Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeThe RaspGrade Dataset: Towards Automatic Raspberry Ripeness Grading with Deep Learning
This research investigates the application of computer vision for rapid, accurate, and non-invasive food quality assessment, focusing on the novel challenge of real-time raspberry grading into five distinct classes within an industrial environment as the fruits move along a conveyor belt. To address this, a dedicated dataset of raspberries, namely RaspGrade, was acquired and meticulously annotated. Instance segmentation experiments revealed that accurate fruit-level masks can be obtained; however, the classification of certain raspberry grades presents challenges due to color similarities and occlusion, while others are more readily distinguishable based on color. The acquired and annotated RaspGrade dataset is accessible on HuggingFace at: https://huggingface.co/datasets/FBK-TeV/RaspGrade.
Multispectral Vineyard Segmentation: A Deep Learning approach
Digital agriculture has evolved significantly over the last few years due to the technological developments in automation and computational intelligence applied to the agricultural sector, including vineyards which are a relevant crop in the Mediterranean region. In this work, a study is presented of semantic segmentation for vine detection in real-world vineyards by exploring state-of-the-art deep segmentation networks and conventional unsupervised methods. Camera data have been collected on vineyards using an Unmanned Aerial System (UAS) equipped with a dual imaging sensor payload, namely a high-definition RGB camera and a five-band multispectral and thermal camera. Extensive experiments using deep-segmentation networks and unsupervised methods have been performed on multimodal datasets representing four distinct vineyards located in the central region of Portugal. The reported results indicate that SegNet, U-Net, and ModSegNet have equivalent overall performance in vine segmentation. The results also show that multimodality slightly improves the performance of vine segmentation, but the NIR spectrum alone generally is sufficient on most of the datasets. Furthermore, results suggest that high-definition RGB images produce equivalent or higher performance than any lower resolution multispectral band combination. Lastly, Deep Learning (DL) networks have higher overall performance than classical methods. The code and dataset are publicly available at https://github.com/Cybonic/DL_vineyard_segmentation_study.git
Grape detection, segmentation and tracking using deep neural networks and three-dimensional association
Agricultural applications such as yield prediction, precision agriculture and automated harvesting need systems able to infer the crop state from low-cost sensing devices. Proximal sensing using affordable cameras combined with computer vision has seen a promising alternative, strengthened after the advent of convolutional neural networks (CNNs) as an alternative for challenging pattern recognition problems in natural images. Considering fruit growing monitoring and automation, a fundamental problem is the detection, segmentation and counting of individual fruits in orchards. Here we show that for wine grapes, a crop presenting large variability in shape, color, size and compactness, grape clusters can be successfully detected, segmented and tracked using state-of-the-art CNNs. In a test set containing 408 grape clusters from images taken on a trellis-system based vineyard, we have reached an F 1 -score up to 0.91 for instance segmentation, a fine separation of each cluster from other structures in the image that allows a more accurate assessment of fruit size and shape. We have also shown as clusters can be identified and tracked along video sequences recording orchard rows. We also present a public dataset containing grape clusters properly annotated in 300 images and a novel annotation methodology for segmentation of complex objects in natural images. The presented pipeline for annotation, training, evaluation and tracking of agricultural patterns in images can be replicated for different crops and production systems. It can be employed in the development of sensing components for several agricultural and environmental applications.
BuzzSet v1.0: A Dataset for Pollinator Detection in Field Conditions
Pollinator insects such as honeybees and bumblebees are vital to global food production and ecosystem stability, yet their populations are declining due to increasing anthropogenic and environmental stressors. To support scalable, automated pollinator monitoring, we introduce BuzzSet, a new large-scale dataset of high-resolution pollinator images collected in real agricultural field conditions. BuzzSet contains 7856 manually verified and labeled images, with over 8000 annotated instances across three classes: honeybees, bumblebees, and unidentified insects. Initial annotations were generated using a YOLOv12 model trained on external data and refined via human verification using open-source labeling tools. All images were preprocessed into 256~times~256 tiles to improve the detection of small insects. We provide strong baselines using the RF-DETR transformer-based object detector. The model achieves high F1-scores of 0.94 and 0.92 for honeybee and bumblebee classes, respectively, with confusion matrix results showing minimal misclassification between these categories. The unidentified class remains more challenging due to label ambiguity and lower sample frequency, yet still contributes useful insights for robustness evaluation. Overall detection quality is strong, with a best [email protected] of 0.559. BuzzSet offers a valuable benchmark for small object detection, class separation under label noise, and ecological computer vision.
PCB Component Detection using Computer Vision for Hardware Assurance
Printed Circuit Board (PCB) assurance in the optical domain is a crucial field of study. Though there are many existing PCB assurance methods using image processing, computer vision (CV), and machine learning (ML), the PCB field is complex and increasingly evolving so new techniques are required to overcome the emerging problems. Existing ML-based methods outperform traditional CV methods, however they often require more data, have low explainability, and can be difficult to adapt when a new technology arises. To overcome these challenges, CV methods can be used in tandem with ML methods. In particular, human-interpretable CV algorithms such as those that extract color, shape, and texture features increase PCB assurance explainability. This allows for incorporation of prior knowledge, which effectively reduce the number of trainable ML parameters and thus, the amount of data needed to achieve high accuracy when training or retraining an ML model. Hence, this study explores the benefits and limitations of a variety of common computer vision-based features for the task of PCB component detection using semantic data. Results of this study indicate that color features demonstrate promising performance for PCB component detection. The purpose of this paper is to facilitate collaboration between the hardware assurance, computer vision, and machine learning communities.
Color Recognition in Challenging Lighting Environments: CNN Approach
Light plays a vital role in vision either human or machine vision, the perceived color is always based on the lighting conditions of the surroundings. Researchers are working to enhance the color detection techniques for the application of computer vision. They have implemented proposed several methods using different color detection approaches but still, there is a gap that can be filled. To address this issue, a color detection method, which is based on a Convolutional Neural Network (CNN), is proposed. Firstly, image segmentation is performed using the edge detection segmentation technique to specify the object and then the segmented object is fed to the Convolutional Neural Network trained to detect the color of an object in different lighting conditions. It is experimentally verified that our method can substantially enhance the robustness of color detection in different lighting conditions, and our method performed better results than existing methods.
Fruit recognition from images using deep learning
In this paper we introduce a new, high-quality, dataset of images containing fruits. We also present the results of some numerical experiment for training a neural network to detect fruits. We discuss the reason why we chose to use fruits in this project by proposing a few applications that could use this kind of neural network.
Few-Shot Adaptation of Grounding DINO for Agricultural Domain
Deep learning models are transforming agricultural applications by enabling automated phenotyping, monitoring, and yield estimation. However, their effectiveness heavily depends on large amounts of annotated training data, which can be labor and time intensive. Recent advances in open-set object detection, particularly with models like Grounding-DINO, offer a potential solution to detect regions of interests based on text prompt input. Initial zero-shot experiments revealed challenges in crafting effective text prompts, especially for complex objects like individual leaves and visually similar classes. To address these limitations, we propose an efficient few-shot adaptation method that simplifies the Grounding-DINO architecture by removing the text encoder module (BERT) and introducing a randomly initialized trainable text embedding. This method achieves superior performance across multiple agricultural datasets, including plant-weed detection, plant counting, insect identification, fruit counting, and remote sensing tasks. Specifically, it demonstrates up to a sim24% higher mAP than fully fine-tuned YOLO models on agricultural datasets and outperforms previous state-of-the-art methods by sim10% in remote sensing, under few-shot learning conditions. Our method offers a promising solution for automating annotation and accelerating the development of specialized agricultural AI solutions.
Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark
Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.
PCB-Fire: Automated Classification and Fault Detection in PCB
Printed Circuit Boards are the foundation for the functioning of any electronic device, and therefore are an essential component for various industries such as automobile, communication, computation, etc. However, one of the challenges faced by the PCB manufacturers in the process of manufacturing of the PCBs is the faulty placement of its components including missing components. In the present scenario the infrastructure required to ensure adequate quality of the PCB requires a lot of time and effort. The authors present a novel solution for detecting missing components and classifying them in a resourceful manner. The presented algorithm focuses on pixel theory and object detection, which has been used in combination to optimize the results from the given dataset.
MMDetection: Open MMLab Detection Toolbox and Benchmark
We present MMDetection, an object detection toolbox that contains a rich set of object detection and instance segmentation methods as well as related components and modules. The toolbox started from a codebase of MMDet team who won the detection track of COCO Challenge 2018. It gradually evolves into a unified platform that covers many popular detection methods and contemporary modules. It not only includes training and inference codes, but also provides weights for more than 200 network models. We believe this toolbox is by far the most complete detection toolbox. In this paper, we introduce the various features of this toolbox. In addition, we also conduct a benchmarking study on different methods, components, and their hyper-parameters. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors. Code and models are available at https://github.com/open-mmlab/mmdetection. The project is under active development and we will keep this document updated.
YCB-LUMA: YCB Object Dataset with Luminance Keying for Object Localization
Localizing target objects in images is an important task in computer vision. Often it is the first step towards solving a variety of applications in autonomous driving, maintenance, quality insurance, robotics, and augmented reality. Best in class solutions for this task rely on deep neural networks, which require a set of representative training data for best performance. Creating sets of sufficient quality, variety, and size is often difficult, error prone, and expensive. This is where the method of luminance keying can help: it provides a simple yet effective solution to record high quality data for training object detection and segmentation. We extend previous work that presented luminance keying on the common YCB-V set of household objects by recording the remaining objects of the YCB superset. The additional variety of objects - addition of transparency, multiple color variations, non-rigid objects - further demonstrates the usefulness of luminance keying and might be used to test the applicability of the approach on new 2D object detection and segmentation algorithms.
CCDN: Checkerboard Corner Detection Network for Robust Camera Calibration
Aiming to improve the checkerboard corner detection robustness against the images with poor quality, such as lens distortion, extreme poses, and noise, we propose a novel detection algorithm which can maintain high accuracy on inputs under multiply scenarios without any prior knowledge of the checkerboard pattern. This whole algorithm includes a checkerboard corner detection network and some post-processing techniques. The network model is a fully convolutional network with improvements of loss function and learning rate, which can deal with the images of arbitrary size and produce correspondingly-sized output with a corner score on each pixel by efficient inference and learning. Besides, in order to remove the false positives, we employ three post-processing techniques including threshold related to maximum response, non-maximum suppression, and clustering. Evaluations on two different datasets show its superior robustness, accuracy and wide applicability in quantitative comparisons with the state-of-the-art methods, like MATE, ChESS, ROCHADE and OCamCalib.
You Only Look Once: Unified, Real-Time Object Detection
We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is far less likely to predict false detections where nothing exists. Finally, YOLO learns very general representations of objects. It outperforms all other detection methods, including DPM and R-CNN, by a wide margin when generalizing from natural images to artwork on both the Picasso Dataset and the People-Art Dataset.
Automated Seed Quality Testing System using GAN & Active Learning
Quality assessment of agricultural produce is a crucial step in minimizing food stock wastage. However, this is currently done manually and often requires expert supervision, especially in smaller seeds like corn. We propose a novel computer vision-based system for automating this process. We build a novel seed image acquisition setup, which captures both the top and bottom views. Dataset collection for this problem has challenges of data annotation costs/time and class imbalance. We address these challenges by i.) using a Conditional Generative Adversarial Network (CGAN) to generate real-looking images for the classes with lesser images and ii.) annotate a large dataset with minimal expert human intervention by using a Batch Active Learning (BAL) based annotation tool. We benchmark different image classification models on the dataset obtained. We are able to get accuracies of up to 91.6% for testing the physical purity of seed samples.
Fast kernel methods for Data Quality Monitoring as a goodness-of-fit test
We here propose a machine learning approach for monitoring particle detectors in real-time. The goal is to assess the compatibility of incoming experimental data with a reference dataset, characterising the data behaviour under normal circumstances, via a likelihood-ratio hypothesis test. The model is based on a modern implementation of kernel methods, nonparametric algorithms that can learn any continuous function given enough data. The resulting approach is efficient and agnostic to the type of anomaly that may be present in the data. Our study demonstrates the effectiveness of this strategy on multivariate data from drift tube chamber muon detectors.
SpectralWaste Dataset: Multimodal Data for Waste Sorting Automation
The increase in non-biodegradable waste is a worldwide concern. Recycling facilities play a crucial role, but their automation is hindered by the complex characteristics of waste recycling lines like clutter or object deformation. In addition, the lack of publicly available labeled data for these environments makes developing robust perception systems challenging. Our work explores the benefits of multimodal perception for object segmentation in real waste management scenarios. First, we present SpectralWaste, the first dataset collected from an operational plastic waste sorting facility that provides synchronized hyperspectral and conventional RGB images. This dataset contains labels for several categories of objects that commonly appear in sorting plants and need to be detected and separated from the main trash flow for several reasons, such as security in the management line or reuse. Additionally, we propose a pipeline employing different object segmentation architectures and evaluate the alternatives on our dataset, conducting an extensive analysis for both multimodal and unimodal alternatives. Our evaluation pays special attention to efficiency and suitability for real-time processing and demonstrates how HSI can bring a boost to RGB-only perception in these realistic industrial settings without much computational overhead.
Algorithmic Ways of Seeing: Using Object Detection to Facilitate Art Exploration
This Research through Design paper explores how object detection may be applied to a large digital art museum collection to facilitate new ways of encountering and experiencing art. We present the design and evaluation of an interactive application called SMKExplore, which allows users to explore a museum's digital collection of paintings by browsing through objects detected in the images, as a novel form of open-ended exploration. We provide three contributions. First, we show how an object detection pipeline can be integrated into a design process for visual exploration. Second, we present the design and development of an app that enables exploration of an art museum's collection. Third, we offer reflections on future possibilities for museums and HCI researchers to incorporate object detection techniques into the digitalization of museums.
The Sound of Water: Inferring Physical Properties from Pouring Liquids
We study the connection between audio-visual observations and the underlying physics of a mundane yet intriguing everyday activity: pouring liquids. Given only the sound of liquid pouring into a container, our objective is to automatically infer physical properties such as the liquid level, the shape and size of the container, the pouring rate and the time to fill. To this end, we: (i) show in theory that these properties can be determined from the fundamental frequency (pitch); (ii) train a pitch detection model with supervision from simulated data and visual data with a physics-inspired objective; (iii) introduce a new large dataset of real pouring videos for a systematic study; (iv) show that the trained model can indeed infer these physical properties for real data; and finally, (v) we demonstrate strong generalization to various container shapes, other datasets, and in-the-wild YouTube videos. Our work presents a keen understanding of a narrow yet rich problem at the intersection of acoustics, physics, and learning. It opens up applications to enhance multisensory perception in robotic pouring.
Artificial intelligence for detection and quantification of rust and leaf miner in coffee crop
Pest and disease control plays a key role in agriculture since the damage caused by these agents are responsible for a huge economic loss every year. Based on this assumption, we create an algorithm capable of detecting rust (Hemileia vastatrix) and leaf miner (Leucoptera coffeella) in coffee leaves (Coffea arabica) and quantify disease severity using a mobile application as a high-level interface for the model inferences. We used different convolutional neural network architectures to create the object detector, besides the OpenCV library, k-means, and three treatments: the RGB and value to quantification, and the AFSoft software, in addition to the analysis of variance, where we compare the three methods. The results show an average precision of 81,5% in the detection and that there was no significant statistical difference between treatments to quantify the severity of coffee leaves, proposing a computationally less costly method. The application, together with the trained model, can detect the pest and disease over different image conditions and infection stages and also estimate the disease infection stage.
Object Detection in 20 Years: A Survey
Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Over the past two decades, we have seen a rapid technological evolution of object detection and its profound impact on the entire computer vision field. If we consider today's object detection technique as a revolution driven by deep learning, then back in the 1990s, we would see the ingenious thinking and long-term perspective design of early computer vision. This paper extensively reviews this fast-moving research field in the light of technical evolution, spanning over a quarter-century's time (from the 1990s to 2022). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed-up techniques, and the recent state-of-the-art detection methods.
Shadows Don't Lie and Lines Can't Bend! Generative Models don't know Projective Geometry...for now
Generative models can produce impressively realistic images. This paper demonstrates that generated images have geometric features different from those of real images. We build a set of collections of generated images, prequalified to fool simple, signal-based classifiers into believing they are real. We then show that prequalified generated images can be identified reliably by classifiers that only look at geometric properties. We use three such classifiers. All three classifiers are denied access to image pixels, and look only at derived geometric features. The first classifier looks at the perspective field of the image, the second looks at lines detected in the image, and the third looks at relations between detected objects and shadows. Our procedure detects generated images more reliably than SOTA local signal based detectors, for images from a number of distinct generators. Saliency maps suggest that the classifiers can identify geometric problems reliably. We conclude that current generators cannot reliably reproduce geometric properties of real images.
Diagnosis of diabetic retinopathy using machine learning & deep learning technique
Fundus images are widely used for diagnosing various eye diseases, such as diabetic retinopathy, glaucoma, and age-related macular degeneration. However, manual analysis of fundus images is time-consuming and prone to errors. In this report, we propose a novel method for fundus detection using object detection and machine learning classification techniques. We use a YOLO_V8 to perform object detection on fundus images and locate the regions of interest (ROIs) such as optic disc, optic cup and lesions. We then use machine learning SVM classification algorithms to classify the ROIs into different DR stages based on the presence or absence of pathological signs such as exudates, microaneurysms, and haemorrhages etc. Our method achieves 84% accuracy and efficiency for fundus detection and can be applied for retinal fundus disease triage, especially in remote areas around the world.
Focal Loss for Dense Object Detection
The highest accuracy object detectors to date are based on a two-stage approach popularized by R-CNN, where a classifier is applied to a sparse set of candidate object locations. In contrast, one-stage detectors that are applied over a regular, dense sampling of possible object locations have the potential to be faster and simpler, but have trailed the accuracy of two-stage detectors thus far. In this paper, we investigate why this is the case. We discover that the extreme foreground-background class imbalance encountered during training of dense detectors is the central cause. We propose to address this class imbalance by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples. Our novel Focal Loss focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training. To evaluate the effectiveness of our loss, we design and train a simple dense detector we call RetinaNet. Our results show that when trained with the focal loss, RetinaNet is able to match the speed of previous one-stage detectors while surpassing the accuracy of all existing state-of-the-art two-stage detectors. Code is at: https://github.com/facebookresearch/Detectron.
A Semi-Self-Supervised Approach for Dense-Pattern Video Object Segmentation
Video object segmentation (VOS) -- predicting pixel-level regions for objects within each frame of a video -- is particularly challenging in agricultural scenarios, where videos of crops include hundreds of small, dense, and occluded objects (stems, leaves, flowers, pods) that sway and move unpredictably in the wind. Supervised training is the state-of-the-art for VOS, but it requires large, pixel-accurate, human-annotated videos, which are costly to produce for videos with many densely packed objects in each frame. To address these challenges, we proposed a semi-self-supervised spatiotemporal approach for dense-VOS (DVOS) using a diffusion-based method through multi-task (reconstruction and segmentation) learning. We train the model first with synthetic data that mimics the camera and object motion of real videos and then with pseudo-labeled videos. We evaluate our DVOS method for wheat head segmentation from a diverse set of videos (handheld, drone-captured, different field locations, and different growth stages -- spanning from Boot-stage to Wheat-mature and Harvest-ready). Despite using only a few manually annotated video frames, the proposed approach yielded a high-performing model, achieving a Dice score of 0.79 when tested on a drone-captured external test set. While our method was evaluated on wheat head segmentation, it can be extended to other crops and domains, such as crowd analysis or microscopic image analysis.
SSD: Single Shot MultiBox Detector
We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. Our SSD model is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stage and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, MS COCO, and ILSVRC datasets confirm that SSD has comparable accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. Compared to other single stage methods, SSD has much better accuracy, even with a smaller input image size. For 300times 300 input, SSD achieves 72.1% mAP on VOC2007 test at 58 FPS on a Nvidia Titan X and for 500times 500 input, SSD achieves 75.1% mAP, outperforming a comparable state of the art Faster R-CNN model. Code is available at https://github.com/weiliu89/caffe/tree/ssd .
Back to the Feature: Classical 3D Features are (Almost) All You Need for 3D Anomaly Detection
Despite significant advances in image anomaly detection and segmentation, few methods use 3D information. We utilize a recently introduced 3D anomaly detection dataset to evaluate whether or not using 3D information is a lost opportunity. First, we present a surprising finding: standard color-only methods outperform all current methods that are explicitly designed to exploit 3D information. This is counter-intuitive as even a simple inspection of the dataset shows that color-only methods are insufficient for images containing geometric anomalies. This motivates the question: how can anomaly detection methods effectively use 3D information? We investigate a range of shape representations including hand-crafted and deep-learning-based; we demonstrate that rotation invariance plays the leading role in the performance. We uncover a simple 3D-only method that beats all recent approaches while not using deep learning, external pre-training datasets, or color information. As the 3D-only method cannot detect color and texture anomalies, we combine it with color-based features, significantly outperforming previous state-of-the-art. Our method, dubbed BTF (Back to the Feature) achieves pixel-wise ROCAUC: 99.3% and PRO: 96.4% on MVTec 3D-AD.
Honey Classification using Hyperspectral Imaging and Machine Learning
In this paper, we propose a machine learning-based method for automatically classifying honey botanical origins. Dataset preparation, feature extraction, and classification are the three main steps of the proposed method. We use a class transformation method in the dataset preparation phase to maximize the separability across classes. The feature extraction phase employs the Linear Discriminant Analysis (LDA) technique for extracting relevant features and reducing the number of dimensions. In the classification phase, we use Support Vector Machines (SVM) and K-Nearest Neighbors (KNN) models to classify the extracted features of honey samples into their botanical origins. We evaluate our system using a standard honey hyperspectral imaging (HSI) dataset. Experimental findings demonstrate that the proposed system produces state-of-the-art results on this dataset, achieving the highest classification accuracy of 95.13% for hyperspectral image-based classification and 92.80% for hyperspectral instance-based classification.
XAI-Guided Enhancement of Vegetation Indices for Crop Mapping
Vegetation indices allow to efficiently monitor vegetation growth and agricultural activities. Previous generations of satellites were capturing a limited number of spectral bands, and a few expert-designed vegetation indices were sufficient to harness their potential. New generations of multi- and hyperspectral satellites can however capture additional bands, but are not yet efficiently exploited. In this work, we propose an explainable-AI-based method to select and design suitable vegetation indices. We first train a deep neural network using multispectral satellite data, then extract feature importance to identify the most influential bands. We subsequently select suitable existing vegetation indices or modify them to incorporate the identified bands and retrain our model. We validate our approach on a crop classification task. Our results indicate that models trained on individual indices achieve comparable results to the baseline model trained on all bands, while the combination of two indices surpasses the baseline in certain cases.
S^3AD: Semi-supervised Small Apple Detection in Orchard Environments
Crop detection is integral for precision agriculture applications such as automated yield estimation or fruit picking. However, crop detection, e.g., apple detection in orchard environments remains challenging due to a lack of large-scale datasets and the small relative size of the crops in the image. In this work, we address these challenges by reformulating the apple detection task in a semi-supervised manner. To this end, we provide the large, high-resolution dataset MAD comprising 105 labeled images with 14,667 annotated apple instances and 4,440 unlabeled images. Utilizing this dataset, we also propose a novel Semi-Supervised Small Apple Detection system S^3AD based on contextual attention and selective tiling to improve the challenging detection of small apples, while limiting the computational overhead. We conduct an extensive evaluation on MAD and the MSU dataset, showing that S^3AD substantially outperforms strong fully-supervised baselines, including several small object detection systems, by up to 14.9%. Additionally, we exploit the detailed annotations of our dataset w.r.t. apple properties to analyze the influence of relative size or level of occlusion on the results of various systems, quantifying current challenges.
Black-box Explanation of Object Detectors via Saliency Maps
We propose D-RISE, a method for generating visual explanations for the predictions of object detectors. Utilizing the proposed similarity metric that accounts for both localization and categorization aspects of object detection allows our method to produce saliency maps that show image areas that most affect the prediction. D-RISE can be considered "black-box" in the software testing sense, as it only needs access to the inputs and outputs of an object detector. Compared to gradient-based methods, D-RISE is more general and agnostic to the particular type of object detector being tested, and does not need knowledge of the inner workings of the model. We show that D-RISE can be easily applied to different object detectors including one-stage detectors such as YOLOv3 and two-stage detectors such as Faster-RCNN. We present a detailed analysis of the generated visual explanations to highlight the utilization of context and possible biases learned by object detectors.
A New Dataset and Comparative Study for Aphid Cluster Detection and Segmentation in Sorghum Fields
Aphid infestations are one of the primary causes of extensive damage to wheat and sorghum fields and are one of the most common vectors for plant viruses, resulting in significant agricultural yield losses. To address this problem, farmers often employ the inefficient use of harmful chemical pesticides that have negative health and environmental impacts. As a result, a large amount of pesticide is wasted on areas without significant pest infestation. This brings to attention the urgent need for an intelligent autonomous system that can locate and spray sufficiently large infestations selectively within the complex crop canopies. We have developed a large multi-scale dataset for aphid cluster detection and segmentation, collected from actual sorghum fields and meticulously annotated to include clusters of aphids. Our dataset comprises a total of 54,742 image patches, showcasing a variety of viewpoints, diverse lighting conditions, and multiple scales, highlighting its effectiveness for real-world applications. In this study, we trained and evaluated four real-time semantic segmentation models and three object detection models specifically for aphid cluster segmentation and detection. Considering the balance between accuracy and efficiency, Fast-SCNN delivered the most effective segmentation results, achieving 80.46% mean precision, 81.21% mean recall, and 91.66 frames per second (FPS). For object detection, RT-DETR exhibited the best overall performance with a 61.63% mean average precision (mAP), 92.6% mean recall, and 72.55 on an NVIDIA V100 GPU. Our experiments further indicate that aphid cluster segmentation is more suitable for assessing aphid infestations than using detection models.
Posthoc Interpretation via Quantization
In this paper, we introduce a new approach, called Posthoc Interpretation via Quantization (PIQ), for interpreting decisions made by trained classifiers. Our method utilizes vector quantization to transform the representations of a classifier into a discrete, class-specific latent space. The class-specific codebooks act as a bottleneck that forces the interpreter to focus on the parts of the input data deemed relevant by the classifier for making a prediction. Our model formulation also enables learning concepts by incorporating the supervision of pretrained annotation models such as state-of-the-art image segmentation models. We evaluated our method through quantitative and qualitative studies involving black-and-white images, color images, and audio. As a result of these studies we found that PIQ generates interpretations that are more easily understood by participants to our user studies when compared to several other interpretation methods in the literature.
xView: Objects in Context in Overhead Imagery
We introduce a new large-scale dataset for the advancement of object detection techniques and overhead object detection research. This satellite imagery dataset enables research progress pertaining to four key computer vision frontiers. We utilize a novel process for geospatial category detection and bounding box annotation with three stages of quality control. Our data is collected from WorldView-3 satellites at 0.3m ground sample distance, providing higher resolution imagery than most public satellite imagery datasets. We compare xView to other object detection datasets in both natural and overhead imagery domains and then provide a baseline analysis using the Single Shot MultiBox Detector. xView is one of the largest and most diverse publicly available object-detection datasets to date, with over 1 million objects across 60 classes in over 1,400 km^2 of imagery.
Rich feature hierarchies for accurate object detection and semantic segmentation
Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012---achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also compare R-CNN to OverFeat, a recently proposed sliding-window detector based on a similar CNN architecture. We find that R-CNN outperforms OverFeat by a large margin on the 200-class ILSVRC2013 detection dataset. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
On Offline Evaluation of 3D Object Detection for Autonomous Driving
Prior work in 3D object detection evaluates models using offline metrics like average precision since closed-loop online evaluation on the downstream driving task is costly. However, it is unclear how indicative offline results are of driving performance. In this work, we perform the first empirical evaluation measuring how predictive different detection metrics are of driving performance when detectors are integrated into a full self-driving stack. We conduct extensive experiments on urban driving in the CARLA simulator using 16 object detection models. We find that the nuScenes Detection Score has a higher correlation to driving performance than the widely used average precision metric. In addition, our results call for caution on the exclusive reliance on the emerging class of `planner-centric' metrics.
YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain
This survey investigates the transformative potential of various YOLO variants, from YOLOv1 to the state-of-the-art YOLOv10, in the context of agricultural advancements. The primary objective is to elucidate how these cutting-edge object detection models can re-energise and optimize diverse aspects of agriculture, ranging from crop monitoring to livestock management. It aims to achieve key objectives, including the identification of contemporary challenges in agriculture, a detailed assessment of YOLO's incremental advancements, and an exploration of its specific applications in agriculture. This is one of the first surveys to include the latest YOLOv10, offering a fresh perspective on its implications for precision farming and sustainable agricultural practices in the era of Artificial Intelligence and automation. Further, the survey undertakes a critical analysis of YOLO's performance, synthesizes existing research, and projects future trends. By scrutinizing the unique capabilities packed in YOLO variants and their real-world applications, this survey provides valuable insights into the evolving relationship between YOLO variants and agriculture. The findings contribute towards a nuanced understanding of the potential for precision farming and sustainable agricultural practices, marking a significant step forward in the integration of advanced object detection technologies within the agricultural sector.
Speed/accuracy trade-offs for modern convolutional object detectors
The goal of this paper is to serve as a guide for selecting a detection architecture that achieves the right speed/memory/accuracy balance for a given application and platform. To this end, we investigate various ways to trade accuracy for speed and memory usage in modern convolutional object detection systems. A number of successful systems have been proposed in recent years, but apples-to-apples comparisons are difficult due to different base feature extractors (e.g., VGG, Residual Networks), different default image resolutions, as well as different hardware and software platforms. We present a unified implementation of the Faster R-CNN [Ren et al., 2015], R-FCN [Dai et al., 2016] and SSD [Liu et al., 2015] systems, which we view as "meta-architectures" and trace out the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures. On one extreme end of this spectrum where speed and memory are critical, we present a detector that achieves real time speeds and can be deployed on a mobile device. On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task.
Comprehensive Performance Evaluation of YOLOv12, YOLO11, YOLOv10, YOLOv9 and YOLOv8 on Detecting and Counting Fruitlet in Complex Orchard Environments
This study systematically performed an extensive real-world evaluation of the performances of all configurations of YOLOv8, YOLOv9, YOLOv10, YOLO11( or YOLOv11), and YOLOv12 object detection algorithms in terms of precision, recall, mean Average Precision at 50\% Intersection over Union (mAP@50), and computational speeds including pre-processing, inference, and post-processing times immature green apple (or fruitlet) detection in commercial orchards. Additionally, this research performed and validated in-field counting of the fruitlets using an iPhone and machine vision sensors. Among the configurations, YOLOv12l recorded the highest recall rate at 0.90, compared to all other configurations of YOLO models. Likewise, YOLOv10x achieved the highest precision score of 0.908, while YOLOv9 Gelan-c attained a precision of 0.903. Analysis of [email protected] revealed that YOLOv9 Gelan-base and YOLOv9 Gelan-e reached peak scores of 0.935, with YOLO11s and YOLOv12l following closely at 0.933 and 0.931, respectively. For counting validation using images captured with an iPhone 14 Pro, the YOLO11n configuration demonstrated outstanding accuracy, recording RMSE values of 4.51 for Honeycrisp, 4.59 for Cosmic Crisp, 4.83 for Scilate, and 4.96 for Scifresh; corresponding MAE values were 4.07, 3.98, 7.73, and 3.85. Similar performance trends were observed with RGB-D sensor data. Moreover, sensor-specific training on Intel Realsense data significantly enhanced model performance. YOLOv11n achieved highest inference speed of 2.4 ms, outperforming YOLOv8n (4.1 ms), YOLOv9 Gelan-s (11.5 ms), YOLOv10n (5.5 ms), and YOLOv12n (4.6 ms), underscoring its suitability for real-time object detection applications. (YOLOv12 architecture, YOLOv11 Architecture, YOLOv12 object detection, YOLOv11 object detecion, YOLOv12 segmentation)
Real-Time Pitch/F0 Detection Using Spectrogram Images and Convolutional Neural Networks
This paper presents a novel approach to detect F0 through Convolutional Neural Networks and image processing techniques to directly estimate pitch from spectrogram images. Our new approach demonstrates a very good detection accuracy; a total of 92% of predicted pitch contours have strong or moderate correlations to the true pitch contours. Furthermore, the experimental comparison between our new approach and other state-of-the-art CNN methods reveals that our approach can enhance the detection rate by approximately 5% across various Signal-to-Noise Ratio conditions.
RF-DETR Object Detection vs YOLOv12 : A Study of Transformer-based and CNN-based Architectures for Single-Class and Multi-Class Greenfruit Detection in Complex Orchard Environments Under Label Ambiguity
This study conducts a detailed comparison of RF-DETR object detection base model and YOLOv12 object detection model configurations for detecting greenfruits in a complex orchard environment marked by label ambiguity, occlusions, and background blending. A custom dataset was developed featuring both single-class (greenfruit) and multi-class (occluded and non-occluded greenfruits) annotations to assess model performance under dynamic real-world conditions. RF-DETR object detection model, utilizing a DINOv2 backbone and deformable attention, excelled in global context modeling, effectively identifying partially occluded or ambiguous greenfruits. In contrast, YOLOv12 leveraged CNN-based attention for enhanced local feature extraction, optimizing it for computational efficiency and edge deployment. RF-DETR achieved the highest mean Average Precision (mAP50) of 0.9464 in single-class detection, proving its superior ability to localize greenfruits in cluttered scenes. Although YOLOv12N recorded the highest mAP@50:95 of 0.7620, RF-DETR consistently outperformed in complex spatial scenarios. For multi-class detection, RF-DETR led with an mAP@50 of 0.8298, showing its capability to differentiate between occluded and non-occluded fruits, while YOLOv12L scored highest in mAP@50:95 with 0.6622, indicating better classification in detailed occlusion contexts. Training dynamics analysis highlighted RF-DETR's swift convergence, particularly in single-class settings where it plateaued within 10 epochs, demonstrating the efficiency of transformer-based architectures in adapting to dynamic visual data. These findings validate RF-DETR's effectiveness for precision agricultural applications, with YOLOv12 suited for fast-response scenarios. >Index Terms: RF-DETR object detection, YOLOv12, YOLOv13, YOLOv14, YOLOv15, YOLOE, YOLO World, YOLO, You Only Look Once, Roboflow, Detection Transformers, CNNs
The Fishnet Open Images Database: A Dataset for Fish Detection and Fine-Grained Categorization in Fisheries
Camera-based electronic monitoring (EM) systems are increasingly being deployed onboard commercial fishing vessels to collect essential data for fisheries management and regulation. These systems generate large quantities of video data which must be reviewed on land by human experts. Computer vision can assist this process by automatically detecting and classifying fish species, however the lack of existing public data in this domain has hindered progress. To address this, we present the Fishnet Open Images Database, a large dataset of EM imagery for fish detection and fine-grained categorization onboard commercial fishing vessels. The dataset consists of 86,029 images containing 34 object classes, making it the largest and most diverse public dataset of fisheries EM imagery to-date. It includes many of the characteristic challenges of EM data: visual similarity between species, skewed class distributions, harsh weather conditions, and chaotic crew activity. We evaluate the performance of existing detection and classification algorithms and demonstrate that the dataset can serve as a challenging benchmark for development of computer vision algorithms in fisheries. The dataset is available at https://www.fishnet.ai/.
Back Home: A Machine Learning Approach to Seashell Classification and Ecosystem Restoration
In Costa Rica, an average of 5 tons of seashells are extracted from ecosystems annually. Confiscated seashells, cannot be returned to their ecosystems due to the lack of origin recognition. To address this issue, we developed a convolutional neural network (CNN) specifically for seashell identification. We built a dataset from scratch, consisting of approximately 19000 images from the Pacific and Caribbean coasts. Using this dataset, the model achieved a classification accuracy exceeding 85%. The model has been integrated into a user-friendly application, which has classified over 36,000 seashells to date, delivering real-time results within 3 seconds per image. To further enhance the system's accuracy, an anomaly detection mechanism was incorporated to filter out irrelevant or anomalous inputs, ensuring only valid seashell images are processed.
Towards Content-based Pixel Retrieval in Revisited Oxford and Paris
This paper introduces the first two pixel retrieval benchmarks. Pixel retrieval is segmented instance retrieval. Like semantic segmentation extends classification to the pixel level, pixel retrieval is an extension of image retrieval and offers information about which pixels are related to the query object. In addition to retrieving images for the given query, it helps users quickly identify the query object in true positive images and exclude false positive images by denoting the correlated pixels. Our user study results show pixel-level annotation can significantly improve the user experience. Compared with semantic and instance segmentation, pixel retrieval requires a fine-grained recognition capability for variable-granularity targets. To this end, we propose pixel retrieval benchmarks named PROxford and PRParis, which are based on the widely used image retrieval datasets, ROxford and RParis. Three professional annotators label 5,942 images with two rounds of double-checking and refinement. Furthermore, we conduct extensive experiments and analysis on the SOTA methods in image search, image matching, detection, segmentation, and dense matching using our pixel retrieval benchmarks. Results show that the pixel retrieval task is challenging to these approaches and distinctive from existing problems, suggesting that further research can advance the content-based pixel-retrieval and thus user search experience. The datasets can be downloaded from https://github.com/anguoyuan/Pixel_retrieval-Segmented_instance_retrieval{this link}.
Present and Future Generalization of Synthetic Image Detectors
The continued release of new and better image generation models increases the demand for synthetic image detectors. In such a dynamic field, detectors need to be able to generalize widely and be robust to uncontrolled alterations. The present work is motivated by this setting, when looking at the role of time, image transformations and data sources, for detector generalization. In these experiments, none of the evaluated detectors is found universal, but results indicate an ensemble could be. Experiments on data collected in the wild show this task to be more challenging than the one defined by large-scale datasets, pointing to a gap between experimentation and actual practice. Finally, we observe a race equilibrium effect, where better generators lead to better detectors, and vice versa. We hypothesize this pushes the field towards a perpetually close race between generators and detectors.
Exploring Different Levels of Supervision for Detecting and Localizing Solar Panels on Remote Sensing Imagery
This study investigates object presence detection and localization in remote sensing imagery, focusing on solar panel recognition. We explore different levels of supervision, evaluating three models: a fully supervised object detector, a weakly supervised image classifier with CAM-based localization, and a minimally supervised anomaly detector. The classifier excels in binary presence detection (0.79 F1-score), while the object detector (0.72) offers precise localization. The anomaly detector requires more data for viable performance. Fusion of model results shows potential accuracy gains. CAM impacts localization modestly, with GradCAM, GradCAM++, and HiResCAM yielding superior results. Notably, the classifier remains robust with less data, in contrast to the object detector.
A smartphone application to detection and classification of coffee leaf miner and coffee leaf rust
Generally, the identification and classification of plant diseases and/or pests are performed by an expert . One of the problems facing coffee farmers in Brazil is crop infestation, particularly by leaf rust Hemileia vastatrix and leaf miner Leucoptera coffeella. The progression of the diseases and or pests occurs spatially and temporarily. So, it is very important to automatically identify the degree of severity. The main goal of this article consists on the development of a method and its i implementation as an App that allow the detection of the foliar damages from images of coffee leaf that are captured using a smartphone, and identify whether it is rust or leaf miner, and in turn the calculation of its severity degree. The method consists of identifying a leaf from the image and separates it from the background with the use of a segmentation algorithm. In the segmentation process, various types of backgrounds for the image using the HSV and YCbCr color spaces are tested. In the segmentation of foliar damages, the Otsu algorithm and the iterative threshold algorithm, in the YCgCr color space, have been used and compared to k-means. Next, features of the segmented foliar damages are calculated. For the classification, artificial neural network trained with extreme learning machine have been used. The results obtained shows the feasibility and effectiveness of the approach to identify and classify foliar damages, and the automatic calculation of the severity. The results obtained are very promising according to experts.
Raw or Cooked? Object Detection on RAW Images
Images fed to a deep neural network have in general undergone several handcrafted image signal processing (ISP) operations, all of which have been optimized to produce visually pleasing images. In this work, we investigate the hypothesis that the intermediate representation of visually pleasing images is sub-optimal for downstream computer vision tasks compared to the RAW image representation. We suggest that the operations of the ISP instead should be optimized towards the end task, by learning the parameters of the operations jointly during training. We extend previous works on this topic and propose a new learnable operation that enables an object detector to achieve superior performance when compared to both previous works and traditional RGB images. In experiments on the open PASCALRAW dataset, we empirically confirm our hypothesis.
Improving Synthetic Image Detection Towards Generalization: An Image Transformation Perspective
With recent generative models facilitating photo-realistic image synthesis, the proliferation of synthetic images has also engendered certain negative impacts on social platforms, thereby raising an urgent imperative to develop effective detectors. Current synthetic image detection (SID) pipelines are primarily dedicated to crafting universal artifact features, accompanied by an oversight about SID training paradigm. In this paper, we re-examine the SID problem and identify two prevalent biases in current training paradigms, i.e., weakened artifact features and overfitted artifact features. Meanwhile, we discover that the imaging mechanism of synthetic images contributes to heightened local correlations among pixels, suggesting that detectors should be equipped with local awareness. In this light, we propose SAFE, a lightweight and effective detector with three simple image transformations. Firstly, for weakened artifact features, we substitute the down-sampling operator with the crop operator in image pre-processing to help circumvent artifact distortion. Secondly, for overfitted artifact features, we include ColorJitter and RandomRotation as additional data augmentations, to help alleviate irrelevant biases from color discrepancies and semantic differences in limited training samples. Thirdly, for local awareness, we propose a patch-based random masking strategy tailored for SID, forcing the detector to focus on local regions at training. Comparative experiments are conducted on an open-world dataset, comprising synthetic images generated by 26 distinct generative models. Our pipeline achieves a new state-of-the-art performance, with remarkable improvements of 4.5% in accuracy and 2.9% in average precision against existing methods. Our code is available at: https://github.com/Ouxiang-Li/SAFE.
Objects as Points
Detection identifies objects as axis-aligned boxes in an image. Most successful object detectors enumerate a nearly exhaustive list of potential object locations and classify each. This is wasteful, inefficient, and requires additional post-processing. In this paper, we take a different approach. We model an object as a single point --- the center point of its bounding box. Our detector uses keypoint estimation to find center points and regresses to all other object properties, such as size, 3D location, orientation, and even pose. Our center point based approach, CenterNet, is end-to-end differentiable, simpler, faster, and more accurate than corresponding bounding box based detectors. CenterNet achieves the best speed-accuracy trade-off on the MS COCO dataset, with 28.1% AP at 142 FPS, 37.4% AP at 52 FPS, and 45.1% AP with multi-scale testing at 1.4 FPS. We use the same approach to estimate 3D bounding box in the KITTI benchmark and human pose on the COCO keypoint dataset. Our method performs competitively with sophisticated multi-stage methods and runs in real-time.
Preventing Errors in Person Detection: A Part-Based Self-Monitoring Framework
The ability to detect learned objects regardless of their appearance is crucial for autonomous systems in real-world applications. Especially for detecting humans, which is often a fundamental task in safety-critical applications, it is vital to prevent errors. To address this challenge, we propose a self-monitoring framework that allows for the perception system to perform plausibility checks at runtime. We show that by incorporating an additional component for detecting human body parts, we are able to significantly reduce the number of missed human detections by factors of up to 9 when compared to a baseline setup, which was trained only on holistic person objects. Additionally, we found that training a model jointly on humans and their body parts leads to a substantial reduction in false positive detections by up to 50% compared to training on humans alone. We performed comprehensive experiments on the publicly available datasets DensePose and Pascal VOC in order to demonstrate the effectiveness of our framework. Code is available at https://github.com/ FraunhoferIKS/smf-object-detection.
Benchmarking Human and Automated Prompting in the Segment Anything Model
The remarkable capabilities of the Segment Anything Model (SAM) for tackling image segmentation tasks in an intuitive and interactive manner has sparked interest in the design of effective visual prompts. Such interest has led to the creation of automated point prompt selection strategies, typically motivated from a feature extraction perspective. However, there is still very little understanding of how appropriate these automated visual prompting strategies are, particularly when compared to humans, across diverse image domains. Additionally, the performance benefits of including such automated visual prompting strategies within the finetuning process of SAM also remains unexplored, as does the effect of interpretable factors like distance between the prompt points on segmentation performance. To bridge these gaps, we leverage a recently released visual prompting dataset, PointPrompt, and introduce a number of benchmarking tasks that provide an array of opportunities to improve the understanding of the way human prompts differ from automated ones and what underlying factors make for effective visual prompts. We demonstrate that the resulting segmentation scores obtained by humans are approximately 29% higher than those given by automated strategies and identify potential features that are indicative of prompting performance with R^2 scores over 0.5. Additionally, we demonstrate that performance when using automated methods can be improved by up to 68% via a finetuning approach. Overall, our experiments not only showcase the existing gap between human prompts and automated methods, but also highlight potential avenues through which this gap can be leveraged to improve effective visual prompt design. Further details along with the dataset links and codes are available at https://github.com/olivesgatech/PointPrompt
Object Detectors Emerge in Deep Scene CNNs
With the success of new computational architectures for visual processing, such as convolutional neural networks (CNN) and access to image databases with millions of labeled examples (e.g., ImageNet, Places), the state of the art in computer vision is advancing rapidly. One important factor for continued progress is to understand the representations that are learned by the inner layers of these deep architectures. Here we show that object detectors emerge from training CNNs to perform scene classification. As scenes are composed of objects, the CNN for scene classification automatically discovers meaningful objects detectors, representative of the learned scene categories. With object detectors emerging as a result of learning to recognize scenes, our work demonstrates that the same network can perform both scene recognition and object localization in a single forward-pass, without ever having been explicitly taught the notion of objects.
Reinforcement-based Display-size Selection for Frugal Satellite Image Change Detection
We introduce a novel interactive satellite image change detection algorithm based on active learning. The proposed method is iterative and consists in frugally probing the user (oracle) about the labels of the most critical images, and according to the oracle's annotations, it updates change detection results. First, we consider a probabilistic framework which assigns to each unlabeled sample a relevance measure modeling how critical is that sample when training change detection functions. We obtain these relevance measures by minimizing an objective function mixing diversity, representativity and uncertainty. These criteria when combined allow exploring different data modes and also refining change detections. Then, we further explore the potential of this objective function, by considering a reinforcement learning approach that finds the best combination of diversity, representativity and uncertainty as well as display-sizes through active learning iterations, leading to better generalization as shown through experiments in interactive satellite image change detection.
Attention Neural Network for Trash Detection on Water Channels
Rivers and canals flowing through cities are often used illegally for dumping the trash. This contaminates freshwater channels as well as causes blockage in sewerage resulting in urban flooding. When this contaminated water reaches agricultural fields, it results in degradation of soil and poses critical environmental as well as economic threats. The dumped trash is often found floating on the water surface. The trash could be disfigured, partially submerged, decomposed into smaller pieces, clumped together with other objects which obscure its shape and creates a challenging detection problem. This paper proposes a method for the detection of visible trash floating on the water surface of the canals in urban areas. We also provide a large dataset, first of its kind, trash in water channels that contains object-level annotations. A novel attention layer is proposed that improves the detection of smaller objects. Towards the end of this paper, we provide a detailed comparison of our method with state-of-the-art object detectors and show that our method significantly improves the detection of smaller objects. The dataset will be made publicly available.
PatchCraft: Exploring Texture Patch for Efficient AI-generated Image Detection
Recent generative models show impressive performance in generating photographic images. Humans can hardly distinguish such incredibly realistic-looking AI-generated images from real ones. AI-generated images may lead to ubiquitous disinformation dissemination. Therefore, it is of utmost urgency to develop a detector to identify AI generated images. Most existing detectors suffer from sharp performance drops over unseen generative models. In this paper, we propose a novel AI-generated image detector capable of identifying fake images created by a wide range of generative models. We observe that the texture patches of images tend to reveal more traces left by generative models compared to the global semantic information of the images. A novel Smash&Reconstruction preprocessing is proposed to erase the global semantic information and enhance texture patches. Furthermore, pixels in rich texture regions exhibit more significant fluctuations than those in poor texture regions. Synthesizing realistic rich texture regions proves to be more challenging for existing generative models. Based on this principle, we leverage the inter-pixel correlation contrast between rich and poor texture regions within an image to further boost the detection performance. In addition, we build a comprehensive AI-generated image detection benchmark, which includes 17 kinds of prevalent generative models, to evaluate the effectiveness of existing baselines and our approach. Our benchmark provides a leaderboard for follow-up studies. Extensive experimental results show that our approach outperforms state-of-the-art baselines by a significant margin. Our project: https://fdmas.github.io/AIGCDetect
Pseudo vs. True Defect Classification in Printed Circuits Boards using Wavelet Features
In recent years, Printed Circuit Boards (PCB) have become the backbone of a large number of consumer electronic devices leading to a surge in their production. This has made it imperative to employ automatic inspection systems to identify manufacturing defects in PCB before they are installed in the respective systems. An important task in this regard is the classification of defects as either true or pseudo defects, which decides if the PCB is to be re-manufactured or not. This work proposes a novel approach to detect most common defects in the PCBs. The problem has been approached by employing highly discriminative features based on multi-scale wavelet transform, which are further boosted by using a kernalized version of the support vector machines (SVM). A real world printed circuit board dataset has been used for quantitative analysis. Experimental results demonstrated the efficacy of the proposed method.
SpecDETR: A Transformer-based Hyperspectral Point Object Detection Network
Hyperspectral target detection (HTD) aims to identify specific materials based on spectral information in hyperspectral imagery and can detect extremely small objects, some of which occupy a smaller than one-pixel area. However, existing HTD methods are developed based on per-pixel binary classification, which limits the feature representation capability for instance-level objects. In this paper, we rethink the hyperspectral target detection from the point object detection perspective, and propose the first specialized network for hyperspectral multi-class point object detection, SpecDETR. Without the visual foundation model of the current object detection framework, SpecDETR treats each pixel in input images as a token and uses a multi-layer Transformer encoder with self-excited subpixel-scale attention modules to directly extract joint spatial-spectral features from images. During feature extraction, we introduce a self-excited mechanism to enhance object features through self-excited amplification, thereby accelerating network convergence. Additionally, SpecDETR regards point object detection as a one-to-many set prediction problem, thereby achieving a concise and efficient DETR decoder that surpasses the state-of-the-art (SOTA) DETR decoder. We develop a simulated hyperSpectral Point Object Detection benchmark termed SPOD, and for the first time, evaluate and compare the performance of current object detection networks and HTD methods on hyperspectral point object detection. Extensive experiments demonstrate that our proposed SpecDETR outperforms SOTA object detection networks and HTD methods. Our code and dataset are available at https://github.com/ZhaoxuLi123/SpecDETR.
Hyperspectral Unmixing: Ground Truth Labeling, Datasets, Benchmark Performances and Survey
Hyperspectral unmixing (HU) is a very useful and increasingly popular preprocessing step for a wide range of hyperspectral applications. However, the HU research has been constrained a lot by three factors: (a) the number of hyperspectral images (especially the ones with ground truths) are very limited; (b) the ground truths of most hyperspectral images are not shared on the web, which may cause lots of unnecessary troubles for researchers to evaluate their algorithms; (c) the codes of most state-of-the-art methods are not shared, which may also delay the testing of new methods. Accordingly, this paper deals with the above issues from the following three perspectives: (1) as a profound contribution, we provide a general labeling method for the HU. With it, we labeled up to 15 hyperspectral images, providing 18 versions of ground truths. To the best of our knowledge, this is the first paper to summarize and share up to 15 hyperspectral images and their 18 versions of ground truths for the HU. Observing that the hyperspectral classification (HyC) has much more standard datasets (whose ground truths are generally publicly shared) than the HU, we propose an interesting method to transform the HyC datasets for the HU research. (2) To further facilitate the evaluation of HU methods under different conditions, we reviewed and implemented the algorithm to generate a complex synthetic hyperspectral image. By tuning the hyper-parameters in the code, we may verify the HU methods from four perspectives. The code would also be shared on the web. (3) To provide a standard comparison, we reviewed up to 10 state-of-the-art HU algorithms, then selected the 5 most benchmark HU algorithms, and compared them on the 15 real hyperspectral datasets. The experiment results are surely reproducible; the implemented codes would be shared on the web.
3rd Place Solution for MOSE Track in CVPR 2024 PVUW workshop: Complex Video Object Segmentation
Video Object Segmentation (VOS) is a vital task in computer vision, focusing on distinguishing foreground objects from the background across video frames. Our work draws inspiration from the Cutie model, and we investigate the effects of object memory, the total number of memory frames, and input resolution on segmentation performance. This report validates the effectiveness of our inference method on the coMplex video Object SEgmentation (MOSE) dataset, which features complex occlusions. Our experimental results demonstrate that our approach achieves a J\&F score of 0.8139 on the test set, securing the third position in the final ranking. These findings highlight the robustness and accuracy of our method in handling challenging VOS scenarios.
BioVL-QR: Egocentric Biochemical Vision-and-Language Dataset Using Micro QR Codes
This paper introduces BioVL-QR, a biochemical vision-and-language dataset comprising 23 egocentric experiment videos, corresponding protocols, and vision-and-language alignments. A major challenge in understanding biochemical videos is detecting equipment, reagents, and containers because of the cluttered environment and indistinguishable objects. Previous studies assumed manual object annotation, which is costly and time-consuming. To address the issue, we focus on Micro QR Codes. However, detecting objects using only Micro QR Codes is still difficult due to blur and occlusion caused by object manipulation. To overcome this, we propose an object labeling method combining a Micro QR Code detector with an off-the-shelf hand object detector. As an application of the method and BioVL-QR, we tackled the task of localizing the procedural steps in an instructional video. The experimental results show that using Micro QR Codes and our method improves biochemical video understanding. Data and code are available through https://nishi10mo.github.io/BioVL-QR/
MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
Video object segmentation (VOS) aims at segmenting a particular object throughout the entire video clip sequence. The state-of-the-art VOS methods have achieved excellent performance (e.g., 90+% J&F) on existing datasets. However, since the target objects in these existing datasets are usually relatively salient, dominant, and isolated, VOS under complex scenes has rarely been studied. To revisit VOS and make it more applicable in the real world, we collect a new VOS dataset called coMplex video Object SEgmentation (MOSE) to study the tracking and segmenting objects in complex environments. MOSE contains 2,149 video clips and 5,200 objects from 36 categories, with 431,725 high-quality object segmentation masks. The most notable feature of MOSE dataset is complex scenes with crowded and occluded objects. The target objects in the videos are commonly occluded by others and disappear in some frames. To analyze the proposed MOSE dataset, we benchmark 18 existing VOS methods under 4 different settings on the proposed MOSE dataset and conduct comprehensive comparisons. The experiments show that current VOS algorithms cannot well perceive objects in complex scenes. For example, under the semi-supervised VOS setting, the highest J&F by existing state-of-the-art VOS methods is only 59.4% on MOSE, much lower than their ~90% J&F performance on DAVIS. The results reveal that although excellent performance has been achieved on existing benchmarks, there are unresolved challenges under complex scenes and more efforts are desired to explore these challenges in the future. The proposed MOSE dataset has been released at https://henghuiding.github.io/MOSE.
PCB-Vision: A Multiscene RGB-Hyperspectral Benchmark Dataset of Printed Circuit Boards
Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing pipelines as a basis for decision-making and process control. Aligning with the broader goals of the circular economy and the United Nations (UN) Sustainable Development Goals (SDG), our work leverages non-invasive analysis methods utilizing RGB and hyperspectral imaging data to provide both quantitative and qualitative insights into the E-waste stream composition for optimizing recycling efficiency. In this paper, we introduce 'PCB-Vision'; a pioneering RGB-hyperspectral printed circuit board (PCB) benchmark dataset, comprising 53 RGB images of high spatial resolution paired with their corresponding high spectral resolution hyperspectral data cubes in the visible and near-infrared (VNIR) range. Grounded in open science principles, our dataset provides a comprehensive resource for researchers through high-quality ground truths, focusing on three primary PCB components: integrated circuits (IC), capacitors, and connectors. We provide extensive statistical investigations on the proposed dataset together with the performance of several state-of-the-art (SOTA) models, including U-Net, Attention U-Net, Residual U-Net, LinkNet, and DeepLabv3+. By openly sharing this multi-scene benchmark dataset along with the baseline codes, we hope to foster transparent, traceable, and comparable developments of advanced data processing across various scientific communities, including, but not limited to, computer vision and remote sensing. Emphasizing our commitment to supporting a collaborative and inclusive scientific community, all materials, including code, data, ground truth, and masks, will be accessible at https://github.com/hifexplo/PCBVision.
Learning to Prompt for Open-Vocabulary Object Detection with Vision-Language Model
Recently, vision-language pre-training shows great potential in open-vocabulary object detection, where detectors trained on base classes are devised for detecting new classes. The class text embedding is firstly generated by feeding prompts to the text encoder of a pre-trained vision-language model. It is then used as the region classifier to supervise the training of a detector. The key element that leads to the success of this model is the proper prompt, which requires careful words tuning and ingenious design. To avoid laborious prompt engineering, there are some prompt representation learning methods being proposed for the image classification task, which however can only be sub-optimal solutions when applied to the detection task. In this paper, we introduce a novel method, detection prompt (DetPro), to learn continuous prompt representations for open-vocabulary object detection based on the pre-trained vision-language model. Different from the previous classification-oriented methods, DetPro has two highlights: 1) a background interpretation scheme to include the proposals in image background into the prompt training; 2) a context grading scheme to separate proposals in image foreground for tailored prompt training. We assemble DetPro with ViLD, a recent state-of-the-art open-world object detector, and conduct experiments on the LVIS as well as transfer learning on the Pascal VOC, COCO, Objects365 datasets. Experimental results show that our DetPro outperforms the baseline ViLD in all settings, e.g., +3.4 APbox and +3.0 APmask improvements on the novel classes of LVIS. Code and models are available at https://github.com/dyabel/detpro.
V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results
Detecting objects in real-world scenes is a complex task due to various challenges, including the vast range of object categories, and potential encounters with previously unknown or unseen objects. The challenges necessitate the development of public benchmarks and challenges to advance the field of object detection. Inspired by the success of previous COCO and LVIS Challenges, we organize the V3Det Challenge 2024 in conjunction with the 4th Open World Vision Workshop: Visual Perception via Learning in an Open World (VPLOW) at CVPR 2024, Seattle, US. This challenge aims to push the boundaries of object detection research and encourage innovation in this field. The V3Det Challenge 2024 consists of two tracks: 1) Vast Vocabulary Object Detection: This track focuses on detecting objects from a large set of 13204 categories, testing the detection algorithm's ability to recognize and locate diverse objects. 2) Open Vocabulary Object Detection: This track goes a step further, requiring algorithms to detect objects from an open set of categories, including unknown objects. In the following sections, we will provide a comprehensive summary and analysis of the solutions submitted by participants. By analyzing the methods and solutions presented, we aim to inspire future research directions in vast vocabulary and open-vocabulary object detection, driving progress in this field. Challenge homepage: https://v3det.openxlab.org.cn/challenge
Plantation Monitoring Using Drone Images: A Dataset and Performance Review
Automatic monitoring of tree plantations plays a crucial role in agriculture. Flawless monitoring of tree health helps farmers make informed decisions regarding their management by taking appropriate action. Use of drone images for automatic plantation monitoring can enhance the accuracy of the monitoring process, while still being affordable to small farmers in developing countries such as India. Small, low cost drones equipped with an RGB camera can capture high-resolution images of agricultural fields, allowing for detailed analysis of the well-being of the plantations. Existing methods of automated plantation monitoring are mostly based on satellite images, which are difficult to get for the farmers. We propose an automated system for plantation health monitoring using drone images, which are becoming easier to get for the farmers. We propose a dataset of images of trees with three categories: ``Good health", ``Stunted", and ``Dead". We annotate the dataset using CVAT annotation tool, for use in research purposes. We experiment with different well-known CNN models to observe their performance on the proposed dataset. The initial low accuracy levels show the complexity of the proposed dataset. Further, our study revealed that, depth-wise convolution operation embedded in a deep CNN model, can enhance the performance of the model on drone dataset. Further, we apply state-of-the-art object detection models to identify individual trees to better monitor them automatically.
Towards Efficient and Intelligent Laser Weeding: Method and Dataset for Weed Stem Detection
Weed control is a critical challenge in modern agriculture, as weeds compete with crops for essential nutrient resources, significantly reducing crop yield and quality. Traditional weed control methods, including chemical and mechanical approaches, have real-life limitations such as associated environmental impact and efficiency. An emerging yet effective approach is laser weeding, which uses a laser beam as the stem cutter. Although there have been studies that use deep learning in weed recognition, its application in intelligent laser weeding still requires a comprehensive understanding. Thus, this study represents the first empirical investigation of weed recognition for laser weeding. To increase the efficiency of laser beam cut and avoid damaging the crops of interest, the laser beam shall be directly aimed at the weed root. Yet, weed stem detection remains an under-explored problem. We integrate the detection of crop and weed with the localization of weed stem into one end-to-end system. To train and validate the proposed system in a real-life scenario, we curate and construct a high-quality weed stem detection dataset with human annotations. The dataset consists of 7,161 high-resolution pictures collected in the field with annotations of 11,151 instances of weed. Experimental results show that the proposed system improves weeding accuracy by 6.7% and reduces energy cost by 32.3% compared to existing weed recognition systems.
Moving Object Segmentation: All You Need Is SAM (and Flow)
The objective of this paper is motion segmentation -- discovering and segmenting the moving objects in a video. This is a much studied area with numerous careful,and sometimes complex, approaches and training schemes including: self-supervised learning, learning from synthetic datasets, object-centric representations, amodal representations, and many more. Our interest in this paper is to determine if the Segment Anything model (SAM) can contribute to this task. We investigate two models for combining SAM with optical flow that harness the segmentation power of SAM with the ability of flow to discover and group moving objects. In the first model, we adapt SAM to take optical flow, rather than RGB, as an input. In the second, SAM takes RGB as an input, and flow is used as a segmentation prompt. These surprisingly simple methods, without any further modifications, outperform all previous approaches by a considerable margin in both single and multi-object benchmarks. We also extend these frame-level segmentations to sequence-level segmentations that maintain object identity. Again, this simple model outperforms previous methods on multiple video object segmentation benchmarks.
FCOS: Fully Convolutional One-Stage Object Detection
We propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion, analogue to semantic segmentation. Almost all state-of-the-art object detectors such as RetinaNet, SSD, YOLOv3, and Faster R-CNN rely on pre-defined anchor boxes. In contrast, our proposed detector FCOS is anchor box free, as well as proposal free. By eliminating the predefined set of anchor boxes, FCOS completely avoids the complicated computation related to anchor boxes such as calculating overlapping during training. More importantly, we also avoid all hyper-parameters related to anchor boxes, which are often very sensitive to the final detection performance. With the only post-processing non-maximum suppression (NMS), FCOS with ResNeXt-64x4d-101 achieves 44.7% in AP with single-model and single-scale testing, surpassing previous one-stage detectors with the advantage of being much simpler. For the first time, we demonstrate a much simpler and flexible detection framework achieving improved detection accuracy. We hope that the proposed FCOS framework can serve as a simple and strong alternative for many other instance-level tasks. Code is available at:Code is available at: https://tinyurl.com/FCOSv1
Audio-Visual Segmentation with Semantics
We propose a new problem called audio-visual segmentation (AVS), in which the goal is to output a pixel-level map of the object(s) that produce sound at the time of the image frame. To facilitate this research, we construct the first audio-visual segmentation benchmark, i.e., AVSBench, providing pixel-wise annotations for sounding objects in audible videos. It contains three subsets: AVSBench-object (Single-source subset, Multi-sources subset) and AVSBench-semantic (Semantic-labels subset). Accordingly, three settings are studied: 1) semi-supervised audio-visual segmentation with a single sound source; 2) fully-supervised audio-visual segmentation with multiple sound sources, and 3) fully-supervised audio-visual semantic segmentation. The first two settings need to generate binary masks of sounding objects indicating pixels corresponding to the audio, while the third setting further requires generating semantic maps indicating the object category. To deal with these problems, we propose a new baseline method that uses a temporal pixel-wise audio-visual interaction module to inject audio semantics as guidance for the visual segmentation process. We also design a regularization loss to encourage audio-visual mapping during training. Quantitative and qualitative experiments on AVSBench compare our approach to several existing methods for related tasks, demonstrating that the proposed method is promising for building a bridge between the audio and pixel-wise visual semantics. Code is available at https://github.com/OpenNLPLab/AVSBench. Online benchmark is available at http://www.avlbench.opennlplab.cn.
Improved YOLOv12 with LLM-Generated Synthetic Data for Enhanced Apple Detection and Benchmarking Against YOLOv11 and YOLOv10
This study evaluated the performance of the YOLOv12 object detection model, and compared against the performances YOLOv11 and YOLOv10 for apple detection in commercial orchards based on the model training completed entirely on synthetic images generated by Large Language Models (LLMs). The YOLOv12n configuration achieved the highest precision at 0.916, the highest recall at 0.969, and the highest mean Average Precision (mAP@50) at 0.978. In comparison, the YOLOv11 series was led by YOLO11x, which achieved the highest precision at 0.857, recall at 0.85, and mAP@50 at 0.91. For the YOLOv10 series, YOLOv10b and YOLOv10l both achieved the highest precision at 0.85, with YOLOv10n achieving the highest recall at 0.8 and mAP@50 at 0.89. These findings demonstrated that YOLOv12, when trained on realistic LLM-generated datasets surpassed its predecessors in key performance metrics. The technique also offered a cost-effective solution by reducing the need for extensive manual data collection in the agricultural field. In addition, this study compared the computational efficiency of all versions of YOLOv12, v11 and v10, where YOLOv11n reported the lowest inference time at 4.7 ms, compared to YOLOv12n's 5.6 ms and YOLOv10n's 5.9 ms. Although YOLOv12 is new and more accurate than YOLOv11, and YOLOv10, YOLO11n still stays the fastest YOLO model among YOLOv10, YOLOv11 and YOLOv12 series of models. (Index: YOLOv12, YOLOv11, YOLOv10, YOLOv13, YOLOv14, YOLOv15, YOLOE, YOLO Object detection)
In Rain or Shine: Understanding and Overcoming Dataset Bias for Improving Robustness Against Weather Corruptions for Autonomous Vehicles
Several popular computer vision (CV) datasets, specifically employed for Object Detection (OD) in autonomous driving tasks exhibit biases due to a range of factors including weather and lighting conditions. These biases may impair a model's generalizability, rendering it ineffective for OD in novel and unseen datasets. Especially, in autonomous driving, it may prove extremely high risk and unsafe for the vehicle and its surroundings. This work focuses on understanding these datasets better by identifying such "good-weather" bias. Methods to mitigate such bias which allows the OD models to perform better and improve the robustness are also demonstrated. A simple yet effective OD framework for studying bias mitigation is proposed. Using this framework, the performance on popular datasets is analyzed and a significant difference in model performance is observed. Additionally, a knowledge transfer technique and a synthetic image corruption technique are proposed to mitigate the identified bias. Finally, using the DAWN dataset, the findings are validated on the OD task, demonstrating the effectiveness of our techniques in mitigating real-world "good-weather" bias. The experiments show that the proposed techniques outperform baseline methods by averaged fourfold improvement.
Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection
Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
Discovering Transferable Forensic Features for CNN-generated Images Detection
Visual counterfeits are increasingly causing an existential conundrum in mainstream media with rapid evolution in neural image synthesis methods. Though detection of such counterfeits has been a taxing problem in the image forensics community, a recent class of forensic detectors -- universal detectors -- are able to surprisingly spot counterfeit images regardless of generator architectures, loss functions, training datasets, and resolutions. This intriguing property suggests the possible existence of transferable forensic features (T-FF) in universal detectors. In this work, we conduct the first analytical study to discover and understand T-FF in universal detectors. Our contributions are 2-fold: 1) We propose a novel forensic feature relevance statistic (FF-RS) to quantify and discover T-FF in universal detectors and, 2) Our qualitative and quantitative investigations uncover an unexpected finding: color is a critical T-FF in universal detectors. Code and models are available at https://keshik6.github.io/transferable-forensic-features/
BEVFormer v2: Adapting Modern Image Backbones to Bird's-Eye-View Recognition via Perspective Supervision
We present a novel bird's-eye-view (BEV) detector with perspective supervision, which converges faster and better suits modern image backbones. Existing state-of-the-art BEV detectors are often tied to certain depth pre-trained backbones like VoVNet, hindering the synergy between booming image backbones and BEV detectors. To address this limitation, we prioritize easing the optimization of BEV detectors by introducing perspective space supervision. To this end, we propose a two-stage BEV detector, where proposals from the perspective head are fed into the bird's-eye-view head for final predictions. To evaluate the effectiveness of our model, we conduct extensive ablation studies focusing on the form of supervision and the generality of the proposed detector. The proposed method is verified with a wide spectrum of traditional and modern image backbones and achieves new SoTA results on the large-scale nuScenes dataset. The code shall be released soon.
A Public Image Database for Benchmark of Plant Seedling Classification Algorithms
A database of images of approximately 960 unique plants belonging to 12 species at several growth stages is made publicly available. It comprises annotated RGB images with a physical resolution of roughly 10 pixels per mm. To standardise the evaluation of classification results obtained with the database, a benchmark based on f_{1} scores is proposed. The dataset is available at https://vision.eng.au.dk/plant-seedlings-dataset
Spatial Self-Distillation for Object Detection with Inaccurate Bounding Boxes
Object detection via inaccurate bounding boxes supervision has boosted a broad interest due to the expensive high-quality annotation data or the occasional inevitability of low annotation quality (\eg tiny objects). The previous works usually utilize multiple instance learning (MIL), which highly depends on category information, to select and refine a low-quality box. Those methods suffer from object drift, group prediction and part domination problems without exploring spatial information. In this paper, we heuristically propose a Spatial Self-Distillation based Object Detector (SSD-Det) to mine spatial information to refine the inaccurate box in a self-distillation fashion. SSD-Det utilizes a Spatial Position Self-Distillation (SPSD) module to exploit spatial information and an interactive structure to combine spatial information and category information, thus constructing a high-quality proposal bag. To further improve the selection procedure, a Spatial Identity Self-Distillation (SISD) module is introduced in SSD-Det to obtain spatial confidence to help select the best proposals. Experiments on MS-COCO and VOC datasets with noisy box annotation verify our method's effectiveness and achieve state-of-the-art performance. The code is available at https://github.com/ucas-vg/PointTinyBenchmark/tree/SSD-Det.
An open-source robust machine learning platform for real-time detection and classification of 2D material flakes
The most widely used method for obtaining high-quality two-dimensional materials is through mechanical exfoliation of bulk crystals. Manual identification of suitable flakes from the resulting random distribution of crystal thicknesses and sizes on a substrate is a time-consuming, tedious task. Here, we present a platform for fully automated scanning, detection, and classification of two-dimensional materials, the source code of which we make openly available. Our platform is designed to be accurate, reliable, fast, and versatile in integrating new materials, making it suitable for everyday laboratory work. The implementation allows fully automated scanning and analysis of wafers with an average inference time of 100 ms for images of 2.3 Mpixels. The developed detection algorithm is based on a combination of the flakes' optical contrast toward the substrate and their geometric shape. We demonstrate that it is able to detect the majority of exfoliated flakes of various materials, with an average recall (AR50) between 67% and 89%. We also show that the algorithm can be trained with as few as five flakes of a given material, which we demonstrate for the examples of few-layer graphene, WSe_2, MoSe_2, CrI_3, 1T-TaS_2 and hexagonal BN. Our platform has been tested over a two-year period, during which more than 10^6 images of multiple different materials were acquired by over 30 individual researchers.
Prompt-CAM: Making Vision Transformers Interpretable for Fine-Grained Analysis
We present a simple approach to make pre-trained Vision Transformers (ViTs) interpretable for fine-grained analysis, aiming to identify and localize the traits that distinguish visually similar categories, such as bird species. Pre-trained ViTs, such as DINO, have demonstrated remarkable capabilities in extracting localized, discriminative features. However, saliency maps like Grad-CAM often fail to identify these traits, producing blurred, coarse heatmaps that highlight entire objects instead. We propose a novel approach, Prompt Class Attention Map (Prompt-CAM), to address this limitation. Prompt-CAM learns class-specific prompts for a pre-trained ViT and uses the corresponding outputs for classification. To correctly classify an image, the true-class prompt must attend to unique image patches not present in other classes' images (i.e., traits). As a result, the true class's multi-head attention maps reveal traits and their locations. Implementation-wise, Prompt-CAM is almost a ``free lunch,'' requiring only a modification to the prediction head of Visual Prompt Tuning (VPT). This makes Prompt-CAM easy to train and apply, in stark contrast to other interpretable methods that require designing specific models and training processes. Extensive empirical studies on a dozen datasets from various domains (e.g., birds, fishes, insects, fungi, flowers, food, and cars) validate the superior interpretation capability of Prompt-CAM. The source code and demo are available at https://github.com/Imageomics/Prompt_CAM.
An accurate detection is not all you need to combat label noise in web-noisy datasets
Training a classifier on web-crawled data demands learning algorithms that are robust to annotation errors and irrelevant examples. This paper builds upon the recent empirical observation that applying unsupervised contrastive learning to noisy, web-crawled datasets yields a feature representation under which the in-distribution (ID) and out-of-distribution (OOD) samples are linearly separable. We show that direct estimation of the separating hyperplane can indeed offer an accurate detection of OOD samples, and yet, surprisingly, this detection does not translate into gains in classification accuracy. Digging deeper into this phenomenon, we discover that the near-perfect detection misses a type of clean examples that are valuable for supervised learning. These examples often represent visually simple images, which are relatively easy to identify as clean examples using standard loss- or distance-based methods despite being poorly separated from the OOD distribution using unsupervised learning. Because we further observe a low correlation with SOTA metrics, this urges us to propose a hybrid solution that alternates between noise detection using linear separation and a state-of-the-art (SOTA) small-loss approach. When combined with the SOTA algorithm PLS, we substantially improve SOTA results for real-world image classification in the presence of web noise github.com/PaulAlbert31/LSA
Lighting and Rotation Invariant Real-time Vehicle Wheel Detector based on YOLOv5
Creating an object detector, in computer vision, has some common challenges when initially developed based on Convolutional Neural Network (CNN) architecture. These challenges are more apparent when creating model that needs to adapt to images captured by various camera orientations, lighting conditions, and environmental changes. The availability of the initial training samples to cover all these conditions can be an enormous challenge with a time and cost burden. While the problem can exist when creating any type of object detection, some types are less common and have no pre-labeled image datasets that exists publicly. Sometime public datasets are not reliable nor comprehensive for a rare object type. Vehicle wheel is one of those example that been chosen to demonstrate the approach of creating a lighting and rotation invariant real-time detector based on YOLOv5 architecture. The objective is to provide a simple approach that could be used as a reference for developing other types of real-time object detectors.
WoodYOLO: A Novel Object Detector for Wood Species Detection in Microscopic Images
Wood species identification plays a crucial role in various industries, from ensuring the legality of timber products to advancing ecological conservation efforts. This paper introduces WoodYOLO, a novel object detection algorithm specifically designed for microscopic wood fiber analysis. Our approach adapts the YOLO architecture to address the challenges posed by large, high-resolution microscopy images and the need for high recall in localization of the cell type of interest (vessel elements). Our results show that WoodYOLO significantly outperforms state-of-the-art models, achieving performance gains of 12.9% and 6.5% in F2 score over YOLOv10 and YOLOv7, respectively. This improvement in automated wood cell type localization capabilities contributes to enhancing regulatory compliance, supporting sustainable forestry practices, and promoting biodiversity conservation efforts globally.
Intel Labs at Ego4D Challenge 2022: A Better Baseline for Audio-Visual Diarization
This report describes our approach for the Audio-Visual Diarization (AVD) task of the Ego4D Challenge 2022. Specifically, we present multiple technical improvements over the official baselines. First, we improve the detection performance of the camera wearer's voice activity by modifying the training scheme of its model. Second, we discover that an off-the-shelf voice activity detection model can effectively remove false positives when it is applied solely to the camera wearer's voice activities. Lastly, we show that better active speaker detection leads to a better AVD outcome. Our final method obtains 65.9% DER on the test set of Ego4D, which significantly outperforms all the baselines. Our submission achieved 1st place in the Ego4D Challenge 2022.
Object Detectors in the Open Environment: Challenges, Solutions, and Outlook
With the emergence of foundation models, deep learning-based object detectors have shown practical usability in closed set scenarios. However, for real-world tasks, object detectors often operate in open environments, where crucial factors (e.g., data distribution, objective) that influence model learning are often changing. The dynamic and intricate nature of the open environment poses novel and formidable challenges to object detectors. Unfortunately, current research on object detectors in open environments lacks a comprehensive analysis of their distinctive characteristics, challenges, and corresponding solutions, which hinders their secure deployment in critical real-world scenarios. This paper aims to bridge this gap by conducting a comprehensive review and analysis of object detectors in open environments. We initially identified limitations of key structural components within the existing detection pipeline and propose the open environment object detector challenge framework that includes four quadrants (i.e., out-of-domain, out-of-category, robust learning, and incremental learning) based on the dimensions of the data / target changes. For each quadrant of challenges in the proposed framework, we present a detailed description and systematic analysis of the overarching goals and core difficulties, systematically review the corresponding solutions, and benchmark their performance over multiple widely adopted datasets. In addition, we engage in a discussion of open problems and potential avenues for future research. This paper aims to provide a fresh, comprehensive, and systematic understanding of the challenges and solutions associated with open-environment object detectors, thus catalyzing the development of more solid applications in real-world scenarios. A project related to this survey can be found at https://github.com/LiangSiyuan21/OEOD_Survey.
Gravity Network for end-to-end small lesion detection
This paper introduces a novel one-stage end-to-end detector specifically designed to detect small lesions in medical images. Precise localization of small lesions presents challenges due to their appearance and the diverse contextual backgrounds in which they are found. To address this, our approach introduces a new type of pixel-based anchor that dynamically moves towards the targeted lesion for detection. We refer to this new architecture as GravityNet, and the novel anchors as gravity points since they appear to be "attracted" by the lesions. We conducted experiments on two well-established medical problems involving small lesions to evaluate the performance of the proposed approach: microcalcifications detection in digital mammograms and microaneurysms detection in digital fundus images. Our method demonstrates promising results in effectively detecting small lesions in these medical imaging tasks.
Control Copy-Paste: Controllable Diffusion-Based Augmentation Method for Remote Sensing Few-Shot Object Detection
Few-shot object detection (FSOD) for optical remote sensing images aims to detect rare objects with only a few annotated bounding boxes. The limited training data makes it difficult to represent the data distribution of realistic remote sensing scenes, which results in the notorious overfitting problem. Current researchers have begun to enhance the diversity of few-shot novel instances by leveraging diffusion models to solve the overfitting problem. However, naively increasing the diversity of objects is insufficient, as surrounding contexts also play a crucial role in object detection, and in cases where the object diversity is sufficient, the detector tends to overfit to monotonous contexts. Accordingly, we propose Control Copy-Paste, a controllable diffusion-based method to enhance the performance of FSOD by leveraging diverse contextual information. Specifically, we seamlessly inject a few-shot novel objects into images with diverse contexts by a conditional diffusion model. We also develop an orientation alignment strategy to mitigate the integration distortion caused by varying aspect ratios of instances. Experiments on the public DIOR dataset demonstrate that our method can improve detection performance by an average of 10.76%.
DetGPT: Detect What You Need via Reasoning
In recent years, the field of computer vision has seen significant advancements thanks to the development of large language models (LLMs). These models have enabled more effective and sophisticated interactions between humans and machines, paving the way for novel techniques that blur the lines between human and machine intelligence. In this paper, we introduce a new paradigm for object detection that we call reasoning-based object detection. Unlike conventional object detection methods that rely on specific object names, our approach enables users to interact with the system using natural language instructions, allowing for a higher level of interactivity. Our proposed method, called DetGPT, leverages state-of-the-art multi-modal models and open-vocabulary object detectors to perform reasoning within the context of the user's instructions and the visual scene. This enables DetGPT to automatically locate the object of interest based on the user's expressed desires, even if the object is not explicitly mentioned. For instance, if a user expresses a desire for a cold beverage, DetGPT can analyze the image, identify a fridge, and use its knowledge of typical fridge contents to locate the beverage. This flexibility makes our system applicable across a wide range of fields, from robotics and automation to autonomous driving. Overall, our proposed paradigm and DetGPT demonstrate the potential for more sophisticated and intuitive interactions between humans and machines. We hope that our proposed paradigm and approach will provide inspiration to the community and open the door to more interative and versatile object detection systems. Our project page is launched at detgpt.github.io.
OoDIS: Anomaly Instance Segmentation Benchmark
Autonomous vehicles require a precise understanding of their environment to navigate safely. Reliable identification of unknown objects, especially those that are absent during training, such as wild animals, is critical due to their potential to cause serious accidents. Significant progress in semantic segmentation of anomalies has been driven by the availability of out-of-distribution (OOD) benchmarks. However, a comprehensive understanding of scene dynamics requires the segmentation of individual objects, and thus the segmentation of instances is essential. Development in this area has been lagging, largely due to the lack of dedicated benchmarks. To address this gap, we have extended the most commonly used anomaly segmentation benchmarks to include the instance segmentation task. Our evaluation of anomaly instance segmentation methods shows that this challenge remains an unsolved problem. The benchmark website and the competition page can be found at: https://vision.rwth-aachen.de/oodis .
Forte : Finding Outliers with Representation Typicality Estimation
Generative models can now produce photorealistic synthetic data which is virtually indistinguishable from the real data used to train it. This is a significant evolution over previous models which could produce reasonable facsimiles of the training data, but ones which could be visually distinguished from the training data by human evaluation. Recent work on OOD detection has raised doubts that generative model likelihoods are optimal OOD detectors due to issues involving likelihood misestimation, entropy in the generative process, and typicality. We speculate that generative OOD detectors also failed because their models focused on the pixels rather than the semantic content of the data, leading to failures in near-OOD cases where the pixels may be similar but the information content is significantly different. We hypothesize that estimating typical sets using self-supervised learners leads to better OOD detectors. We introduce a novel approach that leverages representation learning, and informative summary statistics based on manifold estimation, to address all of the aforementioned issues. Our method outperforms other unsupervised approaches and achieves state-of-the art performance on well-established challenging benchmarks, and new synthetic data detection tasks.
Bounding Box Stability against Feature Dropout Reflects Detector Generalization across Environments
Bounding boxes uniquely characterize object detection, where a good detector gives accurate bounding boxes of categories of interest. However, in the real-world where test ground truths are not provided, it is non-trivial to find out whether bounding boxes are accurate, thus preventing us from assessing the detector generalization ability. In this work, we find under feature map dropout, good detectors tend to output bounding boxes whose locations do not change much, while bounding boxes of poor detectors will undergo noticeable position changes. We compute the box stability score (BoS score) to reflect this stability. Specifically, given an image, we compute a normal set of bounding boxes and a second set after feature map dropout. To obtain BoS score, we use bipartite matching to find the corresponding boxes between the two sets and compute the average Intersection over Union (IoU) across the entire test set. We contribute to finding that BoS score has a strong, positive correlation with detection accuracy measured by mean average precision (mAP) under various test environments. This relationship allows us to predict the accuracy of detectors on various real-world test sets without accessing test ground truths, verified on canonical detection tasks such as vehicle detection and pedestrian detection. Code and data are available at https://github.com/YangYangGirl/BoS.
Is Heuristic Sampling Necessary in Training Deep Object Detectors?
To train accurate deep object detectors under the extreme foreground-background imbalance, heuristic sampling methods are always necessary, which either re-sample a subset of all training samples (hard sampling methods, \eg biased sampling, OHEM), or use all training samples but re-weight them discriminatively (soft sampling methods, \eg Focal Loss, GHM). In this paper, we challenge the necessity of such hard/soft sampling methods for training accurate deep object detectors. While previous studies have shown that training detectors without heuristic sampling methods would significantly degrade accuracy, we reveal that this degradation comes from an unreasonable classification gradient magnitude caused by the imbalance, rather than a lack of re-sampling/re-weighting. Motivated by our discovery, we propose a simple yet effective Sampling-Free mechanism to achieve a reasonable classification gradient magnitude by initialization and loss scaling. Unlike heuristic sampling methods with multiple hyperparameters, our Sampling-Free mechanism is fully data diagnostic, without laborious hyperparameters searching. We verify the effectiveness of our method in training anchor-based and anchor-free object detectors, where our method always achieves higher detection accuracy than heuristic sampling methods on COCO and PASCAL VOC datasets. Our Sampling-Free mechanism provides a new perspective to address the foreground-background imbalance. Our code is released at https://github.com/ChenJoya/sampling-free.
Co-Salient Object Detection with Co-Representation Purification
Co-salient object detection (Co-SOD) aims at discovering the common objects in a group of relevant images. Mining a co-representation is essential for locating co-salient objects. Unfortunately, the current Co-SOD method does not pay enough attention that the information not related to the co-salient object is included in the co-representation. Such irrelevant information in the co-representation interferes with its locating of co-salient objects. In this paper, we propose a Co-Representation Purification (CoRP) method aiming at searching noise-free co-representation. We search a few pixel-wise embeddings probably belonging to co-salient regions. These embeddings constitute our co-representation and guide our prediction. For obtaining purer co-representation, we use the prediction to iteratively reduce irrelevant embeddings in our co-representation. Experiments on three datasets demonstrate that our CoRP achieves state-of-the-art performances on the benchmark datasets. Our source code is available at https://github.com/ZZY816/CoRP.
An Improved YOLOv8 Approach for Small Target Detection of Rice Spikelet Flowering in Field Environments
Accurately detecting rice flowering time is crucial for timely pollination in hybrid rice seed production. This not only enhances pollination efficiency but also ensures higher yields. However, due to the complexity of field environments and the characteristics of rice spikelets, such as their small size and short flowering period, automated and precise recognition remains challenging. To address this, this study proposes a rice spikelet flowering recognition method based on an improved YOLOv8 object detection model. First, a Bidirectional Feature Pyramid Network (BiFPN) replaces the original PANet structure to enhance feature fusion and improve multi-scale feature utilization. Second, to boost small object detection, a p2 small-object detection head is added, using finer feature mapping to reduce feature loss commonly seen in detecting small targets. Given the lack of publicly available datasets for rice spikelet flowering in field conditions, a high-resolution RGB camera and data augmentation techniques are used to construct a dedicated dataset, providing reliable support for model training and testing. Experimental results show that the improved YOLOv8s-p2 model achieves an [email protected] of 65.9%, precision of 67.6%, recall of 61.5%, and F1-score of 64.41%, representing improvements of 3.10%, 8.40%, 10.80%, and 9.79%, respectively, over the baseline YOLOv8. The model also runs at 69 f/s on the test set, meeting practical application requirements. Overall, the improved YOLOv8s-p2 offers high accuracy and speed, providing an effective solution for automated monitoring in hybrid rice seed production.
A Change Detection Reality Check
In recent years, there has been an explosion of proposed change detection deep learning architectures in the remote sensing literature. These approaches claim to offer state-of the-art performance on different standard benchmark datasets. However, has the field truly made significant progress? In this paper we perform experiments which conclude a simple U-Net segmentation baseline without training tricks or complicated architectural changes is still a top performer for the task of change detection.
Boundary-Guided Camouflaged Object Detection
Camouflaged object detection (COD), segmenting objects that are elegantly blended into their surroundings, is a valuable yet challenging task. Existing deep-learning methods often fall into the difficulty of accurately identifying the camouflaged object with complete and fine object structure. To this end, in this paper, we propose a novel boundary-guided network (BGNet) for camouflaged object detection. Our method explores valuable and extra object-related edge semantics to guide representation learning of COD, which forces the model to generate features that highlight object structure, thereby promoting camouflaged object detection of accurate boundary localization. Extensive experiments on three challenging benchmark datasets demonstrate that our BGNet significantly outperforms the existing 18 state-of-the-art methods under four widely-used evaluation metrics. Our code is publicly available at: https://github.com/thograce/BGNet.
Classification Matters: Improving Video Action Detection with Class-Specific Attention
Video action detection (VAD) aims to detect actors and classify their actions in a video. We figure that VAD suffers more from classification rather than localization of actors. Hence, we analyze how prevailing methods form features for classification and find that they prioritize actor regions, yet often overlooking the essential contextual information necessary for accurate classification. Accordingly, we propose to reduce the bias toward actor and encourage paying attention to the context that is relevant to each action class. By assigning a class-dedicated query to each action class, our model can dynamically determine where to focus for effective classification. The proposed model demonstrates superior performance on three challenging benchmarks with significantly fewer parameters and less computation.
Generation of microbial colonies dataset with deep learning style transfer
We introduce an effective strategy to generate an annotated synthetic dataset of microbiological images of Petri dishes that can be used to train deep learning models in a fully supervised fashion. The developed generator employs traditional computer vision algorithms together with a neural style transfer method for data augmentation. We show that the method is able to synthesize a dataset of realistic looking images that can be used to train a neural network model capable of localising, segmenting, and classifying five different microbial species. Our method requires significantly fewer resources to obtain a useful dataset than collecting and labeling a whole large set of real images with annotations. We show that starting with only 100 real images, we can generate data to train a detector that achieves comparable results (detection mAP = 0.416, and counting MAE = 4.49) to the same detector but trained on a real, several dozen times bigger dataset (mAP = 0.520, MAE = 4.31), containing over 7k images. We prove the usefulness of the method in microbe detection and segmentation, but we expect that it is general and flexible and can also be applicable in other domains of science and industry to detect various objects.
HyperspectralViTs: General Hyperspectral Models for On-board Remote Sensing
On-board processing of hyperspectral data with machine learning models would enable unprecedented amount of autonomy for a wide range of tasks, for example methane detection or mineral identification. This can enable early warning system and could allow new capabilities such as automated scheduling across constellations of satellites. Classical methods suffer from high false positive rates and previous deep learning models exhibit prohibitive computational requirements. We propose fast and accurate machine learning architectures which support end-to-end training with data of high spectral dimension without relying on hand-crafted products or spectral band compression preprocessing. We evaluate our models on two tasks related to hyperspectral data processing. With our proposed general architectures, we improve the F1 score of the previous methane detection state-of-the-art models by 27% on a newly created synthetic dataset and by 13% on the previously released large benchmark dataset. We also demonstrate that training models on the synthetic dataset improves performance of models finetuned on the dataset of real events by 6.9% in F1 score in contrast with training from scratch. On a newly created dataset for mineral identification, our models provide 3.5% improvement in the F1 score in contrast to the default versions of the models. With our proposed models we improve the inference speed by 85% in contrast to previous classical and deep learning approaches by removing the dependency on classically computed features. With our architecture, one capture from the EMIT sensor can be processed within 30 seconds on realistic proxy of the ION-SCV 004 satellite.
Semantic Segmentation of Periocular Near-Infra-Red Eye Images Under Alcohol Effects
This paper proposes a new framework to detect, segment, and estimate the localization of the eyes from a periocular Near-Infra-Red iris image under alcohol consumption. The purpose of the system is to measure the fitness for duty. Fitness systems allow us to determine whether a person is physically or psychologically able to perform their tasks. Our framework is based on an object detector trained from scratch to detect both eyes from a single image. Then, two efficient networks were used for semantic segmentation; a Criss-Cross attention network and DenseNet10, with only 122,514 and 210,732 parameters, respectively. These networks can find the pupil, iris, and sclera. In the end, the binary output eye mask is used for pupil and iris diameter estimation with high precision. Five state-of-the-art algorithms were used for this purpose. A mixed proposal reached the best results. A second contribution is establishing an alcohol behavior curve to detect the alcohol presence utilizing a stream of images captured from an iris instance. Also, a manually labeled database with more than 20k images was created. Our best method obtains a mean Intersection-over-Union of 94.54% with DenseNet10 with only 210,732 parameters and an error of only 1-pixel on average.
nnDetection: A Self-configuring Method for Medical Object Detection
Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of high clinical relevance because diagnostic decisions often depend on rating of objects rather than e.g. pixels. For this task, the cumbersome and iterative process of method configuration constitutes a major research bottleneck. Recently, nnU-Net has tackled this challenge for the task of image segmentation with great success. Following nnU-Net's agenda, in this work we systematize and automate the configuration process for medical object detection. The resulting self-configuring method, nnDetection, adapts itself without any manual intervention to arbitrary medical detection problems while achieving results en par with or superior to the state-of-the-art. We demonstrate the effectiveness of nnDetection on two public benchmarks, ADAM and LUNA16, and propose 11 further medical object detection tasks on public data sets for comprehensive method evaluation. Code is at https://github.com/MIC-DKFZ/nnDetection .
Towards Universal Object Detection by Domain Attention
Despite increasing efforts on universal representations for visual recognition, few have addressed object detection. In this paper, we develop an effective and efficient universal object detection system that is capable of working on various image domains, from human faces and traffic signs to medical CT images. Unlike multi-domain models, this universal model does not require prior knowledge of the domain of interest. This is achieved by the introduction of a new family of adaptation layers, based on the principles of squeeze and excitation, and a new domain-attention mechanism. In the proposed universal detector, all parameters and computations are shared across domains, and a single network processes all domains all the time. Experiments, on a newly established universal object detection benchmark of 11 diverse datasets, show that the proposed detector outperforms a bank of individual detectors, a multi-domain detector, and a baseline universal detector, with a 1.3x parameter increase over a single-domain baseline detector. The code and benchmark will be released at http://www.svcl.ucsd.edu/projects/universal-detection/.
UNION: Unsupervised 3D Object Detection using Object Appearance-based Pseudo-Classes
Unsupervised 3D object detection methods have emerged to leverage vast amounts of data without requiring manual labels for training. Recent approaches rely on dynamic objects for learning to detect mobile objects but penalize the detections of static instances during training. Multiple rounds of self-training are used to add detected static instances to the set of training targets; this procedure to improve performance is computationally expensive. To address this, we propose the method UNION. We use spatial clustering and self-supervised scene flow to obtain a set of static and dynamic object proposals from LiDAR. Subsequently, object proposals' visual appearances are encoded to distinguish static objects in the foreground and background by selecting static instances that are visually similar to dynamic objects. As a result, static and dynamic mobile objects are obtained together, and existing detectors can be trained with a single training. In addition, we extend 3D object discovery to detection by using object appearance-based cluster labels as pseudo-class labels for training object classification. We conduct extensive experiments on the nuScenes dataset and increase the state-of-the-art performance for unsupervised 3D object discovery, i.e. UNION more than doubles the average precision to 39.5. The code is available at github.com/TedLentsch/UNION.
Cascaded Zoom-in Detector for High Resolution Aerial Images
Detecting objects in aerial images is challenging because they are typically composed of crowded small objects distributed non-uniformly over high-resolution images. Density cropping is a widely used method to improve this small object detection where the crowded small object regions are extracted and processed in high resolution. However, this is typically accomplished by adding other learnable components, thus complicating the training and inference over a standard detection process. In this paper, we propose an efficient Cascaded Zoom-in (CZ) detector that re-purposes the detector itself for density-guided training and inference. During training, density crops are located, labeled as a new class, and employed to augment the training dataset. During inference, the density crops are first detected along with the base class objects, and then input for a second stage of inference. This approach is easily integrated into any detector, and creates no significant change in the standard detection process, like the uniform cropping approach popular in aerial image detection. Experimental results on the aerial images of the challenging VisDrone and DOTA datasets verify the benefits of the proposed approach. The proposed CZ detector also provides state-of-the-art results over uniform cropping and other density cropping methods on the VisDrone dataset, increasing the detection mAP of small objects by more than 3 points.
Beyond Few-shot Object Detection: A Detailed Survey
Object detection is a critical field in computer vision focusing on accurately identifying and locating specific objects in images or videos. Traditional methods for object detection rely on large labeled training datasets for each object category, which can be time-consuming and expensive to collect and annotate. To address this issue, researchers have introduced few-shot object detection (FSOD) approaches that merge few-shot learning and object detection principles. These approaches allow models to quickly adapt to new object categories with only a few annotated samples. While traditional FSOD methods have been studied before, this survey paper comprehensively reviews FSOD research with a specific focus on covering different FSOD settings such as standard FSOD, generalized FSOD, incremental FSOD, open-set FSOD, and domain adaptive FSOD. These approaches play a vital role in reducing the reliance on extensive labeled datasets, particularly as the need for efficient machine learning models continues to rise. This survey paper aims to provide a comprehensive understanding of the above-mentioned few-shot settings and explore the methodologies for each FSOD task. It thoroughly compares state-of-the-art methods across different FSOD settings, analyzing them in detail based on their evaluation protocols. Additionally, it offers insights into their applications, challenges, and potential future directions in the evolving field of object detection with limited data.
Image-Based Detection of Modifications in Gas Pump PCBs with Deep Convolutional Autoencoders
In this paper, we introduce an approach for detecting modifications in assembled printed circuit boards based on photographs taken without tight control over perspective and illumination conditions. One instance of this problem is the visual inspection of gas pumps PCBs, which can be modified by fraudsters wishing to deceive costumers or evade taxes. Given the uncontrolled environment and the huge number of possible modifications, we address the problem as a case of anomaly detection, proposing an approach that is directed towards the characteristics of that scenario, while being well-suited for other similar applications. The proposed approach employs a deep convolutional autoencoder trained to reconstruct images of an unmodified board, but which remains unable to do the same for images showing modifications. By comparing the input image with its reconstruction, it is possible to segment anomalies and modifications in a pixel-wise manner. Experiments performed on a dataset built to represent real-world situations (and which we will make publicly available) show that our approach outperforms other state-of-the-art approaches for anomaly segmentation in the considered scenario, while producing comparable results on the popular MVTec-AD dataset for a more general object anomaly detection task.
Advantages and Bottlenecks of Quantum Machine Learning for Remote Sensing
This concept paper aims to provide a brief outline of quantum computers, explore existing methods of quantum image classification techniques, so focusing on remote sensing applications, and discuss the bottlenecks of performing these algorithms on currently available open source platforms. Initial results demonstrate feasibility. Next steps include expanding the size of the quantum hidden layer and increasing the variety of output image options.
Weakly Supervised Virus Capsid Detection with Image-Level Annotations in Electron Microscopy Images
Current state-of-the-art methods for object detection rely on annotated bounding boxes of large data sets for training. However, obtaining such annotations is expensive and can require up to hundreds of hours of manual labor. This poses a challenge, especially since such annotations can only be provided by experts, as they require knowledge about the scientific domain. To tackle this challenge, we propose a domain-specific weakly supervised object detection algorithm that only relies on image-level annotations, which are significantly easier to acquire. Our method distills the knowledge of a pre-trained model, on the task of predicting the presence or absence of a virus in an image, to obtain a set of pseudo-labels that can be used to later train a state-of-the-art object detection model. To do so, we use an optimization approach with a shrinking receptive field to extract virus particles directly without specific network architectures. Through a set of extensive studies, we show how the proposed pseudo-labels are easier to obtain, and, more importantly, are able to outperform other existing weak labeling methods, and even ground truth labels, in cases where the time to obtain the annotation is limited.
Continual Object Detection: A review of definitions, strategies, and challenges
The field of Continual Learning investigates the ability to learn consecutive tasks without losing performance on those previously learned. Its focus has been mainly on incremental classification tasks. We believe that research in continual object detection deserves even more attention due to its vast range of applications in robotics and autonomous vehicles. This scenario is more complex than conventional classification given the occurrence of instances of classes that are unknown at the time, but can appear in subsequent tasks as a new class to be learned, resulting in missing annotations and conflicts with the background label. In this review, we analyze the current strategies proposed to tackle the problem of class-incremental object detection. Our main contributions are: (1) a short and systematic review of the methods that propose solutions to traditional incremental object detection scenarios; (2) A comprehensive evaluation of the existing approaches using a new metric to quantify the stability and plasticity of each technique in a standard way; (3) an overview of the current trends within continual object detection and a discussion of possible future research directions.
Adaptive Detection of Fast Moving Celestial Objects Using a Mixture of Experts and Physical-Inspired Neural Network
Fast moving celestial objects are characterized by velocities across the celestial sphere that significantly differ from the motions of background stars. In observational images, these objects exhibit distinct shapes, contrasting with the typical appearances of stars. Depending on the observational method employed, these celestial entities may be designated as near-Earth objects or asteroids. Historically, fast moving celestial objects have been observed using ground-based telescopes, where the relative stability of stars and Earth facilitated effective image differencing techniques alongside traditional fast moving celestial object detection and classification algorithms. However, the growing prevalence of space-based telescopes, along with their diverse observational modes, produces images with different properties, rendering conventional methods less effective. This paper presents a novel algorithm for detecting fast moving celestial objects within star fields. Our approach enhances state-of-the-art fast moving celestial object detection neural networks by transforming them into physical-inspired neural networks. These neural networks leverage the point spread function of the telescope and the specific observational mode as prior information; they can directly identify moving fast moving celestial objects within star fields without requiring additional training, thereby addressing the limitations of traditional techniques. Additionally, all neural networks are integrated using the mixture of experts technique, forming a comprehensive fast moving celestial object detection algorithm. We have evaluated our algorithm using simulated observational data that mimics various observations carried out by space based telescope scenarios and real observation images. Results demonstrate that our method effectively detects fast moving celestial objects across different observational modes.
Track Boosting and Synthetic Data Aided Drone Detection
This is the paper for the first place winning solution of the Drone vs. Bird Challenge, organized by AVSS 2021. As the usage of drones increases with lowered costs and improved drone technology, drone detection emerges as a vital object detection task. However, detecting distant drones under unfavorable conditions, namely weak contrast, long-range, low visibility, requires effective algorithms. Our method approaches the drone detection problem by fine-tuning a YOLOv5 model with real and synthetically generated data using a Kalman-based object tracker to boost detection confidence. Our results indicate that augmenting the real data with an optimal subset of synthetic data can increase the performance. Moreover, temporal information gathered by object tracking methods can increase performance further.
Open-vocabulary vs. Closed-set: Best Practice for Few-shot Object Detection Considering Text Describability
Open-vocabulary object detection (OVD), detecting specific classes of objects using only their linguistic descriptions (e.g., class names) without any image samples, has garnered significant attention. However, in real-world applications, the target class concepts is often hard to describe in text and the only way to specify target objects is to provide their image examples, yet it is often challenging to obtain a good number of samples. Thus, there is a high demand from practitioners for few-shot object detection (FSOD). A natural question arises: Can the benefits of OVD extend to FSOD for object classes that are difficult to describe in text? Compared to traditional methods that learn only predefined classes (referred to in this paper as closed-set object detection, COD), can the extra cost of OVD be justified? To answer these questions, we propose a method to quantify the ``text-describability'' of object detection datasets using the zero-shot image classification accuracy with CLIP. This allows us to categorize various OD datasets with different text-describability and emprically evaluate the FSOD performance of OVD and COD methods within each category. Our findings reveal that: i) there is little difference between OVD and COD for object classes with low text-describability under equal conditions in OD pretraining; and ii) although OVD can learn from more diverse data than OD-specific data, thereby increasing the volume of training data, it can be counterproductive for classes with low-text-describability. These findings provide practitioners with valuable guidance amidst the recent advancements of OVD methods.
Linear Object Detection in Document Images using Multiple Object Tracking
Linear objects convey substantial information about document structure, but are challenging to detect accurately because of degradation (curved, erased) or decoration (doubled, dashed). Many approaches can recover some vector representation, but only one closed-source technique introduced in 1994, based on Kalman filters (a particular case of Multiple Object Tracking algorithm), can perform a pixel-accurate instance segmentation of linear objects and enable to selectively remove them from the original image. We aim at re-popularizing this approach and propose: 1. a framework for accurate instance segmentation of linear objects in document images using Multiple Object Tracking (MOT); 2. document image datasets and metrics which enable both vector- and pixel-based evaluation of linear object detection; 3. performance measures of MOT approaches against modern segment detectors; 4. performance measures of various tracking strategies, exhibiting alternatives to the original Kalman filters approach; and 5. an open-source implementation of a detector which can discriminate instances of curved, erased, dashed, intersecting and/or overlapping linear objects.
Microsoft COCO: Common Objects in Context
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
Not All Pixels Are Equal: Learning Pixel Hardness for Semantic Segmentation
Semantic segmentation has recently witnessed great progress. Despite the impressive overall results, the segmentation performance in some hard areas (e.g., small objects or thin parts) is still not promising. A straightforward solution is hard sample mining, which is widely used in object detection. Yet, most existing hard pixel mining strategies for semantic segmentation often rely on pixel's loss value, which tends to decrease during training. Intuitively, the pixel hardness for segmentation mainly depends on image structure and is expected to be stable. In this paper, we propose to learn pixel hardness for semantic segmentation, leveraging hardness information contained in global and historical loss values. More precisely, we add a gradient-independent branch for learning a hardness level (HL) map by maximizing hardness-weighted segmentation loss, which is minimized for the segmentation head. This encourages large hardness values in difficult areas, leading to appropriate and stable HL map. Despite its simplicity, the proposed method can be applied to most segmentation methods with no and marginal extra cost during inference and training, respectively. Without bells and whistles, the proposed method achieves consistent/significant improvement (1.37% mIoU on average) over most popular semantic segmentation methods on Cityscapes dataset, and demonstrates good generalization ability across domains. The source codes are available at https://github.com/Menoly-xin/Hardness-Level-Learning .
Locate Anything on Earth: Advancing Open-Vocabulary Object Detection for Remote Sensing Community
Object detection, particularly open-vocabulary object detection, plays a crucial role in Earth sciences, such as environmental monitoring, natural disaster assessment, and land-use planning. However, existing open-vocabulary detectors, primarily trained on natural-world images, struggle to generalize to remote sensing images due to a significant data domain gap. Thus, this paper aims to advance the development of open-vocabulary object detection in remote sensing community. To achieve this, we first reformulate the task as Locate Anything on Earth (LAE) with the goal of detecting any novel concepts on Earth. We then developed the LAE-Label Engine which collects, auto-annotates, and unifies up to 10 remote sensing datasets creating the LAE-1M - the first large-scale remote sensing object detection dataset with broad category coverage. Using the LAE-1M, we further propose and train the novel LAE-DINO Model, the first open-vocabulary foundation object detector for the LAE task, featuring Dynamic Vocabulary Construction (DVC) and Visual-Guided Text Prompt Learning (VisGT) modules. DVC dynamically constructs vocabulary for each training batch, while VisGT maps visual features to semantic space, enhancing text features. We comprehensively conduct experiments on established remote sensing benchmark DIOR, DOTAv2.0, as well as our newly introduced 80-class LAE-80C benchmark. Results demonstrate the advantages of the LAE-1M dataset and the effectiveness of the LAE-DINO method.
Treating Motion as Option with Output Selection for Unsupervised Video Object Segmentation
Unsupervised video object segmentation (VOS) is a task that aims to detect the most salient object in a video without external guidance about the object. To leverage the property that salient objects usually have distinctive movements compared to the background, recent methods collaboratively use motion cues extracted from optical flow maps with appearance cues extracted from RGB images. However, as optical flow maps are usually very relevant to segmentation masks, the network is easy to be learned overly dependent on the motion cues during network training. As a result, such two-stream approaches are vulnerable to confusing motion cues, making their prediction unstable. To relieve this issue, we design a novel motion-as-option network by treating motion cues as optional. During network training, RGB images are randomly provided to the motion encoder instead of optical flow maps, to implicitly reduce motion dependency of the network. As the learned motion encoder can deal with both RGB images and optical flow maps, two different predictions can be generated depending on which source information is used as motion input. In order to fully exploit this property, we also propose an adaptive output selection algorithm to adopt optimal prediction result at test time. Our proposed approach affords state-of-the-art performance on all public benchmark datasets, even maintaining real-time inference speed.
Accurate and robust methods for direct background estimation in resonant anomaly detection
Resonant anomaly detection methods have great potential for enhancing the sensitivity of traditional bump hunt searches. A key component of these methods is a high quality background template used to produce an anomaly score. Using the LHC Olympics R&D dataset, we demonstrate that this background template can also be repurposed to directly estimate the background expectation in a simple cut and count setup. In contrast to a traditional bump hunt, no fit to the invariant mass distribution is needed, thereby avoiding the potential problem of background sculpting. Furthermore, direct background estimation allows working with large background rejection rates, where resonant anomaly detection methods typically show their greatest improvement in significance.
Boosting Open-Vocabulary Object Detection by Handling Background Samples
Open-vocabulary object detection is the task of accurately detecting objects from a candidate vocabulary list that includes both base and novel categories. Currently, numerous open-vocabulary detectors have achieved success by leveraging the impressive zero-shot capabilities of CLIP. However, we observe that CLIP models struggle to effectively handle background images (i.e. images without corresponding labels) due to their language-image learning methodology. This limitation results in suboptimal performance for open-vocabulary detectors that rely on CLIP when processing background samples. In this paper, we propose Background Information Representation for open-vocabulary Detector (BIRDet), a novel approach to address the limitations of CLIP in handling background samples. Specifically, we design Background Information Modeling (BIM) to replace the single, fixed background embedding in mainstream open-vocabulary detectors with dynamic scene information, and prompt it into image-related background representations. This method effectively enhances the ability to classify oversized regions as background. Besides, we introduce Partial Object Suppression (POS), an algorithm that utilizes the ratio of overlap area to address the issue of misclassifying partial regions as foreground. Experiments on OV-COCO and OV-LVIS benchmarks demonstrate that our proposed model is capable of achieving performance enhancements across various open-vocabulary detectors.
DOORS: Dataset fOr bOuldeRs Segmentation. Statistical properties and Blender setup
The capability to detect boulders on the surface of small bodies is beneficial for vision-based applications such as hazard detection during critical operations and navigation. This task is challenging due to the wide assortment of irregular shapes, the characteristics of the boulders population, and the rapid variability in the illumination conditions. Moreover, the lack of publicly available labeled datasets for these applications damps the research about data-driven algorithms. In this work, the authors provide a statistical characterization and setup used for the generation of two datasets about boulders on small bodies that are made publicly available.
Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy
As deep neural networks become adopted in high-stakes domains, it is crucial to be able to identify when inference inputs are Out-of-Distribution (OOD) so that users can be alerted of likely drops in performance and calibration despite high confidence. Among many others, existing methods use the following two scores to do so without training on any apriori OOD examples: a learned temperature and an energy score. In this paper we introduce Ablated Learned Temperature Energy (or "AbeT" for short), a method which combines these prior methods in novel ways with effective modifications. Due to these contributions, AbeT lowers the False Positive Rate at 95% True Positive Rate (FPR@95) by 35.39% in classification (averaged across all ID and OOD datasets measured) compared to state of the art without training networks in multiple stages or requiring hyperparameters or test-time backward passes. We additionally provide empirical insights as to how our model learns to distinguish between In-Distribution (ID) and OOD samples while only being explicitly trained on ID samples via exposure to misclassified ID examples at training time. Lastly, we show the efficacy of our method in identifying predicted bounding boxes and pixels corresponding to OOD objects in object detection and semantic segmentation, respectively - with an AUROC increase of 5.15% in object detection and both a decrease in FPR@95 of 41.48% and an increase in AUPRC of 34.20% on average in semantic segmentation compared to previous state of the art.
Can Large Multimodal Models Understand Agricultural Scenes? Benchmarking with AgroMind
Large Multimodal Models (LMMs) has demonstrated capabilities across various domains, but comprehensive benchmarks for agricultural remote sensing (RS) remain scarce. Existing benchmarks designed for agricultural RS scenarios exhibit notable limitations, primarily in terms of insufficient scene diversity in the dataset and oversimplified task design. To bridge this gap, we introduce AgroMind, a comprehensive agricultural remote sensing benchmark covering four task dimensions: spatial perception, object understanding, scene understanding, and scene reasoning, with a total of 13 task types, ranging from crop identification and health monitoring to environmental analysis. We curate a high-quality evaluation set by integrating eight public datasets and one private farmland plot dataset, containing 25,026 QA pairs and 15,556 images. The pipeline begins with multi-source data preprocessing, including collection, format standardization, and annotation refinement. We then generate a diverse set of agriculturally relevant questions through the systematic definition of tasks. Finally, we employ LMMs for inference, generating responses, and performing detailed examinations. We evaluated 18 open-source LMMs and 3 closed-source models on AgroMind. Experiments reveal significant performance gaps, particularly in spatial reasoning and fine-grained recognition, it is notable that human performance lags behind several leading LMMs. By establishing a standardized evaluation framework for agricultural RS, AgroMind reveals the limitations of LMMs in domain knowledge and highlights critical challenges for future work. Data and code can be accessed at https://rssysu.github.io/AgroMind/.
Plugin estimators for selective classification with out-of-distribution detection
Real-world classifiers can benefit from the option of abstaining from predicting on samples where they have low confidence. Such abstention is particularly useful on samples which are close to the learned decision boundary, or which are outliers with respect to the training sample. These settings have been the subject of extensive but disjoint study in the selective classification (SC) and out-of-distribution (OOD) detection literature. Recent work on selective classification with OOD detection (SCOD) has argued for the unified study of these problems; however, the formal underpinnings of this problem are still nascent, and existing techniques are heuristic in nature. In this paper, we propose new plugin estimators for SCOD that are theoretically grounded, effective, and generalise existing approaches from the SC and OOD detection literature. In the course of our analysis, we formally explicate how na\"{i}ve use of existing SC and OOD detection baselines may be inadequate for SCOD. We empirically demonstrate that our approaches yields competitive SC and OOD detection performance compared to baselines from both literatures.
PlantSeg: A Large-Scale In-the-wild Dataset for Plant Disease Segmentation
Plant diseases pose significant threats to agriculture. It necessitates proper diagnosis and effective treatment to safeguard crop yields. To automate the diagnosis process, image segmentation is usually adopted for precisely identifying diseased regions, thereby advancing precision agriculture. Developing robust image segmentation models for plant diseases demands high-quality annotations across numerous images. However, existing plant disease datasets typically lack segmentation labels and are often confined to controlled laboratory settings, which do not adequately reflect the complexity of natural environments. Motivated by this fact, we established PlantSeg, a large-scale segmentation dataset for plant diseases. PlantSeg distinguishes itself from existing datasets in three key aspects. (1) Annotation type: Unlike the majority of existing datasets that only contain class labels or bounding boxes, each image in PlantSeg includes detailed and high-quality segmentation masks, associated with plant types and disease names. (2) Image source: Unlike typical datasets that contain images from laboratory settings, PlantSeg primarily comprises in-the-wild plant disease images. This choice enhances the practical applicability, as the trained models can be applied for integrated disease management. (3) Scale: PlantSeg is extensive, featuring 11,400 images with disease segmentation masks and an additional 8,000 healthy plant images categorized by plant type. Extensive technical experiments validate the high quality of PlantSeg's annotations. This dataset not only allows researchers to evaluate their image classification methods but also provides a critical foundation for developing and benchmarking advanced plant disease segmentation algorithms.
YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications
For years, the YOLO series has been the de facto industry-level standard for efficient object detection. The YOLO community has prospered overwhelmingly to enrich its use in a multitude of hardware platforms and abundant scenarios. In this technical report, we strive to push its limits to the next level, stepping forward with an unwavering mindset for industry application. Considering the diverse requirements for speed and accuracy in the real environment, we extensively examine the up-to-date object detection advancements either from industry or academia. Specifically, we heavily assimilate ideas from recent network design, training strategies, testing techniques, quantization, and optimization methods. On top of this, we integrate our thoughts and practice to build a suite of deployment-ready networks at various scales to accommodate diversified use cases. With the generous permission of YOLO authors, we name it YOLOv6. We also express our warm welcome to users and contributors for further enhancement. For a glimpse of performance, our YOLOv6-N hits 35.9% AP on the COCO dataset at a throughput of 1234 FPS on an NVIDIA Tesla T4 GPU. YOLOv6-S strikes 43.5% AP at 495 FPS, outperforming other mainstream detectors at the same scale~(YOLOv5-S, YOLOX-S, and PPYOLOE-S). Our quantized version of YOLOv6-S even brings a new state-of-the-art 43.3% AP at 869 FPS. Furthermore, YOLOv6-M/L also achieves better accuracy performance (i.e., 49.5%/52.3%) than other detectors with a similar inference speed. We carefully conducted experiments to validate the effectiveness of each component. Our code is made available at https://github.com/meituan/YOLOv6.
PCBDet: An Efficient Deep Neural Network Object Detection Architecture for Automatic PCB Component Detection on the Edge
There can be numerous electronic components on a given PCB, making the task of visual inspection to detect defects very time-consuming and prone to error, especially at scale. There has thus been significant interest in automatic PCB component detection, particularly leveraging deep learning. However, deep neural networks typically require high computational resources, possibly limiting their feasibility in real-world use cases in manufacturing, which often involve high-volume and high-throughput detection with constrained edge computing resource availability. As a result of an exploration of efficient deep neural network architectures for this use case, we introduce PCBDet, an attention condenser network design that provides state-of-the-art inference throughput while achieving superior PCB component detection performance compared to other state-of-the-art efficient architecture designs. Experimental results show that PCBDet can achieve up to 2times inference speed-up on an ARM Cortex A72 processor when compared to an EfficientNet-based design while achieving sim2-4\% higher mAP on the FICS-PCB benchmark dataset.
A New Dataset and Performance Benchmark for Real-time Spacecraft Segmentation in Onboard Flight Computers
Spacecraft deployed in outer space are routinely subjected to various forms of damage due to exposure to hazardous environments. In addition, there are significant risks to the subsequent process of in-space repairs through human extravehicular activity or robotic manipulation, incurring substantial operational costs. Recent developments in image segmentation could enable the development of reliable and cost-effective autonomous inspection systems. While these models often require large amounts of training data to achieve satisfactory results, publicly available annotated spacecraft segmentation data are very scarce. Here, we present a new dataset of nearly 64k annotated spacecraft images that was created using real spacecraft models, superimposed on a mixture of real and synthetic backgrounds generated using NASA's TTALOS pipeline. To mimic camera distortions and noise in real-world image acquisition, we also added different types of noise and distortion to the images. Finally, we finetuned YOLOv8 and YOLOv11 segmentation models to generate performance benchmarks for the dataset under well-defined hardware and inference time constraints to mimic real-world image segmentation challenges for real-time onboard applications in space on NASA's inspector spacecraft. The resulting models, when tested under these constraints, achieved a Dice score of 0.92, Hausdorff distance of 0.69, and an inference time of about 0.5 second. The dataset and models for performance benchmark are available at https://github.com/RiceD2KLab/SWiM.
Knowledge distillation to effectively attain both region-of-interest and global semantics from an image where multiple objects appear
Models based on convolutional neural networks (CNN) and transformers have steadily been improved. They also have been applied in various computer vision downstream tasks. However, in object detection tasks, accurately localizing and classifying almost infinite categories of foods in images remains challenging. To address these problems, we first segmented the food as the region-of-interest (ROI) by using the segment-anything model (SAM) and masked the rest of the region except ROI as black pixels. This process simplified the problems into a single classification for which annotation and training were much simpler than object detection. The images in which only the ROI was preserved were fed as inputs to fine-tune various off-the-shelf models that encoded their own inductive biases. Among them, Data-efficient image Transformers (DeiTs) had the best classification performance. Nonetheless, when foods' shapes and textures were similar, the contextual features of the ROI-only images were not enough for accurate classification. Therefore, we introduced a novel type of combined architecture, RveRNet, which consisted of ROI, extra-ROI, and integration modules that allowed it to account for both the ROI's and global contexts. The RveRNet's F1 score was 10% better than other individual models when classifying ambiguous food images. If the RveRNet's modules were DeiT with the knowledge distillation from the CNN, performed the best. We investigated how architectures can be made robust against input noise caused by permutation and translocation. The results indicated that there was a trade-off between how much the CNN teacher's knowledge could be distilled to DeiT and DeiT's innate strength. Code is publicly available at: https://github.com/Seonwhee-Genome/RveRNet.
A Spacecraft Dataset for Detection, Segmentation and Parts Recognition
Virtually all aspects of modern life depend on space technology. Thanks to the great advancement of computer vision in general and deep learning-based techniques in particular, over the decades, the world witnessed the growing use of deep learning in solving problems for space applications, such as self-driving robot, tracers, insect-like robot on cosmos and health monitoring of spacecraft. These are just some prominent examples that has advanced space industry with the help of deep learning. However, the success of deep learning models requires a lot of training data in order to have decent performance, while on the other hand, there are very limited amount of publicly available space datasets for the training of deep learning models. Currently, there is no public datasets for space-based object detection or instance segmentation, partly because manually annotating object segmentation masks is very time consuming as they require pixel-level labelling, not to mention the challenge of obtaining images from space. In this paper, we aim to fill this gap by releasing a dataset for spacecraft detection, instance segmentation and part recognition. The main contribution of this work is the development of the dataset using images of space stations and satellites, with rich annotations including bounding boxes of spacecrafts and masks to the level of object parts, which are obtained with a mixture of automatic processes and manual efforts. We also provide evaluations with state-of-the-art methods in object detection and instance segmentation as a benchmark for the dataset. The link for downloading the proposed dataset can be found on https://github.com/Yurushia1998/SatelliteDataset.
FruitNeRF: A Unified Neural Radiance Field based Fruit Counting Framework
We introduce FruitNeRF, a unified novel fruit counting framework that leverages state-of-the-art view synthesis methods to count any fruit type directly in 3D. Our framework takes an unordered set of posed images captured by a monocular camera and segments fruit in each image. To make our system independent of the fruit type, we employ a foundation model that generates binary segmentation masks for any fruit. Utilizing both modalities, RGB and semantic, we train a semantic neural radiance field. Through uniform volume sampling of the implicit Fruit Field, we obtain fruit-only point clouds. By applying cascaded clustering on the extracted point cloud, our approach achieves precise fruit count.The use of neural radiance fields provides significant advantages over conventional methods such as object tracking or optical flow, as the counting itself is lifted into 3D. Our method prevents double counting fruit and avoids counting irrelevant fruit.We evaluate our methodology using both real-world and synthetic datasets. The real-world dataset consists of three apple trees with manually counted ground truths, a benchmark apple dataset with one row and ground truth fruit location, while the synthetic dataset comprises various fruit types including apple, plum, lemon, pear, peach, and mango.Additionally, we assess the performance of fruit counting using the foundation model compared to a U-Net.
Large Selective Kernel Network for Remote Sensing Object Detection
Recent research on remote sensing object detection has largely focused on improving the representation of oriented bounding boxes but has overlooked the unique prior knowledge presented in remote sensing scenarios. Such prior knowledge can be useful because tiny remote sensing objects may be mistakenly detected without referencing a sufficiently long-range context, and the long-range context required by different types of objects can vary. In this paper, we take these priors into account and propose the Large Selective Kernel Network (LSKNet). LSKNet can dynamically adjust its large spatial receptive field to better model the ranging context of various objects in remote sensing scenarios. To the best of our knowledge, this is the first time that large and selective kernel mechanisms have been explored in the field of remote sensing object detection. Without bells and whistles, LSKNet sets new state-of-the-art scores on standard benchmarks, i.e., HRSC2016 (98.46\% mAP), DOTA-v1.0 (81.85\% mAP) and FAIR1M-v1.0 (47.87\% mAP). Based on a similar technique, we rank 2nd place in 2022 the Greater Bay Area International Algorithm Competition. Code is available at https://github.com/zcablii/Large-Selective-Kernel-Network.
PBSCR: The Piano Bootleg Score Composer Recognition Dataset
This article motivates, describes, and presents the PBSCR dataset for studying composer recognition of classical piano music. Our goal was to design a dataset that facilitates large-scale research on composer recognition that is suitable for modern architectures and training practices. To achieve this goal, we utilize the abundance of sheet music images and rich metadata on IMSLP, use a previously proposed feature representation called a bootleg score to encode the location of noteheads relative to staff lines, and present the data in an extremely simple format (2D binary images) to encourage rapid exploration and iteration. The dataset itself contains 40,000 62x64 bootleg score images for a 9-class recognition task, 100,000 62x64 bootleg score images for a 100-class recognition task, and 29,310 unlabeled variable-length bootleg score images for pretraining. The labeled data is presented in a form that mirrors MNIST images, in order to make it extremely easy to visualize, manipulate, and train models in an efficient manner. We include relevant information to connect each bootleg score image with its underlying raw sheet music image, and we scrape, organize, and compile metadata from IMSLP on all piano works to facilitate multimodal research and allow for convenient linking to other datasets. We release baseline results in a supervised and low-shot setting for future works to compare against, and we discuss open research questions that the PBSCR data is especially well suited to facilitate research on.
A Multi-purpose Realistic Haze Benchmark with Quantifiable Haze Levels and Ground Truth
Imagery collected from outdoor visual environments is often degraded due to the presence of dense smoke or haze. A key challenge for research in scene understanding in these degraded visual environments (DVE) is the lack of representative benchmark datasets. These datasets are required to evaluate state-of-the-art vision algorithms (e.g., detection and tracking) in degraded settings. In this paper, we address some of these limitations by introducing the first realistic hazy image benchmark, from both aerial and ground view, with paired haze-free images, and in-situ haze density measurements. This dataset was produced in a controlled environment with professional smoke generating machines that covered the entire scene, and consists of images captured from the perspective of both an unmanned aerial vehicle (UAV) and an unmanned ground vehicle (UGV). We also evaluate a set of representative state-of-the-art dehazing approaches as well as object detectors on the dataset. The full dataset presented in this paper, including the ground truth object classification bounding boxes and haze density measurements, is provided for the community to evaluate their algorithms at: https://a2i2-archangel.vision. A subset of this dataset has been used for the ``Object Detection in Haze'' Track of CVPR UG2 2022 challenge at http://cvpr2022.ug2challenge.org/track1.html.
Evaluating Large-Vocabulary Object Detectors: The Devil is in the Details
By design, average precision (AP) for object detection aims to treat all classes independently: AP is computed independently per category and averaged. On one hand, this is desirable as it treats all classes equally. On the other hand, it ignores cross-category confidence calibration, a key property in real-world use cases. Unfortunately, under important conditions (i.e., large vocabulary, high instance counts) the default implementation of AP is neither category independent, nor does it directly reward properly calibrated detectors. In fact, we show that on LVIS the default implementation produces a gameable metric, where a simple, un-intuitive re-ranking policy can improve AP by a large margin. To address these limitations, we introduce two complementary metrics. First, we present a simple fix to the default AP implementation, ensuring that it is independent across categories as originally intended. We benchmark recent LVIS detection advances and find that many reported gains do not translate to improvements under our new evaluation, suggesting recent improvements may arise from difficult to interpret changes to cross-category rankings. Given the importance of reliably benchmarking cross-category rankings, we consider a pooled version of AP (AP-Pool) that rewards properly calibrated detectors by directly comparing cross-category rankings. Finally, we revisit classical approaches for calibration and find that explicitly calibrating detectors improves state-of-the-art on AP-Pool by 1.7 points
UAVs and Neural Networks for search and rescue missions
In this paper, we present a method for detecting objects of interest, including cars, humans, and fire, in aerial images captured by unmanned aerial vehicles (UAVs) usually during vegetation fires. To achieve this, we use artificial neural networks and create a dataset for supervised learning. We accomplish the assisted labeling of the dataset through the implementation of an object detection pipeline that combines classic image processing techniques with pretrained neural networks. In addition, we develop a data augmentation pipeline to augment the dataset with automatically labeled images. Finally, we evaluate the performance of different neural networks.
LSDNet: Trainable Modification of LSD Algorithm for Real-Time Line Segment Detection
As of today, the best accuracy in line segment detection (LSD) is achieved by algorithms based on convolutional neural networks - CNNs. Unfortunately, these methods utilize deep, heavy networks and are slower than traditional model-based detectors. In this paper we build an accurate yet fast CNN- based detector, LSDNet, by incorporating a lightweight CNN into a classical LSD detector. Specifically, we replace the first step of the original LSD algorithm - construction of line segments heatmap and tangent field from raw image gradients - with a lightweight CNN, which is able to calculate more complex and rich features. The second part of the LSD algorithm is used with only minor modifications. Compared with several modern line segment detectors on standard Wireframe dataset, the proposed LSDNet provides the highest speed (among CNN-based detectors) of 214 FPS with a competitive accuracy of 78 Fh . Although the best-reported accuracy is 83 Fh at 33 FPS, we speculate that the observed accuracy gap is caused by errors in annotations and the actual gap is significantly lower. We point out systematic inconsistencies in the annotations of popular line detection benchmarks - Wireframe and York Urban, carefully reannotate a subset of images and show that (i) existing detectors have improved quality on updated annotations without retraining, suggesting that new annotations correlate better with the notion of correct line segment detection; (ii) the gap between accuracies of our detector and others diminishes to negligible 0.2 Fh , with our method being the fastest.
Total Nitrogen Estimation in Agricultural Soils via Aerial Multispectral Imaging and LIBS
Measuring soil health indicators is an important and challenging task that affects farmers' decisions on timing, placement, and quantity of fertilizers applied in the farms. Most existing methods to measure soil health indicators (SHIs) are in-lab wet chemistry or spectroscopy-based methods, which require significant human input and effort, time-consuming, costly, and are low-throughput in nature. To address this challenge, we develop an artificial intelligence (AI)-driven near real-time unmanned aerial vehicle (UAV)-based multispectral sensing (UMS) solution to estimate total nitrogen (TN) of the soil, an important macro-nutrient or SHI that directly affects the crop health. Accurate prediction of soil TN can significantly increase crop yield through informed decision making on the timing of seed planting, and fertilizer quantity and timing. We train two machine learning models including multi-layer perceptron and support vector machine to predict the soil nitrogen using a suite of data classes including multispectral characteristics of the soil and crops in red, near-infrared, and green spectral bands, computed vegetation indices, and environmental variables including air temperature and relative humidity. To generate the ground-truth data or the training data for the machine learning models, we measure the total nitrogen of the soil samples (collected from a farm) using laser-induced breakdown spectroscopy (LIBS).
YOLO9000: Better, Faster, Stronger
We introduce YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories. First we propose various improvements to the YOLO detection method, both novel and drawn from prior work. The improved model, YOLOv2, is state-of-the-art on standard detection tasks like PASCAL VOC and COCO. At 67 FPS, YOLOv2 gets 76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6 mAP, outperforming state-of-the-art methods like Faster RCNN with ResNet and SSD while still running significantly faster. Finally we propose a method to jointly train on object detection and classification. Using this method we train YOLO9000 simultaneously on the COCO detection dataset and the ImageNet classification dataset. Our joint training allows YOLO9000 to predict detections for object classes that don't have labelled detection data. We validate our approach on the ImageNet detection task. YOLO9000 gets 19.7 mAP on the ImageNet detection validation set despite only having detection data for 44 of the 200 classes. On the 156 classes not in COCO, YOLO9000 gets 16.0 mAP. But YOLO can detect more than just 200 classes; it predicts detections for more than 9000 different object categories. And it still runs in real-time.
Object Detection as Probabilistic Set Prediction
Accurate uncertainty estimates are essential for deploying deep object detectors in safety-critical systems. The development and evaluation of probabilistic object detectors have been hindered by shortcomings in existing performance measures, which tend to involve arbitrary thresholds or limit the detector's choice of distributions. In this work, we propose to view object detection as a set prediction task where detectors predict the distribution over the set of objects. Using the negative log-likelihood for random finite sets, we present a proper scoring rule for evaluating and training probabilistic object detectors. The proposed method can be applied to existing probabilistic detectors, is free from thresholds, and enables fair comparison between architectures. Three different types of detectors are evaluated on the COCO dataset. Our results indicate that the training of existing detectors is optimized toward non-probabilistic metrics. We hope to encourage the development of new object detectors that can accurately estimate their own uncertainty. Code available at https://github.com/georghess/pmb-nll.
Multi-Modal Classifiers for Open-Vocabulary Object Detection
The goal of this paper is open-vocabulary object detection (OVOD) x2013 building a model that can detect objects beyond the set of categories seen at training, thus enabling the user to specify categories of interest at inference without the need for model retraining. We adopt a standard two-stage object detector architecture, and explore three ways for specifying novel categories: via language descriptions, via image exemplars, or via a combination of the two. We make three contributions: first, we prompt a large language model (LLM) to generate informative language descriptions for object classes, and construct powerful text-based classifiers; second, we employ a visual aggregator on image exemplars that can ingest any number of images as input, forming vision-based classifiers; and third, we provide a simple method to fuse information from language descriptions and image exemplars, yielding a multi-modal classifier. When evaluating on the challenging LVIS open-vocabulary benchmark we demonstrate that: (i) our text-based classifiers outperform all previous OVOD works; (ii) our vision-based classifiers perform as well as text-based classifiers in prior work; (iii) using multi-modal classifiers perform better than either modality alone; and finally, (iv) our text-based and multi-modal classifiers yield better performance than a fully-supervised detector.
SparseBEV: High-Performance Sparse 3D Object Detection from Multi-Camera Videos
Camera-based 3D object detection in BEV (Bird's Eye View) space has drawn great attention over the past few years. Dense detectors typically follow a two-stage pipeline by first constructing a dense BEV feature and then performing object detection in BEV space, which suffers from complex view transformations and high computation cost. On the other side, sparse detectors follow a query-based paradigm without explicit dense BEV feature construction, but achieve worse performance than the dense counterparts. In this paper, we find that the key to mitigate this performance gap is the adaptability of the detector in both BEV and image space. To achieve this goal, we propose SparseBEV, a fully sparse 3D object detector that outperforms the dense counterparts. SparseBEV contains three key designs, which are (1) scale-adaptive self attention to aggregate features with adaptive receptive field in BEV space, (2) adaptive spatio-temporal sampling to generate sampling locations under the guidance of queries, and (3) adaptive mixing to decode the sampled features with dynamic weights from the queries. On the test split of nuScenes, SparseBEV achieves the state-of-the-art performance of 67.5 NDS. On the val split, SparseBEV achieves 55.8 NDS while maintaining a real-time inference speed of 23.5 FPS. Code is available at https://github.com/MCG-NJU/SparseBEV.
Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection
Detection of small objects and objects far away in the scene is a major challenge in surveillance applications. Such objects are represented by small number of pixels in the image and lack sufficient details, making them difficult to detect using conventional detectors. In this work, an open-source framework called Slicing Aided Hyper Inference (SAHI) is proposed that provides a generic slicing aided inference and fine-tuning pipeline for small object detection. The proposed technique is generic in the sense that it can be applied on top of any available object detector without any fine-tuning. Experimental evaluations, using object detection baselines on the Visdrone and xView aerial object detection datasets show that the proposed inference method can increase object detection AP by 6.8%, 5.1% and 5.3% for FCOS, VFNet and TOOD detectors, respectively. Moreover, the detection accuracy can be further increased with a slicing aided fine-tuning, resulting in a cumulative increase of 12.7%, 13.4% and 14.5% AP in the same order. Proposed technique has been integrated with Detectron2, MMDetection and YOLOv5 models and it is publicly available at https://github.com/obss/sahi.git .
Toyota Smarthome Untrimmed: Real-World Untrimmed Videos for Activity Detection
Designing activity detection systems that can be successfully deployed in daily-living environments requires datasets that pose the challenges typical of real-world scenarios. In this paper, we introduce a new untrimmed daily-living dataset that features several real-world challenges: Toyota Smarthome Untrimmed (TSU). TSU contains a wide variety of activities performed in a spontaneous manner. The dataset contains dense annotations including elementary, composite activities and activities involving interactions with objects. We provide an analysis of the real-world challenges featured by our dataset, highlighting the open issues for detection algorithms. We show that current state-of-the-art methods fail to achieve satisfactory performance on the TSU dataset. Therefore, we propose a new baseline method for activity detection to tackle the novel challenges provided by our dataset. This method leverages one modality (i.e. optic flow) to generate the attention weights to guide another modality (i.e RGB) to better detect the activity boundaries. This is particularly beneficial to detect activities characterized by high temporal variance. We show that the method we propose outperforms state-of-the-art methods on TSU and on another popular challenging dataset, Charades.
Detect Every Thing with Few Examples
Open-set object detection aims at detecting arbitrary categories beyond those seen during training. Most recent advancements have adopted the open-vocabulary paradigm, utilizing vision-language backbones to represent categories with language. In this paper, we introduce DE-ViT, an open-set object detector that employs vision-only DINOv2 backbones and learns new categories through example images instead of language. To improve general detection ability, we transform multi-classification tasks into binary classification tasks while bypassing per-class inference, and propose a novel region propagation technique for localization. We evaluate DE-ViT on open-vocabulary, few-shot, and one-shot object detection benchmark with COCO and LVIS. For COCO, DE-ViT outperforms the open-vocabulary SoTA by 6.9 AP50 and achieves 50 AP50 in novel classes. DE-ViT surpasses the few-shot SoTA by 15 mAP on 10-shot and 7.2 mAP on 30-shot and one-shot SoTA by 2.8 AP50. For LVIS, DE-ViT outperforms the open-vocabulary SoTA by 2.2 mask AP and reaches 34.3 mask APr. Code is available at https://github.com/mlzxy/devit.
Estimating the Contamination Factor's Distribution in Unsupervised Anomaly Detection
Anomaly detection methods identify examples that do not follow the expected behaviour, typically in an unsupervised fashion, by assigning real-valued anomaly scores to the examples based on various heuristics. These scores need to be transformed into actual predictions by thresholding, so that the proportion of examples marked as anomalies equals the expected proportion of anomalies, called contamination factor. Unfortunately, there are no good methods for estimating the contamination factor itself. We address this need from a Bayesian perspective, introducing a method for estimating the posterior distribution of the contamination factor of a given unlabeled dataset. We leverage on outputs of several anomaly detectors as a representation that already captures the basic notion of anomalousness and estimate the contamination using a specific mixture formulation. Empirically on 22 datasets, we show that the estimated distribution is well-calibrated and that setting the threshold using the posterior mean improves the anomaly detectors' performance over several alternative methods. All code is publicly available for full reproducibility.
Experiments on Anomaly Detection in Autonomous Driving by Forward-Backward Style Transfers
Great progress has been achieved in the community of autonomous driving in the past few years. As a safety-critical problem, however, anomaly detection is a huge hurdle towards a large-scale deployment of autonomous vehicles in the real world. While many approaches, such as uncertainty estimation or segmentation-based image resynthesis, are extremely promising, there is more to be explored. Especially inspired by works on anomaly detection based on image resynthesis, we propose a novel approach for anomaly detection through style transfer. We leverage generative models to map an image from its original style domain of road traffic to an arbitrary one and back to generate pixelwise anomaly scores. However, our experiments have proven our hypothesis wrong, and we were unable to produce significant results. Nevertheless, we want to share our findings, so that others can learn from our experiments.
Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware
Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.
KarNet: An Efficient Boolean Function Simplifier
Many approaches such as Quine-McCluskey algorithm, Karnaugh map solving, Petrick's method and McBoole's method have been devised to simplify Boolean expressions in order to optimize hardware implementation of digital circuits. However, the algorithmic implementations of these methods are hard-coded and also their computation time is proportional to the number of minterms involved in the expression. In this paper, we propose KarNet, where the ability of Convolutional Neural Networks to model relationships between various cell locations and values by capturing spatial dependencies is exploited to solve Karnaugh maps. In order to do so, a Karnaugh map is represented as an image signal, where each cell is considered as a pixel. Experimental results show that the computation time of KarNet is independent of the number of minterms and is of the order of one-hundredth to one-tenth that of the rule-based methods. KarNet being a learned system is found to achieve nearly a hundred percent accuracy, precision, and recall. We train KarNet to solve four variable Karnaugh maps and also show that a similar method can be applied on Karnaugh maps with more variables. Finally, we show a way to build a fully accurate and computationally fast system using KarNet.
Bootstrapping Objectness from Videos by Relaxed Common Fate and Visual Grouping
We study learning object segmentation from unlabeled videos. Humans can easily segment moving objects without knowing what they are. The Gestalt law of common fate, i.e., what move at the same speed belong together, has inspired unsupervised object discovery based on motion segmentation. However, common fate is not a reliable indicator of objectness: Parts of an articulated / deformable object may not move at the same speed, whereas shadows / reflections of an object always move with it but are not part of it. Our insight is to bootstrap objectness by first learning image features from relaxed common fate and then refining them based on visual appearance grouping within the image itself and across images statistically. Specifically, we learn an image segmenter first in the loop of approximating optical flow with constant segment flow plus small within-segment residual flow, and then by refining it for more coherent appearance and statistical figure-ground relevance. On unsupervised video object segmentation, using only ResNet and convolutional heads, our model surpasses the state-of-the-art by absolute gains of 7/9/5% on DAVIS16 / STv2 / FBMS59 respectively, demonstrating the effectiveness of our ideas. Our code is publicly available.
Text Detection and Recognition in the Wild: A Review
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Test Time Training for Industrial Anomaly Segmentation
Anomaly Detection and Segmentation (AD&S) is crucial for industrial quality control. While existing methods excel in generating anomaly scores for each pixel, practical applications require producing a binary segmentation to identify anomalies. Due to the absence of labeled anomalies in many real scenarios, standard practices binarize these maps based on some statistics derived from a validation set containing only nominal samples, resulting in poor segmentation performance. This paper addresses this problem by proposing a test time training strategy to improve the segmentation performance. Indeed, at test time, we can extract rich features directly from anomalous samples to train a classifier that can discriminate defects effectively. Our general approach can work downstream to any AD&S method that provides an anomaly score map as output, even in multimodal settings. We demonstrate the effectiveness of our approach over baselines through extensive experimentation and evaluation on MVTec AD and MVTec 3D-AD.
Improving traffic sign recognition by active search
We describe an iterative active-learning algorithm to recognise rare traffic signs. A standard ResNet is trained on a training set containing only a single sample of the rare class. We demonstrate that by sorting the samples of a large, unlabeled set by the estimated probability of belonging to the rare class, we can efficiently identify samples from the rare class. This works despite the fact that this estimated probability is usually quite low. A reliable active-learning loop is obtained by labeling these candidate samples, including them in the training set, and iterating the procedure. Further, we show that we get similar results starting from a single synthetic sample. Our results are important as they indicate a straightforward way of improving traffic-sign recognition for automated driving systems. In addition, they show that we can make use of the information hidden in low confidence outputs, which is usually ignored.
GeoGround: A Unified Large Vision-Language Model. for Remote Sensing Visual Grounding
Remote sensing (RS) visual grounding aims to use natural language expression to locate specific objects (in the form of the bounding box or segmentation mask) in RS images, enhancing human interaction with intelligent RS interpretation systems. Early research in this area was primarily based on horizontal bounding boxes (HBBs), but as more diverse RS datasets have become available, tasks involving oriented bounding boxes (OBBs) and segmentation masks have emerged. In practical applications, different targets require different grounding types: HBB can localize an object's position, OBB provides its orientation, and mask depicts its shape. However, existing specialized methods are typically tailored to a single type of RS visual grounding task and are hard to generalize across tasks. In contrast, large vision-language models (VLMs) exhibit powerful multi-task learning capabilities but struggle to handle dense prediction tasks like segmentation. This paper proposes GeoGround, a novel framework that unifies support for HBB, OBB, and mask RS visual grounding tasks, allowing flexible output selection. Rather than customizing the architecture of VLM, our work aims to elegantly support pixel-level visual grounding output through the Text-Mask technique. We define prompt-assisted and geometry-guided learning to enhance consistency across different signals. To support model training, we present refGeo, a large-scale RS visual instruction-following dataset containing 161k image-text pairs. Experimental results show that GeoGround demonstrates strong performance across four RS visual grounding tasks, matching or surpassing the performance of specialized methods on multiple benchmarks. Code available at https://github.com/zytx121/GeoGround
I see what you hear: a vision-inspired method to localize words
This paper explores the possibility of using visual object detection techniques for word localization in speech data. Object detection has been thoroughly studied in the contemporary literature for visual data. Noting that an audio can be interpreted as a 1-dimensional image, object localization techniques can be fundamentally useful for word localization. Building upon this idea, we propose a lightweight solution for word detection and localization. We use bounding box regression for word localization, which enables our model to detect the occurrence, offset, and duration of keywords in a given audio stream. We experiment with LibriSpeech and train a model to localize 1000 words. Compared to existing work, our method reduces model size by 94%, and improves the F1 score by 6.5\%.
The iNaturalist Species Classification and Detection Dataset
Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural world is heavily imbalanced, as some species are more abundant and easier to photograph than others. To encourage further progress in challenging real world conditions we present the iNaturalist species classification and detection dataset, consisting of 859,000 images from over 5,000 different species of plants and animals. It features visually similar species, captured in a wide variety of situations, from all over the world. Images were collected with different camera types, have varying image quality, feature a large class imbalance, and have been verified by multiple citizen scientists. We discuss the collection of the dataset and present extensive baseline experiments using state-of-the-art computer vision classification and detection models. Results show that current non-ensemble based methods achieve only 67% top one classification accuracy, illustrating the difficulty of the dataset. Specifically, we observe poor results for classes with small numbers of training examples suggesting more attention is needed in low-shot learning.
Distillation-based fabric anomaly detection
Unsupervised texture anomaly detection has been a concerning topic in a vast amount of industrial processes. Patterned textures inspection, particularly in the context of fabric defect detection, is indeed a widely encountered use case. This task involves handling a diverse spectrum of colors and textile types, encompassing a wide range of fabrics. Given the extensive variability in colors, textures, and defect types, fabric defect detection poses a complex and challenging problem in the field of patterned textures inspection. In this article, we propose a knowledge distillation-based approach tailored specifically for addressing the challenge of unsupervised anomaly detection in textures resembling fabrics. Our method aims to redefine the recently introduced reverse distillation approach, which advocates for an encoder-decoder design to mitigate classifier bias and to prevent the student from reconstructing anomalies. In this study, we present a new reverse distillation technique for the specific task of fabric defect detection. Our approach involves a meticulous design selection that strategically highlights high-level features. To demonstrate the capabilities of our approach both in terms of performance and inference speed, we conducted a series of experiments on multiple texture datasets, including MVTEC AD, AITEX, and TILDA, alongside conducting experiments on a dataset acquired from a textile manufacturing facility. The main contributions of this paper are the following: a robust texture anomaly detector utilizing a reverse knowledge-distillation technique suitable for both anomaly detection and domain generalization and a novel dataset encompassing a diverse range of fabrics and defects.
DQS3D: Densely-matched Quantization-aware Semi-supervised 3D Detection
In this paper, we study the problem of semi-supervised 3D object detection, which is of great importance considering the high annotation cost for cluttered 3D indoor scenes. We resort to the robust and principled framework of selfteaching, which has triggered notable progress for semisupervised learning recently. While this paradigm is natural for image-level or pixel-level prediction, adapting it to the detection problem is challenged by the issue of proposal matching. Prior methods are based upon two-stage pipelines, matching heuristically selected proposals generated in the first stage and resulting in spatially sparse training signals. In contrast, we propose the first semisupervised 3D detection algorithm that works in the singlestage manner and allows spatially dense training signals. A fundamental issue of this new design is the quantization error caused by point-to-voxel discretization, which inevitably leads to misalignment between two transformed views in the voxel domain. To this end, we derive and implement closed-form rules that compensate this misalignment onthe-fly. Our results are significant, e.g., promoting ScanNet [email protected] from 35.2% to 48.5% using 20% annotation. Codes and data will be publicly available.
Suspicious Behavior Detection on Shoplifting Cases for Crime Prevention by Using 3D Convolutional Neural Networks
Crime generates significant losses, both human and economic. Every year, billions of dollars are lost due to attacks, crimes, and scams. Surveillance video camera networks are generating vast amounts of data, and the surveillance staff can not process all the information in real-time. The human sight has its limitations, where the visual focus is among the most critical ones when dealing with surveillance. A crime can occur in a different screen segment or on a distinct monitor, and the staff may not notice it. Our proposal focuses on shoplifting crimes by analyzing special situations that an average person will consider as typical conditions, but may lead to a crime. While other approaches identify the crime itself, we instead model suspicious behavior -- the one that may occur before a person commits a crime -- by detecting precise segments of a video with a high probability to contain a shoplifting crime. By doing so, we provide the staff with more opportunities to act and prevent crime. We implemented a 3DCNN model as a video feature extractor and tested its performance on a dataset composed of daily-action and shoplifting samples. The results are encouraging since it correctly identifies 75% of the cases where a crime is about to happen.
Wake Vision: A Large-scale, Diverse Dataset and Benchmark Suite for TinyML Person Detection
Machine learning applications on extremely low-power devices, commonly referred to as tiny machine learning (TinyML), promises a smarter and more connected world. However, the advancement of current TinyML research is hindered by the limited size and quality of pertinent datasets. To address this challenge, we introduce Wake Vision, a large-scale, diverse dataset tailored for person detection -- the canonical task for TinyML visual sensing. Wake Vision comprises over 6 million images, which is a hundredfold increase compared to the previous standard, and has undergone thorough quality filtering. Using Wake Vision for training results in a 2.41\% increase in accuracy compared to the established benchmark. Alongside the dataset, we provide a collection of five detailed benchmark sets that assess model performance on specific segments of the test data, such as varying lighting conditions, distances from the camera, and demographic characteristics of subjects. These novel fine-grained benchmarks facilitate the evaluation of model quality in challenging real-world scenarios that are often ignored when focusing solely on overall accuracy. Through an evaluation of a MobileNetV2 TinyML model on the benchmarks, we show that the input resolution plays a more crucial role than the model width in detecting distant subjects and that the impact of quantization on model robustness is minimal, thanks to the dataset quality. These findings underscore the importance of a detailed evaluation to identify essential factors for model development. The dataset, benchmark suite, code, and models are publicly available under the CC-BY 4.0 license, enabling their use for commercial use cases.
Raw Data Is All You Need: Virtual Axle Detector with Enhanced Receptive Field
Rising maintenance costs of ageing infrastructure necessitate innovative monitoring techniques. This paper presents a new approach for axle detection, enabling real-time application of Bridge Weigh-In-Motion (BWIM) systems without dedicated axle detectors. The proposed method adapts the Virtual Axle Detector (VAD) model to handle raw acceleration data, which allows the receptive field to be increased. The proposed Virtual Axle Detector with Enhanced Receptive field (VADER) improves the \(F_1\) score by 73\% and spatial accuracy by 39\%, while cutting computational and memory costs by 99\% compared to the state-of-the-art VAD. VADER reaches a \(F_1\) score of 99.4\% and a spatial error of 4.13~cm when using a representative training set and functional sensors. We also introduce a novel receptive field (RF) rule for an object-size driven design of Convolutional Neural Network (CNN) architectures. Based on this rule, our results suggest that models using raw data could achieve better performance than those using spectrograms, offering a compelling reason to consider raw data as input.
OAT: Object-Level Attention Transformer for Gaze Scanpath Prediction
Visual search is important in our daily life. The efficient allocation of visual attention is critical to effectively complete visual search tasks. Prior research has predominantly modelled the spatial allocation of visual attention in images at the pixel level, e.g. using a saliency map. However, emerging evidence shows that visual attention is guided by objects rather than pixel intensities. This paper introduces the Object-level Attention Transformer (OAT), which predicts human scanpaths as they search for a target object within a cluttered scene of distractors. OAT uses an encoder-decoder architecture. The encoder captures information about the position and appearance of the objects within an image and about the target. The decoder predicts the gaze scanpath as a sequence of object fixations, by integrating output features from both the encoder and decoder. We also propose a new positional encoding that better reflects spatial relationships between objects. We evaluated OAT on the Amazon book cover dataset and a new dataset for visual search that we collected. OAT's predicted gaze scanpaths align more closely with human gaze patterns, compared to predictions by algorithms based on spatial attention on both established metrics and a novel behavioural-based metric. Our results demonstrate the generalization ability of OAT, as it accurately predicts human scanpaths for unseen layouts and target objects.
Weakly Supervised Object Detection in Artworks
We propose a method for the weakly supervised detection of objects in paintings. At training time, only image-level annotations are needed. This, combined with the efficiency of our multiple-instance learning method, enables one to learn new classes on-the-fly from globally annotated databases, avoiding the tedious task of manually marking objects. We show on several databases that dropping the instance-level annotations only yields mild performance losses. We also introduce a new database, IconArt, on which we perform detection experiments on classes that could not be learned on photographs, such as Jesus Child or Saint Sebastian. To the best of our knowledge, these are the first experiments dealing with the automatic (and in our case weakly supervised) detection of iconographic elements in paintings. We believe that such a method is of great benefit for helping art historians to explore large digital databases.
Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors
Text-to-image diffusion models have impactful applications in art, design, and entertainment, yet these technologies also pose significant risks by enabling the creation and dissemination of misinformation. Although recent advancements have produced AI-generated image detectors that claim robustness against various augmentations, their true effectiveness remains uncertain. Do these detectors reliably identify images with different levels of augmentation? Are they biased toward specific scenes or data distributions? To investigate, we introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images that feature targeted and localized perturbations produced using diverse augmentation techniques, diffusion models, and data distributions. Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness. Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used, offering new insights into their performance and limitations. The code for the augmentation and evaluation pipeline is available at https://github.com/J-Kruk/SemiTruths.
PVUW 2025 Challenge Report: Advances in Pixel-level Understanding of Complex Videos in the Wild
This report provides a comprehensive overview of the 4th Pixel-level Video Understanding in the Wild (PVUW) Challenge, held in conjunction with CVPR 2025. It summarizes the challenge outcomes, participating methodologies, and future research directions. The challenge features two tracks: MOSE, which focuses on complex scene video object segmentation, and MeViS, which targets motion-guided, language-based video segmentation. Both tracks introduce new, more challenging datasets designed to better reflect real-world scenarios. Through detailed evaluation and analysis, the challenge offers valuable insights into the current state-of-the-art and emerging trends in complex video segmentation. More information can be found on the workshop website: https://pvuw.github.io/.
Improved Neural Network based Plant Diseases Identification
The agriculture sector is essential for every country because it provides a basic income to a large number of people and food as well, which is a fundamental requirement to survive on this planet. We see as time passes, significant changes come in the present era, which begins with Green Revolution. Due to improper knowledge of plant diseases, farmers use fertilizers in excess, which ultimately degrade the quality of food. Earlier farmers use experts to determine the type of plant disease, which was expensive and time-consuming. In today time, Image processing is used to recognize and catalog plant diseases using the lesion region of plant leaf, and there are different modus-operandi for plant disease scent from leaf using Neural Networks (NN), Support Vector Machine (SVM), and others. In this paper, we improving the architecture of the Neural Networking by working on ten different types of training algorithms and the proper choice of neurons in the concealed layer. Our proposed approach gives 98.30% accuracy on general plant leaf disease and 100% accuracy on specific plant leaf disease based on Bayesian regularization, automation of cluster and without over-fitting on considered plant diseases over various other implemented methods.
Tiny Robotics Dataset and Benchmark for Continual Object Detection
Detecting objects in mobile robotics is crucial for numerous applications, from autonomous navigation to inspection. However, robots are often required to perform tasks in different domains with respect to the training one and need to adapt to these changes. Tiny mobile robots, subject to size, power, and computational constraints, encounter even more difficulties in running and adapting these algorithms. Such adaptability, though, is crucial for real-world deployment, where robots must operate effectively in dynamic and unpredictable settings. In this work, we introduce a novel benchmark to evaluate the continual learning capabilities of object detection systems in tiny robotic platforms. Our contributions include: (i) Tiny Robotics Object Detection (TiROD), a comprehensive dataset collected using a small mobile robot, designed to test the adaptability of object detectors across various domains and classes; (ii) an evaluation of state-of-the-art real-time object detectors combined with different continual learning strategies on this dataset, providing detailed insights into their performance and limitations; and (iii) we publish the data and the code to replicate the results to foster continuous advancements in this field. Our benchmark results indicate key challenges that must be addressed to advance the development of robust and efficient object detection systems for tiny robotics.
PlantDoc: A Dataset for Visual Plant Disease Detection
India loses 35% of the annual crop yield due to plant diseases. Early detection of plant diseases remains difficult due to the lack of lab infrastructure and expertise. In this paper, we explore the possibility of computer vision approaches for scalable and early plant disease detection. The lack of availability of sufficiently large-scale non-lab data set remains a major challenge for enabling vision based plant disease detection. Against this background, we present PlantDoc: a dataset for visual plant disease detection. Our dataset contains 2,598 data points in total across 13 plant species and up to 17 classes of diseases, involving approximately 300 human hours of effort in annotating internet scraped images. To show the efficacy of our dataset, we learn 3 models for the task of plant disease classification. Our results show that modelling using our dataset can increase the classification accuracy by up to 31%. We believe that our dataset can help reduce the entry barrier of computer vision techniques in plant disease detection.
Insect Identification in the Wild: The AMI Dataset
Insects represent half of all global biodiversity, yet many of the world's insects are disappearing, with severe implications for ecosystems and agriculture. Despite this crisis, data on insect diversity and abundance remain woefully inadequate, due to the scarcity of human experts and the lack of scalable tools for monitoring. Ecologists have started to adopt camera traps to record and study insects, and have proposed computer vision algorithms as an answer for scalable data processing. However, insect monitoring in the wild poses unique challenges that have not yet been addressed within computer vision, including the combination of long-tailed data, extremely similar classes, and significant distribution shifts. We provide the first large-scale machine learning benchmarks for fine-grained insect recognition, designed to match real-world tasks faced by ecologists. Our contributions include a curated dataset of images from citizen science platforms and museums, and an expert-annotated dataset drawn from automated camera traps across multiple continents, designed to test out-of-distribution generalization under field conditions. We train and evaluate a variety of baseline algorithms and introduce a combination of data augmentation techniques that enhance generalization across geographies and hardware setups. Code and datasets are made publicly available.
InstaGen: Enhancing Object Detection by Training on Synthetic Dataset
In this paper, we introduce a novel paradigm to enhance the ability of object detector, e.g., expanding categories or improving detection performance, by training on synthetic dataset generated from diffusion models. Specifically, we integrate an instance-level grounding head into a pre-trained, generative diffusion model, to augment it with the ability of localising arbitrary instances in the generated images. The grounding head is trained to align the text embedding of category names with the regional visual feature of the diffusion model, using supervision from an off-the-shelf object detector, and a novel self-training scheme on (novel) categories not covered by the detector. This enhanced version of diffusion model, termed as InstaGen, can serve as a data synthesizer for object detection. We conduct thorough experiments to show that, object detector can be enhanced while training on the synthetic dataset from InstaGen, demonstrating superior performance over existing state-of-the-art methods in open-vocabulary (+4.5 AP) and data-sparse (+1.2 to 5.2 AP) scenarios.
Accurate Detection of Spiking Motifs by Learning Heterogeneous Delays of a Spiking Neural Network
Recently, interest has grown in exploring the hypothesis that neural activity conveys information through precise spiking motifs. To investigate this phenomenon, various algorithms have been proposed to detect such motifs in Single Unit Activity (SUA) recorded from populations of neurons. In this study, we present a novel detection model based on the inversion of a generative model of raster plot synthesis. Using this generative model, we derive an optimal detection procedure that takes the form of logistic regression combined with temporal convolution. A key advantage of this model is its differentiability, which allows us to formulate a supervised learning approach using a gradient descent on the binary cross-entropy loss. To assess the model's ability to detect spiking motifs in synthetic data, we first perform numerical evaluations. This analysis highlights the advantages of using spiking motifs over traditional firing rate based population codes. We then successfully demonstrate that our learning method can recover synthetically generated spiking motifs, indicating its potential for further applications. In the future, we aim to extend this method to real neurobiological data, where the ground truth is unknown, to explore and detect spiking motifs in a more natural and biologically relevant context.
Cyclic-Bootstrap Labeling for Weakly Supervised Object Detection
Recent progress in weakly supervised object detection is featured by a combination of multiple instance detection networks (MIDN) and ordinal online refinement. However, with only image-level annotation, MIDN inevitably assigns high scores to some unexpected region proposals when generating pseudo labels. These inaccurate high-scoring region proposals will mislead the training of subsequent refinement modules and thus hamper the detection performance. In this work, we explore how to ameliorate the quality of pseudo-labeling in MIDN. Formally, we devise Cyclic-Bootstrap Labeling (CBL), a novel weakly supervised object detection pipeline, which optimizes MIDN with rank information from a reliable teacher network. Specifically, we obtain this teacher network by introducing a weighted exponential moving average strategy to take advantage of various refinement modules. A novel class-specific ranking distillation algorithm is proposed to leverage the output of weighted ensembled teacher network for distilling MIDN with rank information. As a result, MIDN is guided to assign higher scores to accurate proposals among their neighboring ones, thus benefiting the subsequent pseudo labeling. Extensive experiments on the prevalent PASCAL VOC 2007 \& 2012 and COCO datasets demonstrate the superior performance of our CBL framework. Code will be available at https://github.com/Yinyf0804/WSOD-CBL/.
Weakly Supervised Semantic Segmentation using Out-of-Distribution Data
Weakly supervised semantic segmentation (WSSS) methods are often built on pixel-level localization maps obtained from a classifier. However, training on class labels only, classifiers suffer from the spurious correlation between foreground and background cues (e.g. train and rail), fundamentally bounding the performance of WSSS. There have been previous endeavors to address this issue with additional supervision. We propose a novel source of information to distinguish foreground from the background: Out-of-Distribution (OoD) data, or images devoid of foreground object classes. In particular, we utilize the hard OoDs that the classifier is likely to make false-positive predictions. These samples typically carry key visual features on the background (e.g. rail) that the classifiers often confuse as foreground (e.g. train), so these cues let classifiers correctly suppress spurious background cues. Acquiring such hard OoDs does not require an extensive amount of annotation efforts; it only incurs a few additional image-level labeling costs on top of the original efforts to collect class labels. We propose a method, W-OoD, for utilizing the hard OoDs. W-OoD achieves state-of-the-art performance on Pascal VOC 2012.
One-shot recognition of any material anywhere using contrastive learning with physics-based rendering
Visual recognition of materials and their states is essential for understanding most aspects of the world, from determining whether food is cooked, metal is rusted, or a chemical reaction has occurred. However, current image recognition methods are limited to specific classes and properties and can't handle the vast number of material states in the world. To address this, we present MatSim: the first dataset and benchmark for computer vision-based recognition of similarities and transitions between materials and textures, focusing on identifying any material under any conditions using one or a few examples. The dataset contains synthetic and natural images. The synthetic images were rendered using giant collections of textures, objects, and environments generated by computer graphics artists. We use mixtures and gradual transitions between materials to allow the system to learn cases with smooth transitions between states (like gradually cooked food). We also render images with materials inside transparent containers to support beverage and chemistry lab use cases. We use this dataset to train a siamese net that identifies the same material in different objects, mixtures, and environments. The descriptor generated by this net can be used to identify the states of materials and their subclasses using a single image. We also present the first few-shot material recognition benchmark with images from a wide range of fields, including the state of foods and drinks, types of grounds, and many other use cases. We show that a net trained on the MatSim synthetic dataset outperforms state-of-the-art models like Clip on the benchmark and also achieves good results on other unsupervised material classification tasks.
Semmeldetector: Application of Machine Learning in Commercial Bakeries
The Semmeldetector, is a machine learning application that utilizes object detection models to detect, classify and count baked goods in images. Our application allows commercial bakers to track unsold baked goods, which allows them to optimize production and increase resource efficiency. We compiled a dataset comprising 1151 images that distinguishes between 18 different types of baked goods to train our detection models. To facilitate model training, we used a Copy-Paste augmentation pipeline to expand our dataset. We trained the state-of-the-art object detection model YOLOv8 on our detection task. We tested the impact of different training data, model scale, and online image augmentation pipelines on model performance. Our overall best performing model, achieved an [email protected] of 89.1% on our test set. Based on our results, we conclude that machine learning can be a valuable tool even for unforeseen industries like bakeries, even with very limited datasets.
DesCo: Learning Object Recognition with Rich Language Descriptions
Recent development in vision-language approaches has instigated a paradigm shift in learning visual recognition models from language supervision. These approaches align objects with language queries (e.g. "a photo of a cat") and improve the models' adaptability to identify novel objects and domains. Recently, several studies have attempted to query these models with complex language expressions that include specifications of fine-grained semantic details, such as attributes, shapes, textures, and relations. However, simply incorporating language descriptions as queries does not guarantee accurate interpretation by the models. In fact, our experiments show that GLIP, the state-of-the-art vision-language model for object detection, often disregards contextual information in the language descriptions and instead relies heavily on detecting objects solely by their names. To tackle the challenges, we propose a new description-conditioned (DesCo) paradigm of learning object recognition models with rich language descriptions consisting of two major innovations: 1) we employ a large language model as a commonsense knowledge engine to generate rich language descriptions of objects based on object names and the raw image-text caption; 2) we design context-sensitive queries to improve the model's ability in deciphering intricate nuances embedded within descriptions and enforce the model to focus on context rather than object names alone. On two novel object detection benchmarks, LVIS and OminiLabel, under the zero-shot detection setting, our approach achieves 34.8 APr minival (+9.1) and 29.3 AP (+3.6), respectively, surpassing the prior state-of-the-art models, GLIP and FIBER, by a large margin.
FlightScope: An Experimental Comparative Review of Aircraft Detection Algorithms in Satellite Imagery
Object detection in remotely sensed satellite pictures is fundamental in many fields such as biophysical, and environmental monitoring. While deep learning algorithms are constantly evolving, they have been mostly implemented and tested on popular ground-based taken photos. This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery. Using the large HRPlanesV2 dataset, together with a rigorous validation with the GDIT dataset, this research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch. This exhaustive training and validation study reveal YOLOv5 as the preeminent model for the specific case of identifying airplanes from remote sensing data, showcasing high precision and adaptability across diverse imaging conditions. This research highlight the nuanced performance landscapes of these algorithms, with YOLOv5 emerging as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores. The findings described here underscore the fundamental role of algorithm selection aligned with the specific demands of satellite imagery analysis and extend a comprehensive framework to evaluate model efficacy. The benchmark toolkit and codes, available via https://github.com/toelt-llc/FlightScope_Bench, aims to further exploration and innovation in the realm of remote sensing object detection, paving the way for improved analytical methodologies in satellite imagery applications.
A Large-Scale Benchmark for Food Image Segmentation
Food image segmentation is a critical and indispensible task for developing health-related applications such as estimating food calories and nutrients. Existing food image segmentation models are underperforming due to two reasons: (1) there is a lack of high quality food image datasets with fine-grained ingredient labels and pixel-wise location masks -- the existing datasets either carry coarse ingredient labels or are small in size; and (2) the complex appearance of food makes it difficult to localize and recognize ingredients in food images, e.g., the ingredients may overlap one another in the same image, and the identical ingredient may appear distinctly in different food images. In this work, we build a new food image dataset FoodSeg103 (and its extension FoodSeg154) containing 9,490 images. We annotate these images with 154 ingredient classes and each image has an average of 6 ingredient labels and pixel-wise masks. In addition, we propose a multi-modality pre-training approach called ReLeM that explicitly equips a segmentation model with rich and semantic food knowledge. In experiments, we use three popular semantic segmentation methods (i.e., Dilated Convolution based, Feature Pyramid based, and Vision Transformer based) as baselines, and evaluate them as well as ReLeM on our new datasets. We believe that the FoodSeg103 (and its extension FoodSeg154) and the pre-trained models using ReLeM can serve as a benchmark to facilitate future works on fine-grained food image understanding. We make all these datasets and methods public at https://xiongweiwu.github.io/foodseg103.html.
Sample, Crop, Track: Self-Supervised Mobile 3D Object Detection for Urban Driving LiDAR
Deep learning has led to great progress in the detection of mobile (i.e. movement-capable) objects in urban driving scenes in recent years. Supervised approaches typically require the annotation of large training sets; there has thus been great interest in leveraging weakly, semi- or self-supervised methods to avoid this, with much success. Whilst weakly and semi-supervised methods require some annotation, self-supervised methods have used cues such as motion to relieve the need for annotation altogether. However, a complete absence of annotation typically degrades their performance, and ambiguities that arise during motion grouping can inhibit their ability to find accurate object boundaries. In this paper, we propose a new self-supervised mobile object detection approach called SCT. This uses both motion cues and expected object sizes to improve detection performance, and predicts a dense grid of 3D oriented bounding boxes to improve object discovery. We significantly outperform the state-of-the-art self-supervised mobile object detection method TCR on the KITTI tracking benchmark, and achieve performance that is within 30% of the fully supervised PV-RCNN++ method for IoUs <= 0.5.
Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network
Single Shot MultiBox Detector (SSD) is one of the fastest algorithms in the current object detection field, which uses fully convolutional neural network to detect all scaled objects in an image. Deconvolutional Single Shot Detector (DSSD) is an approach which introduces more context information by adding the deconvolution module to SSD. And the mean Average Precision (mAP) of DSSD on PASCAL VOC2007 is improved from SSD's 77.5% to 78.6%. Although DSSD obtains higher mAP than SSD by 1.1%, the frames per second (FPS) decreases from 46 to 11.8. In this paper, we propose a single stage end-to-end image detection model called ESSD to overcome this dilemma. Our solution to this problem is to cleverly extend better context information for the shallow layers of the best single stage (e.g. SSD) detectors. Experimental results show that our model can reach 79.4% mAP, which is higher than DSSD and SSD by 0.8 and 1.9 points respectively. Meanwhile, our testing speed is 25 FPS in Titan X GPU which is more than double the original DSSD.
Going Denser with Open-Vocabulary Part Segmentation
Object detection has been expanded from a limited number of categories to open vocabulary. Moving forward, a complete intelligent vision system requires understanding more fine-grained object descriptions, object parts. In this paper, we propose a detector with the ability to predict both open-vocabulary objects and their part segmentation. This ability comes from two designs. First, we train the detector on the joint of part-level, object-level and image-level data to build the multi-granularity alignment between language and image. Second, we parse the novel object into its parts by its dense semantic correspondence with the base object. These two designs enable the detector to largely benefit from various data sources and foundation models. In open-vocabulary part segmentation experiments, our method outperforms the baseline by 3.3sim7.3 mAP in cross-dataset generalization on PartImageNet, and improves the baseline by 7.3 novel AP_{50} in cross-category generalization on Pascal Part. Finally, we train a detector that generalizes to a wide range of part segmentation datasets while achieving better performance than dataset-specific training.
Physical world assistive signals for deep neural network classifiers -- neither defense nor attack
Deep Neural Networks lead the state of the art of computer vision tasks. Despite this, Neural Networks are brittle in that small changes in the input can drastically affect their prediction outcome and confidence. Consequently and naturally, research in this area mainly focus on adversarial attacks and defenses. In this paper, we take an alternative stance and introduce the concept of Assistive Signals, which are optimized to improve a model's confidence score regardless if it's under attack or not. We analyse some interesting properties of these assistive perturbations and extend the idea to optimize assistive signals in the 3D space for real-life scenarios simulating different lighting conditions and viewing angles. Experimental evaluations show that the assistive signals generated by our optimization method increase the accuracy and confidence of deep models more than those generated by conventional methods that work in the 2D space. In addition, our Assistive Signals illustrate the intrinsic bias of ML models towards certain patterns in real-life objects. We discuss how we can exploit these insights to re-think, or avoid, some patterns that might contribute to, or degrade, the detectability of objects in the real-world.