explainer choice and resource budgeting to help researchers balance transparency and performance. This review synthesises the state of interpretable graph learning for multimodal medicine, benchmarks leading techniques, and charts future directions, from advanced XAI tools to under-studied diseases, serving as a concise reference for method developers and translational scientists.
Is Your Paper Being Reviewed by an LLM? Benchmarking AI Text Detection in Peer Review
Peer review is a critical process for ensuring the integrity of published scientific research. Confidence in this process is predicated on the assumption that experts in the relevant domain give careful consideration to the merits of manuscripts which are submitted for publication. With the recent rapid advancements in large language models (LLMs), a new risk to the peer review process is that negligent reviewers will rely on LLMs to perform the often time consuming process of reviewing a paper. However, there is a lack of existing resources for benchmarking the detectability of AI text in the domain of peer review. To address this deficiency, we introduce a comprehensive dataset containing a total of 788,984 AI-written peer reviews paired with corresponding human reviews, covering 8 years of papers submitted to each of two leading AI research conferences (ICLR and NeurIPS). We use this new resource to evaluate the ability of 18 existing AI text detection algorithms to distinguish between peer reviews fully written by humans and different state-of-the-art LLMs. Additionally, we explore a context-aware detection method called Anchor, which leverages manuscript content to detect AI-generated reviews, and analyze the sensitivity of detection models to LLM-assisted editing of human-written text. Our work reveals the difficulty of identifying AI-generated text at the individual peer review level, highlighting the urgent need for new tools and methods to detect this unethical use of generative AI. Our dataset is publicly available at: https://huggingface.co/datasets/IntelLabs/AI-Peer-Review-Detection-Benchmark.
Good at captioning, bad at counting: Benchmarking GPT-4V on Earth observation data
Large Vision-Language Models (VLMs) have demonstrated impressive performance on complex tasks involving visual input with natural language instructions. However, it remains unclear to what extent capabilities on natural images transfer to Earth observation (EO) data, which are predominantly satellite and aerial images less common in VLM training data. In this work, we propose a comprehensive benchmark to gauge the progress of VLMs toward being useful tools for EO data by assessing their abilities on scene understanding, localization and counting, and change detection tasks. Motivated by real-world applications, our benchmark includes scenarios like urban monitoring, disaster relief, land use, and conservation. We discover that, although state-of-the-art VLMs like GPT-4V possess extensive world knowledge that leads to strong performance on open-ended tasks like location understanding and image captioning, their poor spatial reasoning limits usefulness on object localization and counting tasks. Our benchmark will be made publicly available at https://vleo.danielz.ch/ and on Hugging Face at https://huggingface.co/collections/mit-ei/vleo-benchmark-datasets-65b789b0466555489cce0d70 for easy model evaluation.
Paddy Doctor: A Visual Image Dataset for Automated Paddy Disease Classification and Benchmarking
One of the critical biotic stress factors paddy farmers face is diseases caused by bacteria, fungi, and other organisms. These diseases affect plants' health severely and lead to significant crop loss. Most of these diseases can be identified by regularly observing the leaves and stems under expert supervision. In a country with vast agricultural regions and limited crop protection experts, manual identification of paddy diseases is challenging. Thus, to add a solution to this problem, it is necessary to automate the disease identification process and provide easily accessible decision support tools to enable effective crop protection measures. However, the lack of availability of public datasets with detailed disease information limits the practical implementation of accurate disease detection systems. This paper presents Paddy Doctor, a visual image dataset for identifying paddy diseases. Our dataset contains 16,225 annotated paddy leaf images across 13 classes (12 diseases and normal leaf). We benchmarked the Paddy Doctor dataset using a Convolutional Neural Network (CNN) and four transfer learning based models (VGG16, MobileNet, Xception, and ResNet34). The experimental results showed that ResNet34 achieved the highest F1-score of 97.50%. We release our dataset and reproducible code in the open source for community use.
LUMA: A Benchmark Dataset for Learning from Uncertain and Multimodal Data
Multimodal Deep Learning enhances decision-making by integrating diverse information sources, such as texts, images, audio, and videos. To develop trustworthy multimodal approaches, it is essential to understand how uncertainty impacts these models. We introduce LUMA, a unique benchmark dataset, featuring audio, image, and textual data from 50 classes, for learning from uncertain and multimodal data. It extends the well-known CIFAR 10/100 dataset with audio samples extracted from three audio corpora, and text data generated using the Gemma-7B Large Language Model (LLM). The LUMA dataset enables the controlled injection of varying types and degrees of uncertainty to achieve and tailor specific experiments and benchmarking initiatives. LUMA is also available as a Python package including the functions for generating multiple variants of the dataset with controlling the diversity of the data, the amount of noise for each modality, and adding out-of-distribution samples. A baseline pre-trained model is also provided alongside three uncertainty quantification methods: Monte-Carlo Dropout, Deep Ensemble, and Reliable Conflictive Multi-View Learning. This comprehensive dataset and its tools are intended to promote and support the development and benchmarking of trustworthy and robust multimodal deep learning approaches.
LEAF: A Benchmark for Federated Settings
Modern federated networks, such as those comprised of wearable devices, mobile phones, or autonomous vehicles, generate massive amounts of data each day. This wealth of data can help to learn models that can improve the user experience on each device. However, the scale and heterogeneity of federated data presents new challenges in research areas such as federated learning, meta-learning, and multi-task learning. As the machine learning community begins to tackle these challenges, we are at a critical time to ensure that developments made in these areas are grounded with realistic benchmarks. To this end, we propose LEAF, a modular benchmarking framework for learning in federated settings. LEAF includes a suite of open-source federated datasets, a rigorous evaluation framework, and a set of reference implementations, all geared towards capturing the obstacles and intricacies of practical federated environments.
Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models
Text-to-image models encounter safety issues, including concerns related to copyright and Not-Safe-For-Work (NSFW) content. Despite several methods have been proposed for erasing inappropriate concepts from diffusion models, they often exhibit incomplete erasure, consume a lot of computing resources, and inadvertently damage generation ability. In this work, we introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning. Specifically, RECE efficiently leverages a closed-form solution to derive new target embeddings, which are capable of regenerating erased concepts within the unlearned model. To mitigate inappropriate content potentially represented by derived embeddings, RECE further aligns them with harmless concepts in cross-attention layers. The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts. Besides, to preserve the model's generation ability, RECE introduces an additional regularization term during the derivation process, resulting in minimizing the impact on unrelated concepts during the erasure process. All the processes above are in closed-form, guaranteeing extremely efficient erasure in only 3 seconds. Benchmarking against previous approaches, our method achieves more efficient and thorough erasure with minor damage to original generation ability and demonstrates enhanced robustness against red-teaming tools. Code is available at https://github.com/CharlesGong12/RECE.
CIBench: Evaluating Your LLMs with a Code Interpreter Plugin
While LLM-Based agents, which use external tools to solve complex problems, have made significant progress, benchmarking their ability is challenging, thereby hindering a clear understanding of their limitations. In this paper, we propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks. Our evaluation framework includes an evaluation dataset and two evaluation modes. The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions. The two evaluation modes assess LLMs' ability with and without human assistance. We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
Decoding the Diversity: A Review of the Indic AI Research Landscape
This review paper provides a comprehensive overview of large language model (LLM) research directions within Indic languages. Indic languages are those spoken in the Indian subcontinent, including India, Pakistan, Bangladesh, Sri Lanka, Nepal, and Bhutan, among others. These languages have a rich cultural and linguistic heritage and are spoken by over 1.5 billion people worldwide. With the tremendous market potential and growing demand for natural language processing (NLP) based applications in diverse languages, generative applications for Indic languages pose unique challenges and opportunities for research. Our paper deep dives into the recent advancements in Indic generative modeling, contributing with a taxonomy of research directions, tabulating 84 recent publications. Research directions surveyed in this paper include LLM development, fine-tuning existing LLMs, development of corpora, benchmarking and evaluation, as well as publications around specific techniques, tools, and applications. We found that researchers across the publications emphasize the challenges associated with limited data availability, lack of standardization, and the peculiar linguistic complexities of Indic languages. This work aims to serve as a valuable resource for researchers and practitioners working in the field of NLP, particularly those focused on Indic languages, and contributes to the development of more accurate and efficient LLM applications for these languages.
OpenAGI: When LLM Meets Domain Experts
Human intelligence excels at combining basic skills to solve complex tasks. This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive intelligent models, enabling them to harness expert models for complex task-solving towards Artificial General Intelligence (AGI). Large Language Models (LLMs) show promising learning and reasoning abilities, and can effectively use external models, tools or APIs to tackle complex problems. In this work, we introduce OpenAGI, an open-source AGI research platform designed for multi-step, real-world tasks. Specifically, OpenAGI uses a dual strategy, integrating standard benchmark tasks for benchmarking and evaluation, and open-ended tasks including more expandable models, tools or APIs for creative problem-solving. Tasks are presented as natural language queries to the LLM, which then selects and executes appropriate models. We also propose a Reinforcement Learning from Task Feedback (RLTF) mechanism that uses task results to improve the LLM's ability, which creates a self-improving AI feedback loop. While we acknowledge that AGI is a broad and multifaceted research challenge with no singularly defined solution path, the integration of LLMs with domain-specific expert models, inspired by mirroring the blend of general and specialized intelligence in humans, offers a promising approach towards AGI. We are open-sourcing the OpenAGI project's code, dataset, benchmarks, evaluation methods, and demo to foster community involvement in AGI advancement: https://github.com/agiresearch/OpenAGI.
ProstaTD: A Large-scale Multi-source Dataset for Structured Surgical Triplet Detection
Surgical triplet detection has emerged as a pivotal task in surgical video analysis, with significant implications for performance assessment and the training of novice surgeons. However, existing datasets such as CholecT50 exhibit critical limitations: they lack precise spatial bounding box annotations, provide inconsistent and clinically ungrounded temporal labels, and rely on a single data source, which limits model generalizability.To address these shortcomings, we introduce ProstaTD, a large-scale, multi-institutional dataset for surgical triplet detection, developed from the technically demanding domain of robot-assisted prostatectomy. ProstaTD offers clinically defined temporal boundaries and high-precision bounding box annotations for each structured triplet action. The dataset comprises 60,529 video frames and 165,567 annotated triplet instances, collected from 21 surgeries performed across multiple institutions, reflecting a broad range of surgical practices and intraoperative conditions. The annotation process was conducted under rigorous medical supervision and involved more than 50 contributors, including practicing surgeons and medically trained annotators, through multiple iterative phases of labeling and verification. ProstaTD is the largest and most diverse surgical triplet dataset to date, providing a robust foundation for fair benchmarking, the development of reliable surgical AI systems, and scalable tools for procedural training.
POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation
Multi-agent reinforcement learning (MARL) has recently excelled in solving challenging cooperative and competitive multi-agent problems in various environments with, mostly, few agents and full observability. Moreover, a range of crucial robotics-related tasks, such as multi-robot navigation and obstacle avoidance, that have been conventionally approached with the classical non-learnable methods (e.g., heuristic search) is currently suggested to be solved by the learning-based or hybrid methods. Still, in this domain, it is hard, not to say impossible, to conduct a fair comparison between classical, learning-based, and hybrid approaches due to the lack of a unified framework that supports both learning and evaluation. To this end, we introduce POGEMA, a set of comprehensive tools that includes a fast environment for learning, a generator of problem instances, the collection of pre-defined ones, a visualization toolkit, and a benchmarking tool that allows automated evaluation. We introduce and specify an evaluation protocol defining a range of domain-related metrics computed on the basics of the primary evaluation indicators (such as success rate and path length), allowing a fair multi-fold comparison. The results of such a comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
BenchmarkCards: Standardized Documentation for Large Language Model Benchmarks
Large language models (LLMs) are powerful tools capable of handling diverse tasks. Comparing and selecting appropriate LLMs for specific tasks requires systematic evaluation methods, as models exhibit varying capabilities across different domains. However, finding suitable benchmarks is difficult given the many available options. This complexity not only increases the risk of benchmark misuse and misinterpretation but also demands substantial effort from LLM users, seeking the most suitable benchmarks for their specific needs. To address these issues, we introduce BenchmarkCards, an intuitive and validated documentation framework that standardizes critical benchmark attributes such as objectives, methodologies, data sources, and limitations. Through user studies involving benchmark creators and users, we show that BenchmarkCards can simplify benchmark selection and enhance transparency, facilitating informed decision-making in evaluating LLMs. Data & Code: https://github.com/SokolAnn/BenchmarkCards
BenchHub: A Unified Benchmark Suite for Holistic and Customizable LLM Evaluation
As large language models (LLMs) continue to advance, the need for up-to-date and well-organized benchmarks becomes increasingly critical. However, many existing datasets are scattered, difficult to manage, and make it challenging to perform evaluations tailored to specific needs or domains, despite the growing importance of domain-specific models in areas such as math or code. In this paper, we introduce BenchHub, a dynamic benchmark repository that empowers researchers and developers to evaluate LLMs more effectively. BenchHub aggregates and automatically classifies benchmark datasets from diverse domains, integrating 303K questions across 38 benchmarks. It is designed to support continuous updates and scalable data management, enabling flexible and customizable evaluation tailored to various domains or use cases. Through extensive experiments with various LLM families, we demonstrate that model performance varies significantly across domain-specific subsets, emphasizing the importance of domain-aware benchmarking. We believe BenchHub can encourage better dataset reuse, more transparent model comparisons, and easier identification of underrepresented areas in existing benchmarks, offering a critical infrastructure for advancing LLM evaluation research.
Benchmarking AI Models in Software Engineering: A Review, Search Tool, and Enhancement Protocol
Benchmarks are essential for consistent evaluation and reproducibility. The integration of Artificial Intelligence into Software Engineering (AI4SE) has given rise to numerous benchmarks for tasks such as code generation and bug fixing. However, this surge presents challenges: (1) scattered benchmark knowledge across tasks, (2) difficulty in selecting relevant benchmarks, (3) the absence of a uniform standard for benchmark development, and (4) limitations of existing benchmarks. In this paper, we review 173 studies and identify 204 AI4SE benchmarks. We classify these benchmarks, analyze their limitations, and expose gaps in practices. Based on our review, we created BenchScout, a semantic search tool to find relevant benchmarks, using automated clustering of the contexts from associated studies. We conducted a user study with 22 participants to evaluate BenchScout's usability, effectiveness, and intuitiveness which resulted in average scores of 4.5, 4.0, and 4.1 out of 5. To advance benchmarking standards, we propose BenchFrame, a unified method to enhance benchmark quality. As a case study, we applied BenchFrame to the HumanEval benchmark and addressed its main limitations. This led to HumanEvalNext, featuring (1) corrected errors, (2) improved language conversion, (3) expanded test coverage, and (4) increased difficulty. We then evaluated ten state-of-the-art code language models on HumanEval, HumanEvalPlus, and HumanEvalNext. On HumanEvalNext, models showed a pass@1 score reduction of 31.22% and 19.94% compared to HumanEval and HumanEvalPlus, respectively.
EBES: Easy Benchmarking for Event Sequences
Event sequences, characterized by irregular sampling intervals and a mix of categorical and numerical features, are common data structures in various real-world domains such as healthcare, finance, and user interaction logs. Despite advances in temporal data modeling techniques, there is no standardized benchmarks for evaluating their performance on event sequences. This complicates result comparison across different papers due to varying evaluation protocols, potentially misleading progress in this field. We introduce EBES, a comprehensive benchmarking tool with standardized evaluation scenarios and protocols, focusing on regression and classification problems with sequence-level targets. Our library simplifies benchmarking, dataset addition, and method integration through a unified interface. It includes a novel synthetic dataset and provides preprocessed real-world datasets, including the largest publicly available banking dataset. Our results provide an in-depth analysis of datasets, identifying some as unsuitable for model comparison. We investigate the importance of modeling temporal and sequential components, as well as the robustness and scaling properties of the models. These findings highlight potential directions for future research. Our benchmark aim is to facilitate reproducible research, expediting progress and increasing real-world impacts.
Enhancing Tool Retrieval with Iterative Feedback from Large Language Models
Tool learning aims to enhance and expand large language models' (LLMs) capabilities with external tools, which has gained significant attention recently. Current methods have shown that LLMs can effectively handle a certain amount of tools through in-context learning or fine-tuning. However, in real-world scenarios, the number of tools is typically extensive and irregularly updated, emphasizing the necessity for a dedicated tool retrieval component. Tool retrieval is nontrivial due to the following challenges: 1) complex user instructions and tool descriptions; 2) misalignment between tool retrieval and tool usage models. To address the above issues, we propose to enhance tool retrieval with iterative feedback from the large language model. Specifically, we prompt the tool usage model, i.e., the LLM, to provide feedback for the tool retriever model in multi-round, which could progressively improve the tool retriever's understanding of instructions and tools and reduce the gap between the two standalone components. We build a unified and comprehensive benchmark to evaluate tool retrieval models. The extensive experiments indicate that our proposed approach achieves advanced performance in both in-domain evaluation and out-of-domain evaluation.
How Should I Build A Benchmark? Revisiting Code-Related Benchmarks For LLMs
Various benchmarks have been proposed to assess the performance of large language models (LLMs) in different coding scenarios. We refer to them as code-related benchmarks. However, there are no systematic guidelines by which such a benchmark should be developed to ensure its quality, reliability, and reproducibility. We propose How2Bench, which is comprised of a 55- 55-criteria checklist as a set of guidelines to govern the development of code-related benchmarks comprehensively. Using HOW2BENCH, we profiled 274 benchmarks released within the past decade and found concerning issues. Nearly 70% of the benchmarks did not take measures for data quality assurance; over 10% did not even open source or only partially open source. Many highly cited benchmarks have loopholes, including duplicated samples, incorrect reference codes/tests/prompts, and unremoved sensitive/confidential information. Finally, we conducted a human study involving 49 participants, which revealed significant gaps in awareness of the importance of data quality, reproducibility, and transparency.
What are the best systems? New perspectives on NLP Benchmarking
In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.
AixBench: A Code Generation Benchmark Dataset
We present a benchmark dataset for evaluating method-level code generation task. The benchmark contains a dataset of 175 samples for automated evaluation and a dataset of 161 samples for manual evaluation. We also present a new metric for automatically evaluating the correctness of the generated code, and a set of criteria to manually evaluating the overall quality of the generated code.
BENCHAGENTS: Automated Benchmark Creation with Agent Interaction
Evaluations are limited by benchmark availability. As models evolve, there is a need to create benchmarks that can measure progress on new generative capabilities. However, creating new benchmarks through human annotations is slow and expensive, restricting comprehensive evaluations for any capability. We introduce BENCHAGENTS, a framework that methodically leverages large language models (LLMs) to automate benchmark creation for complex capabilities while inherently ensuring data and metric quality. BENCHAGENTS decomposes the benchmark creation process into planning, generation, data verification, and evaluation, each of which is executed by an LLM agent. These agents interact with each other and utilize human-in-the-loop feedback from benchmark developers to explicitly improve and flexibly control data diversity and quality. We use BENCHAGENTS to create benchmarks to evaluate capabilities related to planning and constraint satisfaction during text generation. We then use these benchmarks to study seven state-of-the-art models and extract new insights on common failure modes and model differences.
Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation?
How can we test AI performance? This question seems trivial, but it isn't. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and short-term outcome pressure. As a consequence, good performance on standard benchmarks does not guarantee success in real-world scenarios. To address these problems, we present Touchstone, a large-scale collaborative segmentation benchmark of 9 types of abdominal organs. This benchmark is based on 5,195 training CT scans from 76 hospitals around the world and 5,903 testing CT scans from 11 additional hospitals. This diverse test set enhances the statistical significance of benchmark results and rigorously evaluates AI algorithms across various out-of-distribution scenarios. We invited 14 inventors of 19 AI algorithms to train their algorithms, while our team, as a third party, independently evaluated these algorithms on three test sets. In addition, we also evaluated pre-existing AI frameworks--which, differing from algorithms, are more flexible and can support different algorithms--including MONAI from NVIDIA, nnU-Net from DKFZ, and numerous other open-source frameworks. We are committed to expanding this benchmark to encourage more innovation of AI algorithms for the medical domain.
Alpha Excel Benchmark
This study presents a novel benchmark for evaluating Large Language Models (LLMs) using challenges derived from the Financial Modeling World Cup (FMWC) Excel competitions. We introduce a methodology for converting 113 existing FMWC challenges into programmatically evaluable JSON formats and use this dataset to compare the performance of several leading LLMs. Our findings demonstrate significant variations in performance across different challenge categories, with models showing specific strengths in pattern recognition tasks but struggling with complex numerical reasoning. The benchmark provides a standardized framework for assessing LLM capabilities in realistic business-oriented tasks rather than abstract academic problems. This research contributes to the growing field of AI benchmarking by establishing proficiency among the 1.5 billion people who daily use Microsoft Excel as a meaningful evaluation metric that bridges the gap between academic AI benchmarks and practical business applications.
DiscoveryBench: Towards Data-Driven Discovery with Large Language Models
Can the rapid advances in code generation, function calling, and data analysis using large language models (LLMs) help automate the search and verification of hypotheses purely from a set of provided datasets? To evaluate this question, we present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery. The benchmark is designed to systematically assess current model capabilities in discovery tasks and provide a useful resource for improving them. Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering, by manually deriving discovery workflows from published papers to approximate the real-world challenges faced by researchers, where each task is defined by a dataset, its metadata, and a discovery goal in natural language. We additionally provide 903 synthetic tasks to conduct controlled evaluations across task complexity. Furthermore, our structured formalism of data-driven discovery enables a facet-based evaluation that provides useful insights into different failure modes. We evaluate several popular LLM-based reasoning frameworks using both open and closed LLMs as baselines on DiscoveryBench and find that even the best system scores only 25%. Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
MTU-Bench: A Multi-granularity Tool-Use Benchmark for Large Language Models
Large Language Models (LLMs) have displayed massive improvements in reasoning and decision-making skills and can hold natural conversations with users. Recently, many tool-use benchmark datasets have been proposed. However, existing datasets have the following limitations: (1). Insufficient evaluation scenarios (e.g., only cover limited tool-use scenes). (2). Extensive evaluation costs (e.g., GPT API costs). To address these limitations, in this work, we propose a multi-granularity tool-use benchmark for large language models called MTU-Bench. For the "multi-granularity" property, our MTU-Bench covers five tool usage scenes (i.e., single-turn and single-tool, single-turn and multiple-tool, multiple-turn and single-tool, multiple-turn and multiple-tool, and out-of-distribution tasks). Besides, all evaluation metrics of our MTU-Bench are based on the prediction results and the ground truth without using any GPT or human evaluation metrics. Moreover, our MTU-Bench is collected by transforming existing high-quality datasets to simulate real-world tool usage scenarios, and we also propose an instruction dataset called MTU-Instruct data to enhance the tool-use abilities of existing LLMs. Comprehensive experimental results demonstrate the effectiveness of our MTU-Bench. Code and data will be released at https: //github.com/MTU-Bench-Team/MTU-Bench.git.
ML-Dev-Bench: Comparative Analysis of AI Agents on ML development workflows
In this report, we present ML-Dev-Bench, a benchmark aimed at testing agentic capabilities on applied Machine Learning development tasks. While existing benchmarks focus on isolated coding tasks or Kaggle-style competitions, ML-Dev-Bench tests agents' ability to handle the full complexity of ML development workflows. The benchmark assesses performance across critical aspects including dataset handling, model training, improving existing models, debugging, and API integration with popular ML tools. We evaluate three agents - ReAct, Openhands, and AIDE - on a diverse set of 30 tasks, providing insights into their strengths and limitations in handling practical ML development challenges. We open source the benchmark for the benefit of the community at https://github.com/ml-dev-bench/ml-dev-bench{https://github.com/ml-dev-bench/ml-dev-bench}.
Dynamic Benchmarking of Reasoning Capabilities in Code Large Language Models Under Data Contamination
The rapid evolution of code largelanguage models underscores the need for effective and transparent benchmarking of their reasoning capabilities. However, the current benchmarking approach heavily depends on publicly available, human-created datasets. The widespread use of these fixed benchmark datasets makes the benchmarking process to be static and thus particularly susceptible to data contamination, an unavoidable consequence of the extensive data collection processes used to train Code LLMs. Existing approaches that address data contamination often suffer from human effort limitations and imbalanced problem complexity. To tackle these challenges, we propose \tool, a novel benchmarking suite for evaluating Code LLMs under potential data contamination. Given a seed programming problem, \tool employs multiple agents to extract and modify the context without altering the core logic, generating semantically equivalent variations. We introduce a dynamic data generation methods and conduct empirical studies on two seed datasets across 21 Code LLMs. Results show that \tool effectively benchmarks reasoning capabilities under contamination risks while generating diverse problem sets to ensure consistent and reliable evaluations.
Benchmark Agreement Testing Done Right: A Guide for LLM Benchmark Evaluation
Recent advancements in Language Models (LMs) have catalyzed the creation of multiple benchmarks, designed to assess these models' general capabilities. A crucial task, however, is assessing the validity of the benchmarks themselves. This is most commonly done via Benchmark Agreement Testing (BAT), where new benchmarks are validated against established ones using some agreement metric (e.g., rank correlation). Despite the crucial role of BAT for benchmark builders and consumers, there are no standardized procedures for such agreement testing. This deficiency can lead to invalid conclusions, fostering mistrust in benchmarks and upending the ability to properly choose the appropriate benchmark to use. By analyzing over 40 prominent benchmarks, we demonstrate how some overlooked methodological choices can significantly influence BAT results, potentially undermining the validity of conclusions. To address these inconsistencies, we propose a set of best practices for BAT and demonstrate how utilizing these methodologies greatly improves BAT robustness and validity. To foster adoption and facilitate future research,, we introduce BenchBench, a python package for BAT, and release the BenchBench-leaderboard, a meta-benchmark designed to evaluate benchmarks using their peers. Our findings underscore the necessity for standardized BAT, ensuring the robustness and validity of benchmark evaluations in the evolving landscape of language model research. BenchBench Package: https://github.com/IBM/BenchBench Leaderboard: https://huggingface.co/spaces/per/BenchBench
ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval
The ViDoRe Benchmark V1 was approaching saturation with top models exceeding 90% nDCG@5, limiting its ability to discern improvements. ViDoRe Benchmark V2 introduces realistic, challenging retrieval scenarios via blind contextual querying, long and cross-document queries, and a hybrid synthetic and human-in-the-loop query generation process. It comprises four diverse, multilingual datasets and provides clear evaluation instructions. Initial results demonstrate substantial room for advancement and highlight insights on model generalization and multilingual capability. This benchmark is designed as a living resource, inviting community contributions to maintain relevance through future evaluations.
FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods
This paper introduces the Fair Fairness Benchmark (FFB), a benchmarking framework for in-processing group fairness methods. Ensuring fairness in machine learning is critical for ethical and legal compliance. However, there exist challenges in comparing and developing of fairness methods due to inconsistencies in experimental settings, lack of accessible algorithmic implementations, and limited extensibility of current fairness packages and tools. To address these issues, we introduce an open-source, standardized benchmark for evaluating in-processing group fairness methods and provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness. This work offers the following key contributions: the provision of flexible, extensible, minimalistic, and research-oriented open-source code; the establishment of unified fairness method benchmarking pipelines; and extensive benchmarking, which yields key insights from 45,079 experiments. We believe our work will significantly facilitate the growth and development of the fairness research community. The benchmark, including code and running logs, is available at https://github.com/ahxt/fair_fairness_benchmark
CLOVER: A Test Case Generation Benchmark with Coverage, Long-Context, and Verification
Software testing is a critical aspect of software development, yet generating test cases remains a routine task for engineers. This paper presents a benchmark, CLOVER, to evaluate models' capabilities in generating and completing test cases under specific conditions. Spanning from simple assertion completions to writing test cases that cover specific code blocks across multiple files, these tasks are based on 12 python repositories, analyzing 845 problems with context lengths ranging from 4k to 128k tokens. Utilizing code testing frameworks, we propose a method to construct retrieval contexts using coverage information. While models exhibit comparable performance with short contexts, notable differences emerge with 16k contexts. Notably, models like GPT-4o and Claude 3.5 can effectively leverage relevant snippets; however, all models score below 35\% on the complex Task III, even with the oracle context provided, underscoring the benchmark's significance and the potential for model improvement. The benchmark is containerized for code execution across tasks, and we will release the code, data, and construction methodologies.
ForecastBench: A Dynamic Benchmark of AI Forecasting Capabilities
Forecasts of future events are essential inputs into informed decision-making. Machine learning (ML) systems have the potential to deliver forecasts at scale, but there is no framework for evaluating the accuracy of ML systems on a standardized set of forecasting questions. To address this gap, we introduce ForecastBench: a dynamic benchmark that evaluates the accuracy of ML systems on an automatically generated and regularly updated set of 1,000 forecasting questions. To avoid any possibility of data leakage, ForecastBench is comprised solely of questions about future events that have no known answer at the time of submission. We quantify the capabilities of current ML systems by collecting forecasts from expert (human) forecasters, the general public, and LLMs on a random subset of questions from the benchmark (N=200). While LLMs have achieved super-human performance on many benchmarks, they perform less well here: expert forecasters outperform the top-performing LLM (p-value <0.001). We display system and human scores in a public leaderboard at www.forecastbench.org.
Efficient multi-prompt evaluation of LLMs
Most popular benchmarks for comparing LLMs rely on a limited set of prompt templates, which may not fully capture the LLMs' abilities and can affect the reproducibility of results on leaderboards. Many recent works empirically verify prompt sensitivity and advocate for changes in LLM evaluation. In this paper, we consider the problem of estimating the performance distribution across many prompt variants instead of finding a single prompt to evaluate with. We introduce PromptEval, a method for estimating performance across a large set of prompts borrowing strength across prompts and examples to produce accurate estimates under practical evaluation budgets. The resulting distribution can be used to obtain performance quantiles to construct various robust performance metrics (e.g., top 95% quantile or median). We prove that PromptEval consistently estimates the performance distribution and demonstrate its efficacy empirically on three prominent LLM benchmarks: MMLU, BIG-bench Hard, and LMentry. For example, PromptEval can accurately estimate performance quantiles across 100 prompt templates on MMLU with a budget equivalent to two single-prompt evaluations. Our code and data can be found at https://github.com/felipemaiapolo/prompt-eval.
MetaTool Benchmark for Large Language Models: Deciding Whether to Use Tools and Which to Use
Large language models (LLMs) have garnered significant attention due to their impressive natural language processing (NLP) capabilities. Recently, many studies have focused on the tool utilization ability of LLMs. They primarily investigated how LLMs effectively collaborate with given specific tools. However, in scenarios where LLMs serve as intelligent agents, as seen in applications like AutoGPT and MetaGPT, LLMs are expected to engage in intricate decision-making processes that involve deciding whether to employ a tool and selecting the most suitable tool(s) from a collection of available tools to fulfill user requests. Therefore, in this paper, we introduce MetaTool, a benchmark designed to evaluate whether LLMs have tool usage awareness and can correctly choose tools. Specifically, we create a dataset called ToolE within the benchmark. This dataset contains various types of user queries in the form of prompts that trigger LLMs to use tools, including both single-tool and multi-tool scenarios. Subsequently, we set the tasks for both tool usage awareness and tool selection. We define four subtasks from different perspectives in tool selection, including tool selection with similar choices, tool selection in specific scenarios, tool selection with possible reliability issues, and multi-tool selection. We conduct experiments involving nine popular LLMs and find that the majority of them still struggle to effectively select tools, highlighting the existing gaps between LLMs and genuine intelligent agents. However, through the error analysis, we found there is still significant room for improvement. Finally, we conclude with insights for tool developers that follow ChatGPT to provide detailed descriptions that can enhance the tool selection performance of LLMs.
ACEBench: Who Wins the Match Point in Tool Usage?
Large Language Models (LLMs) have demonstrated significant potential in decision-making and reasoning, particularly when integrated with various tools to effectively solve complex problems. However, existing benchmarks for evaluating LLMs' tool usage face several limitations: (1) limited evaluation scenarios, often lacking assessments in real multi-turn dialogue contexts; (2) narrow evaluation dimensions, with insufficient detailed assessments of how LLMs use tools; and (3) reliance on LLMs or real API executions for evaluation, which introduces significant overhead. To address these challenges, we introduce ACEBench, a comprehensive benchmark for assessing tool usage in LLMs. ACEBench categorizes data into three primary types based on evaluation methodology: Normal, Special, and Agent. "Normal" evaluates tool usage in basic scenarios; "Special" evaluates tool usage in situations with ambiguous or incomplete instructions; "Agent" evaluates tool usage through multi-agent interactions to simulate real-world, multi-turn dialogues. We conducted extensive experiments using ACEBench, analyzing various LLMs in-depth and providing a more granular examination of error causes across different data types.
RepoMasterEval: Evaluating Code Completion via Real-World Repositories
With the growing reliance on automated code completion tools in software development, the need for robust evaluation benchmarks has become critical. However, existing benchmarks focus more on code generation tasks in function and class level and provide rich text description to prompt the model. By contrast, such descriptive prompt is commonly unavailable in real development and code completion can occur in wider range of situations such as in the middle of a function or a code block. These limitations makes the evaluation poorly align with the practical scenarios of code completion tools. In this paper, we propose RepoMasterEval, a novel benchmark for evaluating code completion models constructed from real-world Python and TypeScript repositories. Each benchmark datum is generated by masking a code snippet (ground truth) from one source code file with existing test suites. To improve test accuracy of model generated code, we employ mutation testing to measure the effectiveness of the test cases and we manually crafted new test cases for those test suites with low mutation score. Our empirical evaluation on 6 state-of-the-art models shows that test argumentation is critical in improving the accuracy of the benchmark and RepoMasterEval is able to report difference in model performance in real-world scenarios. The deployment of RepoMasterEval in a collaborated company for one month also revealed that the benchmark is useful to give accurate feedback during model training and the score is in high correlation with the model's performance in practice. Based on our findings, we call for the software engineering community to build more LLM benchmarks tailored for code generation tools taking the practical and complex development environment into consideration.
Task Me Anything
Benchmarks for large multimodal language models (MLMs) now serve to simultaneously assess the general capabilities of models instead of evaluating for a specific capability. As a result, when a developer wants to identify which models to use for their application, they are overwhelmed by the number of benchmarks and remain uncertain about which benchmark's results are most reflective of their specific use case. This paper introduces Task-Me-Anything, a benchmark generation engine which produces a benchmark tailored to a user's needs. Task-Me-Anything maintains an extendable taxonomy of visual assets and can programmatically generate a vast number of task instances. Additionally, it algorithmically addresses user queries regarding MLM performance efficiently within a computational budget. It contains 113K images, 10K videos, 2K 3D object assets, over 365 object categories, 655 attributes, and 335 relationships. It can generate 750M image/video question-answering pairs, which focus on evaluating MLM perceptual capabilities. Task-Me-Anything reveals critical insights: open-source MLMs excel in object and attribute recognition but lack spatial and temporal understanding; each model exhibits unique strengths and weaknesses; larger models generally perform better, though exceptions exist; and GPT4o demonstrates challenges in recognizing rotating/moving objects and distinguishing colors.
DevBench: A Comprehensive Benchmark for Software Development
Recent advancements in large language models (LLMs) have significantly enhanced their coding capabilities. However, existing benchmarks predominantly focused on simplified or isolated aspects of programming, such as single-file code generation or repository issue debugging, falling short of measuring the full spectrum of challenges raised by real-world programming activities. To this end, we propose DevBench, a comprehensive benchmark that evaluates LLMs across various stages of the software development lifecycle, including software design, environment setup, implementation, acceptance testing, and unit testing. DevBench features a wide range of programming languages and domains, high-quality data collection, and carefully designed and verified metrics for each task. Empirical studies show that current LLMs, including GPT-4-Turbo, fail to solve the challenges presented within DevBench. Analyses reveal that models struggle with understanding the complex structures in the repository, managing the compilation process, and grasping advanced programming concepts. Our findings offer actionable insights for the future development of LLMs toward real-world programming applications. Our benchmark is available at https://github.com/open-compass/DevBench
CuRe: Cultural Gaps in the Long Tail of Text-to-Image Systems
Popular text-to-image (T2I) systems are trained on web-scraped data, which is heavily Amero and Euro-centric, underrepresenting the cultures of the Global South. To analyze these biases, we introduce CuRe, a novel and scalable benchmarking and scoring suite for cultural representativeness that leverages the marginal utility of attribute specification to T2I systems as a proxy for human judgments. Our CuRe benchmark dataset has a novel categorical hierarchy built from the crowdsourced Wikimedia knowledge graph, with 300 cultural artifacts across 32 cultural subcategories grouped into six broad cultural axes (food, art, fashion, architecture, celebrations, and people). Our dataset's categorical hierarchy enables CuRe scorers to evaluate T2I systems by analyzing their response to increasing the informativeness of text conditioning, enabling fine-grained cultural comparisons. We empirically observe much stronger correlations of our class of scorers to human judgments of perceptual similarity, image-text alignment, and cultural diversity across image encoders (SigLIP 2, AIMV2 and DINOv2), vision-language models (OpenCLIP, SigLIP 2, Gemini 2.0 Flash) and state-of-the-art text-to-image systems, including three variants of Stable Diffusion (1.5, XL, 3.5 Large), FLUX.1 [dev], Ideogram 2.0, and DALL-E 3. The code and dataset is open-sourced and available at https://aniketrege.github.io/cure/.
BARS: Towards Open Benchmarking for Recommender Systems
The past two decades have witnessed the rapid development of personalized recommendation techniques. Despite significant progress made in both research and practice of recommender systems, to date, there is a lack of a widely-recognized benchmarking standard in this field. Many existing studies perform model evaluations and comparisons in an ad-hoc manner, for example, by employing their own private data splits or using different experimental settings. Such conventions not only increase the difficulty in reproducing existing studies, but also lead to inconsistent experimental results among them. This largely limits the credibility and practical value of research results in this field. To tackle these issues, we present an initiative project (namely BARS) aiming for open benchmarking for recommender systems. In comparison to some earlier attempts towards this goal, we take a further step by setting up a standardized benchmarking pipeline for reproducible research, which integrates all the details about datasets, source code, hyper-parameter settings, running logs, and evaluation results. The benchmark is designed with comprehensiveness and sustainability in mind. It covers both matching and ranking tasks, and also enables researchers to easily follow and contribute to the research in this field. This project will not only reduce the redundant efforts of researchers to re-implement or re-run existing baselines, but also drive more solid and reproducible research on recommender systems. We would like to call upon everyone to use the BARS benchmark for future evaluation, and contribute to the project through the portal at: https://openbenchmark.github.io/BARS.
DependEval: Benchmarking LLMs for Repository Dependency Understanding
While large language models (LLMs) have shown considerable promise in code generation, real-world software development demands advanced repository-level reasoning. This includes understanding dependencies, project structures, and managing multi-file changes. However, the ability of LLMs to effectively comprehend and handle complex code repositories has yet to be fully explored. To address challenges, we introduce a hierarchical benchmark designed to evaluate repository dependency understanding (DependEval). Benchmark is based on 15,576 repositories collected from real-world websites. It evaluates models on three core tasks: Dependency Recognition, Repository Construction, and Multi-file Editing, across 8 programming languages from actual code repositories. Our evaluation of over 25 LLMs reveals substantial performance gaps and provides valuable insights into repository-level code understanding.
Zero-Shot Hyperspectral Pansharpening Using Hysteresis-Based Tuning for Spectral Quality Control
Hyperspectral pansharpening has received much attention in recent years due to technological and methodological advances that open the door to new application scenarios. However, research on this topic is only now gaining momentum. The most popular methods are still borrowed from the more mature field of multispectral pansharpening and often overlook the unique challenges posed by hyperspectral data fusion, such as i) the very large number of bands, ii) the overwhelming noise in selected spectral ranges, iii) the significant spectral mismatch between panchromatic and hyperspectral components, iv) a typically high resolution ratio. Imprecise data modeling especially affects spectral fidelity. Even state-of-the-art methods perform well in certain spectral ranges and much worse in others, failing to ensure consistent quality across all bands, with the risk of generating unreliable results. Here, we propose a hyperspectral pansharpening method that explicitly addresses this problem and ensures uniform spectral quality. To this end, a single lightweight neural network is used, with weights that adapt on the fly to each band. During fine-tuning, the spatial loss is turned on and off to ensure a fast convergence of the spectral loss to the desired level, according to a hysteresis-like dynamic. Furthermore, the spatial loss itself is appropriately redefined to account for nonlinear dependencies between panchromatic and spectral bands. Overall, the proposed method is fully unsupervised, with no prior training on external data, flexible, and low-complexity. Experiments on a recently published benchmarking toolbox show that it ensures excellent sharpening quality, competitive with the state-of-the-art, consistently across all bands. The software code and the full set of results are shared online on https://github.com/giu-guarino/rho-PNN.
CRITICTOOL: Evaluating Self-Critique Capabilities of Large Language Models in Tool-Calling Error Scenarios
The ability of large language models (LLMs) to utilize external tools has enabled them to tackle an increasingly diverse range of tasks. However, as the tasks become more complex and long-horizon, the intricate tool utilization process may trigger various unexpected errors. Therefore, how to effectively handle such errors, including identifying, diagnosing, and recovering from them, has emerged as a key research direction for advancing tool learning. In this work, we first extensively analyze the types of errors encountered during the function-calling process on several competitive tool evaluation benchmarks. Based on it, we introduce CRITICTOOL, a comprehensive critique evaluation benchmark specialized for tool learning. Building upon a novel evolutionary strategy for dataset construction, CRITICTOOL holds diverse tool-use errors with varying complexities, which better reflects real-world scenarios. We conduct extensive experiments on CRITICTOOL, and validate the generalization and effectiveness of our constructed benchmark strategy. We also provide an in-depth analysis of the tool reflection ability on various LLMs, offering a new perspective on the field of tool learning in LLMs. The code is available at https://github.com/Shellorley0513/CriticTool{https://github.com/Shellorley0513/CriticTool}.
From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline
The rapid evolution of language models has necessitated the development of more challenging benchmarks. Current static benchmarks often struggle to consistently distinguish between the capabilities of different models and fail to align with real-world user preferences. On the other hand, live crowd-sourced platforms like the Chatbot Arena collect a wide range of natural prompts and user feedback. However, these prompts vary in sophistication and the feedback cannot be applied offline to new models. In order to ensure that benchmarks keep up with the pace of LLM development, we address how one can evaluate benchmarks on their ability to confidently separate models and their alignment with human preference. Under these principles, we developed BenchBuilder, a living benchmark that filters high-quality prompts from live data sources to enable offline evaluation on fresh, challenging prompts. BenchBuilder identifies seven indicators of a high-quality prompt, such as the requirement for domain knowledge, and utilizes an LLM annotator to select a high-quality subset of prompts from various topic clusters. The LLM evaluation process employs an LLM judge to ensure a fully automated, high-quality, and constantly updating benchmark. We apply BenchBuilder on prompts from the Chatbot Arena to create Arena-Hard-Auto v0.1: 500 challenging user prompts from a wide range of tasks. Arena-Hard-Auto v0.1 offers 3x tighter confidence intervals than MT-Bench and achieves a state-of-the-art 89.1% agreement with human preference rankings, all at a cost of only $25 and without human labelers. The BenchBuilder pipeline enhances evaluation benchmarks and provides a valuable tool for developers, enabling them to extract high-quality benchmarks from extensive data with minimal effort.
TimeSeriesGym: A Scalable Benchmark for (Time Series) Machine Learning Engineering Agents
We introduce TimeSeriesGym, a scalable benchmarking framework for evaluating Artificial Intelligence (AI) agents on time series machine learning engineering challenges. Existing benchmarks lack scalability, focus narrowly on model building in well-defined settings, and evaluate only a limited set of research artifacts (e.g., CSV submission files). To make AI agent benchmarking more relevant to the practice of machine learning engineering, our framework scales along two critical dimensions. First, recognizing that effective ML engineering requires a range of diverse skills, TimeSeriesGym incorporates challenges from diverse sources spanning multiple domains and tasks. We design challenges to evaluate both isolated capabilities (including data handling, understanding research repositories, and code translation) and their combinations, and rather than addressing each challenge independently, we develop tools that support designing multiple challenges at scale. Second, we implement evaluation mechanisms for multiple research artifacts, including submission files, code, and models, using both precise numeric measures and more flexible LLM-based evaluation approaches. This dual strategy balances objective assessment with contextual judgment. Although our initial focus is on time series applications, our framework can be readily extended to other data modalities, broadly enhancing the comprehensiveness and practical utility of agentic AI evaluation. We open-source our benchmarking framework to facilitate future research on the ML engineering capabilities of AI agents.
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs
While significant progress has been made on Physics-Informed Neural Networks (PINNs), a comprehensive comparison of these methods across a wide range of Partial Differential Equations (PDEs) is still lacking. This study introduces PINNacle, a benchmarking tool designed to fill this gap. PINNacle provides a diverse dataset, comprising over 20 distinct PDEs from various domains, including heat conduction, fluid dynamics, biology, and electromagnetics. These PDEs encapsulate key challenges inherent to real-world problems, such as complex geometry, multi-scale phenomena, nonlinearity, and high dimensionality. PINNacle also offers a user-friendly toolbox, incorporating about 10 state-of-the-art PINN methods for systematic evaluation and comparison. We have conducted extensive experiments with these methods, offering insights into their strengths and weaknesses. In addition to providing a standardized means of assessing performance, PINNacle also offers an in-depth analysis to guide future research, particularly in areas such as domain decomposition methods and loss reweighting for handling multi-scale problems and complex geometry. To the best of our knowledge, it is the largest benchmark with a diverse and comprehensive evaluation that will undoubtedly foster further research in PINNs.
M4-SAR: A Multi-Resolution, Multi-Polarization, Multi-Scene, Multi-Source Dataset and Benchmark for Optical-SAR Fusion Object Detection
Single-source remote sensing object detection using optical or SAR images struggles in complex environments. Optical images offer rich textural details but are often affected by low-light, cloud-obscured, or low-resolution conditions, reducing the detection performance. SAR images are robust to weather, but suffer from speckle noise and limited semantic expressiveness. Optical and SAR images provide complementary advantages, and fusing them can significantly improve the detection accuracy. However, progress in this field is hindered by the lack of large-scale, standardized datasets. To address these challenges, we propose the first comprehensive dataset for optical-SAR fusion object detection, named Multi-resolution, Multi-polarization, Multi-scene, Multi-source SAR dataset (M4-SAR). It contains 112,184 precisely aligned image pairs and nearly one million labeled instances with arbitrary orientations, spanning six key categories. To enable standardized evaluation, we develop a unified benchmarking toolkit that integrates six state-of-the-art multi-source fusion methods. Furthermore, we propose E2E-OSDet, a novel end-to-end multi-source fusion detection framework that mitigates cross-domain discrepancies and establishes a robust baseline for future studies. Extensive experiments on M4-SAR demonstrate that fusing optical and SAR data can improve mAP by 5.7\% over single-source inputs, with particularly significant gains in complex environments. The dataset and code are publicly available at https://github.com/wchao0601/M4-SAR.
PyBench: Evaluating LLM Agent on various real-world coding tasks
The LLM Agent, equipped with a code interpreter, is capable of automatically solving real-world coding tasks, such as data analysis and image editing. However, existing benchmarks primarily focus on either simplistic tasks, such as completing a few lines of code, or on extremely complex and specific tasks at the repository level, neither of which are representative of various daily coding tasks. To address this gap, we introduce PyBench, a benchmark encompassing five main categories of real-world tasks, covering more than 10 types of files. Given a high-level user query and related files, the LLM Agent needs to reason and execute Python code via a code interpreter for a few turns before making a formal response to fulfill the user's requirements. Successfully addressing tasks in PyBench demands a robust understanding of various Python packages, superior reasoning capabilities, and the ability to incorporate feedback from executed code. Our evaluations indicate that current open-source LLMs are struggling with these tasks. Hence, we conduct analysis and experiments on four kinds of datasets proving that comprehensive abilities are needed for PyBench. Our fine-tuned 8B size model: PyLlama3 achieves an exciting performance on PyBench which surpasses many 33B and 70B size models. Our Benchmark, Training Dataset, and Model are available at: https://github.com/Mercury7353/PyBench{https://github.com/Mercury7353/PyBench}
WILD: a new in-the-Wild Image Linkage Dataset for synthetic image attribution
Synthetic image source attribution is an open challenge, with an increasing number of image generators being released yearly. The complexity and the sheer number of available generative techniques, as well as the scarcity of high-quality open source datasets of diverse nature for this task, make training and benchmarking synthetic image source attribution models very challenging. WILD is a new in-the-Wild Image Linkage Dataset designed to provide a powerful training and benchmarking tool for synthetic image attribution models. The dataset is built out of a closed set of 10 popular commercial generators, which constitutes the training base of attribution models, and an open set of 10 additional generators, simulating a real-world in-the-wild scenario. Each generator is represented by 1,000 images, for a total of 10,000 images in the closed set and 10,000 images in the open set. Half of the images are post-processed with a wide range of operators. WILD allows benchmarking attribution models in a wide range of tasks, including closed and open set identification and verification, and robust attribution with respect to post-processing and adversarial attacks. Models trained on WILD are expected to benefit from the challenging scenario represented by the dataset itself. Moreover, an assessment of seven baseline methodologies on closed and open set attribution is presented, including robustness tests with respect to post-processing.
ECBD: Evidence-Centered Benchmark Design for NLP
Benchmarking is seen as critical to assessing progress in NLP. However, creating a benchmark involves many design decisions (e.g., which datasets to include, which metrics to use) that often rely on tacit, untested assumptions about what the benchmark is intended to measure or is actually measuring. There is currently no principled way of analyzing these decisions and how they impact the validity of the benchmark's measurements. To address this gap, we draw on evidence-centered design in educational assessments and propose Evidence-Centered Benchmark Design (ECBD), a framework which formalizes the benchmark design process into five modules. ECBD specifies the role each module plays in helping practitioners collect evidence about capabilities of interest. Specifically, each module requires benchmark designers to describe, justify, and support benchmark design choices -- e.g., clearly specifying the capabilities the benchmark aims to measure or how evidence about those capabilities is collected from model responses. To demonstrate the use of ECBD, we conduct case studies with three benchmarks: BoolQ, SuperGLUE, and HELM. Our analysis reveals common trends in benchmark design and documentation that could threaten the validity of benchmarks' measurements.
Varco Arena: A Tournament Approach to Reference-Free Benchmarking Large Language Models
The rapid advancement of Large Language Models (LLMs) necessitates robust evaluation methodologies. Current benchmarking approaches often rely on comparing model outputs against predefined prompts and reference outputs. Relying on predefined reference outputs hinders flexible adaptation of benchmarks to the rapidly evolving capabilities of LLMs. This limitation necessitates periodic efforts to prepare new benchmarks. To keep pace with rapidly evolving LLM capabilities, we propose a more flexible benchmarking approach. Our method, \textbf{Varco Arena}, provides reference-free benchmarking of LLMs in tournament style. \textbf{Varco Arena} directly compares LLM outputs across a diverse set of prompts, determining model rankings through a single-elimination tournament structure. This direct pairwise comparison offers two key advantages: (1) Direct comparison, unmediated by reference text, more effectively orders competing LLMs, resulting in more reliable rankings, and (2) reference-free approach to benchmarking adds flexibility in updating benchmark prompts by eliminating the need for quality references. Our empirical results, supported by simulation experiments, demonstrate that the \textbf{Varco Arena} tournament approach aligns better with the current Elo model for benchmarking LLMs. The alignment is measured in terms of Spearman correlation, showing improvement over current practice of benchmarking that use reference outputs as comparison anchors.
The Fault in our Stars: Quality Assessment of Code Generation Benchmarks
Large Language Models (LLMs) are gaining popularity among software engineers. A crucial aspect of developing effective code generation LLMs is to evaluate these models using a robust benchmark. Evaluation benchmarks with quality issues can provide a false sense of performance. In this work, we conduct the first-of-its-kind study of the quality of prompts within benchmarks used to compare the performance of different code generation models. To conduct this study, we analyzed 3,566 prompts from 9 code generation benchmarks to identify quality issues in them. We also investigated whether fixing the identified quality issues in the benchmarks' prompts affects a model's performance. We also studied memorization issues of the evaluation dataset, which can put into question a benchmark's trustworthiness. We found that code generation evaluation benchmarks mainly focused on Python and coding exercises and had very limited contextual dependencies to challenge the model. These datasets and the developers' prompts suffer from quality issues like spelling and grammatical errors, unclear sentences to express developers' intent, and not using proper documentation style. Fixing all these issues in the benchmarks can lead to a better performance for Python code generation, but not a significant improvement was observed for Java code generation. We also found evidence that GPT-3.5-Turbo and CodeGen-2.5 models may have data contamination issues.
CoIR: A Comprehensive Benchmark for Code Information Retrieval Models
Despite the substantial success of Information Retrieval (IR) in various NLP tasks, most IR systems predominantly handle queries and corpora in natural language, neglecting the domain of code retrieval. Code retrieval is critically important yet remains under-explored, with existing methods and benchmarks inadequately representing the diversity of code in various domains and tasks. Addressing this gap, we present \name (Code Information Retrieval Benchmark), a robust and comprehensive benchmark specifically designed to assess code retrieval capabilities. \name comprises ten meticulously curated code datasets, spanning eight distinctive retrieval tasks across seven diverse domains. We first discuss the construction of \name and its diverse dataset composition. Further, we evaluate nine widely used retrieval models using \name, uncovering significant difficulties in performing code retrieval tasks even with state-of-the-art systems. To facilitate easy adoption and integration within existing research workflows, \name has been developed as a user-friendly Python framework, readily installable via pip. It shares same data schema as other popular benchmarks like MTEB and BEIR, enabling seamless cross-benchmark evaluations. Through \name, we aim to invigorate research in the code retrieval domain, providing a versatile benchmarking tool that encourages further development and exploration of code retrieval systems\url{ https://github.com/CoIR-team/coir}.
Yet Another ICU Benchmark: A Flexible Multi-Center Framework for Clinical ML
Medical applications of machine learning (ML) have experienced a surge in popularity in recent years. The intensive care unit (ICU) is a natural habitat for ML given the abundance of available data from electronic health records. Models have been proposed to address numerous ICU prediction tasks like the early detection of complications. While authors frequently report state-of-the-art performance, it is challenging to verify claims of superiority. Datasets and code are not always published, and cohort definitions, preprocessing pipelines, and training setups are difficult to reproduce. This work introduces Yet Another ICU Benchmark (YAIB), a modular framework that allows researchers to define reproducible and comparable clinical ML experiments; we offer an end-to-end solution from cohort definition to model evaluation. The framework natively supports most open-access ICU datasets (MIMIC III/IV, eICU, HiRID, AUMCdb) and is easily adaptable to future ICU datasets. Combined with a transparent preprocessing pipeline and extensible training code for multiple ML and deep learning models, YAIB enables unified model development. Our benchmark comes with five predefined established prediction tasks (mortality, acute kidney injury, sepsis, kidney function, and length of stay) developed in collaboration with clinicians. Adding further tasks is straightforward by design. Using YAIB, we demonstrate that the choice of dataset, cohort definition, and preprocessing have a major impact on the prediction performance - often more so than model class - indicating an urgent need for YAIB as a holistic benchmarking tool. We provide our work to the clinical ML community to accelerate method development and enable real-world clinical implementations. Software Repository: https://github.com/rvandewater/YAIB.
ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities
Traditional fixed test sets fall short in evaluating open-ended capabilities of foundation models. To address this, we propose ONEBench(OpeN-Ended Benchmarking), a new testing paradigm that consolidates individual evaluation datasets into a unified, ever-expanding sample pool. ONEBench allows users to generate custom, open-ended evaluation benchmarks from this pool, corresponding to specific capabilities of interest. By aggregating samples across test sets, ONEBench enables the assessment of diverse capabilities beyond those covered by the original test sets, while mitigating overfitting and dataset bias. Most importantly, it frames model evaluation as a collective process of selecting and aggregating sample-level tests. The shift from task-specific benchmarks to ONEBench introduces two challenges: (1)heterogeneity and (2)incompleteness. Heterogeneity refers to the aggregation over diverse metrics, while incompleteness describes comparing models evaluated on different data subsets. To address these challenges, we explore algorithms to aggregate sparse measurements into reliable model scores. Our aggregation algorithm ensures identifiability(asymptotically recovering ground-truth scores) and rapid convergence, enabling accurate model ranking with less data. On homogenous datasets, we show our aggregation algorithm provides rankings that highly correlate with those produced by average scores. We also demonstrate robustness to ~95% of measurements missing, reducing evaluation cost by up to 20x with little-to-no change in model rankings. We introduce ONEBench-LLM for language models and ONEBench-LMM for vision-language models, unifying evaluations across these domains. Overall, we present a technique for open-ended evaluation, which can aggregate over incomplete, heterogeneous sample-level measurements to continually grow a benchmark alongside the rapidly developing foundation models.
How to Evaluate Entity Resolution Systems: An Entity-Centric Framework with Application to Inventor Name Disambiguation
Entity resolution (record linkage, microclustering) systems are notoriously difficult to evaluate. Looking for a needle in a haystack, traditional evaluation methods use sophisticated, application-specific sampling schemes to find matching pairs of records among an immense number of non-matches. We propose an alternative that facilitates the creation of representative, reusable benchmark data sets without necessitating complex sampling schemes. These benchmark data sets can then be used for model training and a variety of evaluation tasks. Specifically, we propose an entity-centric data labeling methodology that integrates with a unified framework for monitoring summary statistics, estimating key performance metrics such as cluster and pairwise precision and recall, and analyzing root causes for errors. We validate the framework in an application to inventor name disambiguation and through simulation studies. Software: https://github.com/OlivierBinette/er-evaluation/
BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval
Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. BRIGHT is constructed from the 1,398 real-world queries collected from diverse domains (such as economics, psychology, robotics, software engineering, earth sciences, etc.), sourced from naturally occurring or carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard [38 ], which achieves a score of 59.0 nDCG@10,2 produces a score of nDCG@10 of 18.0 on BRIGHT. We further demonstrate that augmenting queries with Chain-of-Thought reasoning generated by large language models (LLMs) improves performance by up to 12.2 points. Moreover, BRIGHT is robust against data leakage during pretraining of the benchmarked models as we validate by showing similar performance even when documents from the benchmark are included in the training data. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings. Our code and data are available at https://brightbenchmark.github.io.
EQ-Bench: An Emotional Intelligence Benchmark for Large Language Models
We introduce EQ-Bench, a novel benchmark designed to evaluate aspects of emotional intelligence in Large Language Models (LLMs). We assess the ability of LLMs to understand complex emotions and social interactions by asking them to predict the intensity of emotional states of characters in a dialogue. The benchmark is able to discriminate effectively between a wide range of models. We find that EQ-Bench correlates strongly with comprehensive multi-domain benchmarks like MMLU (Hendrycks et al., 2020) (r=0.97), indicating that we may be capturing similar aspects of broad intelligence. Our benchmark produces highly repeatable results using a set of 60 English-language questions. We also provide open-source code for an automated benchmarking pipeline at https://github.com/EQ-bench/EQ-Bench and a leaderboard at https://eqbench.com
Benchmarking Foundation Models with Language-Model-as-an-Examiner
Numerous benchmarks have been established to assess the performance of foundation models on open-ended question answering, which serves as a comprehensive test of a model's ability to understand and generate language in a manner similar to humans. Most of these works focus on proposing new datasets, however, we see two main issues within previous benchmarking pipelines, namely testing leakage and evaluation automation. In this paper, we propose a novel benchmarking framework, Language-Model-as-an-Examiner, where the LM serves as a knowledgeable examiner that formulates questions based on its knowledge and evaluates responses in a reference-free manner. Our framework allows for effortless extensibility as various LMs can be adopted as the examiner, and the questions can be constantly updated given more diverse trigger topics. For a more comprehensive and equitable evaluation, we devise three strategies: (1) We instruct the LM examiner to generate questions across a multitude of domains to probe for a broad acquisition, and raise follow-up questions to engage in a more in-depth assessment. (2) Upon evaluation, the examiner combines both scoring and ranking measurements, providing a reliable result as it aligns closely with human annotations. (3) We additionally propose a decentralized Peer-examination method to address the biases in a single examiner. Our data and benchmarking results are available at: https://lmexam.com.
CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings
With the increasing code reasoning capabilities of existing large language models (LLMs) and breakthroughs in reasoning models like OpenAI o1 and o3, there is a growing need to develop more challenging and comprehensive benchmarks that effectively test their sophisticated competition-level coding abilities. Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments. To bridge this gap, we introduce CodeElo, a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time. CodeElo benchmark is mainly based on the official CodeForces platform and tries to align with the platform as much as possible. We compile the recent six months of contest problems on CodeForces with detailed information such as contest divisions, problem difficulty ratings, and problem algorithm tags. We introduce a unique judging method in which problems are submitted directly to the platform and develop a reliable Elo rating calculation system that aligns with the platform and is comparable with human participants but has lower variance. By testing on our CodeElo, we provide the Elo ratings of 30 existing popular open-source and 3 proprietary LLMs for the first time. The results show that o1-mini and QwQ-32B-Preview stand out significantly, achieving Elo ratings of 1578 and 1261, respectively, while other models struggle even with the easiest problems, placing in the lowest 20 percent among all human participants. Detailed analysis experiments are also conducted to provide insights into performance across algorithms and comparisons between using C++ and Python, which can suggest directions for future studies.
SpreadsheetBench: Towards Challenging Real World Spreadsheet Manipulation
We introduce SpreadsheetBench, a challenging spreadsheet manipulation benchmark exclusively derived from real-world scenarios, designed to immerse current large language models (LLMs) in the actual workflow of spreadsheet users. Unlike existing benchmarks that rely on synthesized queries and simplified spreadsheet files, SpreadsheetBench is built from 912 real questions gathered from online Excel forums, which reflect the intricate needs of users. The associated spreadsheets from the forums contain a variety of tabular data such as multiple tables, non-standard relational tables, and abundant non-textual elements. Furthermore, we propose a more reliable evaluation metric akin to online judge platforms, where multiple spreadsheet files are created as test cases for each instruction, ensuring the evaluation of robust solutions capable of handling spreadsheets with varying values. Our comprehensive evaluation of various LLMs under both single-round and multi-round inference settings reveals a substantial gap between the state-of-the-art (SOTA) models and human performance, highlighting the benchmark's difficulty.
Drawing Pandas: A Benchmark for LLMs in Generating Plotting Code
This paper introduces the human-curated PandasPlotBench dataset, designed to evaluate language models' effectiveness as assistants in visual data exploration. Our benchmark focuses on generating code for visualizing tabular data - such as a Pandas DataFrame - based on natural language instructions, complementing current evaluation tools and expanding their scope. The dataset includes 175 unique tasks. Our experiments assess several leading Large Language Models (LLMs) across three visualization libraries: Matplotlib, Seaborn, and Plotly. We show that the shortening of tasks has a minimal effect on plotting capabilities, allowing for the user interface that accommodates concise user input without sacrificing functionality or accuracy. Another of our findings reveals that while LLMs perform well with popular libraries like Matplotlib and Seaborn, challenges persist with Plotly, highlighting areas for improvement. We hope that the modular design of our benchmark will broaden the current studies on generating visualizations. Our benchmark is available online: https://huggingface.co/datasets/JetBrains-Research/plot_bench. The code for running the benchmark is also available: https://github.com/JetBrains-Research/PandasPlotBench.
Quantifying Variance in Evaluation Benchmarks
Evaluation benchmarks are the cornerstone of measuring capabilities of large language models (LLMs), as well as driving progress in said capabilities. Originally designed to make claims about capabilities (or lack thereof) in fully pretrained models, evaluation benchmarks are now also extensively used to decide between various training choices. Despite this widespread usage, we rarely quantify the variance in our evaluation benchmarks, which dictates whether differences in performance are meaningful. Here, we define and measure a range of metrics geared towards measuring variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training. By studying a large number of models -- both openly available and pretrained from scratch -- we provide empirical estimates for a variety of variance metrics, with considerations and recommendations for practitioners. We also evaluate the utility and tradeoffs of continuous versus discrete performance measures and explore options for better understanding and reducing this variance. We find that simple changes, such as framing choice tasks (like MMLU) as completion tasks, can often reduce variance for smaller scale (sim7B) models, while more involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance. Overall, our work provides insights into variance in evaluation benchmarks, suggests LM-specific techniques to reduce variance, and more generally encourages practitioners to carefully factor in variance when comparing models.
CLEVER: A Curated Benchmark for Formally Verified Code Generation
We introduce {rm C{small LEVER}}, a high-quality, curated benchmark of 161 problems for end-to-end verified code generation in Lean. Each problem consists of (1) the task of generating a specification that matches a held-out ground-truth specification, and (2) the task of generating a Lean implementation that provably satisfies this specification. Unlike prior benchmarks, {rm C{small LEVER}} avoids test-case supervision, LLM-generated annotations, and specifications that leak implementation logic or allow vacuous solutions. All outputs are verified post-hoc using Lean's type checker to ensure machine-checkable correctness. We use {rm C{small LEVER}} to evaluate several few-shot and agentic approaches based on state-of-the-art language models. These methods all struggle to achieve full verification, establishing it as a challenging frontier benchmark for program synthesis and formal reasoning. Our benchmark can be found on GitHub(https://github.com/trishullab/clever) as well as HuggingFace(https://huggingface.co/datasets/amitayusht/clever). All our evaluation code is also available online(https://github.com/trishullab/clever-prover).
DEsignBench: Exploring and Benchmarking DALL-E 3 for Imagining Visual Design
We introduce DEsignBench, a text-to-image (T2I) generation benchmark tailored for visual design scenarios. Recent T2I models like DALL-E 3 and others, have demonstrated remarkable capabilities in generating photorealistic images that align closely with textual inputs. While the allure of creating visually captivating images is undeniable, our emphasis extends beyond mere aesthetic pleasure. We aim to investigate the potential of using these powerful models in authentic design contexts. In pursuit of this goal, we develop DEsignBench, which incorporates test samples designed to assess T2I models on both "design technical capability" and "design application scenario." Each of these two dimensions is supported by a diverse set of specific design categories. We explore DALL-E 3 together with other leading T2I models on DEsignBench, resulting in a comprehensive visual gallery for side-by-side comparisons. For DEsignBench benchmarking, we perform human evaluations on generated images in DEsignBench gallery, against the criteria of image-text alignment, visual aesthetic, and design creativity. Our evaluation also considers other specialized design capabilities, including text rendering, layout composition, color harmony, 3D design, and medium style. In addition to human evaluations, we introduce the first automatic image generation evaluator powered by GPT-4V. This evaluator provides ratings that align well with human judgments, while being easily replicable and cost-efficient. A high-resolution version is available at https://github.com/design-bench/design-bench.github.io/raw/main/designbench.pdf?download=
Maintaining MTEB: Towards Long Term Usability and Reproducibility of Embedding Benchmarks
The Massive Text Embedding Benchmark (MTEB) has become a standard evaluation platform for text embedding models. While previous work has established the core benchmark methodology, this paper focuses on the engineering aspects that ensure MTEB's continued reproducibility and extensibility. We present our approach to maintaining robust continuous integration pipelines that validate dataset integrity, automate test execution, and assess benchmark results' generalizability. We detail the design choices that collectively enhance reproducibility and usability. Furthermore, we discuss our strategies for handling community contributions and extending the benchmark with new tasks and datasets. These engineering practices have been instrumental in scaling MTEB to become more comprehensive while maintaining quality and, ultimately, relevance to the field. Our experiences offer valuable insights for benchmark maintainers facing similar challenges in ensuring reproducibility and usability in machine learning evaluation frameworks. The MTEB repository is available at: https://github.com/embeddings-benchmark/mteb
ETHIC: Evaluating Large Language Models on Long-Context Tasks with High Information Coverage
Recent advancements in large language models (LLM) capable of processing extremely long texts highlight the need for a dedicated evaluation benchmark to assess their long-context capabilities. However, existing methods, like the needle-in-a-haystack test, do not effectively assess whether these models fully utilize contextual information, raising concerns about the reliability of current evaluation techniques. To thoroughly examine the effectiveness of existing benchmarks, we introduce a new metric called information coverage (IC), which quantifies the proportion of the input context necessary for answering queries. Our findings indicate that current benchmarks exhibit low IC; although the input context may be extensive, the actual usable context is often limited. To address this, we present ETHIC, a novel benchmark designed to assess LLMs' ability to leverage the entire context. Our benchmark comprises 2,648 test instances spanning four long-context tasks with high IC scores in the domains of books, debates, medicine, and law. Our evaluations reveal significant performance drops in contemporary LLMs, highlighting a critical challenge in managing long contexts. Our benchmark is available at https://github.com/dmis-lab/ETHIC.
LiveBench: A Challenging, Contamination-Free LLM Benchmark
Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-free versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size. LiveBench is difficult, with top models achieving below 65% accuracy. We release all questions, code, and model answers. Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models.
Benchmarking pre-trained text embedding models in aligning built asset information
Accurate mapping of the built asset information to established data classification systems and taxonomies is crucial for effective asset management, whether for compliance at project handover or ad-hoc data integration scenarios. Due to the complex nature of built asset data, which predominantly comprises technical text elements, this process remains largely manual and reliant on domain expert input. Recent breakthroughs in contextual text representation learning (text embedding), particularly through pre-trained large language models, offer promising approaches that can facilitate the automation of cross-mapping of the built asset data. However, no comprehensive evaluation has yet been conducted to assess these models' ability to effectively represent the complex semantics specific to built asset technical terminology. This study presents a comparative benchmark of state-of-the-art text embedding models to evaluate their effectiveness in aligning built asset information with domain-specific technical concepts. Our proposed datasets are derived from two renowned built asset data classification dictionaries. The results of our benchmarking across six proposed datasets, covering three tasks of clustering, retrieval, and reranking, highlight the need for future research on domain adaptation techniques. The benchmarking resources are published as an open-source library, which will be maintained and extended to support future evaluations in this field.
RealHiTBench: A Comprehensive Realistic Hierarchical Table Benchmark for Evaluating LLM-Based Table Analysis
With the rapid advancement of Large Language Models (LLMs), there is an increasing need for challenging benchmarks to evaluate their capabilities in handling complex tabular data. However, existing benchmarks are either based on outdated data setups or focus solely on simple, flat table structures. In this paper, we introduce RealHiTBench, a comprehensive benchmark designed to evaluate the performance of both LLMs and Multimodal LLMs (MLLMs) across a variety of input formats for complex tabular data, including LaTeX, HTML, and PNG. RealHiTBench also includes a diverse collection of tables with intricate structures, spanning a wide range of task types. Our experimental results, using 25 state-of-the-art LLMs, demonstrate that RealHiTBench is indeed a challenging benchmark. Moreover, we also develop TreeThinker, a tree-based pipeline that organizes hierarchical headers into a tree structure for enhanced tabular reasoning, validating the importance of improving LLMs' perception of table hierarchies. We hope that our work will inspire further research on tabular data reasoning and the development of more robust models. The code and data are available at https://github.com/cspzyy/RealHiTBench.
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
CleverHans is a software library that provides standardized reference implementations of adversarial example construction techniques and adversarial training. The library may be used to develop more robust machine learning models and to provide standardized benchmarks of models' performance in the adversarial setting. Benchmarks constructed without a standardized implementation of adversarial example construction are not comparable to each other, because a good result may indicate a robust model or it may merely indicate a weak implementation of the adversarial example construction procedure. This technical report is structured as follows. Section 1 provides an overview of adversarial examples in machine learning and of the CleverHans software. Section 2 presents the core functionalities of the library: namely the attacks based on adversarial examples and defenses to improve the robustness of machine learning models to these attacks. Section 3 describes how to report benchmark results using the library. Section 4 describes the versioning system.
Benchmarking Neural Network Training Algorithms
Training algorithms, broadly construed, are an essential part of every deep learning pipeline. Training algorithm improvements that speed up training across a wide variety of workloads (e.g., better update rules, tuning protocols, learning rate schedules, or data selection schemes) could save time, save computational resources, and lead to better, more accurate, models. Unfortunately, as a community, we are currently unable to reliably identify training algorithm improvements, or even determine the state-of-the-art training algorithm. In this work, using concrete experiments, we argue that real progress in speeding up training requires new benchmarks that resolve three basic challenges faced by empirical comparisons of training algorithms: (1) how to decide when training is complete and precisely measure training time, (2) how to handle the sensitivity of measurements to exact workload details, and (3) how to fairly compare algorithms that require hyperparameter tuning. In order to address these challenges, we introduce a new, competitive, time-to-result benchmark using multiple workloads running on fixed hardware, the AlgoPerf: Training Algorithms benchmark. Our benchmark includes a set of workload variants that make it possible to detect benchmark submissions that are more robust to workload changes than current widely-used methods. Finally, we evaluate baseline submissions constructed using various optimizers that represent current practice, as well as other optimizers that have recently received attention in the literature. These baseline results collectively demonstrate the feasibility of our benchmark, show that non-trivial gaps between methods exist, and set a provisional state-of-the-art for future benchmark submissions to try and surpass.
Enhancing Text-to-SQL Translation for Financial System Design
Text-to-SQL, the task of translating natural language questions into SQL queries, is part of various business processes. Its automation, which is an emerging challenge, will empower software practitioners to seamlessly interact with relational databases using natural language, thereby bridging the gap between business needs and software capabilities. In this paper, we consider Large Language Models (LLMs), which have achieved state of the art for various NLP tasks. Specifically, we benchmark Text-to-SQL performance, the evaluation methodologies, as well as input optimization (e.g., prompting). In light of the empirical observations that we have made, we propose two novel metrics that were designed to adequately measure the similarity between SQL queries. Overall, we share with the community various findings, notably on how to select the right LLM on Text-to-SQL tasks. We further demonstrate that a tree-based edit distance constitutes a reliable metric for assessing the similarity between generated SQL queries and the oracle for benchmarking Text2SQL approaches. This metric is important as it relieves researchers from the need to perform computationally expensive experiments such as executing generated queries as done in prior works. Our work implements financial domain use cases and, therefore contributes to the advancement of Text2SQL systems and their practical adoption in this domain.
This is the way: designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish
The availability of compute and data to train larger and larger language models increases the demand for robust methods of benchmarking the true progress of LM training. Recent years witnessed significant progress in standardized benchmarking for English. Benchmarks such as GLUE, SuperGLUE, or KILT have become de facto standard tools to compare large language models. Following the trend to replicate GLUE for other languages, the KLEJ benchmark has been released for Polish. In this paper, we evaluate the progress in benchmarking for low-resourced languages. We note that only a handful of languages have such comprehensive benchmarks. We also note the gap in the number of tasks being evaluated by benchmarks for resource-rich English/Chinese and the rest of the world. In this paper, we introduce LEPISZCZE (the Polish word for glew, the Middle English predecessor of glue), a new, comprehensive benchmark for Polish NLP with a large variety of tasks and high-quality operationalization of the benchmark. We design LEPISZCZE with flexibility in mind. Including new models, datasets, and tasks is as simple as possible while still offering data versioning and model tracking. In the first run of the benchmark, we test 13 experiments (task and dataset pairs) based on the five most recent LMs for Polish. We use five datasets from the Polish benchmark and add eight novel datasets. As the paper's main contribution, apart from LEPISZCZE, we provide insights and experiences learned while creating the benchmark for Polish as the blueprint to design similar benchmarks for other low-resourced languages.
DarkBench: Benchmarking Dark Patterns in Large Language Models
We introduce DarkBench, a comprehensive benchmark for detecting dark design patterns--manipulative techniques that influence user behavior--in interactions with large language models (LLMs). Our benchmark comprises 660 prompts across six categories: brand bias, user retention, sycophancy, anthropomorphism, harmful generation, and sneaking. We evaluate models from five leading companies (OpenAI, Anthropic, Meta, Mistral, Google) and find that some LLMs are explicitly designed to favor their developers' products and exhibit untruthful communication, among other manipulative behaviors. Companies developing LLMs should recognize and mitigate the impact of dark design patterns to promote more ethical AI.
BARS-CTR: Open Benchmarking for Click-Through Rate Prediction
Click-through rate (CTR) prediction is a critical task for many applications, as its accuracy has a direct impact on user experience and platform revenue. In recent years, CTR prediction has been widely studied in both academia and industry, resulting in a wide variety of CTR prediction models. Unfortunately, there is still a lack of standardized benchmarks and uniform evaluation protocols for CTR prediction research. This leads to non-reproducible or even inconsistent experimental results among existing studies, which largely limits the practical value and potential impact of their research. In this work, we aim to perform open benchmarking for CTR prediction and present a rigorous comparison of different models in a reproducible manner. To this end, we ran over 7,000 experiments for more than 12,000 GPU hours in total to re-evaluate 24 existing models on multiple datasets and settings. Surprisingly, our experiments show that with sufficient hyper-parameter search and model tuning, many deep models have smaller differences than expected. The results also reveal that making real progress on the modeling of CTR prediction is indeed a very challenging research task. We believe that our benchmarking work could not only allow researchers to gauge the effectiveness of new models conveniently but also make them fairly compare with the state of the arts. We have publicly released the benchmarking code, evaluation protocols, and hyper-parameter settings of our work to promote reproducible research in this field.
BizFinBench: A Business-Driven Real-World Financial Benchmark for Evaluating LLMs
Large language models excel in general tasks, yet assessing their reliability in logic-heavy, precision-critical domains like finance, law, and healthcare remains challenging. To address this, we introduce BizFinBench, the first benchmark specifically designed to evaluate LLMs in real-world financial applications. BizFinBench consists of 6,781 well-annotated queries in Chinese, spanning five dimensions: numerical calculation, reasoning, information extraction, prediction recognition, and knowledge-based question answering, grouped into nine fine-grained categories. The benchmark includes both objective and subjective metrics. We also introduce IteraJudge, a novel LLM evaluation method that reduces bias when LLMs serve as evaluators in objective metrics. We benchmark 25 models, including both proprietary and open-source systems. Extensive experiments show that no model dominates across all tasks. Our evaluation reveals distinct capability patterns: (1) In Numerical Calculation, Claude-3.5-Sonnet (63.18) and DeepSeek-R1 (64.04) lead, while smaller models like Qwen2.5-VL-3B (15.92) lag significantly; (2) In Reasoning, proprietary models dominate (ChatGPT-o3: 83.58, Gemini-2.0-Flash: 81.15), with open-source models trailing by up to 19.49 points; (3) In Information Extraction, the performance spread is the largest, with DeepSeek-R1 scoring 71.46, while Qwen3-1.7B scores 11.23; (4) In Prediction Recognition, performance variance is minimal, with top models scoring between 39.16 and 50.00. We find that while current LLMs handle routine finance queries competently, they struggle with complex scenarios requiring cross-concept reasoning. BizFinBench offers a rigorous, business-aligned benchmark for future research. The code and dataset are available at https://github.com/HiThink-Research/BizFinBench.
SWE-bench Goes Live!
The issue-resolving task, where a model generates patches to fix real-world bugs, has emerged as a critical benchmark for evaluating the capabilities of large language models (LLMs). While SWE-bench and its variants have become standard in this domain, they suffer from key limitations: they have not been updated since their initial releases, cover a narrow set of repositories, and depend heavily on manual effort for instance construction and environment setup. These factors hinder scalability and introduce risks of overfitting and data contamination. In this work, we present SWE-bench-Live, a live-updatable benchmark designed to overcome these challenges. Our initial release consists of 1,319 tasks derived from real GitHub issues created since 2024, spanning 93 repositories. Each task is accompanied by a dedicated Docker image to ensure reproducible execution. Central to our benchmark is \method, an automated curation pipeline that streamlines the entire process from instance creation to environment setup, removing manual bottlenecks and enabling scalability and continuous updates. We evaluate a range of state-of-the-art agent frameworks and LLMs on SWE-bench-Live, revealing a substantial performance gap compared to static benchmarks like SWE-bench, even under controlled evaluation conditions. To better understand this discrepancy, we perform detailed analyses across repository origin, issue recency, and task difficulty. By providing a fresh, diverse, and executable benchmark grounded in live repository activity, SWE-bench-Live facilitates rigorous, contamination-resistant evaluation of LLMs and agents in dynamic, real-world software development settings.
DeepResearch Bench: A Comprehensive Benchmark for Deep Research Agents
Deep Research Agents are a prominent category of LLM-based agents. By autonomously orchestrating multistep web exploration, targeted retrieval, and higher-order synthesis, they transform vast amounts of online information into analyst-grade, citation-rich reports--compressing hours of manual desk research into minutes. However, a comprehensive benchmark for systematically evaluating the capabilities of these agents remains absent. To bridge this gap, we present DeepResearch Bench, a benchmark consisting of 100 PhD-level research tasks, each meticulously crafted by domain experts across 22 distinct fields. Evaluating DRAs is inherently complex and labor-intensive. We therefore propose two novel methodologies that achieve strong alignment with human judgment. The first is a reference-based method with adaptive criteria to assess the quality of generated research reports. The other framework is introduced to evaluate DRA's information retrieval and collection capabilities by assessing its effective citation count and overall citation accuracy. We have open-sourced DeepResearch Bench and key components of these frameworks at https://github.com/Ayanami0730/deep_research_bench to accelerate the development of practical LLM-based agents.
MIGRATION-BENCH: Repository-Level Code Migration Benchmark from Java 8
With the rapid advancement of powerful large language models (LLMs) in recent years, a wide range of software engineering tasks can now be addressed using LLMs, significantly enhancing productivity and scalability. Numerous benchmark datasets have been developed to evaluate the coding capabilities of these models, while they primarily focus on problem-solving and issue-resolution tasks. In contrast, we introduce a new coding benchmark MIGRATION-BENCH with a distinct focus: code migration. MIGRATION-BENCH aims to serve as a comprehensive benchmark for migration from Java 8 to the latest long-term support (LTS) versions (Java 17, 21), MIGRATION-BENCH includes a full dataset and its subset selected with 5,102 and 300 repositories respectively. Selected is a representative subset curated for complexity and difficulty, offering a versatile resource to support research in the field of code migration. Additionally, we provide a comprehensive evaluation framework to facilitate rigorous and standardized assessment of LLMs on this challenging task. We further propose SD-Feedback and demonstrate that LLMs can effectively tackle repository-level code migration to Java 17. For the selected subset with Claude-3.5-Sonnet-v2, SD-Feedback achieves 62.33% and 27.00% success rate (pass@1) for minimal and maximal migration respectively. The benchmark dataset and source code are available at: https://huggingface.co/collections/AmazonScience and https://github.com/amazon-science/self_debug respectively.
Queries, Representation & Detection: The Next 100 Model Fingerprinting Schemes
The deployment of machine learning models in operational contexts represents a significant investment for any organisation. Consequently, the risk of these models being misappropriated by competitors needs to be addressed. In recent years, numerous proposals have been put forth to detect instances of model stealing. However, these proposals operate under implicit and disparate data and model access assumptions; as a consequence, it remains unclear how they can be effectively compared to one another. Our evaluation shows that a simple baseline that we introduce performs on par with existing state-of-the-art fingerprints, which, on the other hand, are much more complex. To uncover the reasons behind this intriguing result, this paper introduces a systematic approach to both the creation of model fingerprinting schemes and their evaluation benchmarks. By dividing model fingerprinting into three core components -- Query, Representation and Detection (QuRD) -- we are able to identify sim100 previously unexplored QuRD combinations and gain insights into their performance. Finally, we introduce a set of metrics to compare and guide the creation of more representative model stealing detection benchmarks. Our approach reveals the need for more challenging benchmarks and a sound comparison with baselines. To foster the creation of new fingerprinting schemes and benchmarks, we open-source our fingerprinting toolbox.
A User-Centric Benchmark for Evaluating Large Language Models
Large Language Models (LLMs) are essential tools to collaborate with users on different tasks. Evaluating their performance to serve users' needs in real-world scenarios is important. While many benchmarks have been created, they mainly focus on specific predefined model abilities. Few have covered the intended utilization of LLMs by real users. To address this oversight, we propose benchmarking LLMs from a user perspective in both dataset construction and evaluation designs. We first collect 1846 real-world use cases with 15 LLMs from a user study with 712 participants from 23 countries. These self-reported cases form the User Reported Scenarios(URS) dataset with a categorization of 7 user intents. Secondly, on this authentic multi-cultural dataset, we benchmark 10 LLM services on their efficacy in satisfying user needs. Thirdly, we show that our benchmark scores align well with user-reported experience in LLM interactions across diverse intents, both of which emphasize the overlook of subjective scenarios. In conclusion, our study proposes to benchmark LLMs from a user-centric perspective, aiming to facilitate evaluations that better reflect real user needs. The benchmark dataset and code are available at https://github.com/Alice1998/URS.
Graph RAG-Tool Fusion
Recent developments in retrieval-augmented generation (RAG) for selecting relevant tools from a tool knowledge base enable LLM agents to scale their complex tool calling capabilities to hundreds or thousands of external tools, APIs, or agents-as-tools. However, traditional RAG-based tool retrieval fails to capture structured dependencies between tools, limiting the retrieval accuracy of a retrieved tool's dependencies. For example, among a vector database of tools, a "get stock price" API requires a "stock ticker" parameter from a "get stock ticker" API, and both depend on OS-level internet connectivity tools. In this paper, we address this limitation by introducing Graph RAG-Tool Fusion, a novel plug-and-play approach that combines the strengths of vector-based retrieval with efficient graph traversal to capture all relevant tools (nodes) along with any nested dependencies (edges) within the predefined tool knowledge graph. We also present ToolLinkOS, a new tool selection benchmark of 573 fictional tools, spanning over 15 industries, each with an average of 6.3 tool dependencies. We demonstrate that Graph RAG-Tool Fusion achieves absolute improvements of 71.7% and 22.1% over na\"ive RAG on ToolLinkOS and ToolSandbox benchmarks, respectively (mAP@10). ToolLinkOS dataset is available at https://github.com/EliasLumer/Graph-RAG-Tool-Fusion-ToolLinkOS
AutoBencher: Creating Salient, Novel, Difficult Datasets for Language Models
Evaluation is critical for assessing capabilities, tracking scientific progress, and informing model selection. In this paper, we present three desiderata for a good benchmark for language models: (i) salience (e.g., knowledge about World War II is more salient than a random day in history), (ii) novelty (i.e., the benchmark reveals new trends in model rankings not shown by previous benchmarks), and (iii) difficulty (i.e., the benchmark should be difficult for existing models, leaving headroom for future improvement). We operationalize these three desiderata and cast benchmark creation as a search problem, that of finding benchmarks that that satisfy all three desiderata. To tackle this search problem, we present AutoBencher, which uses a language model to automatically search for datasets that meet the three desiderata. AutoBencher uses privileged information (e.g. relevant documents) to construct reliable datasets, and adaptivity with reranking to optimize for the search objective. We use AutoBencher to create datasets for math, multilingual, and knowledge-intensive question answering. The scalability of AutoBencher allows it to test fine-grained categories and tail knowledge, creating datasets that are on average 27% more novel and 22% more difficult than existing benchmarks. A closer investigation of our constructed datasets shows that we can identify specific gaps in LM knowledge in language models that are not captured by existing benchmarks, such as Gemini Pro performing much worse on question answering about the Permian Extinction and Fordism, while OpenAGI-7B performing surprisingly well on QA about COVID-19.
WritingBench: A Comprehensive Benchmark for Generative Writing
Recent advancements in large language models (LLMs) have significantly enhanced text generation capabilities, yet evaluating their performance in generative writing remains a challenge. Existing benchmarks primarily focus on generic text generation or limited in writing tasks, failing to capture the diverse requirements of high-quality written contents across various domains. To bridge this gap, we present WritingBench, a comprehensive benchmark designed to evaluate LLMs across 6 core writing domains and 100 subdomains, encompassing creative, persuasive, informative, and technical writing. We further propose a query-dependent evaluation framework that empowers LLMs to dynamically generate instance-specific assessment criteria. This framework is complemented by a fine-tuned critic model for criteria-aware scoring, enabling evaluations in style, format and length. The framework's validity is further demonstrated by its data curation capability, which enables 7B-parameter models to approach state-of-the-art (SOTA) performance. We open-source the benchmark, along with evaluation tools and modular framework components, to advance the development of LLMs in writing.
HackerRank-ASTRA: Evaluating Correctness & Consistency of Large Language Models on cross-domain multi-file project problems
Evaluating the real-world applicability of large language models (LLMs) provides valuable insights for their development and use in software development tasks. Existing benchmarks often focus on standalone coding problems or specific libraries, overlooking multi-file, project-based scenarios and lacking a rigorous evaluation of consistency. The HackerRank-ASTRA Benchmark introduces project-based coding problems that mirror real-world scenarios. It evaluates model consistency through 32 runs (k = 32) and median standard deviation while incorporating taxonomy-level analysis to assess sub-skill capabilities. Initial evaluations on 65 problems show that the top three models -- o1, o1-preview, and Claude-3.5-Sonnet-1022 -- achieved comparable average scores of 75%, with no statistically significant differences in performance. Notably, Claude-3.5-Sonnet-1022 demonstrated the highest consistency across problems, with low variability (SD = 0.0497), which was statistically significant compared to other models, highlighting its reliability for real-world software development tasks.
General Scales Unlock AI Evaluation with Explanatory and Predictive Power
Ensuring safe and effective use of AI requires understanding and anticipating its performance on novel tasks, from advanced scientific challenges to transformed workplace activities. So far, benchmarking has guided progress in AI, but it has offered limited explanatory and predictive power for general-purpose AI systems, given the low transferability across diverse tasks. In this paper, we introduce general scales for AI evaluation that can explain what common AI benchmarks really measure, extract ability profiles of AI systems, and predict their performance for new task instances, in- and out-of-distribution. Our fully-automated methodology builds on 18 newly-crafted rubrics that place instance demands on general scales that do not saturate. Illustrated for 15 large language models and 63 tasks, high explanatory power is unleashed from inspecting the demand and ability profiles, bringing insights on the sensitivity and specificity exhibited by different benchmarks, and how knowledge, metacognition and reasoning are affected by model size, chain-of-thought and distillation. Surprisingly, high predictive power at the instance level becomes possible using these demand levels, providing superior estimates over black-box baseline predictors based on embeddings or finetuning, especially in out-of-distribution settings (new tasks and new benchmarks). The scales, rubrics, battery, techniques and results presented here represent a major step for AI evaluation, underpinning the reliable deployment of AI in the years ahead. (Collaborative platform: https://kinds-of-intelligence-cfi.github.io/ADELE.)
tinyBenchmarks: evaluating LLMs with fewer examples
The versatility of large language models (LLMs) led to the creation of diverse benchmarks that thoroughly test a variety of language models' abilities. These benchmarks consist of tens of thousands of examples making evaluation of LLMs very expensive. In this paper, we investigate strategies to reduce the number of evaluations needed to assess the performance of an LLM on several key benchmarks. For example, we show that to accurately estimate the performance of an LLM on MMLU, a popular multiple-choice QA benchmark consisting of 14K examples, it is sufficient to evaluate this LLM on 100 curated examples. We release evaluation tools and tiny versions of popular benchmarks: Open LLM Leaderboard, MMLU, HELM, and AlpacaEval 2.0. Our empirical analysis demonstrates that these tools and tiny benchmarks are sufficient to reliably and efficiently reproduce the original evaluation results.
Craftax: A Lightning-Fast Benchmark for Open-Ended Reinforcement Learning
Benchmarks play a crucial role in the development and analysis of reinforcement learning (RL) algorithms. We identify that existing benchmarks used for research into open-ended learning fall into one of two categories. Either they are too slow for meaningful research to be performed without enormous computational resources, like Crafter, NetHack and Minecraft, or they are not complex enough to pose a significant challenge, like Minigrid and Procgen. To remedy this, we first present Craftax-Classic: a ground-up rewrite of Crafter in JAX that runs up to 250x faster than the Python-native original. A run of PPO using 1 billion environment interactions finishes in under an hour using only a single GPU and averages 90% of the optimal reward. To provide a more compelling challenge we present the main Craftax benchmark, a significant extension of the Crafter mechanics with elements inspired from NetHack. Solving Craftax requires deep exploration, long term planning and memory, as well as continual adaptation to novel situations as more of the world is discovered. We show that existing methods including global and episodic exploration, as well as unsupervised environment design fail to make material progress on the benchmark. We believe that Craftax can for the first time allow researchers to experiment in a complex, open-ended environment with limited computational resources.
On the Tool Manipulation Capability of Open-source Large Language Models
Recent studies on software tool manipulation with large language models (LLMs) mostly rely on closed model APIs. The industrial adoption of these models is substantially constrained due to the security and robustness risks in exposing information to closed LLM API services. In this paper, we ask can we enhance open-source LLMs to be competitive to leading closed LLM APIs in tool manipulation, with practical amount of human supervision. By analyzing common tool manipulation failures, we first demonstrate that open-source LLMs may require training with usage examples, in-context demonstration and generation style regulation to resolve failures. These insights motivate us to revisit classical methods in LLM literature, and demonstrate that we can adapt them as model alignment with programmatic data generation, system prompts and in-context demonstration retrievers to enhance open-source LLMs for tool manipulation. To evaluate these techniques, we create the ToolBench, a tool manipulation benchmark consisting of diverse software tools for real-world tasks. We demonstrate that our techniques can boost leading open-source LLMs by up to 90% success rate, showing capabilities competitive to OpenAI GPT-4 in 4 out of 8 ToolBench tasks. We show that such enhancement typically requires about one developer day to curate data for each tool, rendering a recipe with practical amount of human supervision.
JARVIS-Leaderboard: A Large Scale Benchmark of Materials Design Methods
Lack of rigorous reproducibility and validation are major hurdles for scientific development across many fields. Materials science in particular encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with both perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC) and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data-points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website: https://pages.nist.gov/jarvis_leaderboard
Benchmarking Benchmark Leakage in Large Language Models
Amid the expanding use of pre-training data, the phenomenon of benchmark dataset leakage has become increasingly prominent, exacerbated by opaque training processes and the often undisclosed inclusion of supervised data in contemporary Large Language Models (LLMs). This issue skews benchmark effectiveness and fosters potentially unfair comparisons, impeding the field's healthy development. To address this, we introduce a detection pipeline utilizing Perplexity and N-gram accuracy, two simple and scalable metrics that gauge a model's prediction precision on benchmark, to identify potential data leakages. By analyzing 31 LLMs under the context of mathematical reasoning, we reveal substantial instances of training even test set misuse, resulting in potentially unfair comparisons. These findings prompt us to offer several recommendations regarding model documentation, benchmark setup, and future evaluations. Notably, we propose the "Benchmark Transparency Card" to encourage clear documentation of benchmark utilization, promoting transparency and healthy developments of LLMs. we have made our leaderboard, pipeline implementation, and model predictions publicly available, fostering future research.
MathTutorBench: A Benchmark for Measuring Open-ended Pedagogical Capabilities of LLM Tutors
Evaluating the pedagogical capabilities of AI-based tutoring models is critical for making guided progress in the field. Yet, we lack a reliable, easy-to-use, and simple-to-run evaluation that reflects the pedagogical abilities of models. To fill this gap, we present MathTutorBench, an open-source benchmark for holistic tutoring model evaluation. MathTutorBench contains a collection of datasets and metrics that broadly cover tutor abilities as defined by learning sciences research in dialog-based teaching. To score the pedagogical quality of open-ended teacher responses, we train a reward model and show it can discriminate expert from novice teacher responses with high accuracy. We evaluate a wide set of closed- and open-weight models on MathTutorBench and find that subject expertise, indicated by solving ability, does not immediately translate to good teaching. Rather, pedagogy and subject expertise appear to form a trade-off that is navigated by the degree of tutoring specialization of the model. Furthermore, tutoring appears to become more challenging in longer dialogs, where simpler questioning strategies begin to fail. We release the benchmark, code, and leaderboard openly to enable rapid benchmarking of future models.
Efficient Benchmarking (of Language Models)
The increasing versatility of language models LMs has given rise to a new class of benchmarks that comprehensively assess a broad range of capabilities. Such benchmarks are associated with massive computational costs reaching thousands of GPU hours per model. However the efficiency aspect of these evaluation efforts had raised little discussion in the literature. In this work we present the problem of Efficient Benchmarking namely intelligently reducing the computation costs of LM evaluation without compromising reliability. Using the HELM benchmark as a test case we investigate how different benchmark design choices affect the computation-reliability tradeoff. We propose to evaluate the reliability of such decisions by using a new measure Decision Impact on Reliability DIoR for short. We find for example that the current leader on HELM may change by merely removing a low-ranked model from the benchmark and observe that a handful of examples suffice to obtain the correct benchmark ranking. Conversely a slightly different choice of HELM scenarios varies ranking widely. Based on our findings we outline a set of concrete recommendations for more efficient benchmark design and utilization practices leading to dramatic cost savings with minimal loss of benchmark reliability often reducing computation by x100 or more.
WaterBench: Towards Holistic Evaluation of Watermarks for Large Language Models
To mitigate the potential misuse of large language models (LLMs), recent research has developed watermarking algorithms, which restrict the generation process to leave an invisible trace for watermark detection. Due to the two-stage nature of the task, most studies evaluate the generation and detection separately, thereby presenting a challenge in unbiased, thorough, and applicable evaluations. In this paper, we introduce WaterBench, the first comprehensive benchmark for LLM watermarks, in which we design three crucial factors: (1) For benchmarking procedure, to ensure an apples-to-apples comparison, we first adjust each watermarking method's hyper-parameter to reach the same watermarking strength, then jointly evaluate their generation and detection performance. (2) For task selection, we diversify the input and output length to form a five-category taxonomy, covering 9 tasks. (3) For evaluation metric, we adopt the GPT4-Judge for automatically evaluating the decline of instruction-following abilities after watermarking. We evaluate 4 open-source watermarks on 2 LLMs under 2 watermarking strengths and observe the common struggles for current methods on maintaining the generation quality. The code and data are available at https://github.com/THU-KEG/WaterBench.
Confidence and Stability of Global and Pairwise Scores in NLP Evaluation
With the advent of highly capable instruction-tuned neural language models, benchmarking in natural language processing (NLP) is increasingly shifting towards pairwise comparison leaderboards, such as LMSYS Arena, from traditional global pointwise scores (e.g., GLUE, BIG-bench, SWE-bench). This paper empirically investigates the strengths and weaknesses of both global scores and pairwise comparisons to aid decision-making in selecting appropriate model evaluation strategies. Through computational experiments on synthetic and real-world datasets using standard global metrics and the popular Bradley-Terry model for pairwise comparisons, we found that while global scores provide more reliable overall rankings, they can underestimate strong models with rare, significant errors or low confidence. Conversely, pairwise comparisons are particularly effective for identifying strong contenders among models with lower global scores, especially where quality metrics are hard to define (e.g., text generation), though they require more comparisons to converge if ties are frequent. Our code and data are available at https://github.com/HSPyroblast/srw-ranking under a permissive license.
McEval: Massively Multilingual Code Evaluation
Code large language models (LLMs) have shown remarkable advances in code understanding, completion, and generation tasks. Programming benchmarks, comprised of a selection of code challenges and corresponding test cases, serve as a standard to evaluate the capability of different LLMs in such tasks. However, most existing benchmarks primarily focus on Python and are still restricted to a limited number of languages, where other languages are translated from the Python samples (e.g. MultiPL-E) degrading the data diversity. To further facilitate the research of code LLMs, we propose a massively multilingual code benchmark covering 40 programming languages (McEval) with 16K test samples, which substantially pushes the limits of code LLMs in multilingual scenarios. The benchmark contains challenging code completion, understanding, and generation evaluation tasks with finely curated massively multilingual instruction corpora McEval-Instruct. In addition, we introduce an effective multilingual coder mCoder trained on McEval-Instruct to support multilingual programming language generation. Extensive experimental results on McEval show that there is still a difficult journey between open-source models and closed-source LLMs (e.g. GPT-series models) in numerous languages. The instruction corpora, evaluation benchmark, and leaderboard are available at https://mceval.github.io/.
Measuring The Impact Of Programming Language Distribution
Current benchmarks for evaluating neural code models focus on only a small subset of programming languages, excluding many popular languages such as Go or Rust. To ameliorate this issue, we present the BabelCode framework for execution-based evaluation of any benchmark in any language. BabelCode enables new investigations into the qualitative performance of models' memory, runtime, and individual test case results. Additionally, we present a new code translation dataset called Translating Python Programming Puzzles (TP3) from the Python Programming Puzzles (Schuster et al. 2021) benchmark that involves translating expert-level python functions to any language. With both BabelCode and the TP3 benchmark, we investigate if balancing the distributions of 14 languages in a training dataset improves a large language model's performance on low-resource languages. Training a model on a balanced corpus results in, on average, 12.34% higher pass@k across all tasks and languages compared to the baseline. We find that this strategy achieves 66.48% better pass@k on low-resource languages at the cost of only a 12.94% decrease to high-resource languages. In our three translation tasks, this strategy yields, on average, 30.77% better low-resource pass@k while having 19.58% worse high-resource pass@k.
CodeS: Natural Language to Code Repository via Multi-Layer Sketch
The impressive performance of large language models (LLMs) on code-related tasks has shown the potential of fully automated software development. In light of this, we introduce a new software engineering task, namely Natural Language to code Repository (NL2Repo). This task aims to generate an entire code repository from its natural language requirements. To address this task, we propose a simple yet effective framework CodeS, which decomposes NL2Repo into multiple sub-tasks by a multi-layer sketch. Specifically, CodeS includes three modules: RepoSketcher, FileSketcher, and SketchFiller. RepoSketcher first generates a repository's directory structure for given requirements; FileSketcher then generates a file sketch for each file in the generated structure; SketchFiller finally fills in the details for each function in the generated file sketch. To rigorously assess CodeS on the NL2Repo task, we carry out evaluations through both automated benchmarking and manual feedback analysis. For benchmark-based evaluation, we craft a repository-oriented benchmark, SketchEval, and design an evaluation metric, SketchBLEU. For feedback-based evaluation, we develop a VSCode plugin for CodeS and engage 30 participants in conducting empirical studies. Extensive experiments prove the effectiveness and practicality of CodeS on the NL2Repo task.
BERGEN: A Benchmarking Library for Retrieval-Augmented Generation
Retrieval-Augmented Generation allows to enhance Large Language Models with external knowledge. In response to the recent popularity of generative LLMs, many RAG approaches have been proposed, which involve an intricate number of different configurations such as evaluation datasets, collections, metrics, retrievers, and LLMs. Inconsistent benchmarking poses a major challenge in comparing approaches and understanding the impact of each component in the pipeline. In this work, we study best practices that lay the groundwork for a systematic evaluation of RAG and present BERGEN, an end-to-end library for reproducible research standardizing RAG experiments. In an extensive study focusing on QA, we benchmark different state-of-the-art retrievers, rerankers, and LLMs. Additionally, we analyze existing RAG metrics and datasets. Our open-source library BERGEN is available under https://github.com/naver/bergen.
Zero-shot Benchmarking: A Framework for Flexible and Scalable Automatic Evaluation of Language Models
As language models improve and become capable of performing more complex tasks across modalities, evaluating them automatically becomes increasingly challenging. Developing strong and robust task-specific automatic metrics gets harder, and human-annotated test sets -- which are expensive to create -- saturate more quickly. A compelling alternative is to design reliable strategies to automate the creation of test data and evaluation, but previous attempts either rely on pre-existing data, or focus solely on individual tasks. We present Zero-shot Benchmarking (ZSB), a framework for creating high-quality benchmarks for any task by leveraging language models for both synthetic test data creation and evaluation. ZSB is simple and flexible: it requires only the creation of a prompt for data generation and one for evaluation; it is scalable to tasks and languages where collecting real-world data is costly or impractical; it is model-agnostic, allowing the creation of increasingly challenging benchmarks as models improve. To assess the effectiveness of our framework, we create benchmarks for five text-only tasks and a multi-modal one: general capabilities in four languages (English, Chinese, French, and Korean), translation, and general vision-language capabilities in English. We then rank a broad range of open and closed systems on our benchmarks. ZSB rankings consistently correlate strongly with human rankings, outperforming widely-adopted standard benchmarks. Through ablations, we find that strong benchmarks can be created with open models, and that judge model size and dataset variety are crucial drivers of performance. We release all our benchmarks, and code to reproduce our experiments and to produce new benchmarks.
AutoPresent: Designing Structured Visuals from Scratch
Designing structured visuals such as presentation slides is essential for communicative needs, necessitating both content creation and visual planning skills. In this work, we tackle the challenge of automated slide generation, where models produce slide presentations from natural language (NL) instructions. We first introduce the SlidesBench benchmark, the first benchmark for slide generation with 7k training and 585 testing examples derived from 310 slide decks across 10 domains. SlidesBench supports evaluations that are (i)reference-based to measure similarity to a target slide, and (ii)reference-free to measure the design quality of generated slides alone. We benchmark end-to-end image generation and program generation methods with a variety of models, and find that programmatic methods produce higher-quality slides in user-interactable formats. Built on the success of program generation, we create AutoPresent, an 8B Llama-based model trained on 7k pairs of instructions paired with code for slide generation, and achieve results comparable to the closed-source model GPT-4o. We further explore iterative design refinement where the model is tasked to self-refine its own output, and we found that this process improves the slide's quality. We hope that our work will provide a basis for future work on generating structured visuals.
Evaluating Cross-Domain Text-to-SQL Models and Benchmarks
Text-to-SQL benchmarks play a crucial role in evaluating the progress made in the field and the ranking of different models. However, accurately matching a model-generated SQL query to a reference SQL query in a benchmark fails for various reasons, such as underspecified natural language queries, inherent assumptions in both model-generated and reference queries, and the non-deterministic nature of SQL output under certain conditions. In this paper, we conduct an extensive study of several prominent cross-domain text-to-SQL benchmarks and re-evaluate some of the top-performing models within these benchmarks, by both manually evaluating the SQL queries and rewriting them in equivalent expressions. Our evaluation reveals that attaining a perfect performance on these benchmarks is unfeasible due to the multiple interpretations that can be derived from the provided samples. Furthermore, we find that the true performance of the models is underestimated and their relative performance changes after a re-evaluation. Most notably, our evaluation reveals a surprising discovery: a recent GPT4-based model surpasses the gold standard reference queries in the Spider benchmark in our human evaluation. This finding highlights the importance of interpreting benchmark evaluations cautiously, while also acknowledging the critical role of additional independent evaluations in driving advancements in the field.
InsightBench: Evaluating Business Analytics Agents Through Multi-Step Insight Generation
Data analytics is essential for extracting valuable insights from data that can assist organizations in making effective decisions. We introduce InsightBench, a benchmark dataset with three key features. First, it consists of 100 datasets representing diverse business use cases such as finance and incident management, each accompanied by a carefully curated set of insights planted in the datasets. Second, unlike existing benchmarks focusing on answering single queries, InsightBench evaluates agents based on their ability to perform end-to-end data analytics, including formulating questions, interpreting answers, and generating a summary of insights and actionable steps. Third, we conducted comprehensive quality assurance to ensure that each dataset in the benchmark had clear goals and included relevant and meaningful questions and analysis. Furthermore, we implement a two-way evaluation mechanism using LLaMA-3 as an effective, open-source evaluator to assess agents' ability to extract insights. We also propose AgentPoirot, our baseline data analysis agent capable of performing end-to-end data analytics. Our evaluation on InsightBench shows that AgentPoirot outperforms existing approaches (such as Pandas Agent) that focus on resolving single queries. We also compare the performance of open- and closed-source LLMs and various evaluation strategies. Overall, this benchmark serves as a testbed to motivate further development in comprehensive automated data analytics and can be accessed here: https://github.com/ServiceNow/insight-bench.
JavaBench: A Benchmark of Object-Oriented Code Generation for Evaluating Large Language Models
Code generation benchmarks such as HumanEval are widely adopted to evaluate LLMs' capabilities. However, after consolidating the latest 24 benchmarks, we noticed three significant imbalances. First, imbalanced programming language. 95.8% of benchmarks involve Python, while only 5 benchmarks involve Java. Second, imbalanced code granularity. Function-/statement-level benchmarks account for over 83.3% of benchmarks. Only a mere handful extends to class-/project-levels, and all are limited to Python. Third, lacking advanced features. Existing benchmarks primarily assess basic coding skills, while overlooking advanced Object-Oriented Programming (OOP) features (i.e., encapsulation, inheritance, and polymorphism). To fill these gaps, we propose JavaBench, a project-level Java benchmark that exercises OOP features. It comprises four Java projects with 389 methods in 106 Java classes. The test coverage is up to 92%, and JavaBench is attested by 282 undergraduate students, reaching a 90.93/100 average score (i.e., pass rate against the test suite), ensuring the quality of documentation, code skeleton, and tests. To better evaluate LLM's capability against JavaBench, we introduce a systematic evaluation design covering three context settings and five synthesis strategies at two granularities using three hierarchical metrics. Our extensive experiment yields several interesting findings. First, we noticed that regarding project-level Java programming, LLMs are far behind undergraduate students (no project can be correctly completed by any studied LLMs, and at most 41.17% Pass@5 in a more relaxed evaluation). Second, using method signature as prompt context may strike an ideal balance for project-level code generation. JavaBench is publicly available at https://github.com/java-bench/JavaBench.
MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark
Recent advancements in large language models (LLMs) have showcased significant improvements in mathematics. However, traditional math benchmarks like GSM8k offer a unidimensional perspective, falling short in providing a holistic assessment of the LLMs' math capabilities. To address this gap, we introduce MathBench, a new benchmark that rigorously assesses the mathematical capabilities of large language models. MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills. The benchmark progresses through five distinct stages, from basic arithmetic to college mathematics, and is structured to evaluate models at various depths of knowledge. Each stage includes theoretical questions and application problems, allowing us to measure a model's mathematical proficiency and its ability to apply concepts in practical scenarios. MathBench aims to enhance the evaluation of LLMs' mathematical abilities, providing a nuanced view of their knowledge understanding levels and problem solving skills in a bilingual context. The project is released at https://github.com/open-compass/MathBench .
AntiLeak-Bench: Preventing Data Contamination by Automatically Constructing Benchmarks with Updated Real-World Knowledge
Data contamination hinders fair LLM evaluation by introducing test data into newer models' training sets. Existing studies solve this challenge by updating benchmarks with newly collected data. However, they fail to guarantee contamination-free evaluation as the newly collected data may contain pre-existing knowledge, and their benchmark updates rely on intensive human labor. To address these issues, we in this paper propose AntiLeak-Bench, an automated anti-leakage benchmarking framework. Instead of simply using newly collected data, we construct samples with explicitly new knowledge absent from LLMs' training sets, which thus ensures strictly contamination-free evaluation. We further design a fully automated workflow to build and update our benchmark without human labor. This significantly reduces the cost of benchmark maintenance to accommodate emerging LLMs. Through extensive experiments, we highlight that data contamination likely exists before LLMs' cutoff time and demonstrate AntiLeak-Bench effectively overcomes this challenge.
YourBench: Easy Custom Evaluation Sets for Everyone
Evaluating large language models (LLMs) effectively remains a critical bottleneck, as traditional static benchmarks suffer from saturation and contamination, while human evaluations are costly and slow. This hinders timely or domain-specific assessment, crucial for real-world applications. We introduce YourBench, a novel, open-source framework that addresses these limitations by enabling dynamic, automated generation of reliable, up-to-date, and domain-tailored benchmarks cheaply and without manual annotation, directly from user-provided documents. We demonstrate its efficacy by replicating 7 diverse MMLU subsets using minimal source text, achieving this for under 15 USD in total inference costs while perfectly preserving the relative model performance rankings (Spearman Rho = 1) observed on the original benchmark. To ensure that YourBench generates data grounded in provided input instead of relying on posterior parametric knowledge in models, we also introduce Tempora-0325, a novel dataset of over 7K diverse documents, published exclusively after March 2025. Our comprehensive analysis spans 26 SoTA models from 7 major families across varying scales (3-671B parameters) to validate the quality of generated evaluations through rigorous algorithmic checks (e.g., citation grounding) and human assessments. We release the YourBench library, the Tempora-0325 dataset, 150k+ question answer pairs based on Tempora and all evaluation and inference traces to facilitate reproducible research and empower the community to generate bespoke benchmarks on demand, fostering more relevant and trustworthy LLM evaluation.
StackEval: Benchmarking LLMs in Coding Assistance
We present two comprehensive benchmarks to evaluate the performance of language models in coding assistance tasks, covering code writing, debugging, code review, and conceptual understanding. Our main contribution includes two curated datasets: StackEval, a large-scale benchmark derived from Stack Overflow questions, and StackUnseen, a dynamic benchmark featuring the most recent Stack Overflow content. These benchmarks offer novel insights into the capabilities and limitations of LLMs, particularly in handling new and emerging content. Additionally, we assess LLMs' proficiency as judges for coding tasks using a curated, human-annotated dataset, exploring their evaluation capabilities and potential biases, including whether they favor their own generated solutions. Our findings underscore the potential of these benchmarks to advance LLM development and application in coding assistance. To ensure reproducibility, we publicly share our datasets and evaluation code at https://github.com/ProsusAI/stack-eval .
MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains
Recent advances in large language models (LLMs) have increased the demand for comprehensive benchmarks to evaluate their capabilities as human-like agents. Existing benchmarks, while useful, often focus on specific application scenarios, emphasizing task completion but failing to dissect the underlying skills that drive these outcomes. This lack of granularity makes it difficult to deeply discern where failures stem from. Additionally, setting up these environments requires considerable effort, and issues of unreliability and reproducibility sometimes arise, especially in interactive tasks. To address these limitations, we introduce the Massive Multitask Agent Understanding (MMAU) benchmark, featuring comprehensive offline tasks that eliminate the need for complex environment setups. It evaluates models across five domains, including teal{Tool-use}, teal{Directed Acyclic Graph (DAG) QA}, teal{Data Science and Machine Learning coding}, teal{Contest-level programming} and teal{Mathematics}, and covers five essential capabilities: orange{Understanding}, orange{Reasoning}, orange{Planning}, orange{Problem-solving}, and orange{Self-correction}. With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents. By testing 18 representative models on MMAU, we provide deep and insightful analyses. Ultimately, MMAU not only sheds light on the capabilities and limitations of LLM agents but also enhances the interpretability of their performance. Datasets and evaluation scripts of MMAU are released at https://github.com/apple/axlearn/docs/research/mmau.
AI Idea Bench 2025: AI Research Idea Generation Benchmark
Large-scale Language Models (LLMs) have revolutionized human-AI interaction and achieved significant success in the generation of novel ideas. However, current assessments of idea generation overlook crucial factors such as knowledge leakage in LLMs, the absence of open-ended benchmarks with grounded truth, and the limited scope of feasibility analysis constrained by prompt design. These limitations hinder the potential of uncovering groundbreaking research ideas. In this paper, we present AI Idea Bench 2025, a framework designed to quantitatively evaluate and compare the ideas generated by LLMs within the domain of AI research from diverse perspectives. The framework comprises a comprehensive dataset of 3,495 AI papers and their associated inspired works, along with a robust evaluation methodology. This evaluation system gauges idea quality in two dimensions: alignment with the ground-truth content of the original papers and judgment based on general reference material. AI Idea Bench 2025's benchmarking system stands to be an invaluable resource for assessing and comparing idea-generation techniques, thereby facilitating the automation of scientific discovery.
Eureka: Evaluating and Understanding Large Foundation Models
Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.
Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
TabArena: A Living Benchmark for Machine Learning on Tabular Data
With the growing popularity of deep learning and foundation models for tabular data, the need for standardized and reliable benchmarks is higher than ever. However, current benchmarks are static. Their design is not updated even if flaws are discovered, model versions are updated, or new models are released. To address this, we introduce TabArena, the first continuously maintained living tabular benchmarking system. To launch TabArena, we manually curate a representative collection of datasets and well-implemented models, conduct a large-scale benchmarking study to initialize a public leaderboard, and assemble a team of experienced maintainers. Our results highlight the influence of validation method and ensembling of hyperparameter configurations to benchmark models at their full potential. While gradient-boosted trees are still strong contenders on practical tabular datasets, we observe that deep learning methods have caught up under larger time budgets with ensembling. At the same time, foundation models excel on smaller datasets. Finally, we show that ensembles across models advance the state-of-the-art in tabular machine learning and investigate the contributions of individual models. We launch TabArena with a public leaderboard, reproducible code, and maintenance protocols to create a living benchmark available at https://tabarena.ai.
Seal-Tools: Self-Instruct Tool Learning Dataset for Agent Tuning and Detailed Benchmark
This paper presents a new tool learning dataset Seal-Tools, which contains self-instruct API-like tools. Seal-Tools not only offers a large number of tools, but also includes instances which demonstrate the practical application of tools. Seeking to generate data on a large scale while ensuring reliability, we propose a self-instruct method to generate tools and instances, allowing precise control over the process. Moreover, our Seal-Tools contains hard instances that call multiple tools to complete the job, among which some are nested tool callings. For precise and comprehensive evaluation, we use strict format control and design three metrics from different dimensions. Therefore, Seal-Tools can serve as a new benchmark to evaluate the tool-calling ability of LLMs. Finally, we evaluate several prevalent LLMs and our finetuned model on Seal-Tools. The results show that current systems are far from perfect. The code, data and experiment results are available at https://github.com/fairyshine/Seal-Tools .
TOOLVERIFIER: Generalization to New Tools via Self-Verification
Teaching language models to use tools is an important milestone towards building general assistants, but remains an open problem. While there has been significant progress on learning to use specific tools via fine-tuning, language models still struggle with learning how to robustly use new tools from only a few demonstrations. In this work we introduce a self-verification method which distinguishes between close candidates by self-asking contrastive questions during (1) tool selection; and (2) parameter generation. We construct synthetic, high-quality, self-generated data for this goal using Llama-2 70B, which we intend to release publicly. Extensive experiments on 4 tasks from the ToolBench benchmark, consisting of 17 unseen tools, demonstrate an average improvement of 22% over few-shot baselines, even in scenarios where the distinctions between candidate tools are finely nuanced.
The Bitter Lesson Learned from 2,000+ Multilingual Benchmarks
As large language models (LLMs) continue to advance in linguistic capabilities, robust multilingual evaluation has become essential for promoting equitable technological progress. This position paper examines over 2,000 multilingual (non-English) benchmarks from 148 countries, published between 2021 and 2024, to evaluate past, present, and future practices in multilingual benchmarking. Our findings reveal that, despite significant investments amounting to tens of millions of dollars, English remains significantly overrepresented in these benchmarks. Additionally, most benchmarks rely on original language content rather than translations, with the majority sourced from high-resource countries such as China, India, Germany, the UK, and the USA. Furthermore, a comparison of benchmark performance with human judgments highlights notable disparities. STEM-related tasks exhibit strong correlations with human evaluations (0.70 to 0.85), while traditional NLP tasks like question answering (e.g., XQuAD) show much weaker correlations (0.11 to 0.30). Moreover, translating English benchmarks into other languages proves insufficient, as localized benchmarks demonstrate significantly higher alignment with local human judgments (0.68) than their translated counterparts (0.47). This underscores the importance of creating culturally and linguistically tailored benchmarks rather than relying solely on translations. Through this comprehensive analysis, we highlight six key limitations in current multilingual evaluation practices, propose the guiding principles accordingly for effective multilingual benchmarking, and outline five critical research directions to drive progress in the field. Finally, we call for a global collaborative effort to develop human-aligned benchmarks that prioritize real-world applications.
Don't Make Your LLM an Evaluation Benchmark Cheater
Large language models~(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity. To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs in different aspects. Despite that a number of high-quality benchmarks have been released, the concerns about the appropriate use of these benchmarks and the fair comparison of different models are increasingly growing. Considering these concerns, in this paper, we discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results. Specially, we focus on a special issue that would lead to inappropriate evaluation, \ie benchmark leakage, referring that the data related to evaluation sets is occasionally used for model training. This phenomenon now becomes more common since pre-training data is often prepared ahead of model test. We conduct extensive experiments to study the effect of benchmark leverage, and find that it can dramatically boost the evaluation results, which would finally lead to an unreliable assessment of model performance. To improve the use of existing evaluation benchmarks, we finally present several guidelines for both LLM developers and benchmark maintainers. We hope this work can draw attention to appropriate training and evaluation of LLMs.
CoReQA: Uncovering Potentials of Language Models in Code Repository Question Answering
Large language models that enhance software development tasks, such as code generation, code completion, and code question answering (QA), have been extensively studied in both academia and the industry. The models are integrated into popular intelligent IDEs like JetBrains and Cursor. Current benchmarks for evaluating models' code comprehension capabilities primarily focus on code generation or completion, often neglecting QA, which is a crucial aspect of understanding code. Existing code QA benchmarks are derived from code comments with predefined patterns (e.g., CodeQA) or focus on specific domains, such as education (e.g., CS1QA). These benchmarks fail to capture the real-world complexity of software engineering and user requirements for understanding code repositories. To address this gap, we introduce CoReQA, a benchmark for Code Repository-level question answering, constructed from GitHub issues and comments from 176 popular repositories across four programming languages. Since questions and answers may include both natural language and code snippets, traditional evaluation metrics such as BLEU are inadequate for assessing repository-level QA performance. Thus, we provide an LLM-as-a-judge framework to evaluate QA performance from five aspects. Based on CoReQA, we evaluate the performance of three baselines, including two short-context models using generic retrieval strategies and one long-context model that utilizes the entire repository context. Evaluation results show that state-of-the-art proprietary and long-context models struggle to address repository-level questions effectively. Our analysis highlights the limitations of language models in assisting developers in understanding repositories and suggests future directions for improving repository comprehension systems through effective context retrieval methodologies.
WorldGUI: Dynamic Testing for Comprehensive Desktop GUI Automation
Current GUI agents have achieved outstanding performance in GUI element grounding. However, planning remains highly challenging, especially due to sensitivity to the initial state of the environment. Specifically, slight differences in the initial state-such as the target software not being open or the interface not being in its default state-often lead to planning errors. This issue is widespread in real user scenarios, but existing benchmarks fail to evaluate it. In this paper, we present WorldGUI, a novel GUI benchmark that designs GUI tasks with various initial states to simulate real computer-user interactions. The benchmark spans a wide range of tasks across 10 popular software applications, including PowerPoint, VSCode, and Adobe Acrobat. In addition, to address the challenges of dynamic GUI automation tasks, we propose GUI-Thinker, a holistic framework, leveraging a critique mechanism, that effectively manages the unpredictability and complexity of GUI interactions. Experimental results demonstrate that GUI-Thinker significantly outperforms Claude-3.5 (Computer Use) by 14.9% in success rate on WorldGUI tasks. This improvement underscores the effectiveness of our critical-thinking-based framework in enhancing GUI automation.
P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs
Recent advancements in large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning. Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks. To alleviate this drawback, we aim to present a comprehensive multilingual multitask benchmark. First, we present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks, i.e., their ability to differentiate between models being evaluated. Leveraging this pipeline, we introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets. Furthermore, P-MMEval delivers consistent language coverage across various datasets and provides parallel samples. Finally, we conduct extensive experiments on representative multilingual model series to compare performances across models, analyze dataset effectiveness, examine prompt impacts on model performances, and explore the relationship between multilingual performances and factors such as tasks, model sizes, and languages. These insights offer valuable guidance for future research. The dataset is available at https://huggingface.co/datasets/Qwen/P-MMEval.
Tur[k]ingBench: A Challenge Benchmark for Web Agents
Can advanced multi-modal models effectively tackle complex web-based tasks? Such tasks are often found on crowdsourcing platforms, where crowdworkers engage in challenging micro-tasks within web-based environments. Building on this idea, we present TurkingBench, a benchmark consisting of tasks presented as web pages with textual instructions and multi-modal contexts. Unlike previous approaches that rely on artificially synthesized web pages, our benchmark uses natural HTML pages originally designed for crowdsourcing workers to perform various annotation tasks. Each task's HTML instructions are instantiated with different values derived from crowdsourcing tasks, creating diverse instances. This benchmark includes 32.2K instances spread across 158 tasks. To support the evaluation of TurkingBench, we have developed a framework that links chatbot responses to actions on web pages (e.g., modifying a text box, selecting a radio button). We assess the performance of cutting-edge private and open-source models, including language-only and vision-language models (such as GPT4 and InternVL), on this benchmark. Our results show that while these models outperform random chance, there is still significant room for improvement. We hope that this benchmark will drive progress in the evaluation and development of web-based agents.
AIR-Bench: Automated Heterogeneous Information Retrieval Benchmark
Evaluation plays a crucial role in the advancement of information retrieval (IR) models. However, current benchmarks, which are based on predefined domains and human-labeled data, face limitations in addressing evaluation needs for emerging domains both cost-effectively and efficiently. To address this challenge, we propose the Automated Heterogeneous Information Retrieval Benchmark (AIR-Bench). AIR-Bench is distinguished by three key features: 1) Automated. The testing data in AIR-Bench is automatically generated by large language models (LLMs) without human intervention. 2) Heterogeneous. The testing data in AIR-Bench is generated with respect to diverse tasks, domains and languages. 3) Dynamic. The domains and languages covered by AIR-Bench are constantly augmented to provide an increasingly comprehensive evaluation benchmark for community developers. We develop a reliable and robust data generation pipeline to automatically create diverse and high-quality evaluation datasets based on real-world corpora. Our findings demonstrate that the generated testing data in AIR-Bench aligns well with human-labeled testing data, making AIR-Bench a dependable benchmark for evaluating IR models. The resources in AIR-Bench are publicly available at https://github.com/AIR-Bench/AIR-Bench.
IDEA-Bench: How Far are Generative Models from Professional Designing?
Real-world design tasks - such as picture book creation, film storyboard development using character sets, photo retouching, visual effects, and font transfer - are highly diverse and complex, requiring deep interpretation and extraction of various elements from instructions, descriptions, and reference images. The resulting images often implicitly capture key features from references or user inputs, making it challenging to develop models that can effectively address such varied tasks. While existing visual generative models can produce high-quality images based on prompts, they face significant limitations in professional design scenarios that involve varied forms and multiple inputs and outputs, even when enhanced with adapters like ControlNets and LoRAs. To address this, we introduce IDEA-Bench, a comprehensive benchmark encompassing 100 real-world design tasks, including rendering, visual effects, storyboarding, picture books, fonts, style-based, and identity-preserving generation, with 275 test cases to thoroughly evaluate a model's general-purpose generation capabilities. Notably, even the best-performing model only achieves 22.48 on IDEA-Bench, while the best general-purpose model only achieves 6.81. We provide a detailed analysis of these results, highlighting the inherent challenges and providing actionable directions for improvement. Additionally, we provide a subset of 18 representative tasks equipped with multimodal large language model (MLLM)-based auto-evaluation techniques to facilitate rapid model development and comparison. We releases the benchmark data, evaluation toolkits, and an online leaderboard at https://github.com/ali-vilab/IDEA-Bench, aiming to drive the advancement of generative models toward more versatile and applicable intelligent design systems.
Automated Benchmark Generation for Repository-Level Coding Tasks
Code Agent development is an extremely active research area, where a reliable performance metric is critical for tracking progress and guiding new developments. This demand is underscored by the meteoric rise in popularity of SWE-Bench. This benchmark challenges code agents to generate patches addressing GitHub issues given the full repository as context. The correctness of generated patches is then evaluated by executing a human-written test suite extracted from the repository after the issue's resolution. However, constructing benchmarks like SWE-Bench requires substantial manual effort to set up historically accurate execution environments for testing. Crucially, this severely limits the number of considered repositories, e.g., just 12 for SWE-Bench. Considering so few repositories, selected for their popularity runs the risk of leading to a distributional mismatch, i.e., the measured performance may not be representative of real-world scenarios potentially misguiding development efforts. In this work, we address this challenge and introduce SetUpAgent, a fully automated system capable of historically accurate dependency setup, test execution, and result parsing. Using SetUpAgent, we generate two new datasets: (i) SWEE-Bench an extended version of SWE-Bench encompassing hundreds of repositories, and (ii) SWA-Bench a benchmark focusing on applications rather than libraries. Comparing these datasets to SWE-Bench with respect to their characteristics and code agent performance, we find significant distributional differences, including lower issue description quality and detail level, higher fix complexity, and most importantly up to 40% lower agent success rates.
Lifelong Benchmarks: Efficient Model Evaluation in an Era of Rapid Progress
Standardized benchmarks drive progress in machine learning. However, with repeated testing, the risk of overfitting grows as algorithms over-exploit benchmark idiosyncrasies. In our work, we seek to mitigate this challenge by compiling ever-expanding large-scale benchmarks called Lifelong Benchmarks. As exemplars of our approach, we create Lifelong-CIFAR10 and Lifelong-ImageNet, containing (for now) 1.69M and 1.98M test samples, respectively. While reducing overfitting, lifelong benchmarks introduce a key challenge: the high cost of evaluating a growing number of models across an ever-expanding sample set. To address this challenge, we also introduce an efficient evaluation framework: Sort \& Search (S&S), which reuses previously evaluated models by leveraging dynamic programming algorithms to selectively rank and sub-select test samples, enabling cost-effective lifelong benchmarking. Extensive empirical evaluations across 31,000 models demonstrate that S&S achieves highly-efficient approximate accuracy measurement, reducing compute cost from 180 GPU days to 5 GPU hours (1000x reduction) on a single A100 GPU, with low approximation error. As such, lifelong benchmarks offer a robust, practical solution to the "benchmark exhaustion" problem.
Dynaboard: An Evaluation-As-A-Service Platform for Holistic Next-Generation Benchmarking
We introduce Dynaboard, an evaluation-as-a-service framework for hosting benchmarks and conducting holistic model comparison, integrated with the Dynabench platform. Our platform evaluates NLP models directly instead of relying on self-reported metrics or predictions on a single dataset. Under this paradigm, models are submitted to be evaluated in the cloud, circumventing the issues of reproducibility, accessibility, and backwards compatibility that often hinder benchmarking in NLP. This allows users to interact with uploaded models in real time to assess their quality, and permits the collection of additional metrics such as memory use, throughput, and robustness, which -- despite their importance to practitioners -- have traditionally been absent from leaderboards. On each task, models are ranked according to the Dynascore, a novel utility-based aggregation of these statistics, which users can customize to better reflect their preferences, placing more/less weight on a particular axis of evaluation or dataset. As state-of-the-art NLP models push the limits of traditional benchmarks, Dynaboard offers a standardized solution for a more diverse and comprehensive evaluation of model quality.
Top Leaderboard Ranking = Top Coding Proficiency, Always? EvoEval: Evolving Coding Benchmarks via LLM
LLMs have become the go-to choice for code generation tasks, with an exponential increase in the training, development, and usage of LLMs specifically for code generation. To evaluate the ability of LLMs on code, both academic and industry practitioners rely on popular handcrafted benchmarks. However, prior benchmarks contain only a very limited set of problems, both in quantity and variety. Further, due to popularity and age, many benchmarks are prone to data leakage where example solutions can be readily found on the web and thus potentially in training data. Such limitations inevitably lead us to inquire: Is the leaderboard performance on existing benchmarks reliable and comprehensive enough to measure the program synthesis ability of LLMs? To address this, we introduce EvoEval -- a program synthesis benchmark suite created by evolving existing benchmarks into different targeted domains for a comprehensive evaluation of LLM coding abilities. Our study on 51 LLMs shows that compared to the high performance obtained on standard benchmarks like HumanEval, there is a significant drop in performance (on average 39.4%) when using EvoEval. Additionally, the decrease in performance can range from 19.6% to 47.7%, leading to drastic ranking changes amongst LLMs and showing potential overfitting of existing benchmarks. Furthermore, we showcase various insights, including the brittleness of instruction-following models when encountering rewording or subtle changes as well as the importance of learning problem composition and decomposition. EvoEval not only provides comprehensive benchmarks, but can be used to further evolve arbitrary problems to keep up with advances and the ever-changing landscape of LLMs for code. We have open-sourced our benchmarks, tools, and complete LLM generations at https://github.com/evo-eval/evoeval
Establishing Best Practices for Building Rigorous Agentic Benchmarks
Benchmarks are essential for quantitatively tracking progress in AI. As AI agents become increasingly capable, researchers and practitioners have introduced agentic benchmarks to evaluate agents on complex, real-world tasks. These benchmarks typically measure agent capabilities by evaluating task outcomes via specific reward designs. However, we show that many agentic benchmarks have issues task setup or reward design. For example, SWE-bench Verified uses insufficient test cases, while TAU-bench counts empty responses as successful. Such issues can lead to under- or overestimation agents' performance by up to 100% in relative terms. To make agentic evaluation rigorous, we introduce the Agentic Benchmark Checklist (ABC), a set of guidelines that we synthesized from our benchmark-building experience, a survey of best practices, and previously reported issues. When applied to CVE-Bench, a benchmark with a particularly complex evaluation design, ABC reduces the performance overestimation by 33%.
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
While machine learning on graphs has demonstrated promise in drug design and molecular property prediction, significant benchmarking challenges hinder its further progress and relevance. Current benchmarking practices often lack focus on transformative, real-world applications, favoring narrow domains like two-dimensional molecular graphs over broader, impactful areas such as combinatorial optimization, relational databases, or chip design. Additionally, many benchmark datasets poorly represent the underlying data, leading to inadequate abstractions and misaligned use cases. Fragmented evaluations and an excessive focus on accuracy further exacerbate these issues, incentivizing overfitting rather than fostering generalizable insights. These limitations have prevented the development of truly useful graph foundation models. This position paper calls for a paradigm shift toward more meaningful benchmarks, rigorous evaluation protocols, and stronger collaboration with domain experts to drive impactful and reliable advances in graph learning research, unlocking the potential of graph learning.
BenchMAX: A Comprehensive Multilingual Evaluation Suite for Large Language Models
Previous multilingual benchmarks focus primarily on simple understanding tasks, but for large language models(LLMs), we emphasize proficiency in instruction following, reasoning, long context understanding, code generation, and so on. However, measuring these advanced capabilities across languages is underexplored. To address the disparity, we introduce BenchMAX, a multi-way multilingual evaluation benchmark that allows for fair comparisons of these important abilities across languages. To maintain high quality, three distinct native-speaking annotators independently annotate each sample within all tasks after the data was machine-translated from English into 16 other languages. Additionally, we present a novel translation challenge stemming from dataset construction. Extensive experiments on BenchMAX reveal varying effectiveness of core capabilities across languages, highlighting performance gaps that cannot be bridged by simply scaling up model size. BenchMAX serves as a comprehensive multilingual evaluation platform, providing a promising test bed to promote the development of multilingual language models. The dataset and code are publicly accessible.
GeoGrid-Bench: Can Foundation Models Understand Multimodal Gridded Geo-Spatial Data?
We present GeoGrid-Bench, a benchmark designed to evaluate the ability of foundation models to understand geo-spatial data in the grid structure. Geo-spatial datasets pose distinct challenges due to their dense numerical values, strong spatial and temporal dependencies, and unique multimodal representations including tabular data, heatmaps, and geographic visualizations. To assess how foundation models can support scientific research in this domain, GeoGrid-Bench features large-scale, real-world data covering 16 climate variables across 150 locations and extended time frames. The benchmark includes approximately 3,200 question-answer pairs, systematically generated from 8 domain expert-curated templates to reflect practical tasks encountered by human scientists. These range from basic queries at a single location and time to complex spatiotemporal comparisons across regions and periods. Our evaluation reveals that vision-language models perform best overall, and we provide a fine-grained analysis of the strengths and limitations of different foundation models in different geo-spatial tasks. This benchmark offers clearer insights into how foundation models can be effectively applied to geo-spatial data analysis and used to support scientific research.
NetPress: Dynamically Generated LLM Benchmarks for Network Applications
Despite growing interest in domain-specific benchmarking of large language models (LLMs) and agents, current evaluations remain limited to static, small-scale datasets, especially in high-stakes tasks like network operations that demand reliability for deployments. We present NetPress, an automated benchmark generation framework for evaluating LLM agents in network applications. NetPress introduces a unified abstraction with state and action, enabling dynamic generation of diverse query sets along with corresponding ground truths. At runtime, users can specify benchmark configurations to generate millions of queries on the fly. In addition to dynamic benchmark construction, NetPress integrates with network emulators to provide realistic environment feedback, supporting comprehensive evaluation across correctness, safety, and latency. We instantiate NetPress on three representative applications, revealing interesting fine-grained differences in agent behavior that static, correctness-only benchmarks often miss. NetPress moves LLM evaluation toward realistic, scalable testing in infrastructure-centric domains, helping close the gap between benchmark performance and real-world deployment readiness. Code is available at https://github.com/Froot-NetSys/NetPress.
IsoBench: Benchmarking Multimodal Foundation Models on Isomorphic Representations
Current foundation models exhibit impressive capabilities when prompted either with text only or with both image and text inputs. But do their capabilities change depending on the input modality? In this work, we propose IsoBench, a benchmark dataset containing problems from four major areas: math, science, algorithms, and games. Each example is presented with multiple isomorphic representations of inputs, such as visual, textual, and mathematical presentations. IsoBench provides fine-grained feedback to diagnose performance gaps caused by the form of the representation. Across various foundation models, we observe that on the same problem, models have a consistent preference towards textual representations. Most prominently, when evaluated on all IsoBench problems, Claude-3 Opus performs 28.7 points worse when provided with images instead of text; similarly, GPT-4 Turbo is 18.7 points worse and Gemini Pro is 14.9 points worse. Finally, we present two prompting techniques, IsoCombination and IsoScratchPad, which improve model performance by considering combinations of, and translations between, different input representations.
ArtifactsBench: Bridging the Visual-Interactive Gap in LLM Code Generation Evaluation
The generative capabilities of Large Language Models (LLMs) are rapidly expanding from static code to dynamic, interactive visual artifacts. This progress is bottlenecked by a critical evaluation gap: established benchmarks focus on algorithmic correctness and are blind to the visual fidelity and interactive integrity that define modern user experiences. To bridge this gap, we introduce ArtifactsBench, a new benchmark and paradigm for the automated, multimodal evaluation of visual code generation. Our framework programmatically renders each generated artifact and captures its dynamic behavior through temporal screenshots. This visual evidence, alongside the source code, is then assessed by a Multimodal LLM (MLLM)-as-Judge, which is rigorously guided by a fine-grained, per-task checklist to ensure holistic and reproducible scoring. We construct a new benchmark of 1,825 diverse tasks and evaluate over 30 leading LLMs. Our automated evaluation achieves a striking 94.4% ranking consistency with WebDev Arena, the gold-standard for human preference in web development, and over 90% pairwise agreement with human experts. This establishes ArtifactsBench as the first framework to reliably automate the assessment of human-perceived quality at scale. Our analysis provides a high-resolution map of the current SOTA, revealing that generalist models often outperform domain-specific ones. We open-source ArtifactsBench, including the benchmark, evaluation harness, and baseline results at https://artifactsbenchmark.github.io/, to provide the community with a scalable and accurate tool to accelerate the development of user-centric generative models.
metabench -- A Sparse Benchmark to Measure General Ability in Large Language Models
Large Language Models (LLMs) vary in their abilities on a range of tasks. Initiatives such as the Open LLM Leaderboard aim to quantify these differences with several large benchmarks (sets of test items to which an LLM can respond either correctly or incorrectly). However, high correlations within and between benchmark scores suggest that (1) there exists a small set of common underlying abilities that these benchmarks measure, and (2) items tap into redundant information and the benchmarks may thus be considerably compressed. We use data from n > 5000 LLMs to identify the most informative items of six benchmarks, ARC, GSM8K, HellaSwag, MMLU, TruthfulQA and WinoGrande (with d=28,632 items in total). From them we distill a sparse benchmark, metabench, that has less than 3% of the original size of all six benchmarks combined. This new sparse benchmark goes beyond point scores by yielding estimators of the underlying benchmark-specific abilities. We show that these estimators (1) can be used to reconstruct each original individual benchmark score with, on average, 1.5% root mean square error (RMSE), (2) reconstruct the original total score with 0.8% RMSE, and (3) have a single underlying common factor whose Spearman correlation with the total score is r = 0.93.
OJBench: A Competition Level Code Benchmark For Large Language Models
Recent advancements in large language models (LLMs) have demonstrated significant progress in math and code reasoning capabilities. However, existing code benchmark are limited in their ability to evaluate the full spectrum of these capabilities, particularly at the competitive level. To bridge this gap, we introduce OJBench, a novel and challenging benchmark designed to assess the competitive-level code reasoning abilities of LLMs. OJBench comprises 232 programming competition problems from NOI and ICPC, providing a more rigorous test of models' reasoning skills. We conducted a comprehensive evaluation using OJBench on 37 models, including both closed-source and open-source models, reasoning-oriented and non-reasoning-oriented models. Our results indicate that even state-of-the-art reasoning-oriented models, such as o4-mini and Gemini-2.5-pro-exp, struggle with highly challenging competition-level problems. This highlights the significant challenges that models face in competitive-level code reasoning.
MMBench-GUI: Hierarchical Multi-Platform Evaluation Framework for GUI Agents
We introduce MMBench-GUI, a hierarchical benchmark for evaluating GUI automation agents across Windows, macOS, Linux, iOS, Android, and Web platforms. It comprises four levels: GUI Content Understanding, Element Grounding, Task Automation, and Task Collaboration, covering essential skills for GUI agents. In addition, we propose a novel Efficiency-Quality Area (EQA) metric to assess GUI agent execution efficiency in online automation scenarios. Through MMBench-GUI, we identify accurate visual grounding as a critical determinant of overall task success, emphasizing the substantial benefits of modular frameworks that integrate specialized grounding modules. Furthermore, to achieve reliable GUI automation, an agent requires strong task planning and cross-platform generalization abilities, with long-context memory, a broad action space, and long-term reasoning playing a critical role. More important, task efficiency remains a critically underexplored dimension, and all models suffer from substantial inefficiencies, with excessive redundant steps even when tasks are ultimately completed. The integration of precise localization, effective planning, and early stopping strategies is indispensable to enable truly efficient and scalable GUI automation. Our benchmark code, evaluation data, and running environment will be publicly available at https://github.com/open-compass/MMBench-GUI.
Vote'n'Rank: Revision of Benchmarking with Social Choice Theory
The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote'n'Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote'n'Rank's procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.
ExecRepoBench: Multi-level Executable Code Completion Evaluation
Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of can be used as a high-performance, local service for programming development\url{https://execrepobench.github.io/}.
LongGenBench: Long-context Generation Benchmark
Current long-context benchmarks primarily focus on retrieval-based tests, requiring Large Language Models (LLMs) to locate specific information within extensive input contexts, such as the needle-in-a-haystack (NIAH) benchmark. Long-context generation refers to the ability of a language model to generate coherent and contextually accurate text that spans across lengthy passages or documents. While recent studies show strong performance on NIAH and other retrieval-based long-context benchmarks, there is a significant lack of benchmarks for evaluating long-context generation capabilities. To bridge this gap and offer a comprehensive assessment, we introduce a synthetic benchmark, LongGenBench, which allows for flexible configurations of customized generation context lengths. LongGenBench advances beyond traditional benchmarks by redesigning the format of questions and necessitating that LLMs respond with a single, cohesive long-context answer. Upon extensive evaluation using LongGenBench, we observe that: (1) both API accessed and open source models exhibit performance degradation in long-context generation scenarios, ranging from 1.2% to 47.1%; (2) different series of LLMs exhibit varying trends of performance degradation, with the Gemini-1.5-Flash model showing the least degradation among API accessed models, and the Qwen2 series exhibiting the least degradation in LongGenBench among open source models.
NeurIPS 2025 E2LM Competition : Early Training Evaluation of Language Models
Existing benchmarks have proven effective for assessing the performance of fully trained large language models. However, we find striking differences in the early training stages of small models, where benchmarks often fail to provide meaningful or discriminative signals. To explore how these differences arise, this competition tackles the challenge of designing scientific knowledge evaluation tasks specifically tailored for measuring early training progress of language models. Participants are invited to develop novel evaluation methodologies or adapt existing benchmarks to better capture performance differences among language models. To support this effort, we provide three pre-trained small models (0.5B, 1B, and 3B parameters), along with intermediate checkpoints sampled during training up to 200B tokens. All experiments and development work can be run on widely available free cloud-based GPU platforms, making participation accessible to researchers with limited computational resources. Submissions will be evaluated based on three criteria: the quality of the performance signal they produce, the consistency of model rankings at 1 trillion tokens of training, and their relevance to the scientific knowledge domain. By promoting the design of tailored evaluation strategies for early training, this competition aims to attract a broad range of participants from various disciplines, including those who may not be machine learning experts or have access to dedicated GPU resources. Ultimately, this initiative seeks to make foundational LLM research more systematic and benchmark-informed from the earliest phases of model development.
OmniGIRL: A Multilingual and Multimodal Benchmark for GitHub Issue Resolution
The GitHub issue resolution task aims to resolve issues reported in repositories automatically. With advances in large language models (LLMs), this task has gained increasing attention, and several benchmarks are proposed to evaluate the issue resolution ability of LLMs. However, existing benchmarks have three main limitations. First, current benchmarks focus on a single programming language, limiting the evaluation of issues from repositories across different languages. Second, they usually cover a narrow range of domains, which may fail to represent the diversity of real-world issues. Third, existing benchmarks rely solely on textual information in issue descriptions, overlooking multimodal information such as images in issues. In this paper, we propose OmniGIRL, a GitHub Issue ResoLution benchmark that is multilingual, multimodal, and multi-domain. OmniGIRL includes 959 task instances, which are collected from repositories across four programming languages (i.e., Python, JavaScript, TypeScript, and Java) and eight different domains. Our evaluation shows that current LLMs show limited performances on OmniGIRL. Notably, the best-performing model, GPT-4o, resolves only 8.6% of the issues. Besides, we find that current LLMs struggle to resolve issues requiring understanding images. The best performance is achieved by Claude-3.5-Sonnet, which resolves only 10.5% of the issues with image information. Finally, we analyze the reasons behind current LLMs' failure on OmniGIRL, providing insights for future improvements.
CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution
We present CRUXEval (Code Reasoning, Understanding, and eXecution Evaluation), a benchmark consisting of 800 Python functions (3-13 lines). Each function comes with an input-output pair, leading to two natural tasks: input prediction and output prediction. First, we propose a generic recipe for generating our execution benchmark which can be used to create future variation of the benchmark. Second, we evaluate twenty code models on our benchmark and discover that many recent high-scoring models on HumanEval do not show the same improvements on our benchmark. Third, we show that simple CoT and fine-tuning schemes can improve performance on our benchmark but remain far from solving it. The best setup, GPT-4 with chain of thought (CoT), achieves a pass@1 of 75% and 81% on input and output prediction, respectively. In contrast, Code Llama 34B achieves a pass@1 of 50% and 46% on input and output prediction, highlighting the gap between open and closed source models. As no model is close to acing CRUXEval, we provide examples of consistent GPT-4 failures on simple programs as a lens into its code reasoning capabilities and areas for improvement.
Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases
Recent advancements in tool-equipped Agents (LLMs) have enabled complex tasks like secure database interactions and multi-agent code development. However, scaling tool capacity beyond agent reasoning or model limits remains a challenge. In this paper, we address these challenges by introducing Toolshed Knowledge Bases, a tool knowledge base (vector database) designed to store enhanced tool representations and optimize tool selection for large-scale tool-equipped Agents. Additionally, we propose Advanced RAG-Tool Fusion, a novel ensemble of tool-applied advanced retrieval-augmented generation (RAG) techniques across the pre-retrieval, intra-retrieval, and post-retrieval phases, without requiring model fine-tuning. During pre-retrieval, tool documents are enhanced with key information and stored in the Toolshed Knowledge Base. Intra-retrieval focuses on query planning and transformation to increase retrieval accuracy. Post-retrieval refines the retrieved tool documents and enables self-reflection. Furthermore, by varying both the total number of tools (tool-M) an Agent has access to and the tool selection threshold (top-k), we address trade-offs between retrieval accuracy, agent performance, and token cost. Our approach achieves 46%, 56%, and 47% absolute improvements on the ToolE single-tool, ToolE multi-tool and Seal-Tools benchmark datasets, respectively (Recall@5).
Thingi10K: A Dataset of 10,000 3D-Printing Models
Empirically validating new 3D-printing related algorithms and implementations requires testing data representative of inputs encountered in the wild. An ideal benchmarking dataset should not only draw from the same distribution of shapes people print in terms of class (e.g., toys, mechanisms, jewelry), representation type (e.g., triangle soup meshes) and complexity (e.g., number of facets), but should also capture problems and artifacts endemic to 3D printing models (e.g., self-intersections, non-manifoldness). We observe that the contextual and geometric characteristics of 3D printing models differ significantly from those used for computer graphics applications, not to mention standard models (e.g., Stanford bunny, Armadillo, Fertility). We present a new dataset of 10,000 models collected from an online 3D printing model-sharing database. Via analysis of both geometric (e.g., triangle aspect ratios, manifoldness) and contextual (e.g., licenses, tags, classes) characteristics, we demonstrate that this dataset represents a more concise summary of real-world models used for 3D printing compared to existing datasets. To facilitate future research endeavors, we also present an online query interface to select subsets of the dataset according to project-specific characteristics. The complete dataset and per-model statistical data are freely available to the public.
MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language Feedback
To solve complex tasks, large language models (LLMs) often require multiple rounds of interactions with the user, sometimes assisted by external tools. However, current evaluation protocols often emphasize benchmark performance with single-turn exchanges, neglecting the nuanced interactions among the user, LLMs, and external tools, while also underestimating the importance of natural language feedback from users. These oversights contribute to discrepancies between research benchmark evaluations and real-world use cases. We introduce MINT, a benchmark that evaluates LLMs' ability to solve tasks with multi-turn interactions by (1) using tools and (2) leveraging natural language feedback. To ensure reproducibility, we provide an evaluation framework where LLMs can access tools by executing Python code and receive users' natural language feedback simulated by GPT-4. We repurpose a diverse set of established evaluation datasets focusing on reasoning, coding, and decision-making and carefully curate them into a compact subset for efficient evaluation. Our analysis of 20 open- and closed-source LLMs offers intriguing findings. (a) LLMs generally benefit from tools and language feedback, with performance gains (absolute, same below) of 1-8% for each turn of tool use and 2-17% with natural language feedback. (b) Better single-turn performance does not guarantee better multi-turn performance. (c) Surprisingly, on the LLMs evaluated, supervised instruction-finetuning (SIFT) and reinforcement learning from human feedback (RLHF) generally hurt multi-turn capabilities. We expect MINT can help measure progress and incentivize research in improving LLMs' capabilities in multi-turn interactions, especially for open-source communities where multi-turn human evaluation can be less accessible compared to commercial LLMs with a larger user base.
SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs
Evaluating the output of Large Language Models (LLMs) is one of the most critical aspects of building a performant compound AI system. Since the output from LLMs propagate to downstream steps, identifying LLM errors is crucial to system performance. A common task for LLMs in AI systems is tool use. While there are several benchmark environments for evaluating LLMs on this task, they typically only give a success rate without any explanation of the failure cases. To solve this problem, we introduce SpecTool, a new benchmark to identify error patterns in LLM output on tool-use tasks. Our benchmark data set comprises of queries from diverse environments that can be used to test for the presence of seven newly characterized error patterns. Using SPECTOOL , we show that even the most prominent LLMs exhibit these error patterns in their outputs. Researchers can use the analysis and insights from SPECTOOL to guide their error mitigation strategies.
IberBench: LLM Evaluation on Iberian Languages
Large Language Models (LLMs) remain difficult to evaluate comprehensively, particularly for languages other than English, where high-quality data is often limited. Existing benchmarks and leaderboards are predominantly English-centric, with only a few addressing other languages. These benchmarks fall short in several key areas: they overlook the diversity of language varieties, prioritize fundamental Natural Language Processing (NLP) capabilities over tasks of industrial relevance, and are static. With these aspects in mind, we present IberBench, a comprehensive and extensible benchmark designed to assess LLM performance on both fundamental and industry-relevant NLP tasks, in languages spoken across the Iberian Peninsula and Ibero-America. IberBench integrates 101 datasets from evaluation campaigns and recent benchmarks, covering 22 task categories such as sentiment and emotion analysis, toxicity detection, and summarization. The benchmark addresses key limitations in current evaluation practices, such as the lack of linguistic diversity and static evaluation setups by enabling continual updates and community-driven model and dataset submissions moderated by a committee of experts. We evaluate 23 LLMs ranging from 100 million to 14 billion parameters and provide empirical insights into their strengths and limitations. Our findings indicate that (i) LLMs perform worse on industry-relevant tasks than in fundamental ones, (ii) performance is on average lower for Galician and Basque, (iii) some tasks show results close to random, and (iv) in other tasks LLMs perform above random but below shared task systems. IberBench offers open-source implementations for the entire evaluation pipeline, including dataset normalization and hosting, incremental evaluation of LLMs, and a publicly accessible leaderboard.
MEGA-Bench: Scaling Multimodal Evaluation to over 500 Real-World Tasks
We present MEGA-Bench, an evaluation suite that scales multimodal evaluation to over 500 real-world tasks, to address the highly heterogeneous daily use cases of end users. Our objective is to optimize for a set of high-quality data samples that cover a highly diverse and rich set of multimodal tasks, while enabling cost-effective and accurate model evaluation. In particular, we collected 505 realistic tasks encompassing over 8,000 samples from 16 expert annotators to extensively cover the multimodal task space. Instead of unifying these problems into standard multi-choice questions (like MMMU, MMBench, and MMT-Bench), we embrace a wide range of output formats like numbers, phrases, code, \LaTeX, coordinates, JSON, free-form, etc. To accommodate these formats, we developed over 40 metrics to evaluate these tasks. Unlike existing benchmarks, MEGA-Bench offers a fine-grained capability report across multiple dimensions (e.g., application, input type, output format, skill), allowing users to interact with and visualize model capabilities in depth. We evaluate a wide variety of frontier vision-language models on MEGA-Bench to understand their capabilities across these dimensions.
NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking
The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics.
xbench: Tracking Agents Productivity Scaling with Profession-Aligned Real-World Evaluations
We introduce xbench, a dynamic, profession-aligned evaluation suite designed to bridge the gap between AI agent capabilities and real-world productivity. While existing benchmarks often focus on isolated technical skills, they may not accurately reflect the economic value agents deliver in professional settings. To address this, xbench targets commercially significant domains with evaluation tasks defined by industry professionals. Our framework creates metrics that strongly correlate with productivity value, enables prediction of Technology-Market Fit (TMF), and facilitates tracking of product capabilities over time. As our initial implementations, we present two benchmarks: Recruitment and Marketing. For Recruitment, we collect 50 tasks from real-world headhunting business scenarios to evaluate agents' abilities in company mapping, information retrieval, and talent sourcing. For Marketing, we assess agents' ability to match influencers with advertiser needs, evaluating their performance across 50 advertiser requirements using a curated pool of 836 candidate influencers. We present initial evaluation results for leading contemporary agents, establishing a baseline for these professional domains. Our continuously updated evalsets and evaluations are available at https://xbench.org.
ToolBeHonest: A Multi-level Hallucination Diagnostic Benchmark for Tool-Augmented Large Language Models
Tool-augmented large language models (LLMs) are rapidly being integrated into real-world applications. Due to the lack of benchmarks, the community still needs to fully understand the hallucination issues within these models. To address this challenge, we introduce a comprehensive diagnostic benchmark, ToolBH. Specifically, we assess the LLM's hallucinations through two perspectives: depth and breadth. In terms of depth, we propose a multi-level diagnostic process, including (1) solvability detection, (2) solution planning, and (3) missing-tool analysis. For breadth, we consider three scenarios based on the characteristics of the toolset: missing necessary tools, potential tools, and limited functionality tools. Furthermore, we developed seven tasks and collected 700 evaluation samples through multiple rounds of manual annotation. The results show the significant challenges presented by the ToolBH benchmark. The current advanced models Gemini-1.5-Pro and GPT-4o only achieve a total score of 45.3 and 37.0, respectively, on a scale of 100. In this benchmark, larger model parameters do not guarantee better performance; the training data and response strategies also play a crucial role in tool-enhanced LLM scenarios. Our diagnostic analysis indicates that the primary reason for model errors lies in assessing task solvability. Additionally, open-weight models suffer from performance drops with verbose replies, whereas proprietary models excel with longer reasoning.
EXP-Bench: Can AI Conduct AI Research Experiments?
Automating AI research holds immense potential for accelerating scientific progress, yet current AI agents struggle with the complexities of rigorous, end-to-end experimentation. We introduce EXP-Bench, a novel benchmark designed to systematically evaluate AI agents on complete research experiments sourced from influential AI publications. Given a research question and incomplete starter code, EXP-Bench challenges AI agents to formulate hypotheses, design and implement experimental procedures, execute them, and analyze results. To enable the creation of such intricate and authentic tasks with high-fidelity, we design a semi-autonomous pipeline to extract and structure crucial experimental details from these research papers and their associated open-source code. With the pipeline, EXP-Bench curated 461 AI research tasks from 51 top-tier AI research papers. Evaluations of leading LLM-based agents, such as OpenHands and IterativeAgent on EXP-Bench demonstrate partial capabilities: while scores on individual experimental aspects such as design or implementation correctness occasionally reach 20-35%, the success rate for complete, executable experiments was a mere 0.5%. By identifying these bottlenecks and providing realistic step-by-step experiment procedures, EXP-Bench serves as a vital tool for future AI agents to improve their ability to conduct AI research experiments. EXP-Bench is open-sourced at https://github.com/Just-Curieous/Curie/tree/main/benchmark/exp_bench.
ScholarBench: A Bilingual Benchmark for Abstraction, Comprehension, and Reasoning Evaluation in Academic Contexts
Prior benchmarks for evaluating the domain-specific knowledge of large language models (LLMs) lack the scalability to handle complex academic tasks. To address this, we introduce ScholarBench, a benchmark centered on deep expert knowledge and complex academic problem-solving, which evaluates the academic reasoning ability of LLMs and is constructed through a three-step process. ScholarBench targets more specialized and logically complex contexts derived from academic literature, encompassing five distinct problem types. Unlike prior benchmarks, ScholarBench evaluates the abstraction, comprehension, and reasoning capabilities of LLMs across eight distinct research domains. To ensure high-quality evaluation data, we define category-specific example attributes and design questions that are aligned with the characteristic research methodologies and discourse structures of each domain. Additionally, this benchmark operates as an English-Korean bilingual dataset, facilitating simultaneous evaluation for linguistic capabilities of LLMs in both languages. The benchmark comprises 5,031 examples in Korean and 5,309 in English, with even state-of-the-art models like o3-mini achieving an average evaluation score of only 0.543, demonstrating the challenging nature of this benchmark.
TextClass Benchmark: A Continuous Elo Rating of LLMs in Social Sciences
The TextClass Benchmark project is an ongoing, continuous benchmarking process that aims to provide a comprehensive, fair, and dynamic evaluation of LLMs and transformers for text classification tasks. This evaluation spans various domains and languages in social sciences disciplines engaged in NLP and text-as-data approach. The leaderboards present performance metrics and relative ranking using a tailored Elo rating system. With each leaderboard cycle, novel models are added, fixed test sets can be replaced for unseen, equivalent data to test generalisation power, ratings are updated, and a Meta-Elo leaderboard combines and weights domain-specific leaderboards. This article presents the rationale and motivation behind the project, explains the Elo rating system in detail, and estimates Meta-Elo across different classification tasks in social science disciplines. We also present a snapshot of the first cycle of classification tasks on incivility data in Chinese, English, German and Russian. This ongoing benchmarking process includes not only additional languages such as Arabic, Hindi, and Spanish but also a classification of policy agenda topics, misinformation, among others.
WRENCH: A Comprehensive Benchmark for Weak Supervision
Recent Weak Supervision (WS) approaches have had widespread success in easing the bottleneck of labeling training data for machine learning by synthesizing labels from multiple potentially noisy supervision sources. However, proper measurement and analysis of these approaches remain a challenge. First, datasets used in existing works are often private and/or custom, limiting standardization. Second, WS datasets with the same name and base data often vary in terms of the labels and weak supervision sources used, a significant "hidden" source of evaluation variance. Finally, WS studies often diverge in terms of the evaluation protocol and ablations used. To address these problems, we introduce a benchmark platform, WRENCH, for thorough and standardized evaluation of WS approaches. It consists of 22 varied real-world datasets for classification and sequence tagging; a range of real, synthetic, and procedurally-generated weak supervision sources; and a modular, extensible framework for WS evaluation, including implementations for popular WS methods. We use WRENCH to conduct extensive comparisons over more than 120 method variants to demonstrate its efficacy as a benchmark platform. The code is available at https://github.com/JieyuZ2/wrench.
T-Eval: Evaluating the Tool Utilization Capability Step by Step
Large language models (LLM) have achieved remarkable performance on various NLP tasks and are augmented by tools for broader applications. Yet, how to evaluate and analyze the tool-utilization capability of LLMs is still under-explored. In contrast to previous works that evaluate models holistically, we comprehensively decompose the tool utilization into multiple sub-processes, including instruction following, planning, reasoning, retrieval, understanding, and review. Based on that, we further introduce T-Eval to evaluate the tool utilization capability step by step. T-Eval disentangles the tool utilization evaluation into several sub-domains along model capabilities, facilitating the inner understanding of both holistic and isolated competency of LLMs. We conduct extensive experiments on T-Eval and in-depth analysis of various LLMs. T-Eval not only exhibits consistency with the outcome-oriented evaluation but also provides a more fine-grained analysis of the capabilities of LLMs, providing a new perspective in LLM evaluation on tool-utilization ability. The benchmark will be available at https://github.com/open-compass/T-Eval.
LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code
Large Language Models (LLMs) applied to code-related applications have emerged as a prominent field, attracting significant interest from both academia and industry. However, as new and improved LLMs are developed, existing evaluation benchmarks (e.g., HumanEval, MBPP) are no longer sufficient for assessing their capabilities. In this work, we propose LiveCodeBench, a comprehensive and contamination-free evaluation of LLMs for code, which continuously collects new problems over time from contests across three competition platforms, namely LeetCode, AtCoder, and CodeForces. Notably, our benchmark also focuses on a broader range of code related capabilities, such as self-repair, code execution, and test output prediction, beyond just code generation. Currently, LiveCodeBench hosts four hundred high-quality coding problems that were published between May 2023 and February 2024. We have evaluated 9 base LLMs and 20 instruction-tuned LLMs on LiveCodeBench. We present empirical findings on contamination, holistic performance comparisons, potential overfitting in existing benchmarks as well as individual model comparisons. We will release all prompts and model completions for further community analysis, along with a general toolkit for adding new scenarios and model
CPRet: A Dataset, Benchmark, and Model for Retrieval in Competitive Programming
Competitive programming benchmarks are widely used in scenarios such as programming contests and large language model assessments. However, the growing presence of duplicate or highly similar problems raises concerns not only about competition fairness, but also about the validity of competitive programming as a benchmark for model evaluation. In this paper, we propose a new problem -- similar question retrieval -- to address this issue. Due to the lack of both data and models, solving this problem is challenging. To this end, we introduce CPRet, a retrieval-oriented benchmark suite for competitive programming, covering four retrieval tasks: two code-centric (i.e., Text-to-Code and Code-to-Code) and two newly proposed problem-centric tasks (i.e., Problem-to-Duplicate and Simplified-to-Full), built from a combination of automatically crawled problem-solution data and manually curated annotations. Our contribution includes both high-quality training data and temporally separated test sets for reliable evaluation. In addition, we develop two task-specialized retrievers based on this dataset: CPRetriever-Code, trained with a novel Group-InfoNCE loss for problem-code alignment, and CPRetriever-Prob, fine-tuned for identifying problem-level similarity. Both models achieve strong results and are open-sourced for local use. Finally, we analyze LiveCodeBench and find that high-similarity problems inflate model pass rates and reduce differentiation, underscoring the need for similarity-aware evaluation in future benchmarks. Code and data are available at: https://github.com/coldchair/CPRet
DICE-BENCH: Evaluating the Tool-Use Capabilities of Large Language Models in Multi-Round, Multi-Party Dialogues
Existing function-calling benchmarks focus on single-turn interactions. However, they overlook the complexity of real-world scenarios. To quantify how existing benchmarks address practical applications, we introduce DICE-SCORE, a metric that evaluates the dispersion of tool-related information such as function name and parameter values throughout the dialogue. Analyzing existing benchmarks through DICE-SCORE reveals notably low scores, highlighting the need for more realistic scenarios. To address this gap, we present DICE-BENCH, a framework that constructs practical function-calling datasets by synthesizing conversations through a tool graph that maintains dependencies across rounds and a multi-agent system with distinct personas to enhance dialogue naturalness. The final dataset comprises 1,607 high-DICE-SCORE instances. Our experiments on 19 LLMs with DICE-BENCH show that significant advances are still required before such models can be deployed effectively in real-world settings. Our code and data are all publicly available: https://snuhcc.github.io/DICE-Bench/.
Benchmarking Open-Source Language Models for Efficient Question Answering in Industrial Applications
In the rapidly evolving landscape of Natural Language Processing (NLP), Large Language Models (LLMs) have demonstrated remarkable capabilities in tasks such as question answering (QA). However, the accessibility and practicality of utilizing these models for industrial applications pose significant challenges, particularly concerning cost-effectiveness, inference speed, and resource efficiency. This paper presents a comprehensive benchmarking study comparing open-source LLMs with their non-open-source counterparts on the task of question answering. Our objective is to identify open-source alternatives capable of delivering comparable performance to proprietary models while being lightweight in terms of resource requirements and suitable for Central Processing Unit (CPU)-based inference. Through rigorous evaluation across various metrics including accuracy, inference speed, and resource consumption, we aim to provide insights into selecting efficient LLMs for real-world applications. Our findings shed light on viable open-source alternatives that offer acceptable performance and efficiency, addressing the pressing need for accessible and efficient NLP solutions in industry settings.
Browsing Lost Unformed Recollections: A Benchmark for Tip-of-the-Tongue Search and Reasoning
We introduce Browsing Lost Unformed Recollections, a tip-of-the-tongue known-item search and reasoning benchmark for general AI assistants. BLUR introduces a set of 573 real-world validated questions that demand searching and reasoning across multi-modal and multilingual inputs, as well as proficient tool use, in order to excel on. Humans easily ace these questions (scoring on average 98%), while the best-performing system scores around 56%. To facilitate progress toward addressing this challenging and aspirational use case for general AI assistants, we release 350 questions through a public leaderboard, retain the answers to 250 of them, and have the rest as a private test set.
PM-LLM-Benchmark: Evaluating Large Language Models on Process Mining Tasks
Large Language Models (LLMs) have the potential to semi-automate some process mining (PM) analyses. While commercial models are already adequate for many analytics tasks, the competitive level of open-source LLMs in PM tasks is unknown. In this paper, we propose PM-LLM-Benchmark, the first comprehensive benchmark for PM focusing on domain knowledge (process-mining-specific and process-specific) and on different implementation strategies. We focus also on the challenges in creating such a benchmark, related to the public availability of the data and on evaluation biases by the LLMs. Overall, we observe that most of the considered LLMs can perform some process mining tasks at a satisfactory level, but tiny models that would run on edge devices are still inadequate. We also conclude that while the proposed benchmark is useful for identifying LLMs that are adequate for process mining tasks, further research is needed to overcome the evaluation biases and perform a more thorough ranking of the competitive LLMs.
MIRAGE-Bench: Automatic Multilingual Benchmark Arena for Retrieval-Augmented Generation Systems
Traditional Retrieval-Augmented Generation (RAG) benchmarks rely on different heuristic-based metrics for evaluation, but these require human preferences as ground truth for reference. In contrast, arena-based benchmarks, where two models compete each other, require an expensive Large Language Model (LLM) as a judge for a reliable evaluation. We present an easy and efficient technique to get the best of both worlds. The idea is to train a learning to rank model as a "surrogate" judge using RAG-based evaluation heuristics as input, to produce a synthetic arena-based leaderboard. Using this idea, We develop MIRAGE-Bench, a standardized arena-based multilingual RAG benchmark for 18 diverse languages on Wikipedia. The benchmark is constructed using MIRACL, a retrieval dataset, and extended for multilingual generation evaluation. MIRAGE-Bench evaluates RAG extensively coupling both heuristic features and LLM as a judge evaluator. In our work, we benchmark 19 diverse multilingual-focused LLMs, and achieve a high correlation (Kendall Tau (tau) = 0.909) using our surrogate judge learned using heuristic features with pairwise evaluations and between GPT-4o as a teacher on the MIRAGE-Bench leaderboard using the Bradley-Terry framework. We observe proprietary and large open-source LLMs currently dominate in multilingual RAG. MIRAGE-Bench is available at: https://github.com/vectara/mirage-bench.
STEER-ME: Assessing the Microeconomic Reasoning of Large Language Models
How should one judge whether a given large language model (LLM) can reliably perform economic reasoning? Most existing LLM benchmarks focus on specific applications and fail to present the model with a rich variety of economic tasks. A notable exception is Raman et al. [2024], who offer an approach for comprehensively benchmarking strategic decision-making; however, this approach fails to address the non-strategic settings prevalent in microeconomics, such as supply-and-demand analysis. We address this gap by taxonomizing microeconomic reasoning into 58 distinct elements, focusing on the logic of supply and demand, each grounded in up to 10 distinct domains, 5 perspectives, and 3 types. The generation of benchmark data across this combinatorial space is powered by a novel LLM-assisted data generation protocol that we dub auto-STEER, which generates a set of questions by adapting handwritten templates to target new domains and perspectives. Because it offers an automated way of generating fresh questions, auto-STEER mitigates the risk that LLMs will be trained to over-fit evaluation benchmarks; we thus hope that it will serve as a useful tool both for evaluating and fine-tuning models for years to come. We demonstrate the usefulness of our benchmark via a case study on 27 LLMs, ranging from small open-source models to the current state of the art. We examined each model's ability to solve microeconomic problems across our whole taxonomy and present the results across a range of prompting strategies and scoring metrics.
UDA: A Benchmark Suite for Retrieval Augmented Generation in Real-world Document Analysis
The use of Retrieval-Augmented Generation (RAG) has improved Large Language Models (LLMs) in collaborating with external data, yet significant challenges exist in real-world scenarios. In areas such as academic literature and finance question answering, data are often found in raw text and tables in HTML or PDF formats, which can be lengthy and highly unstructured. In this paper, we introduce a benchmark suite, namely Unstructured Document Analysis (UDA), that involves 2,965 real-world documents and 29,590 expert-annotated Q&A pairs. We revisit popular LLM- and RAG-based solutions for document analysis and evaluate the design choices and answer qualities across multiple document domains and diverse query types. Our evaluation yields interesting findings and highlights the importance of data parsing and retrieval. We hope our benchmark can shed light and better serve real-world document analysis applications. The benchmark suite and code can be found at https://github.com/qinchuanhui/UDA-Benchmark.
From Rankings to Insights: Evaluation Should Shift Focus from Leaderboard to Feedback
Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce Feedbacker, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC2 (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our homepage project is available at https://liudan193.github.io/Feedbacker.
Measuring Coding Challenge Competence With APPS
While programming is one of the most broadly applicable skills in modern society, modern machine learning models still cannot code solutions to basic problems. Despite its importance, there has been surprisingly little work on evaluating code generation, and it can be difficult to accurately assess code generation performance rigorously. To meet this challenge, we introduce APPS, a benchmark for code generation. Unlike prior work in more restricted settings, our benchmark measures the ability of models to take an arbitrary natural language specification and generate satisfactory Python code. Similar to how companies assess candidate software developers, we then evaluate models by checking their generated code on test cases. Our benchmark includes 10,000 problems, which range from having simple one-line solutions to being substantial algorithmic challenges. We fine-tune large language models on both GitHub and our training set, and we find that the prevalence of syntax errors is decreasing exponentially as models improve. Recent models such as GPT-Neo can pass approximately 20% of the test cases of introductory problems, so we find that machine learning models are now beginning to learn how to code. As the social significance of automatic code generation increases over the coming years, our benchmark can provide an important measure for tracking advancements.
Exposing Numeracy Gaps: A Benchmark to Evaluate Fundamental Numerical Abilities in Large Language Models
Large Language Models (LLMs) have demonstrated impressive capabilities in natural language processing tasks, such as text generation and semantic understanding. However, their performance on numerical reasoning tasks, such as basic arithmetic, numerical retrieval, and magnitude comparison, remains surprisingly poor. This gap arises from their reliance on surface-level statistical patterns rather than understanding numbers as continuous magnitudes. Existing benchmarks primarily focus on either linguistic competence or structured mathematical problem-solving, neglecting fundamental numerical reasoning required in real-world scenarios. To bridge this gap, we propose NumericBench, a comprehensive benchmark to evaluate six fundamental numerical capabilities: number recognition, arithmetic operations, contextual retrieval, comparison, summary, and logical reasoning. NumericBench includes datasets ranging from synthetic number lists to the crawled real-world data, addressing challenges like long contexts, noise, and multi-step reasoning. Extensive experiments on state-of-the-art LLMs, including GPT-4 and DeepSeek, reveal persistent weaknesses in numerical reasoning, highlighting the urgent need to improve numerically-aware language modeling. The benchmark is released in: https://github.com/TreeAI-Lab/NumericBench.
LastingBench: Defend Benchmarks Against Knowledge Leakage
The increasing complexity of large language models (LLMs) raises concerns about their ability to "cheat" on standard Question Answering (QA) benchmarks by memorizing task-specific data. This undermines the validity of benchmark evaluations, as they no longer reflect genuine model capabilities but instead the effects of data leakage. While prior work has focused on detecting such leakage, little attention has been given to mitigating its impact and preserving the long-term utility of benchmarks. In this paper, we introduce LastingBench, a novel framework designed to continuously reinforce and safeguard existing benchmarks against knowledge leakage. LastingBench identifies leakage points in the context through perturbation, then rewrites the leakage points to counterfactual ones-disrupting memorization while preserving the benchmark's original evaluative intent. Evaluations of state-of-the-art QA benchmarks show significant performance gaps, highlighting the efficacy of LastingBench in reducing memorization effects. LastingBench offers a practical and scalable solution to ensure benchmark robustness over time, promoting fairer and more interpretable evaluations of LLMs.
Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization
Due to the high computational demands executing a rigorous comparison between hyperparameter optimization (HPO) methods is often cumbersome. The goal of this paper is to facilitate a better empirical evaluation of HPO methods by providing benchmarks that are cheap to evaluate, but still represent realistic use cases. We believe these benchmarks provide an easy and efficient way to conduct reproducible experiments for neural hyperparameter search. Our benchmarks consist of a large grid of configurations of a feed forward neural network on four different regression datasets including architectural hyperparameters and hyperparameters concerning the training pipeline. Based on this data, we performed an in-depth analysis to gain a better understanding of the properties of the optimization problem, as well as of the importance of different types of hyperparameters. Second, we exhaustively compared various different state-of-the-art methods from the hyperparameter optimization literature on these benchmarks in terms of performance and robustness.
Proving the Coding Interview: A Benchmark for Formally Verified Code Generation
We introduce the Formally Verified Automated Programming Progress Standards, or FVAPPS, a benchmark of 4715 samples for writing programs and proving their correctness, the largest formal verification benchmark, including 1083 curated and quality controlled samples. Previously, APPS provided a benchmark and dataset for programming puzzles to be completed in Python and checked against unit tests, of the kind seen in technical assessments in the software engineering industry. Building upon recent approaches for benchmarks in interactive theorem proving, we generalize the unit tests to Lean 4 theorems given without proof (i.e., using Lean's "sorry" keyword). On the 406 theorems of 100 randomly selected samples, Sonnet correctly proves 30% and Gemini correctly proves 18%. We challenge the machine learning and program synthesis communities to solve both each general purpose programming problem and its associated correctness specifications. The benchmark is available at https://huggingface.co/datasets/quinn-dougherty/fvapps.
Web-Bench: A LLM Code Benchmark Based on Web Standards and Frameworks
The application of large language models (LLMs) in the field of coding is evolving rapidly: from code assistants, to autonomous coding agents, and then to generating complete projects through natural language. Early LLM code benchmarks primarily focused on code generation accuracy, but these benchmarks have gradually become saturated. Benchmark saturation weakens their guiding role for LLMs. For example, HumanEval Pass@1 has reached 99.4% and MBPP 94.2%. Among various attempts to address benchmark saturation, approaches based on software engineering have stood out, but the saturation of existing software engineering benchmarks is rapidly increasing. To address this, we propose a new benchmark, Web-Bench, which contains 50 projects, each consisting of 20 tasks with sequential dependencies. The tasks implement project features in sequence, simulating real-world human development workflows. When designing Web-Bench, we aim to cover the foundational elements of Web development: Web Standards and Web Frameworks. Given the scale and complexity of these projects, which were designed by engineers with 5 to 10 years of experience, each presents a significant challenge. On average, a single project takes 4 to 8 hours for a senior engineer to complete. On our given benchmark agent (Web-Agent), SOTA (Claude 3.7 Sonnet) achieves only 25.1% Pass@1, significantly lower (better) than SWE-Bench's Verified (65.4%) and Full (33.8%) scores. Finally, we discuss that in any development field, Standards and Frameworks represent foundational knowledge and efficiency tools, respectively, and LLMs require optimization tailored to them.
ToolCoder: Teach Code Generation Models to use API search tools
Automatically generating source code from natural language descriptions has been a growing field of research in recent years. However, current large-scale code generation models often encounter difficulties when selecting appropriate APIs for specific contexts. These models may generate APIs that do not meet requirements or refer to non-existent APIs in third-party libraries, especially for lesser-known or private libraries. Inspired by the process of human developers using tools to search APIs, we propose ToolCoder, a novel approach that integrates API search tools with existing models to assist in code generation and API selection. To teach our model to use tools, we introduce an automated data annotation method using ChatGPT to add tool usage information into the source code data and fine-tune code generation models. During inference, we integrate API search tools into the generation process so that our model can automatically use the search tool to get suggestions when selecting an API. Our experimental results demonstrate that ToolCoder exhibits excellent performance and generalization across five public and private library code generation benchmarks, with at least 6.21\% improvement on average pass@1 metrics and 9.64\% improvement on average pass@10 metrics compared to state-of-the-art methods. Furthermore, we show that our relatively small ToolCoder model is comparable to one of the current best models, GPT-3.5, highlighting the potential of incorporating programming tools into the code generation process.
ExpertLongBench: Benchmarking Language Models on Expert-Level Long-Form Generation Tasks with Structured Checklists
This paper introduces ExpertLongBench, an expert-level benchmark containing 11 tasks from 9 domains that reflect realistic expert workflows and applications. Beyond question answering, the application-driven tasks in ExpertLongBench demand long-form outputs that can exceed 5,000 tokens and strict adherence to domain-specific requirements. Notably, each task in ExpertLongBench includes a rubric, designed or validated by domain experts, to specify task requirements and guide output evaluation. Furthermore, we propose CLEAR, an evaluation framework that supports accurate evaluation of long-form model outputs in our benchmark. To achieve fine-grained, expert-aligned evaluation, CLEAR derives checklists from both model outputs and references by extracting information corresponding to items in the task-specific rubric. Checklist items for model outputs are then compared with corresponding items for reference outputs to assess their correctness, enabling grounded evaluation. We benchmark 11 large language models (LLMs) and analyze components in CLEAR, showing that (1) existing LLMs, with the top performer achieving only a 26.8% F1 score, require significant improvement for expert-level tasks; (2) models can generate content corresponding to the required aspects, though often not accurately; and (3) accurate checklist extraction and comparison in CLEAR can be achieved by open-weight models for more scalable and low-cost usage.
The Ever-Evolving Science Exam
As foundation models grow rapidly in capability and deployment, evaluating their scientific understanding becomes increasingly critical. Existing science benchmarks have made progress towards broad **Range**, wide **Reach**, and high **Rigor**, yet they often face two major challenges: **data leakage risks** that compromise benchmarking validity, and **evaluation inefficiency** due to large-scale testing. To address these issues, we introduce the **Ever-Evolving Science Exam (EESE)**, a dynamic benchmark designed to reliably assess scientific capabilities in foundation models. Our approach consists of two components: 1) a non-public **EESE-Pool** with over 100K expertly constructed science instances (question-answer pairs) across 5 disciplines and 500+ subfields, built through a multi-stage pipeline ensuring **Range**, **Reach**, and **Rigor**, 2) a periodically updated 500-instance subset **EESE**, sampled and validated to enable leakage-resilient, low-overhead evaluations. Experiments on 32 open- and closed-source models demonstrate that EESE effectively differentiates the strengths and weaknesses of models in scientific fields and cognitive dimensions. Overall, EESE provides a robust, scalable, and forward-compatible solution for science benchmark design, offering a realistic measure of how well foundation models handle science questions. The project page is at: https://github.com/aiben-ch/EESE.
Investigating Data Contamination in Modern Benchmarks for Large Language Models
Recent observations have underscored a disparity between the inflated benchmark scores and the actual performance of LLMs, raising concerns about potential contamination of evaluation benchmarks. This issue is especially critical for closed-source models and certain open-source models where training data transparency is lacking. In this paper we study data contamination by proposing two methods tailored for both open-source and proprietary LLMs. We first introduce a retrieval-based system to explore potential overlaps between evaluation benchmarks and pretraining corpora. We further present a novel investigation protocol named Testset Slot Guessing (TS-Guessing), applicable to both open and proprietary models. This approach entails masking a wrong answer in a multiple-choice question and prompting the model to fill in the gap. Additionally, it involves obscuring an unlikely word in an evaluation example and asking the model to produce it. We find that certain commercial LLMs could surprisingly guess the missing option in various test sets. Specifically, in the TruthfulQA benchmark, we find that LLMs exhibit notable performance improvement when provided with additional metadata in the benchmark. Further, in the MMLU benchmark, ChatGPT and GPT-4 demonstrated an exact match rate of 52\% and 57\%, respectively, in guessing the missing options in benchmark test data. We hope these results underscore the need for more robust evaluation methodologies and benchmarks in the field.
Construction of a Japanese Financial Benchmark for Large Language Models
With the recent development of large language models (LLMs), models that focus on certain domains and languages have been discussed for their necessity. There is also a growing need for benchmarks to evaluate the performance of current LLMs in each domain. Therefore, in this study, we constructed a benchmark comprising multiple tasks specific to the Japanese and financial domains and performed benchmark measurements on some models. Consequently, we confirmed that GPT-4 is currently outstanding, and that the constructed benchmarks function effectively. According to our analysis, our benchmark can differentiate benchmark scores among models in all performance ranges by combining tasks with different difficulties.
Chain of Tools: Large Language Model is an Automatic Multi-tool Learner
Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extend their utility, empowering them to solve practical tasks. Existing work typically empowers LLMs as tool users with a manually designed workflow, where the LLM plans a series of tools in a step-by-step manner, and sequentially executes each tool to obtain intermediate results until deriving the final answer. However, they suffer from two challenges in realistic scenarios: (1) The handcrafted control flow is often ad-hoc and constraints the LLM to local planning; (2) The LLM is instructed to use only manually demonstrated tools or well-trained Python functions, which limits its generalization to new tools. In this work, we first propose Automatic Tool Chain (ATC), a framework that enables the LLM to act as a multi-tool user, which directly utilizes a chain of tools through programming. To scale up the scope of the tools, we next propose a black-box probing method. This further empowers the LLM as a tool learner that can actively discover and document tool usages, teaching themselves to properly master new tools. For a comprehensive evaluation, we build a challenging benchmark named ToolFlow, which diverges from previous benchmarks by its long-term planning scenarios and complex toolset. Experiments on both existing datasets and ToolFlow illustrate the superiority of our framework. Analysis on different settings also validates the effectiveness and the utility of our black-box probing algorithm.
MLE-bench: Evaluating Machine Learning Agents on Machine Learning Engineering
We introduce MLE-bench, a benchmark for measuring how well AI agents perform at machine learning engineering. To this end, we curate 75 ML engineering-related competitions from Kaggle, creating a diverse set of challenging tasks that test real-world ML engineering skills such as training models, preparing datasets, and running experiments. We establish human baselines for each competition using Kaggle's publicly available leaderboards. We use open-source agent scaffolds to evaluate several frontier language models on our benchmark, finding that the best-performing setup--OpenAI's o1-preview with AIDE scaffolding--achieves at least the level of a Kaggle bronze medal in 16.9% of competitions. In addition to our main results, we investigate various forms of resource scaling for AI agents and the impact of contamination from pre-training. We open-source our benchmark code (github.com/openai/mle-bench/) to facilitate future research in understanding the ML engineering capabilities of AI agents.
The ML.ENERGY Benchmark: Toward Automated Inference Energy Measurement and Optimization
As the adoption of Generative AI in real-world services grow explosively, energy has emerged as a critical bottleneck resource. However, energy remains a metric that is often overlooked, under-explored, or poorly understood in the context of building ML systems. We present the ML.ENERGY Benchmark, a benchmark suite and tool for measuring inference energy consumption under realistic service environments, and the corresponding ML.ENERGY Leaderboard, which have served as a valuable resource for those hoping to understand and optimize the energy consumption of their generative AI services. In this paper, we explain four key design principles for benchmarking ML energy we have acquired over time, and then describe how they are implemented in the ML.ENERGY Benchmark. We then highlight results from the latest iteration of the benchmark, including energy measurements of 40 widely used model architectures across 6 different tasks, case studies of how ML design choices impact energy consumption, and how automated optimization recommendations can lead to significant (sometimes more than 40%) energy savings without changing what is being computed by the model. The ML.ENERGY Benchmark is open-source and can be easily extended to various customized models and application scenarios.
StudentEval: A Benchmark of Student-Written Prompts for Large Language Models of Code
Code LLMs are being rapidly deployed and there is evidence that they can make professional programmers more productive. Current benchmarks for code generation measure whether models generate correct programs given an expert prompt. In this paper, we present a new benchmark containing multiple prompts per problem, written by a specific population of non-expert prompters: beginning programmers. StudentEval contains 1,749 prompts for 48 problems, written by 80 students who have only completed one semester of Python programming. Our students wrote these prompts while working interactively with a Code LLM, and we observed very mixed success rates. We use StudentEval to evaluate 5 Code LLMs and find that StudentEval is a better discriminator of model performance than existing benchmarks. We analyze the prompts and find significant variation in students' prompting techniques. We also find that nondeterministic LLM sampling could mislead students into thinking that their prompts are more (or less) effective than they actually are, which has implications for how to teach with Code LLMs.
MMBench: Is Your Multi-modal Model an All-around Player?
Large vision-language models have recently achieved remarkable progress, exhibiting great perception and reasoning abilities concerning visual information. However, how to effectively evaluate these large vision-language models remains a major obstacle, hindering future model development. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but suffer from a lack of fine-grained ability assessment and non-robust evaluation metrics. Recent subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, but they are not scalable and display significant bias. In response to these challenges, we propose MMBench, a novel multi-modality benchmark. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of two elements. The first element is a meticulously curated dataset that surpasses existing similar benchmarks in terms of the number and variety of evaluation questions and abilities. The second element introduces a novel CircularEval strategy and incorporates the use of ChatGPT. This implementation is designed to convert free-form predictions into pre-defined choices, thereby facilitating a more robust evaluation of the model's predictions. MMBench is a systematically-designed objective benchmark for robustly evaluating the various abilities of vision-language models. We hope MMBench will assist the research community in better evaluating their models and encourage future advancements in this domain. Project page: https://opencompass.org.cn/mmbench.
Learning Evolving Tools for Large Language Models
Tool learning enables large language models (LLMs) to interact with external tools and APIs, greatly expanding the application scope of LLMs. However, due to the dynamic nature of external environments, these tools and APIs may become outdated over time, preventing LLMs from correctly invoking tools. Existing research primarily focuses on static environments and overlooks this issue, limiting the adaptability of LLMs in real-world applications. In this paper, we propose ToolEVO, a novel framework designed to enhance the adaptive and reflective capabilities of LLMs against tool variability. By leveraging Monte Carlo Tree Search, ToolEVO facilitates active exploration and interaction of LLMs within dynamic environments, allowing for autonomous self-reflection and self-updating of tool usage based on environmental feedback. Additionally, we introduce ToolQA-D, a benchmark specifically designed to evaluate the impact of tool variability. Extensive experiments demonstrate the effectiveness and stability of our approach, highlighting the importance of adaptability to tool variability for effective tool learning.
LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content
The large-scale training of multi-modal models on data scraped from the web has shown outstanding utility in infusing these models with the required world knowledge to perform effectively on multiple downstream tasks. However, one downside of scraping data from the web can be the potential sacrifice of the benchmarks on which the abilities of these models are often evaluated. To safeguard against test data contamination and to truly test the abilities of these foundation models we propose LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers. LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs (VQA). This is done without any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs, charts, and tables. Moreover, we introduce an efficient evaluation approach that estimates the performance of all models on the evolving benchmark using evaluations of only a subset of models. This significantly reduces the overall evaluation cost. We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities, avoiding contamination. Lastly, in our commitment to high quality, we have collected and evaluated a manually verified subset. By comparing its overall results to our automatic annotations, we have found that the performance variance is indeed minimal (<2.5%). Our dataset is available online on HuggingFace, and our code will be available here.
CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution
Code benchmarks such as HumanEval are widely adopted to evaluate Large Language Models' (LLMs) coding capabilities. However, there is an unignorable programming language bias in existing code benchmarks -- over 95% code generation benchmarks are dominated by Python, leaving the LLMs' capabilities in other programming languages such as Java and C/C++ unknown. Moreover, coding task bias is also crucial. Most benchmarks focus on code generation capability, while benchmarks for code reasoning (given input, reasoning output; and given output, reasoning input), an essential coding capability, are insufficient. Yet, constructing multi-lingual benchmarks can be expensive and labor-intensive, and codes in contest websites such as Leetcode suffer from data contamination during training. To fill this gap, we propose CRUXEVAL-X, a multi-lingual code reasoning benchmark that contains 19 programming languages. It comprises at least 600 subjects for each language, along with 19K content-consistent tests in total. In particular, the construction pipeline of CRUXEVAL-X works in a fully automated and test-guided manner, which iteratively generates and repairs based on execution feedback. Also, to cross language barriers (e.g., dynamic/static type systems in Python/C++), we formulated various transition rules between language pairs to facilitate translation. Our intensive evaluation of 24 representative LLMs reveals the correlation between language pairs. For example, TypeScript and JavaScript show a significant positive correlation, while Racket has less correlation with other languages. More interestingly, even a model trained solely on Python can achieve at most 34.4% Pass@1 in other languages, revealing the cross-language generalization of LLMs.
PHYBench: Holistic Evaluation of Physical Perception and Reasoning in Large Language Models
We introduce PHYBench, a novel, high-quality benchmark designed for evaluating reasoning capabilities of large language models (LLMs) in physical contexts. PHYBench consists of 500 meticulously curated physics problems based on real-world physical scenarios, designed to assess the ability of models to understand and reason about realistic physical processes. Covering mechanics, electromagnetism, thermodynamics, optics, modern physics, and advanced physics, the benchmark spans difficulty levels from high school exercises to undergraduate problems and Physics Olympiad challenges. Additionally, we propose the Expression Edit Distance (EED) Score, a novel evaluation metric based on the edit distance between mathematical expressions, which effectively captures differences in model reasoning processes and results beyond traditional binary scoring methods. We evaluate various LLMs on PHYBench and compare their performance with human experts. Our results reveal that even state-of-the-art reasoning models significantly lag behind human experts, highlighting their limitations and the need for improvement in complex physical reasoning scenarios. Our benchmark results and dataset are publicly available at https://phybench-official.github.io/phybench-demo/.
FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning
In this paper, we propose a real-world benchmark for studying robotic learning in the context of functional manipulation: a robot needs to accomplish complex long-horizon behaviors by composing individual manipulation skills in functionally relevant ways. The core design principles of our Functional Manipulation Benchmark (FMB) emphasize a harmonious balance between complexity and accessibility. Tasks are deliberately scoped to be narrow, ensuring that models and datasets of manageable scale can be utilized effectively to track progress. Simultaneously, they are diverse enough to pose a significant generalization challenge. Furthermore, the benchmark is designed to be easily replicable, encompassing all essential hardware and software components. To achieve this goal, FMB consists of a variety of 3D-printed objects designed for easy and accurate replication by other researchers. The objects are procedurally generated, providing a principled framework to study generalization in a controlled fashion. We focus on fundamental manipulation skills, including grasping, repositioning, and a range of assembly behaviors. The FMB can be used to evaluate methods for acquiring individual skills, as well as methods for combining and ordering such skills to solve complex, multi-stage manipulation tasks. We also offer an imitation learning framework that includes a suite of policies trained to solve the proposed tasks. This enables researchers to utilize our tasks as a versatile toolkit for examining various parts of the pipeline. For example, researchers could propose a better design for a grasping controller and evaluate it in combination with our baseline reorientation and assembly policies as part of a pipeline for solving multi-stage tasks. Our dataset, object CAD files, code, and evaluation videos can be found on our project website: https://functional-manipulation-benchmark.github.io
GitBug-Java: A Reproducible Benchmark of Recent Java Bugs
Bug-fix benchmarks are essential for evaluating methodologies in automatic program repair (APR) and fault localization (FL). However, existing benchmarks, exemplified by Defects4J, need to evolve to incorporate recent bug-fixes aligned with contemporary development practices. Moreover, reproducibility, a key scientific principle, has been lacking in bug-fix benchmarks. To address these gaps, we present GitBug-Java, a reproducible benchmark of recent Java bugs. GitBug-Java features 199 bugs extracted from the 2023 commit history of 55 notable open-source repositories. The methodology for building GitBug-Java ensures the preservation of bug-fixes in fully-reproducible environments. We publish GitBug-Java at https://github.com/gitbugactions/gitbug-java.
TabReD: A Benchmark of Tabular Machine Learning in-the-Wild
Benchmarks that closely reflect downstream application scenarios are essential for the streamlined adoption of new research in tabular machine learning (ML). In this work, we examine existing tabular benchmarks and find two common characteristics of industry-grade tabular data that are underrepresented in the datasets available to the academic community. First, tabular data often changes over time in real-world deployment scenarios. This impacts model performance and requires time-based train and test splits for correct model evaluation. Yet, existing academic tabular datasets often lack timestamp metadata to enable such evaluation. Second, a considerable portion of datasets in production settings stem from extensive data acquisition and feature engineering pipelines. For each specific dataset, this can have a different impact on the absolute and relative number of predictive, uninformative, and correlated features, which in turn can affect model selection. To fill the aforementioned gaps in academic benchmarks, we introduce TabReD -- a collection of eight industry-grade tabular datasets covering a wide range of domains from finance to food delivery services. We assess a large number of tabular ML models in the feature-rich, temporally-evolving data setting facilitated by TabReD. We demonstrate that evaluation on time-based data splits leads to different methods ranking, compared to evaluation on random splits more common in academic benchmarks. Furthermore, on the TabReD datasets, MLP-like architectures and GBDT show the best results, while more sophisticated DL models are yet to prove their effectiveness.
LegalBench.PT: A Benchmark for Portuguese Law
The recent application of LLMs to the legal field has spurred the creation of benchmarks across various jurisdictions and languages. However, no benchmark has yet been specifically designed for the Portuguese legal system. In this work, we present LegalBench.PT, the first comprehensive legal benchmark covering key areas of Portuguese law. To develop LegalBench.PT, we first collect long-form questions and answers from real law exams, and then use GPT-4o to convert them into multiple-choice, true/false, and matching formats. Once generated, the questions are filtered and processed to improve the quality of the dataset. To ensure accuracy and relevance, we validate our approach by having a legal professional review a sample of the generated questions. Although the questions are synthetically generated, we show that their basis in human-created exams and our rigorous filtering and processing methods applied result in a reliable benchmark for assessing LLMs' legal knowledge and reasoning abilities. Finally, we evaluate the performance of leading LLMs on LegalBench.PT and investigate potential biases in GPT-4o's responses. We also assess the performance of Portuguese lawyers on a sample of questions to establish a baseline for model comparison and validate the benchmark.