Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models
While Large Language Models (LLMs) become ever more dominant, classic pre-trained word embeddings sustain their relevance through computational efficiency and nuanced linguistic interpretation. Drawing from recent studies demonstrating that the convergence of GloVe and word2vec optimizations all tend towards log-co-occurrence matrix variants, we construct a novel word representation system called Bit-cipher that eliminates the need of backpropagation while leveraging contextual information and hyper-efficient dimensionality reduction techniques based on unigram frequency, providing strong interpretability, alongside efficiency. We use the bit-cipher algorithm to train word vectors via a two-step process that critically relies on a hyperparameter -- bits -- that controls the vector dimension. While the first step trains the bit-cipher, the second utilizes it under two different aggregation modes -- summation or concatenation -- to produce contextually rich representations from word co-occurrences. We extend our investigation into bit-cipher's efficacy, performing probing experiments on part-of-speech (POS) tagging and named entity recognition (NER) to assess its competitiveness with classic embeddings like word2vec and GloVe. Additionally, we explore its applicability in LM training and fine-tuning. By replacing embedding layers with cipher embeddings, our experiments illustrate the notable efficiency of cipher in accelerating the training process and attaining better optima compared to conventional training paradigms. Experiments on the integration of bit-cipher embedding layers with Roberta, T5, and OPT, prior to or as a substitute for fine-tuning, showcase a promising enhancement to transfer learning, allowing rapid model convergence while preserving competitive performance.
Brain Tumor Detection and Classification based on Hybrid Ensemble Classifier
To improve patient survival and treatment outcomes, early diagnosis of brain tumors is an essential task. It is a difficult task to evaluate the magnetic resonance imaging (MRI) images manually. Thus, there is a need for digital methods for tumor diagnosis with better accuracy. However, it is still a very challenging task in assessing their shape, volume, boundaries, tumor detection, size, segmentation, and classification. In this proposed work, we propose a hybrid ensemble method using Random Forest (RF), K-Nearest Neighbour, and Decision Tree (DT) (KNN-RF-DT) based on Majority Voting Method. It aims to calculate the area of the tumor region and classify brain tumors as benign and malignant. In the beginning, segmentation is done by using Otsu's Threshold method. Feature Extraction is done by using Stationary Wavelet Transform (SWT), Principle Component Analysis (PCA), and Gray Level Co-occurrence Matrix (GLCM), which gives thirteen features for classification. The classification is done by hybrid ensemble classifier (KNN-RF-DT) based on the Majority Voting method. Overall it aimed at improving the performance by traditional classifiers instead of going to deep learning. Traditional classifiers have an advantage over deep learning algorithms because they require small datasets for training and have low computational time complexity, low cost to the users, and can be easily adopted by less skilled people. Overall, our proposed method is tested upon dataset of 2556 images, which are used in 85:15 for training and testing respectively and gives good accuracy of 97.305%.
Swivel: Improving Embeddings by Noticing What's Missing
We present Submatrix-wise Vector Embedding Learner (Swivel), a method for generating low-dimensional feature embeddings from a feature co-occurrence matrix. Swivel performs approximate factorization of the point-wise mutual information matrix via stochastic gradient descent. It uses a piecewise loss with special handling for unobserved co-occurrences, and thus makes use of all the information in the matrix. While this requires computation proportional to the size of the entire matrix, we make use of vectorized multiplication to process thousands of rows and columns at once to compute millions of predicted values. Furthermore, we partition the matrix into shards in order to parallelize the computation across many nodes. This approach results in more accurate embeddings than can be achieved with methods that consider only observed co-occurrences, and can scale to much larger corpora than can be handled with sampling methods.
Real-Time Construction Algorithm of Co-Occurrence Network Based on Inverted Index
Co-occurrence networks are an important method in the field of natural language processing and text mining for discovering semantic relationships within texts. However, the traditional traversal algorithm for constructing co-occurrence networks has high time complexity and space complexity when dealing with large-scale text data. In this paper, we propose an optimized algorithm based on inverted indexing and breadth-first search to improve the efficiency of co-occurrence network construction and reduce memory consumption. Firstly, the traditional traversal algorithm is analyzed, and its performance issues in constructing co-occurrence networks are identified. Then, the detailed implementation process of the optimized algorithm is presented. Subsequently, the CSL large-scale Chinese scientific literature dataset is used for experimental validation, comparing the performance of the traditional traversal algorithm and the optimized algorithm in terms of running time and memory usage. Finally, using non-parametric test methods, the optimized algorithm is proven to have significantly better performance than the traditional traversal algorithm. The research in this paper provides an effective method for the rapid construction of co-occurrence networks, contributing to the further development of the Information Organization fields.
Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity
We present a new scientific document similarity model based on matching fine-grained aspects of texts. To train our model, we exploit a naturally-occurring source of supervision: sentences in the full-text of papers that cite multiple papers together (co-citations). Such co-citations not only reflect close paper relatedness, but also provide textual descriptions of how the co-cited papers are related. This novel form of textual supervision is used for learning to match aspects across papers. We develop multi-vector representations where vectors correspond to sentence-level aspects of documents, and present two methods for aspect matching: (1) A fast method that only matches single aspects, and (2) a method that makes sparse multiple matches with an Optimal Transport mechanism that computes an Earth Mover's Distance between aspects. Our approach improves performance on document similarity tasks in four datasets. Further, our fast single-match method achieves competitive results, paving the way for applying fine-grained similarity to large scientific corpora. Code, data, and models available at: https://github.com/allenai/aspire
Zero-Shot Recommendation as Language Modeling
Recommendation is the task of ranking items (e.g. movies or products) according to individual user needs. Current systems rely on collaborative filtering and content-based techniques, which both require structured training data. We propose a framework for recommendation with off-the-shelf pretrained language models (LM) that only used unstructured text corpora as training data. If a user u liked Matrix and Inception, we construct a textual prompt, e.g. "Movies like Matrix, Inception, {<m{>}"} to estimate the affinity between u and m with LM likelihood. We motivate our idea with a corpus analysis, evaluate several prompt structures, and we compare LM-based recommendation with standard matrix factorization trained on different data regimes. The code for our experiments is publicly available (https://colab.research.google.com/drive/1f1mlZ-FGaLGdo5rPzxf3vemKllbh2esT?usp=sharing).
LexRank: Graph-based Lexical Centrality as Salience in Text Summarization
We introduce a stochastic graph-based method for computing relative importance of textual units for Natural Language Processing. We test the technique on the problem of Text Summarization (TS). Extractive TS relies on the concept of sentence salience to identify the most important sentences in a document or set of documents. Salience is typically defined in terms of the presence of particular important words or in terms of similarity to a centroid pseudo-sentence. We consider a new approach, LexRank, for computing sentence importance based on the concept of eigenvector centrality in a graph representation of sentences. In this model, a connectivity matrix based on intra-sentence cosine similarity is used as the adjacency matrix of the graph representation of sentences. Our system, based on LexRank ranked in first place in more than one task in the recent DUC 2004 evaluation. In this paper we present a detailed analysis of our approach and apply it to a larger data set including data from earlier DUC evaluations. We discuss several methods to compute centrality using the similarity graph. The results show that degree-based methods (including LexRank) outperform both centroid-based methods and other systems participating in DUC in most of the cases. Furthermore, the LexRank with threshold method outperforms the other degree-based techniques including continuous LexRank. We also show that our approach is quite insensitive to the noise in the data that may result from an imperfect topical clustering of documents.
Cross-level Requirement Traceability: A Novel Approach Integrating Bag-of-Words and Word Embedding for Enhanced Similarity Functionality
Requirement traceability is the process of identifying the inter-dependencies between requirements. It poses a significant challenge when conducted manually, especially when dealing with requirements at various levels of abstraction. In this work, we propose a novel approach to automate the task of linking high-level business requirements with more technical system requirements. The proposed approach begins by representing each requirement using a Bag of-Words (BOW) model combined with the Term Frequency-Inverse Document Frequency (TF-IDF) scoring function. Then, we suggested an enhanced cosine similarity that uses recent advances in word embedding representation to correct traditional cosine similarity function limitations. To evaluate the effectiveness of our approach, we conducted experiments on three well-known datasets: COEST, WARC(NFR), and WARC(FRS). The results demonstrate that our approach significantly improves efficiency compared to existing methods. We achieved better results with an increase of approximately 18.4% in one of the datasets, as measured by the F2 score.
Visual Chronicles: Using Multimodal LLMs to Analyze Massive Collections of Images
We present a system using Multimodal LLMs (MLLMs) to analyze a large database with tens of millions of images captured at different times, with the aim of discovering patterns in temporal changes. Specifically, we aim to capture frequent co-occurring changes ("trends") across a city over a certain period. Unlike previous visual analyses, our analysis answers open-ended queries (e.g., "what are the frequent types of changes in the city?") without any predetermined target subjects or training labels. These properties cast prior learning-based or unsupervised visual analysis tools unsuitable. We identify MLLMs as a novel tool for their open-ended semantic understanding capabilities. Yet, our datasets are four orders of magnitude too large for an MLLM to ingest as context. So we introduce a bottom-up procedure that decomposes the massive visual analysis problem into more tractable sub-problems. We carefully design MLLM-based solutions to each sub-problem. During experiments and ablation studies with our system, we find it significantly outperforms baselines and is able to discover interesting trends from images captured in large cities (e.g., "addition of outdoor dining,", "overpass was painted blue," etc.). See more results and interactive demos at https://boyangdeng.com/visual-chronicles.
Association rule mining with earthquake data collected from Turkiye region
Earthquakes are evaluated among the most destructive disasters for human beings, as also experienced for Turkiye region. Data science has the property of discovering hidden patterns in case a sufficient volume of data is supplied. Time dependency of events, specifically being defined by co-occurrence in a specific time window, may be handled as an associate rule mining task such as a market-basket analysis application. In this regard, we assumed each day's seismic activity as a single basket of events, leading to discovering the association patterns between these events. Consequently, this study presents the most prominent association rules for the earthquakes recorded in Turkiye region in the last 5 years, each year presented separately. Results indicate statistical inference with events recorded from regions of various distances, which could be further verified with geologic evidence from the field. As a result, we believe that the current study may form a statistical basis for the future works with the aid of machine learning algorithm performed for associate rule mining.
Structure Learning of Latent Factors via Clique Search on Correlation Thresholded Graphs
Despite the widespread application of latent factor analysis, existing methods suffer from the following weaknesses: requiring the number of factors to be known, lack of theoretical guarantees for learning the model structure, and nonidentifiability of the parameters due to rotation invariance properties of the likelihood. We address these concerns by proposing a fast correlation thresholding (CT) algorithm that simultaneously learns the number of latent factors and a rotationally identifiable model structure. Our novel approach translates this structure learning problem into the search for so-called independent maximal cliques in a thresholded correlation graph that can be easily constructed from the observed data. Our clique analysis technique scales well up to thousands of variables, while competing methods are not applicable in a reasonable amount of running time. We establish a finite-sample error bound and high-dimensional consistency for the structure learning of our method. Through a series of simulation studies and a real data example, we show that the CT algorithm is an accurate method for learning the structure of factor analysis models and is robust to violations of its assumptions.
Large-Scale User Modeling with Recurrent Neural Networks for Music Discovery on Multiple Time Scales
The amount of content on online music streaming platforms is immense, and most users only access a tiny fraction of this content. Recommender systems are the application of choice to open up the collection to these users. Collaborative filtering has the disadvantage that it relies on explicit ratings, which are often unavailable, and generally disregards the temporal nature of music consumption. On the other hand, item co-occurrence algorithms, such as the recently introduced word2vec-based recommenders, are typically left without an effective user representation. In this paper, we present a new approach to model users through recurrent neural networks by sequentially processing consumed items, represented by any type of embeddings and other context features. This way we obtain semantically rich user representations, which capture a user's musical taste over time. Our experimental analysis on large-scale user data shows that our model can be used to predict future songs a user will likely listen to, both in the short and long term.
Generating Drug Repurposing Hypotheses through the Combination of Disease-Specific Hypergraphs
The drug development pipeline for a new compound can last 10-20 years and cost over 10 billion. Drug repurposing offers a more time- and cost-effective alternative. Computational approaches based on biomedical knowledge graph representations have recently yielded new drug repurposing hypotheses. In this study, we present a novel, disease-specific hypergraph representation learning technique to derive contextual embeddings of biological pathways of various lengths but that all start at any given drug and all end at the disease of interest. Further, we extend this method to multi-disease hypergraphs. To determine the repurposing potential of each of the 1,522 drugs, we derive drug-specific distributions of cosine similarity values and ultimately consider the median for ranking. Cosine similarity values are computed between (1) all biological pathways starting at the considered drug and ending at the disease of interest and (2) all biological pathways starting at drugs currently prescribed against that disease and ending at the disease of interest. We illustrate our approach with Alzheimer's disease (AD) and two of its risk factors: hypertension (HTN) and type 2 diabetes (T2D). We compare each drug's rank across four hypergraph settings (single- or multi-disease): AD only, AD + HTN, AD + T2D, and AD + HTN + T2D. Notably, our framework led to the identification of two promising drugs whose repurposing potential was significantly higher in hypergraphs combining two diseases: dapagliflozin (antidiabetic; moved up, from top 32% to top 7%, across all considered drugs) and debrisoquine (antihypertensive; moved up, from top 76% to top 23%). Our approach serves as a hypothesis generation tool, to be paired with a validation pipeline relying on laboratory experiments and semi-automated parsing of the biomedical literature.
Linking Datasets on Organizations Using Half A Billion Open Collaborated Records
Scholars studying organizations often work with multiple datasets lacking shared unique identifiers or covariates. In such situations, researchers may turn to approximate string matching methods to combine datasets. String matching, although useful, faces fundamental challenges. Even when two strings appear similar to humans, fuzzy matching often does not work because it fails to adapt to the informativeness of the character combinations presented. Worse, many entities have multiple names that are dissimilar (e.g., "Fannie Mae" and "Federal National Mortgage Association"), a case where string matching has little hope of succeeding. This paper introduces data from a prominent employment-related networking site (LinkedIn) as a tool to address these problems. We propose interconnected approaches to leveraging the massive amount of information from LinkedIn regarding organizational name-to-name links. The first approach builds a machine learning model for predicting matches from character strings, treating the trillions of user-contributed organizational name pairs as a training corpus: this approach constructs a string matching metric that explicitly maximizes match probabilities. A second approach identifies relationships between organization names using network representations of the LinkedIn data. A third approach combines the first and second. We document substantial improvements over fuzzy matching in applications, making all methods accessible in open-source software ("LinkOrgs").
Partial Correlations in Compositional Data Analysis
Partial correlations quantify linear association between two variables adjusting for the influence of the remaining variables. They form the backbone for graphical models and are readily obtained from the inverse of the covariance matrix. For compositional data, the covariance structure is specified from log ratios of variables, so unless we try to "open" the data via a normalization, this implies changes in the definition and interpretation of partial correlations. In the present work, we elucidate how results derived by Aitchison (1986) lead to a natural definition of partial correlation that has a number of advantages over current measures of association. For this, we show that the residuals of log-ratios between a variable with a reference, when adjusting for all remaining variables including the reference, are reference-independent. Since the reference itself can be controlled for, correlations between residuals are defined for the variables directly without the necessity to recur to ratios except when specifying which variables are partialled out. Thus, perhaps surprisingly, partial correlations do not have the problems commonly found with measures of pairwise association on compositional data. They are well-defined between two variables, are properly scaled, and allow for negative association. By design, they are subcompositionally incoherent, but they share this property with conventional partial correlations (where results change when adjusting for the influence of fewer variables). We discuss the equivalence with normalization-based approaches whenever the normalizing variables are controlled for. We also discuss the partial variances and correlations we obtain from a previously studied data set of Roman glass cups.
Multi-Label Topic Model for Financial Textual Data
This paper presents a multi-label topic model for financial texts like ad-hoc announcements, 8-K filings, finance related news or annual reports. I train the model on a new financial multi-label database consisting of 3,044 German ad-hoc announcements that are labeled manually using 20 predefined, economically motivated topics. The best model achieves a macro F1 score of more than 85%. Translating the data results in an English version of the model with similar performance. As application of the model, I investigate differences in stock market reactions across topics. I find evidence for strong positive or negative market reactions for some topics, like announcements of new Large Scale Projects or Bankruptcy Filings, while I do not observe significant price effects for some other topics. Furthermore, in contrast to previous studies, the multi-label structure of the model allows to analyze the effects of co-occurring topics on stock market reactions. For many cases, the reaction to a specific topic depends heavily on the co-occurrence with other topics. For example, if allocated capital from a Seasoned Equity Offering (SEO) is used for restructuring a company in the course of a Bankruptcy Proceeding, the market reacts positively on average. However, if that capital is used for covering unexpected, additional costs from the development of new drugs, the SEO implies negative reactions on average.
Experimenting with Transitive Verbs in a DisCoCat
Formal and distributional semantic models offer complementary benefits in modeling meaning. The categorical compositional distributional (DisCoCat) model of meaning of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) combines aspected of both to provide a general framework in which meanings of words, obtained distributionally, are composed using methods from the logical setting to form sentence meaning. Concrete consequences of this general abstract setting and applications to empirical data are under active study (Grefenstette et al., arxiv:1101.0309; Grefenstette and Sadrzadeh, arXiv:1106.4058v1 [cs.CL]). . In this paper, we extend this study by examining transitive verbs, represented as matrices in a DisCoCat. We discuss three ways of constructing such matrices, and evaluate each method in a disambiguation task developed by Grefenstette and Sadrzadeh (arXiv:1106.4058v1 [cs.CL]).
Contrastive Learning and Mixture of Experts Enables Precise Vector Embeddings
The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with N experts, achieve the efficacy of N individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.
GriTS: Grid table similarity metric for table structure recognition
In this paper, we propose a new class of metric for table structure recognition (TSR) evaluation, called grid table similarity (GriTS). Unlike prior metrics, GriTS evaluates the correctness of a predicted table directly in its natural form as a matrix. To create a similarity measure between matrices, we generalize the two-dimensional largest common substructure (2D-LCS) problem, which is NP-hard, to the 2D most similar substructures (2D-MSS) problem and propose a polynomial-time heuristic for solving it. This algorithm produces both an upper and a lower bound on the true similarity between matrices. We show using evaluation on a large real-world dataset that in practice there is almost no difference between these bounds. We compare GriTS to other metrics and empirically validate that matrix similarity exhibits more desirable behavior than alternatives for TSR performance evaluation. Finally, GriTS unifies all three subtasks of cell topology recognition, cell location recognition, and cell content recognition within the same framework, which simplifies the evaluation and enables more meaningful comparisons across different types of TSR approaches. Code will be released at https://github.com/microsoft/table-transformer.
The Vendi Score: A Diversity Evaluation Metric for Machine Learning
Diversity is an important criterion for many areas of machine learning (ML), including generative modeling and dataset curation. Yet little work has gone into understanding, formalizing, and measuring diversity in ML. In this paper, we address the diversity evaluation problem by proposing the Vendi Score, which connects and extends ideas from ecology and quantum statistical mechanics to ML. The Vendi Score is defined as the exponential of the Shannon entropy of the eigenvalues of a similarity matrix. This matrix is induced by a user-defined similarity function applied to the sample to be evaluated for diversity. In taking a similarity function as input, the Vendi Score enables its user to specify any desired form of diversity. Importantly, unlike many existing metrics in ML, the Vendi Score doesn't require a reference dataset or distribution over samples or labels, it is therefore general and applicable to any generative model, decoding algorithm, and dataset from any domain where similarity can be defined. We showcased the Vendi Score on molecular generative modeling, a domain where diversity plays an important role in enabling the discovery of novel molecules. We found that the Vendi Score addresses shortcomings of the current diversity metric of choice in that domain. We also applied the Vendi Score to generative models of images and decoding algorithms of text and found it confirms known results about diversity in those domains. Furthermore, we used the Vendi Score to measure mode collapse, a known limitation of generative adversarial networks (GANs). In particular, the Vendi Score revealed that even GANs that capture all the modes of a labeled dataset can be less diverse than the original dataset. Finally, the interpretability of the Vendi Score allowed us to diagnose several benchmark ML datasets for diversity, opening the door for diversity-informed data augmentation.
DiMB-RE: Mining the Scientific Literature for Diet-Microbiome Associations
Motivation: The gut microbiota has recently emerged as a key factor that underpins certain connections between diet and human health. A tremendous amount of knowledge has been amassed from experimental studies on diet, human metabolism and microbiome. However, this evidence remains mostly buried in scientific publications, and biomedical literature mining in this domain remains scarce. We developed DiMB-RE, a comprehensive corpus annotated with 15 entity types (e.g., Nutrient, Microorganism) and 13 relation types (e.g., increases, improves) capturing diet-microbiome associations. We also trained and evaluated state-of-the-art natural language processing (NLP) models for named entity, trigger, and relation extraction as well as factuality detection using DiMB-RE. Results: DiMB-RE consists of 14,450 entities and 4,206 relationships from 165 articles. While NLP models performed reasonably well for named entity recognition (0.760 F_{1}), end-to-end relation extraction performance was modest (0.356 F_{1}), partly due to missed entities and triggers as well as cross-sentence relations. Conclusions: To our knowledge, DiMB-RE is largest and most diverse dataset focusing on diet-microbiome interactions. It can serve as a benchmark corpus for biomedical literature mining. Availability: DiMB-RE and the NLP models are available at https://github.com/ScienceNLP-Lab/DiMB-RE.
Further Generalizations of the Jaccard Index
Quantifying the similarity between two mathematical structures or datasets constitutes a particularly interesting and useful operation in several theoretical and applied problems. Aimed at this specific objective, the Jaccard index has been extensively used in the most diverse types of problems, also motivating some respective generalizations. The present work addresses further generalizations of this index, including its modification into a coincidence index capable of accounting also for the level of relative interiority between the two compared entities, as well as respective extensions for sets in continuous vector spaces, the generalization to multiset addition, densities and generic scalar fields, as well as a means to quantify the joint interdependence between two random variables. The also interesting possibility to take into account more than two sets has also been addressed, including the description of an index capable of quantifying the level of chaining between three structures. Several of the described and suggested eneralizations have been illustrated with respect to numeric case examples. It is also posited that these indices can play an important role while analyzing and integrating datasets in modeling approaches and pattern recognition activities, including as a measurement of clusters similarity or separation and as a resource for representing and analyzing complex networks.
ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables
Covariates provide valuable information on external factors that influence time series and are critical in many real-world time series forecasting tasks. For example, in retail, covariates may indicate promotions or peak dates such as holiday seasons that heavily influence demand forecasts. Recent advances in pretraining large language model architectures for time series forecasting have led to highly accurate forecasters. However, the majority of these models do not readily use covariates as they are often specific to a certain task or domain. This paper introduces a new method to incorporate covariates into pretrained time series forecasting models. Our proposed approach incorporates covariate information into pretrained forecasting models through modular blocks that inject past and future covariate information, without necessarily modifying the pretrained model in consideration. In order to evaluate our approach, we introduce a benchmark composed of 32 different synthetic datasets with varying dynamics to evaluate the effectivity of forecasting models with covariates. Extensive evaluations on both synthetic and real datasets show that our approach effectively incorporates covariate information into pretrained models, outperforming existing baselines.
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
Click-through rate (CTR) prediction, which aims to predict the probability of a user clicking on an ad or an item, is critical to many online applications such as online advertising and recommender systems. The problem is very challenging since (1) the input features (e.g., the user id, user age, item id, item category) are usually sparse and high-dimensional, and (2) an effective prediction relies on high-order combinatorial features (a.k.a. cross features), which are very time-consuming to hand-craft by domain experts and are impossible to be enumerated. Therefore, there have been efforts in finding low-dimensional representations of the sparse and high-dimensional raw features and their meaningful combinations. In this paper, we propose an effective and efficient method called the AutoInt to automatically learn the high-order feature interactions of input features. Our proposed algorithm is very general, which can be applied to both numerical and categorical input features. Specifically, we map both the numerical and categorical features into the same low-dimensional space. Afterwards, a multi-head self-attentive neural network with residual connections is proposed to explicitly model the feature interactions in the low-dimensional space. With different layers of the multi-head self-attentive neural networks, different orders of feature combinations of input features can be modeled. The whole model can be efficiently fit on large-scale raw data in an end-to-end fashion. Experimental results on four real-world datasets show that our proposed approach not only outperforms existing state-of-the-art approaches for prediction but also offers good explainability. Code is available at: https://github.com/DeepGraphLearning/RecommenderSystems.
A Latent Variable Model Approach to PMI-based Word Embeddings
Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of~mnih2007three. The methodological novelty is to use the prior to compute closed form expressions for word statistics. This provides a theoretical justification for nonlinear models like PMI, word2vec, and GloVe, as well as some hyperparameter choices. It also helps explain why low-dimensional semantic embeddings contain linear algebraic structure that allows solution of word analogies, as shown by~mikolov2013efficient and many subsequent papers. Experimental support is provided for the generative model assumptions, the most important of which is that latent word vectors are fairly uniformly dispersed in space.
One-connection rule for structural equation models
Linear structural equation models are multivariate statistical models encoded by mixed graphs. In particular, the set of covariance matrices for distributions belonging to a linear structural equation model for a fixed mixed graph G=(V, D,B) is parameterized by a rational function with parameters for each vertex and edge in G. This rational parametrization naturally allows for the study of these models from an algebraic and combinatorial point of view. Indeed, this point of view has led to a collection of results in the literature, mainly focusing on questions related to identifiability and determining relationships between covariances (i.e., finding polynomials in the Gaussian vanishing ideal). So far, a large proportion of these results has focused on the case when D, the directed part of the mixed graph G, is acyclic. This is due to the fact that in the acyclic case, the parametrization becomes polynomial and there is a description of the entries of the covariance matrices in terms of a finite sum. We move beyond the acyclic case and give a closed form expression for the entries of the covariance matrices in terms of the one-connections in a graph obtained from D through some small operations. This closed form expression then allows us to show that if G is simple, then the parametrization map is generically finite-to-one. Finally, having a closed form expression for the covariance matrices allows for the development of an algorithm for systematically exploring possible polynomials in the Gaussian vanishing ideal.
An Introduction to Conditional Random Fields
Often we wish to predict a large number of variables that depend on each other as well as on other observed variables. Structured prediction methods are essentially a combination of classification and graphical modeling, combining the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features. This tutorial describes conditional random fields, a popular probabilistic method for structured prediction. CRFs have seen wide application in natural language processing, computer vision, and bioinformatics. We describe methods for inference and parameter estimation for CRFs, including practical issues for implementing large scale CRFs. We do not assume previous knowledge of graphical modeling, so this tutorial is intended to be useful to practitioners in a wide variety of fields.
Sparse Three-parameter Restricted Indian Buffet Process for Understanding International Trade
This paper presents a Bayesian nonparametric latent feature model specially suitable for exploratory analysis of high-dimensional count data. We perform a non-negative doubly sparse matrix factorization that has two main advantages: not only we are able to better approximate the row input distributions, but the inferred topics are also easier to interpret. By combining the three-parameter and restricted Indian buffet processes into a single prior, we increase the model flexibility, allowing for a full spectrum of sparse solutions in the latent space. We demonstrate the usefulness of our approach in the analysis of countries' economic structure. Compared to other approaches, empirical results show our model's ability to give easy-to-interpret information and better capture the underlying sparsity structure of data.
Learning to Match Jobs with Resumes from Sparse Interaction Data using Multi-View Co-Teaching Network
With the ever-increasing growth of online recruitment data, job-resume matching has become an important task to automatically match jobs with suitable resumes. This task is typically casted as a supervised text matching problem. Supervised learning is powerful when the labeled data is sufficient. However, on online recruitment platforms, job-resume interaction data is sparse and noisy, which affects the performance of job-resume match algorithms. To alleviate these problems, in this paper, we propose a novel multi-view co-teaching network from sparse interaction data for job-resume matching. Our network consists of two major components, namely text-based matching model and relation-based matching model. The two parts capture semantic compatibility in two different views, and complement each other. In order to address the challenges from sparse and noisy data, we design two specific strategies to combine the two components. First, two components share the learned parameters or representations, so that the original representations of each component can be enhanced. More importantly, we adopt a co-teaching mechanism to reduce the influence of noise in training data. The core idea is to let the two components help each other by selecting more reliable training instances. The two strategies focus on representation enhancement and data enhancement, respectively. Compared with pure text-based matching models, the proposed approach is able to learn better data representations from limited or even sparse interaction data, which is more resistible to noise in training data. Experiment results have demonstrated that our model is able to outperform state-of-the-art methods for job-resume matching.
CORG: Generating Answers from Complex, Interrelated Contexts
In a real-world corpus, knowledge frequently recurs across documents but often contains inconsistencies due to ambiguous naming, outdated information, or errors, leading to complex interrelationships between contexts. Previous research has shown that language models struggle with these complexities, typically focusing on single factors in isolation. We classify these relationships into four types: distracting, ambiguous, counterfactual, and duplicated. Our analysis reveals that no single approach effectively addresses all these interrelationships simultaneously. Therefore, we introduce Context Organizer (CORG), a framework that organizes multiple contexts into independently processed groups. This design allows the model to efficiently find all relevant answers while ensuring disambiguation. CORG consists of three key components: a graph constructor, a reranker, and an aggregator. Our results demonstrate that CORG balances performance and efficiency effectively, outperforming existing grouping methods and achieving comparable results to more computationally intensive, single-context approaches.
PMC-Patients: A Large-scale Dataset of Patient Notes and Relations Extracted from Case Reports in PubMed Central
Objective: Data unavailability has been one of the biggest barriers in clinical natural language processing. This paper is aimed at providing a large-scale and publicly available patient note dataset, named PMC-Patients, with relevant articles and similar patients annotations. The ultimate goal of PMC-Patients is to facilitate the development of retrieval-based clinical decision support systems. Materials and Methods: To collect PMC-Patients, we extract patient notes from case reports in PubMed Central by recognizing certain section patterns. Patient-article relevance and patient-patient similarity are annotated by citation relationships in PubMed. In addition, we perform three tasks with PMC-Patients to demonstrate its utility in providing clinical decision support for a given patient, including (1) classifying whether another patient is similar, (2) retrieving similar patients in PMC-Patients, and (3) retrieving relevant articles in PubMed. Results: We collect and release PMC-Patients under the CC BY-NC-SA license, which becomes the largest publicly available patient note dataset so far. PMC-Patients contains 167k patient notes that are annotated with 3.1M relevant articles and 293k similar patients. Qualitative and quantitative analyses reveal the high quality and richness of our dataset. Experiments show that classifying the similarity of patient pairs is relatively easy, but it is hard to retrieve similar patients or relevant articles for a given patient from a large set of candidates. Conclusion: We present PMC-Patients, a large-scale dataset of patient notes with high quality, easy access, diverse conditions, and rich annotations. The proposed dataset can also serve as a hard benchmark for evaluating retrieval-based clinical decision support systems.
Medical Concept Representation Learning from Electronic Health Records and its Application on Heart Failure Prediction
Objective: To transform heterogeneous clinical data from electronic health records into clinically meaningful constructed features using data driven method that rely, in part, on temporal relations among data. Materials and Methods: The clinically meaningful representations of medical concepts and patients are the key for health analytic applications. Most of existing approaches directly construct features mapped to raw data (e.g., ICD or CPT codes), or utilize some ontology mapping such as SNOMED codes. However, none of the existing approaches leverage EHR data directly for learning such concept representation. We propose a new way to represent heterogeneous medical concepts (e.g., diagnoses, medications and procedures) based on co-occurrence patterns in longitudinal electronic health records. The intuition behind the method is to map medical concepts that are co-occuring closely in time to similar concept vectors so that their distance will be small. We also derive a simple method to construct patient vectors from the related medical concept vectors. Results: For qualitative evaluation, we study similar medical concepts across diagnosis, medication and procedure. In quantitative evaluation, our proposed representation significantly improves the predictive modeling performance for onset of heart failure (HF), where classification methods (e.g. logistic regression, neural network, support vector machine and K-nearest neighbors) achieve up to 23% improvement in area under the ROC curve (AUC) using this proposed representation. Conclusion: We proposed an effective method for patient and medical concept representation learning. The resulting representation can map relevant concepts together and also improves predictive modeling performance.
LaTeX: Language Pattern-aware Triggering Event Detection for Adverse Experience during Pandemics
The COVID-19 pandemic has accentuated socioeconomic disparities across various racial and ethnic groups in the United States. While previous studies have utilized traditional survey methods like the Household Pulse Survey (HPS) to elucidate these disparities, this paper explores the role of social media platforms in both highlighting and addressing these challenges. Drawing from real-time data sourced from Twitter, we analyzed language patterns related to four major types of adverse experiences: loss of employment income (LI), food scarcity (FS), housing insecurity (HI), and unmet needs for mental health services (UM). We first formulate a sparsity optimization problem that extracts low-level language features from social media data sources. Second, we propose novel constraints on feature similarity exploiting prior knowledge about the similarity of the language patterns among the adverse experiences. The proposed problem is challenging to solve due to the non-convexity objective and non-smoothness penalties. We develop an algorithm based on the alternating direction method of multipliers (ADMM) framework to solve the proposed formulation. Extensive experiments and comparisons to other models on real-world social media and the detection of adverse experiences justify the efficacy of our model.
MS-DPPs: Multi-Source Determinantal Point Processes for Contextual Diversity Refinement of Composite Attributes in Text to Image Retrieval
Result diversification (RD) is a crucial technique in Text-to-Image Retrieval for enhancing the efficiency of a practical application. Conventional methods focus solely on increasing the diversity metric of image appearances. However, the diversity metric and its desired value vary depending on the application, which limits the applications of RD. This paper proposes a novel task called CDR-CA (Contextual Diversity Refinement of Composite Attributes). CDR-CA aims to refine the diversities of multiple attributes, according to the application's context. To address this task, we propose Multi-Source DPPs, a simple yet strong baseline that extends the Determinantal Point Process (DPP) to multi-sources. We model MS-DPP as a single DPP model with a unified similarity matrix based on a manifold representation. We also introduce Tangent Normalization to reflect contexts. Extensive experiments demonstrate the effectiveness of the proposed method. Our code is publicly available at https://github.com/NEC-N-SOGI/msdpp.
Extending Mixture of Experts Model to Investigate Heterogeneity of Trajectories: When, Where and How to Add Which Covariates
Researchers are usually interested in examining the impact of covariates when separating heterogeneous samples into latent classes that are more homogeneous. The majority of theoretical and empirical studies with such aims have focused on identifying covariates as predictors of class membership in the structural equation modeling framework. In other words, the covariates only indirectly affect the sample heterogeneity. However, the covariates' influence on between-individual differences can also be direct. This article presents a mixture model that investigates covariates to explain within-cluster and between-cluster heterogeneity simultaneously, known as a mixture-of-experts (MoE) model. This study aims to extend the MoE framework to investigate heterogeneity in nonlinear trajectories: to identify latent classes, covariates as predictors to clusters, and covariates that explain within-cluster differences in change patterns over time. Our simulation studies demonstrate that the proposed model generally estimates the parameters unbiasedly, precisely and exhibits appropriate empirical coverage for a nominal 95% confidence interval. This study also proposes implementing structural equation model forests to shrink the covariate space of the proposed mixture model. We illustrate how to select covariates and construct the proposed model with longitudinal mathematics achievement data. Additionally, we demonstrate that the proposed mixture model can be further extended in the structural equation modeling framework by allowing the covariates that have direct effects to be time-varying.
MultiConIR: Towards multi-condition Information Retrieval
In this paper, we introduce MultiConIR, the first benchmark designed to evaluate retrieval models in multi-condition scenarios. Unlike existing datasets that primarily focus on single-condition queries from search engines, MultiConIR captures real-world complexity by incorporating five diverse domains: books, movies, people, medical cases, and legal documents. We propose three tasks to systematically assess retrieval and reranking models on multi-condition robustness, monotonic relevance ranking, and query format sensitivity. Our findings reveal that existing retrieval and reranking models struggle with multi-condition retrieval, with rerankers suffering severe performance degradation as query complexity increases. We further investigate the performance gap between retrieval and reranking models, exploring potential reasons for these discrepancies, and analysis the impact of different pooling strategies on condition placement sensitivity. Finally, we highlight the strengths of GritLM and Nv-Embed, which demonstrate enhanced adaptability to multi-condition queries, offering insights for future retrieval models. The code and datasets are available at https://github.com/EIT-NLP/MultiConIR.
SemEval Task 1: Semantic Textual Relatedness for African and Asian Languages
We present the first shared task on Semantic Textual Relatedness (STR). While earlier shared tasks primarily focused on semantic similarity, we instead investigate the broader phenomenon of semantic relatedness across 14 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by the relatively limited availability of NLP resources. Each instance in the datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. Participating systems were asked to rank sentence pairs by their closeness in meaning (i.e., their degree of semantic relatedness) in the 14 languages in three main tracks: (a) supervised, (b) unsupervised, and (c) crosslingual. The task attracted 163 participants. We received 70 submissions in total (across all tasks) from 51 different teams, and 38 system description papers. We report on the best-performing systems as well as the most common and the most effective approaches for the three different tracks.
MIR: Methodology Inspiration Retrieval for Scientific Research Problems
There has been a surge of interest in harnessing the reasoning capabilities of Large Language Models (LLMs) to accelerate scientific discovery. While existing approaches rely on grounding the discovery process within the relevant literature, effectiveness varies significantly with the quality and nature of the retrieved literature. We address the challenge of retrieving prior work whose concepts can inspire solutions for a given research problem, a task we define as Methodology Inspiration Retrieval (MIR). We construct a novel dataset tailored for training and evaluating retrievers on MIR, and establish baselines. To address MIR, we build the Methodology Adjacency Graph (MAG); capturing methodological lineage through citation relationships. We leverage MAG to embed an "intuitive prior" into dense retrievers for identifying patterns of methodological inspiration beyond superficial semantic similarity. This achieves significant gains of +5.4 in Recall@3 and +7.8 in Mean Average Precision (mAP) over strong baselines. Further, we adapt LLM-based re-ranking strategies to MIR, yielding additional improvements of +4.5 in Recall@3 and +4.8 in mAP. Through extensive ablation studies and qualitative analyses, we exhibit the promise of MIR in enhancing automated scientific discovery and outline avenues for advancing inspiration-driven retrieval.
CoIR: A Comprehensive Benchmark for Code Information Retrieval Models
Despite the substantial success of Information Retrieval (IR) in various NLP tasks, most IR systems predominantly handle queries and corpora in natural language, neglecting the domain of code retrieval. Code retrieval is critically important yet remains under-explored, with existing methods and benchmarks inadequately representing the diversity of code in various domains and tasks. Addressing this gap, we present \name (Code Information Retrieval Benchmark), a robust and comprehensive benchmark specifically designed to assess code retrieval capabilities. \name comprises ten meticulously curated code datasets, spanning eight distinctive retrieval tasks across seven diverse domains. We first discuss the construction of \name and its diverse dataset composition. Further, we evaluate nine widely used retrieval models using \name, uncovering significant difficulties in performing code retrieval tasks even with state-of-the-art systems. To facilitate easy adoption and integration within existing research workflows, \name has been developed as a user-friendly Python framework, readily installable via pip. It shares same data schema as other popular benchmarks like MTEB and BEIR, enabling seamless cross-benchmark evaluations. Through \name, we aim to invigorate research in the code retrieval domain, providing a versatile benchmarking tool that encourages further development and exploration of code retrieval systems\url{ https://github.com/CoIR-team/coir}.
Musical Word Embedding: Bridging the Gap between Listening Contexts and Music
Word embedding pioneered by Mikolov et al. is a staple technique for word representations in natural language processing (NLP) research which has also found popularity in music information retrieval tasks. Depending on the type of text data for word embedding, however, vocabulary size and the degree of musical pertinence can significantly vary. In this work, we (1) train the distributed representation of words using combinations of both general text data and music-specific data and (2) evaluate the system in terms of how they associate listening contexts with musical compositions.
COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation
To combat COVID-19, both clinicians and scientists need to digest vast amounts of relevant biomedical knowledge in scientific literature to understand the disease mechanism and related biological functions. We have developed a novel and comprehensive knowledge discovery framework, COVID-KG to extract fine-grained multimedia knowledge elements (entities and their visual chemical structures, relations, and events) from scientific literature. We then exploit the constructed multimedia knowledge graphs (KGs) for question answering and report generation, using drug repurposing as a case study. Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence.
Topic Analysis of Superconductivity Literature by Semantic Non-negative Matrix Factorization
We utilize a recently developed topic modeling method called SeNMFk, extending the standard Non-negative Matrix Factorization (NMF) methods by incorporating the semantic structure of the text, and adding a robust system for determining the number of topics. With SeNMFk, we were able to extract coherent topics validated by human experts. From these topics, a few are relatively general and cover broad concepts, while the majority can be precisely mapped to specific scientific effects or measurement techniques. The topics also differ by ubiquity, with only three topics prevalent in almost 40 percent of the abstract, while each specific topic tends to dominate a small subset of the abstracts. These results demonstrate the ability of SeNMFk to produce a layered and nuanced analysis of large scientific corpora.
Adaptations of AI models for querying the LandMatrix database in natural language
The Land Matrix initiative (https://landmatrix.org) and its global observatory aim to provide reliable data on large-scale land acquisitions to inform debates and actions in sectors such as agriculture, extraction, or energy in low- and middle-income countries. Although these data are recognized in the academic world, they remain underutilized in public policy, mainly due to the complexity of access and exploitation, which requires technical expertise and a good understanding of the database schema. The objective of this work is to simplify access to data from different database systems. The methods proposed in this article are evaluated using data from the Land Matrix. This work presents various comparisons of Large Language Models (LLMs) as well as combinations of LLM adaptations (Prompt Engineering, RAG, Agents) to query different database systems (GraphQL and REST queries). The experiments are reproducible, and a demonstration is available online: https://github.com/tetis-nlp/landmatrix-graphql-python.
Graph2MDA: a multi-modal variational graph embedding model for predicting microbe-drug associations
Accumulated clinical studies show that microbes living in humans interact closely with human hosts, and get involved in modulating drug efficacy and drug toxicity. Microbes have become novel targets for the development of antibacterial agents. Therefore, screening of microbe-drug associations can benefit greatly drug research and development. With the increase of microbial genomic and pharmacological datasets, we are greatly motivated to develop an effective computational method to identify new microbe-drug associations. In this paper, we proposed a novel method, Graph2MDA, to predict microbe-drug associations by using variational graph autoencoder (VGAE). We constructed multi-modal attributed graphs based on multiple features of microbes and drugs, such as molecular structures, microbe genetic sequences, and function annotations. Taking as input the multi-modal attribute graphs, VGAE was trained to learn the informative and interpretable latent representations of each node and the whole graph, and then a deep neural network classifier was used to predict microbe-drug associations. The hyperparameter analysis and model ablation studies showed the sensitivity and robustness of our model. We evaluated our method on three independent datasets and the experimental results showed that our proposed method outperformed six existing state-of-the-art methods. We also explored the meaningness of the learned latent representations of drugs and found that the drugs show obvious clustering patterns that are significantly consistent with drug ATC classification. Moreover, we conducted case studies on two microbes and two drugs and found 75\%-95\% predicted associations have been reported in PubMed literature. Our extensive performance evaluations validated the effectiveness of our proposed method.\
A Dataset for N-ary Relation Extraction of Drug Combinations
Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task.
A Comparative Study of Sentence Embedding Models for Assessing Semantic Variation
Analyzing the pattern of semantic variation in long real-world texts such as books or transcripts is interesting from the stylistic, cognitive, and linguistic perspectives. It is also useful for applications such as text segmentation, document summarization, and detection of semantic novelty. The recent emergence of several vector-space methods for sentence embedding has made such analysis feasible. However, this raises the issue of how consistent and meaningful the semantic representations produced by various methods are in themselves. In this paper, we compare several recent sentence embedding methods via time-series of semantic similarity between successive sentences and matrices of pairwise sentence similarity for multiple books of literature. In contrast to previous work using target tasks and curated datasets to compare sentence embedding methods, our approach provides an evaluation of the methods 'in the wild'. We find that most of the sentence embedding methods considered do infer highly correlated patterns of semantic similarity in a given document, but show interesting differences.
CLERC: A Dataset for Legal Case Retrieval and Retrieval-Augmented Analysis Generation
Legal professionals need to write analyses that rely on citations to relevant precedents, i.e., previous case decisions. Intelligent systems assisting legal professionals in writing such documents provide great benefits but are challenging to design. Such systems need to help locate, summarize, and reason over salient precedents in order to be useful. To enable systems for such tasks, we work with legal professionals to transform a large open-source legal corpus into a dataset supporting two important backbone tasks: information retrieval (IR) and retrieval-augmented generation (RAG). This dataset CLERC (Case Law Evaluation Retrieval Corpus), is constructed for training and evaluating models on their ability to (1) find corresponding citations for a given piece of legal analysis and to (2) compile the text of these citations (as well as previous context) into a cogent analysis that supports a reasoning goal. We benchmark state-of-the-art models on CLERC, showing that current approaches still struggle: GPT-4o generates analyses with the highest ROUGE F-scores but hallucinates the most, while zero-shot IR models only achieve 48.3% recall@1000.
Aspect-based Document Similarity for Research Papers
Traditional document similarity measures provide a coarse-grained distinction between similar and dissimilar documents. Typically, they do not consider in what aspects two documents are similar. This limits the granularity of applications like recommender systems that rely on document similarity. In this paper, we extend similarity with aspect information by performing a pairwise document classification task. We evaluate our aspect-based document similarity for research papers. Paper citations indicate the aspect-based similarity, i.e., the section title in which a citation occurs acts as a label for the pair of citing and cited paper. We apply a series of Transformer models such as RoBERTa, ELECTRA, XLNet, and BERT variations and compare them to an LSTM baseline. We perform our experiments on two newly constructed datasets of 172,073 research paper pairs from the ACL Anthology and CORD-19 corpus. Our results show SciBERT as the best performing system. A qualitative examination validates our quantitative results. Our findings motivate future research of aspect-based document similarity and the development of a recommender system based on the evaluated techniques. We make our datasets, code, and trained models publicly available.
CBOW Is Not All You Need: Combining CBOW with the Compositional Matrix Space Model
Continuous Bag of Words (CBOW) is a powerful text embedding method. Due to its strong capabilities to encode word content, CBOW embeddings perform well on a wide range of downstream tasks while being efficient to compute. However, CBOW is not capable of capturing the word order. The reason is that the computation of CBOW's word embeddings is commutative, i.e., embeddings of XYZ and ZYX are the same. In order to address this shortcoming, we propose a learning algorithm for the Continuous Matrix Space Model, which we call Continual Multiplication of Words (CMOW). Our algorithm is an adaptation of word2vec, so that it can be trained on large quantities of unlabeled text. We empirically show that CMOW better captures linguistic properties, but it is inferior to CBOW in memorizing word content. Motivated by these findings, we propose a hybrid model that combines the strengths of CBOW and CMOW. Our results show that the hybrid CBOW-CMOW-model retains CBOW's strong ability to memorize word content while at the same time substantially improving its ability to encode other linguistic information by 8%. As a result, the hybrid also performs better on 8 out of 11 supervised downstream tasks with an average improvement of 1.2%.
Relevance Filtering for Embedding-based Retrieval
In embedding-based retrieval, Approximate Nearest Neighbor (ANN) search enables efficient retrieval of similar items from large-scale datasets. While maximizing recall of relevant items is usually the goal of retrieval systems, a low precision may lead to a poor search experience. Unlike lexical retrieval, which inherently limits the size of the retrieved set through keyword matching, dense retrieval via ANN search has no natural cutoff. Moreover, the cosine similarity scores of embedding vectors are often optimized via contrastive or ranking losses, which make them difficult to interpret. Consequently, relying on top-K or cosine-similarity cutoff is often insufficient to filter out irrelevant results effectively. This issue is prominent in product search, where the number of relevant products is often small. This paper introduces a novel relevance filtering component (called "Cosine Adapter") for embedding-based retrieval to address this challenge. Our approach maps raw cosine similarity scores to interpretable scores using a query-dependent mapping function. We then apply a global threshold on the mapped scores to filter out irrelevant results. We are able to significantly increase the precision of the retrieved set, at the expense of a small loss of recall. The effectiveness of our approach is demonstrated through experiments on both public MS MARCO dataset and internal Walmart product search data. Furthermore, online A/B testing on the Walmart site validates the practical value of our approach in real-world e-commerce settings.
Low Rank Factorization for Compact Multi-Head Self-Attention
Effective representation learning from text has been an active area of research in the fields of NLP and text mining. Attention mechanisms have been at the forefront in order to learn contextual sentence representations. Current state-of-the-art approaches for many NLP tasks use large pre-trained language models such as BERT, XLNet and so on for learning representations. These models are based on the Transformer architecture that involves recurrent blocks of computation consisting of multi-head self-attention and feedforward networks. One of the major bottlenecks largely contributing to the computational complexity of the Transformer models is the self-attention layer, that is both computationally expensive and parameter intensive. In this work, we introduce a novel multi-head self-attention mechanism operating on GRUs that is shown to be computationally cheaper and more parameter efficient than self-attention mechanism proposed in Transformers for text classification tasks. The efficiency of our approach mainly stems from two optimizations; 1) we use low-rank matrix factorization of the affinity matrix to efficiently get multiple attention distributions instead of having separate parameters for each head 2) attention scores are obtained by querying a global context vector instead of densely querying all the words in the sentence. We evaluate the performance of the proposed model on tasks such as sentiment analysis from movie reviews, predicting business ratings from reviews and classifying news articles into topics. We find that the proposed approach matches or outperforms a series of strong baselines and is more parameter efficient than comparable multi-head approaches. We also perform qualitative analyses to verify that the proposed approach is interpretable and captures context-dependent word importance.
CSTS: A Benchmark for the Discovery of Correlation Structures in Time Series Clustering
Time series clustering promises to uncover hidden structural patterns in data with applications across healthcare, finance, industrial systems, and other critical domains. However, without validated ground truth information, researchers cannot objectively assess clustering quality or determine whether poor results stem from absent structures in the data, algorithmic limitations, or inappropriate validation methods, raising the question whether clustering is "more art than science" (Guyon et al., 2009). To address these challenges, we introduce CSTS (Correlation Structures in Time Series), a synthetic benchmark for evaluating the discovery of correlation structures in multivariate time series data. CSTS provides a clean benchmark that enables researchers to isolate and identify specific causes of clustering failures by differentiating between correlation structure deterioration and limitations of clustering algorithms and validation methods. Our contributions are: (1) a comprehensive benchmark for correlation structure discovery with distinct correlation structures, systematically varied data conditions, established performance thresholds, and recommended evaluation protocols; (2) empirical validation of correlation structure preservation showing moderate distortion from downsampling and minimal effects from distribution shifts and sparsification; and (3) an extensible data generation framework enabling structure-first clustering evaluation. A case study demonstrates CSTS's practical utility by identifying an algorithm's previously undocumented sensitivity to non-normal distributions, illustrating how the benchmark enables precise diagnosis of methodological limitations. CSTS advances rigorous evaluation standards for correlation-based time series clustering.
Fast and Accurate Network Embeddings via Very Sparse Random Projection
We present FastRP, a scalable and performant algorithm for learning distributed node representations in a graph. FastRP is over 4,000 times faster than state-of-the-art methods such as DeepWalk and node2vec, while achieving comparable or even better performance as evaluated on several real-world networks on various downstream tasks. We observe that most network embedding methods consist of two components: construct a node similarity matrix and then apply dimension reduction techniques to this matrix. We show that the success of these methods should be attributed to the proper construction of this similarity matrix, rather than the dimension reduction method employed. FastRP is proposed as a scalable algorithm for network embeddings. Two key features of FastRP are: 1) it explicitly constructs a node similarity matrix that captures transitive relationships in a graph and normalizes matrix entries based on node degrees; 2) it utilizes very sparse random projection, which is a scalable optimization-free method for dimension reduction. An extra benefit from combining these two design choices is that it allows the iterative computation of node embeddings so that the similarity matrix need not be explicitly constructed, which further speeds up FastRP. FastRP is also advantageous for its ease of implementation, parallelization and hyperparameter tuning. The source code is available at https://github.com/GTmac/FastRP.
LeCaRDv2: A Large-Scale Chinese Legal Case Retrieval Dataset
As an important component of intelligent legal systems, legal case retrieval plays a critical role in ensuring judicial justice and fairness. However, the development of legal case retrieval technologies in the Chinese legal system is restricted by three problems in existing datasets: limited data size, narrow definitions of legal relevance, and naive candidate pooling strategies used in data sampling. To alleviate these issues, we introduce LeCaRDv2, a large-scale Legal Case Retrieval Dataset (version 2). It consists of 800 queries and 55,192 candidates extracted from 4.3 million criminal case documents. To the best of our knowledge, LeCaRDv2 is one of the largest Chinese legal case retrieval datasets, providing extensive coverage of criminal charges. Additionally, we enrich the existing relevance criteria by considering three key aspects: characterization, penalty, procedure. This comprehensive criteria enriches the dataset and may provides a more holistic perspective. Furthermore, we propose a two-level candidate set pooling strategy that effectively identify potential candidates for each query case. It's important to note that all cases in the dataset have been annotated by multiple legal experts specializing in criminal law. Their expertise ensures the accuracy and reliability of the annotations. We evaluate several state-of-the-art retrieval models at LeCaRDv2, demonstrating that there is still significant room for improvement in legal case retrieval. The details of LeCaRDv2 can be found at the anonymous website https://github.com/anonymous1113243/LeCaRDv2.
Causal Inference by String Diagram Surgery
Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
Empirical analysis of Binding Precedent efficiency in the Brazilian Supreme Court via Similar Case Retrieval
Binding precedents (S\'umulas Vinculantes) constitute a juridical instrument unique to the Brazilian legal system and whose objectives include the protection of the Federal Supreme Court against repetitive demands. Studies of the effectiveness of these instruments in decreasing the Court's exposure to similar cases, however, indicate that they tend to fail in such a direction, with some of the binding precedents seemingly creating new demands. We empirically assess the legal impact of five binding precedents, 11, 14, 17, 26 and 37, at the highest court level through their effects on the legal subjects they address. This analysis is only possible through the comparison of the Court's ruling about the precedents' themes before they are created, which means that these decisions should be detected through techniques of Similar Case Retrieval. The contributions of this article are therefore twofold: on the mathematical side, we compare the uses of different methods of Natural Language Processing -- TF-IDF, LSTM, BERT, and regex -- for Similar Case Retrieval, whereas on the legal side, we contrast the inefficiency of these binding precedents with a set of hypotheses that may justify their repeated usage. We observe that the deep learning models performed significantly worse in the specific Similar Case Retrieval task and that the reasons for binding precedents to fail in responding to repetitive demand are heterogeneous and case-dependent, making it impossible to single out a specific cause.
Duplicate Question Retrieval and Confirmation Time Prediction in Software Communities
Community Question Answering (CQA) in different domains is growing at a large scale because of the availability of several platforms and huge shareable information among users. With the rapid growth of such online platforms, a massive amount of archived data makes it difficult for moderators to retrieve possible duplicates for a new question and identify and confirm existing question pairs as duplicates at the right time. This problem is even more critical in CQAs corresponding to large software systems like askubuntu where moderators need to be experts to comprehend something as a duplicate. Note that the prime challenge in such CQA platforms is that the moderators are themselves experts and are therefore usually extremely busy with their time being extraordinarily expensive. To facilitate the task of the moderators, in this work, we have tackled two significant issues for the askubuntu CQA platform: (1) retrieval of duplicate questions given a new question and (2) duplicate question confirmation time prediction. In the first task, we focus on retrieving duplicate questions from a question pool for a particular newly posted question. In the second task, we solve a regression problem to rank a pair of questions that could potentially take a long time to get confirmed as duplicates. For duplicate question retrieval, we propose a Siamese neural network based approach by exploiting both text and network-based features, which outperforms several state-of-the-art baseline techniques. Our method outperforms DupPredictor and DUPE by 5% and 7% respectively. For duplicate confirmation time prediction, we have used both the standard machine learning models and neural network along with the text and graph-based features. We obtain Spearman's rank correlation of 0.20 and 0.213 (statistically significant) for text and graph based features respectively.
Cluster-Specific Predictions with Multi-Task Gaussian Processes
A model involving Gaussian processes (GPs) is introduced to simultaneously handle multi-task learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for functional data as well as a learning step for subsequent predictions for new tasks. The model is instantiated as a mixture of multi-task GPs with common mean processes. A variational EM algorithm is derived for dealing with the optimisation of the hyper-parameters along with the hyper-posteriors' estimation of latent variables and processes. We establish explicit formulas for integrating the mean processes and the latent clustering variables within a predictive distribution, accounting for uncertainty on both aspects. This distribution is defined as a mixture of cluster-specific GP predictions, which enhances the performances when dealing with group-structured data. The model handles irregular grid of observations and offers different hypotheses on the covariance structure for sharing additional information across tasks. The performances on both clustering and prediction tasks are assessed through various simulated scenarios and real datasets. The overall algorithm, called MagmaClust, is publicly available as an R package.
JointRank: Rank Large Set with Single Pass
Efficiently ranking relevant items from large candidate pools is a cornerstone of modern information retrieval systems -- such as web search, recommendation, and retrieval-augmented generation. Listwise rerankers, which improve relevance by jointly considering multiple candidates, are often limited in practice: either by model input size constraints, or by degraded quality when processing large sets. We propose a model-agnostic method for fast reranking large sets that exceed a model input limits. The method first partitions candidate items into overlapping blocks, each of which is ranked independently in parallel. Implicit pairwise comparisons are then derived from these local rankings. Finally, these comparisons are aggregated to construct a global ranking using algorithms such as Winrate or PageRank. Experiments on TREC DL-2019 show that our method achieves an nDCG@10 of 70.88 compared to the 57.68 for full-context listwise approach using gpt-4.1-mini as long-context model, while reducing latency from 21 to 8 seconds. The implementation of the algorithm and the experiments is available in the repository: https://github.com/V3RGANz/jointrank
COFO: COdeFOrces dataset for Program Classification, Recognition and Tagging
In recent years, a lot of technological advances in computer science have aided software programmers to create innovative and real-time user-friendly software. With the creation of the software and the urging interest of people to learn to write software, there is a large collection of source codes that can be found on the web, also known as Big Code, which can be used as a source of data for driving the machine learning applications tending to solve certain software engineering problems. In this paper, we present COFO, a dataset consisting of 809 classes/problems with a total of 369K source codes written in C, C++, Java, and Python programming languages, along with other metadata such as code tags, problem specification, and input-output specifications. COFO has been scraped from the openly available Codeforces website using a selenium-beautifulsoup-python based scraper. We envision that this dataset can be useful for solving machine learning-based problems like program classification/recognition, tagging, predicting program properties, and code comprehension.
TabSim: A Siamese Neural Network for Accurate Estimation of Table Similarity
Tables are a popular and efficient means of presenting structured information. They are used extensively in various kinds of documents including web pages. Tables display information as a two-dimensional matrix, the semantics of which is conveyed by a mixture of structure (rows, columns), headers, caption, and content. Recent research has started to consider tables as first class objects, not just as an addendum to texts, yielding interesting results for problems like table matching, table completion, or value imputation. All of these problems inherently rely on an accurate measure for the semantic similarity of two tables. We present TabSim, a novel method to compute table similarity scores using deep neural networks. Conceptually, TabSim represents a table as a learned concatenation of embeddings of its caption, its content, and its structure. Given two tables in this representation, a Siamese neural network is trained to compute a score correlating with the tables' semantic similarity. To train and evaluate our method, we created a gold standard corpus consisting of 1500 table pairs extracted from biomedical articles and manually scored regarding their degree of similarity, and adopted two other corpora originally developed for a different yet similar task. Our evaluation shows that TabSim outperforms other table similarity measures on average by app. 7% pp F1-score in a binary similarity classification setting and by app. 1.5% pp in a ranking scenario.
Multi-Label Text Classification using Attention-based Graph Neural Network
In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
Pralekha: An Indic Document Alignment Evaluation Benchmark
Mining parallel document pairs poses a significant challenge because existing sentence embedding models often have limited context windows, preventing them from effectively capturing document-level information. Another overlooked issue is the lack of concrete evaluation benchmarks comprising high-quality parallel document pairs for assessing document-level mining approaches, particularly for Indic languages. In this study, we introduce Pralekha, a large-scale benchmark for document-level alignment evaluation. Pralekha includes over 2 million documents, with a 1:2 ratio of unaligned to aligned pairs, covering 11 Indic languages and English. Using Pralekha, we evaluate various document-level mining approaches across three dimensions: the embedding models, the granularity levels, and the alignment algorithm. To address the challenge of aligning documents using sentence and chunk-level alignments, we propose a novel scoring method, Document Alignment Coefficient (DAC). DAC demonstrates substantial improvements over baseline pooling approaches, particularly in noisy scenarios, achieving average gains of 20-30% in precision and 15-20% in F1 score. These results highlight DAC's effectiveness in parallel document mining for Indic languages.
PHI-S: Distribution Balancing for Label-Free Multi-Teacher Distillation
Various visual foundation models have distinct strengths and weaknesses, both of which can be improved through heterogeneous multi-teacher knowledge distillation without labels, termed "agglomerative models." We build upon this body of work by studying the effect of the teachers' activation statistics, particularly the impact of the loss function on the resulting student model quality. We explore a standard toolkit of statistical normalization techniques to better align the different distributions and assess their effects. Further, we examine the impact on downstream teacher-matching metrics, which motivates the use of Hadamard matrices. With these matrices, we demonstrate useful properties, showing how they can be used for isotropic standardization, where each dimension of a multivariate distribution is standardized using the same scale. We call this technique "PHI Standardization" (PHI-S) and empirically demonstrate that it produces the best student model across the suite of methods studied.
Specialized Document Embeddings for Aspect-based Similarity of Research Papers
Document embeddings and similarity measures underpin content-based recommender systems, whereby a document is commonly represented as a single generic embedding. However, similarity computed on single vector representations provides only one perspective on document similarity that ignores which aspects make two documents alike. To address this limitation, aspect-based similarity measures have been developed using document segmentation or pairwise multi-class document classification. While segmentation harms the document coherence, the pairwise classification approach scales poorly to large scale corpora. In this paper, we treat aspect-based similarity as a classical vector similarity problem in aspect-specific embedding spaces. We represent a document not as a single generic embedding but as multiple specialized embeddings. Our approach avoids document segmentation and scales linearly w.r.t.the corpus size. In an empirical study, we use the Papers with Code corpus containing 157,606 research papers and consider the task, method, and dataset of the respective research papers as their aspects. We compare and analyze three generic document embeddings, six specialized document embeddings and a pairwise classification baseline in the context of research paper recommendations. As generic document embeddings, we consider FastText, SciBERT, and SPECTER. To compute the specialized document embeddings, we compare three alternative methods inspired by retrofitting, fine-tuning, and Siamese networks. In our experiments, Siamese SciBERT achieved the highest scores. Additional analyses indicate an implicit bias of the generic document embeddings towards the dataset aspect and against the method aspect of each research paper. Our approach of aspect-based document embeddings mitigates potential risks arising from implicit biases by making them explicit.
What's In Your Field? Mapping Scientific Research with Knowledge Graphs and Large Language Models
The scientific literature's exponential growth makes it increasingly challenging to navigate and synthesize knowledge across disciplines. Large language models (LLMs) are powerful tools for understanding scientific text, but they fail to capture detailed relationships across large bodies of work. Unstructured approaches, like retrieval augmented generation, can sift through such corpora to recall relevant facts; however, when millions of facts influence the answer, unstructured approaches become cost prohibitive. Structured representations offer a natural complement -- enabling systematic analysis across the whole corpus. Recent work enhances LLMs with unstructured or semistructured representations of scientific concepts; to complement this, we try extracting structured representations using LLMs. By combining LLMs' semantic understanding with a schema of scientific concepts, we prototype a system that answers precise questions about the literature as a whole. Our schema applies across scientific fields and we extract concepts from it using only 20 manually annotated abstracts. To demonstrate the system, we extract concepts from 30,000 papers on arXiv spanning astrophysics, fluid dynamics, and evolutionary biology. The resulting database highlights emerging trends and, by visualizing the knowledge graph, offers new ways to explore the ever-growing landscape of scientific knowledge. Demo: abby101/surveyor-0 on HF Spaces. Code: https://github.com/chiral-carbon/kg-for-science.
CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity
Retrieval-Augmented Generation (RAG) aims to enhance large language models (LLMs) to generate more accurate and reliable answers with the help of the retrieved context from external knowledge sources, thereby reducing the incidence of hallucinations. Despite the advancements, evaluating these systems remains a crucial research area due to the following issues: (1) Limited data diversity: The insufficient diversity of knowledge sources and query types constrains the applicability of RAG systems; (2) Obscure problems location: Existing evaluation methods have difficulty in locating the stage of the RAG pipeline where problems occur; (3) Unstable retrieval evaluation: These methods often fail to effectively assess retrieval performance, particularly when the chunking strategy changes. To tackle these challenges, we propose a Comprehensive Full-chain Evaluation (CoFE-RAG) framework to facilitate thorough evaluation across the entire RAG pipeline, including chunking, retrieval, reranking, and generation. To effectively evaluate the first three phases, we introduce multi-granularity keywords, including coarse-grained and fine-grained keywords, to assess the retrieved context instead of relying on the annotation of golden chunks. Moreover, we release a holistic benchmark dataset tailored for diverse data scenarios covering a wide range of document formats and query types. We demonstrate the utility of the CoFE-RAG framework by conducting experiments to evaluate each stage of RAG systems. Our evaluation method provides unique insights into the effectiveness of RAG systems in handling diverse data scenarios, offering a more nuanced understanding of their capabilities and limitations.
Synergizing Unsupervised Episode Detection with LLMs for Large-Scale News Events
State-of-the-art automatic event detection struggles with interpretability and adaptability to evolving large-scale key events -- unlike episodic structures, which excel in these areas. Often overlooked, episodes represent cohesive clusters of core entities performing actions at a specific time and location; a partially ordered sequence of episodes can represent a key event. This paper introduces a novel task, episode detection, which identifies episodes within a news corpus of key event articles. Detecting episodes poses unique challenges, as they lack explicit temporal or locational markers and cannot be merged using semantic similarity alone. While large language models (LLMs) can aid with these reasoning difficulties, they suffer with long contexts typical of news corpora. To address these challenges, we introduce EpiMine, an unsupervised framework that identifies a key event's candidate episodes by leveraging natural episodic partitions in articles, estimated through shifts in discriminative term combinations. These candidate episodes are more cohesive and representative of true episodes, synergizing with LLMs to better interpret and refine them into final episodes. We apply EpiMine to our three diverse, real-world event datasets annotated at the episode level, where it achieves a 59.2% average gain across all metrics compared to baselines.
RepBERT: Contextualized Text Embeddings for First-Stage Retrieval
Although exact term match between queries and documents is the dominant method to perform first-stage retrieval, we propose a different approach, called RepBERT, to represent documents and queries with fixed-length contextualized embeddings. The inner products of query and document embeddings are regarded as relevance scores. On MS MARCO Passage Ranking task, RepBERT achieves state-of-the-art results among all initial retrieval techniques. And its efficiency is comparable to bag-of-words methods.
Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization
Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or ell_2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders' high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.
CoAM: Corpus of All-Type Multiword Expressions
Multiword expressions (MWEs) refer to idiomatic sequences of multiple words. MWE identification, i.e., detecting MWEs in text, can play a key role in downstream tasks such as machine translation. Existing datasets for MWE identification are inconsistently annotated, limited to a single type of MWE, or limited in size. To enable reliable and comprehensive evaluation, we created CoAM: Corpus of All-Type Multiword Expressions, a dataset of 1.3K sentences constructed through a multi-step process to enhance data quality consisting of human annotation, human review, and automated consistency checking. MWEs in CoAM are tagged with MWE types, such as Noun and Verb, to enable fine-grained error analysis. Annotations for CoAM were collected using a new interface created with our interface generator, which allows easy and flexible annotation of MWEs in any form, including discontinuous ones. Through experiments using CoAM, we find that a fine-tuned large language model outperforms the current state-of-the-art approach for MWE identification. Furthermore, analysis using our MWE type tagged data reveals that Verb MWEs are easier than Noun MWEs to identify across approaches.
Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps?
We used a dataset of daily Bloomberg Financial Market Summaries from 2010 to 2023, reposted on large financial media, to determine how global news headlines may affect stock market movements using ChatGPT and a two-stage prompt approach. We document a statistically significant positive correlation between the sentiment score and future equity market returns over short to medium term, which reverts to a negative correlation over longer horizons. Validation of this correlation pattern across multiple equity markets indicates its robustness across equity regions and resilience to non-linearity, evidenced by comparison of Pearson and Spearman correlations. Finally, we provide an estimate of the optimal horizon that strikes a balance between reactivity to new information and correlation.
A Fast Incremental Gaussian Mixture Model
This work builds upon previous efforts in online incremental learning, namely the Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams in a single-pass by improving its model after analyzing each data point and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic time complexity of Obigl(NKD^3bigr) for N data points, K Gaussian components and D dimensions, rendering it inadequate for high-dimensional data. In this paper, we manage to reduce this complexity to Obigl(NKD^2bigr) by deriving formulas for working directly with precision matrices instead of covariance matrices. The final result is a much faster and scalable algorithm which can be applied to high dimensional tasks. This is confirmed by applying the modified algorithm to high-dimensional classification datasets.
LeSICiN: A Heterogeneous Graph-based Approach for Automatic Legal Statute Identification from Indian Legal Documents
The task of Legal Statute Identification (LSI) aims to identify the legal statutes that are relevant to a given description of Facts or evidence of a legal case. Existing methods only utilize the textual content of Facts and legal articles to guide such a task. However, the citation network among case documents and legal statutes is a rich source of additional information, which is not considered by existing models. In this work, we take the first step towards utilising both the text and the legal citation network for the LSI task. We curate a large novel dataset for this task, including Facts of cases from several major Indian Courts of Law, and statutes from the Indian Penal Code (IPC). Modeling the statutes and training documents as a heterogeneous graph, our proposed model LeSICiN can learn rich textual and graphical features, and can also tune itself to correlate these features. Thereafter, the model can be used to inductively predict links between test documents (new nodes whose graphical features are not available to the model) and statutes (existing nodes). Extensive experiments on the dataset show that our model comfortably outperforms several state-of-the-art baselines, by exploiting the graphical structure along with textual features. The dataset and our codes are available at https://github.com/Law-AI/LeSICiN.
Dichotomic Pattern Mining with Applications to Intent Prediction from Semi-Structured Clickstream Datasets
We introduce a pattern mining framework that operates on semi-structured datasets and exploits the dichotomy between outcomes. Our approach takes advantage of constraint reasoning to find sequential patterns that occur frequently and exhibit desired properties. This allows the creation of novel pattern embeddings that are useful for knowledge extraction and predictive modeling. Finally, we present an application on customer intent prediction from digital clickstream data. Overall, we show that pattern embeddings play an integrator role between semi-structured data and machine learning models, improve the performance of the downstream task and retain interpretability.
CoSQA: 20,000+ Web Queries for Code Search and Question Answering
Finding codes given natural language query isb eneficial to the productivity of software developers. Future progress towards better semantic matching between query and code requires richer supervised training resources. To remedy this, we introduce the CoSQA dataset.It includes 20,604 labels for pairs of natural language queries and codes, each annotated by at least 3 human annotators. We further introduce a contrastive learning method dubbed CoCLR to enhance query-code matching, which works as a data augmenter to bring more artificially generated training instances. We show that evaluated on CodeXGLUE with the same CodeBERT model, training on CoSQA improves the accuracy of code question answering by 5.1%, and incorporating CoCLR brings a further improvement of 10.5%.
Taec: a Manually annotated text dataset for trait and phenotype extraction and entity linking in wheat breeding literature
Wheat varieties show a large diversity of traits and phenotypes. Linking them to genetic variability is essential for shorter and more efficient wheat breeding programs. Newly desirable wheat variety traits include disease resistance to reduce pesticide use, adaptation to climate change, resistance to heat and drought stresses, or low gluten content of grains. Wheat breeding experiments are documented by a large body of scientific literature and observational data obtained in-field and under controlled conditions. The cross-referencing of complementary information from the literature and observational data is essential to the study of the genotype-phenotype relationship and to the improvement of wheat selection. The scientific literature on genetic marker-assisted selection describes much information about the genotype-phenotype relationship. However, the variety of expressions used to refer to traits and phenotype values in scientific articles is a hinder to finding information and cross-referencing it. When trained adequately by annotated examples, recent text mining methods perform highly in named entity recognition and linking in the scientific domain. While several corpora contain annotations of human and animal phenotypes, currently, no corpus is available for training and evaluating named entity recognition and entity-linking methods in plant phenotype literature. The Triticum aestivum trait Corpus is a new gold standard for traits and phenotypes of wheat. It consists of 540 PubMed references fully annotated for trait, phenotype, and species named entities using the Wheat Trait and Phenotype Ontology and the species taxonomy of the National Center for Biotechnology Information. A study of the performance of tools trained on the Triticum aestivum trait Corpus shows that the corpus is suitable for the training and evaluation of named entity recognition and linking.
Citegeist: Automated Generation of Related Work Analysis on the arXiv Corpus
Large Language Models provide significant new opportunities for the generation of high-quality written works. However, their employment in the research community is inhibited by their tendency to hallucinate invalid sources and lack of direct access to a knowledge base of relevant scientific articles. In this work, we present Citegeist: An application pipeline using dynamic Retrieval Augmented Generation (RAG) on the arXiv Corpus to generate a related work section and other citation-backed outputs. For this purpose, we employ a mixture of embedding-based similarity matching, summarization, and multi-stage filtering. To adapt to the continuous growth of the document base, we also present an optimized way of incorporating new and modified papers. To enable easy utilization in the scientific community, we release both, a website (https://citegeist.org), as well as an implementation harness that works with several different LLM implementations.
Efficient Algorithms for Exact Graph Matching on Correlated Stochastic Block Models with Constant Correlation
We consider the problem of graph matching, or learning vertex correspondence, between two correlated stochastic block models (SBMs). The graph matching problem arises in various fields, including computer vision, natural language processing and bioinformatics, and in particular, matching graphs with inherent community structure has significance related to de-anonymization of correlated social networks. Compared to the correlated Erdos-Renyi (ER) model, where various efficient algorithms have been developed, among which a few algorithms have been proven to achieve the exact matching with constant edge correlation, no low-order polynomial algorithm has been known to achieve exact matching for the correlated SBMs with constant correlation. In this work, we propose an efficient algorithm for matching graphs with community structure, based on the comparison between partition trees rooted from each vertex, by extending the idea of Mao et al. (2021) to graphs with communities. The partition tree divides the large neighborhoods of each vertex into disjoint subsets using their edge statistics to different communities. Our algorithm is the first low-order polynomial-time algorithm achieving exact matching between two correlated SBMs with high probability in dense graphs.
A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios
We introduce a novel machine learning model for credit risk by combining tree-boosting with a latent spatio-temporal Gaussian process model accounting for frailty correlation. This allows for modeling non-linearities and interactions among predictor variables in a flexible data-driven manner and for accounting for spatio-temporal variation that is not explained by observable predictor variables. We also show how estimation and prediction can be done in a computationally efficient manner. In an application to a large U.S. mortgage credit risk data set, we find that both predictive default probabilities for individual loans and predictive loan portfolio loss distributions obtained with our novel approach are more accurate compared to conventional independent linear hazard models and also linear spatio-temporal models. Using interpretability tools for machine learning models, we find that the likely reasons for this outperformance are strong interaction and non-linear effects in the predictor variables and the presence of large spatio-temporal frailty effects.
Magnitude of arithmetic scalar and matrix categories
We develop tools for explicitly constructing categories enriched over generating data and that compose via ordinary scalar and matrix arithmetic arithmetic operations. We characterize meaningful size maps, weightings, and magnitude that reveal features analogous to outliers that these same notions have previously been shown to reveal in the context of metric spaces. Throughout, we provide examples of such "outlier detection" relevant to the analysis of computer programs, neural networks, cyber-physical systems, and networks of communications channels.
TartuNLP at SemEval-2025 Task 5: Subject Tagging as Two-Stage Information Retrieval
We present our submission to the Task 5 of SemEval-2025 that aims to aid librarians in assigning subject tags to the library records by producing a list of likely relevant tags for a given document. We frame the task as an information retrieval problem, where the document content is used to retrieve subject tags from a large subject taxonomy. We leverage two types of encoder models to build a two-stage information retrieval system -- a bi-encoder for coarse-grained candidate extraction at the first stage, and a cross-encoder for fine-grained re-ranking at the second stage. This approach proved effective, demonstrating significant improvements in recall compared to single-stage methods and showing competitive results according to qualitative evaluation.
Top2Vec: Distributed Representations of Topics
Topic modeling is used for discovering latent semantic structure, usually referred to as topics, in a large collection of documents. The most widely used methods are Latent Dirichlet Allocation and Probabilistic Latent Semantic Analysis. Despite their popularity they have several weaknesses. In order to achieve optimal results they often require the number of topics to be known, custom stop-word lists, stemming, and lemmatization. Additionally these methods rely on bag-of-words representation of documents which ignore the ordering and semantics of words. Distributed representations of documents and words have gained popularity due to their ability to capture semantics of words and documents. We present top2vec, which leverages joint document and word semantic embedding to find topic vectors. This model does not require stop-word lists, stemming or lemmatization, and it automatically finds the number of topics. The resulting topic vectors are jointly embedded with the document and word vectors with distance between them representing semantic similarity. Our experiments demonstrate that top2vec finds topics which are significantly more informative and representative of the corpus trained on than probabilistic generative models.
Similar Cases Recommendation using Legal Knowledge Graphs
A legal knowledge graph constructed from court cases, judgments, laws and other legal documents can enable a number of applications like question answering, document similarity, and search. While the use of knowledge graphs for distant supervision in NLP tasks is well researched, using knowledge graphs for downstream graph tasks like node similarity presents challenges in selecting node types and their features. In this demo, we describe our solution for predicting similar nodes in a case graph derived from our legal knowledge graph.
AceMap: Knowledge Discovery through Academic Graph
The exponential growth of scientific literature requires effective management and extraction of valuable insights. While existing scientific search engines excel at delivering search results based on relational databases, they often neglect the analysis of collaborations between scientific entities and the evolution of ideas, as well as the in-depth analysis of content within scientific publications. The representation of heterogeneous graphs and the effective measurement, analysis, and mining of such graphs pose significant challenges. To address these challenges, we present AceMap, an academic system designed for knowledge discovery through academic graph. We present advanced database construction techniques to build the comprehensive AceMap database with large-scale academic entities that contain rich visual, textual, and numerical information. AceMap also employs innovative visualization, quantification, and analysis methods to explore associations and logical relationships among academic entities. AceMap introduces large-scale academic network visualization techniques centered on nebular graphs, providing a comprehensive view of academic networks from multiple perspectives. In addition, AceMap proposes a unified metric based on structural entropy to quantitatively measure the knowledge content of different academic entities. Moreover, AceMap provides advanced analysis capabilities, including tracing the evolution of academic ideas through citation relationships and concept co-occurrence, and generating concise summaries informed by this evolutionary process. In addition, AceMap uses machine reading methods to generate potential new ideas at the intersection of different fields. Exploring the integration of large language models and knowledge graphs is a promising direction for future research in idea evolution. Please visit https://www.acemap.info for further exploration.
CoVR: Learning Composed Video Retrieval from Web Video Captions
Composed Image Retrieval (CoIR) has recently gained popularity as a task that considers both text and image queries together, to search for relevant images in a database. Most CoIR approaches require manually annotated datasets, comprising image-text-image triplets, where the text describes a modification from the query image to the target image. However, manual curation of CoIR triplets is expensive and prevents scalability. In this work, we instead propose a scalable automatic dataset creation methodology that generates triplets given video-caption pairs, while also expanding the scope of the task to include composed video retrieval (CoVR). To this end, we mine paired videos with a similar caption from a large database, and leverage a large language model to generate the corresponding modification text. Applying this methodology to the extensive WebVid2M collection, we automatically construct our WebVid-CoVR dataset, resulting in 1.6 million triplets. Moreover, we introduce a new benchmark for CoVR with a manually annotated evaluation set, along with baseline results. Our experiments further demonstrate that training a CoVR model on our dataset effectively transfers to CoIR, leading to improved state-of-the-art performance in the zero-shot setup on both the CIRR and FashionIQ benchmarks. Our code, datasets, and models are publicly available at https://imagine.enpc.fr/~ventural/covr.
Scalable Graph Attention-based Instance Selection via Mini-Batch Sampling and Hierarchical Hashing
Instance selection (IS) is important in machine learning for reducing dataset size while keeping key characteristics. Current IS methods often struggle with capturing complex relationships in high-dimensional spaces and scale with large datasets. This paper introduces a graph attention-based instance selection (GAIS) method that uses attention mechanisms to identify informative instances through their structural relationships in graph representations. We present two approaches for scalable graph construction: a distance-based mini-batch sampling technique that reduces computation through strategic batch processing, and a hierarchical hashing approach that allows for efficient similarity computation through random projections. The mini-batch approach keeps class distributions through stratified sampling, while the hierarchical hashing method captures relationships at multiple granularities through single-level, multi-level, and multi-view variants. Experiments across 39 datasets show that GAIS achieves reduction rates above 96\% while maintaining or improving model performance relative to state-of-the-art IS methods. The findings shows that the distance-based mini-batch approach offers an optimal balance of efficiency and effectiveness for large-scale datasets, while multi-view variants provide superior performance for complex, high-dimensional data, demonstrating that attention-based importance scoring can effectively identify instances crucial for maintaining decision boundaries without requiring exhaustive pairwise comparisons.
Experimental Support for a Categorical Compositional Distributional Model of Meaning
Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model.
Perturbation Ontology based Graph Attention Networks
In recent years, graph representation learning has undergone a paradigm shift, driven by the emergence and proliferation of graph neural networks (GNNs) and their heterogeneous counterparts. Heterogeneous GNNs have shown remarkable success in extracting low-dimensional embeddings from complex graphs that encompass diverse entity types and relationships. While meta-path-based techniques have long been recognized for their ability to capture semantic affinities among nodes, their dependence on manual specification poses a significant limitation. In contrast, matrix-focused methods accelerate processing by utilizing structural cues but often overlook contextual richness. In this paper, we challenge the current paradigm by introducing ontology as a fundamental semantic primitive within complex graphs. Our goal is to integrate the strengths of both matrix-centric and meta-path-based approaches into a unified framework. We propose perturbation Ontology-based Graph Attention Networks (POGAT), a novel methodology that combines ontology subgraphs with an advanced self-supervised learning paradigm to achieve a deep contextual understanding. The core innovation of POGAT lies in our enhanced homogeneous perturbing scheme designed to generate rigorous negative samples, encouraging the model to explore minimal contextual features more thoroughly. Through extensive empirical evaluations, we demonstrate that POGAT significantly outperforms state-of-the-art baselines, achieving a groundbreaking improvement of up to 10.78\% in F1-score for the critical task of link prediction and 12.01\% in Micro-F1 for the critical task of node classification.
Benchmarking Clinical Decision Support Search
Finding relevant literature underpins the practice of evidence-based medicine. From 2014 to 2016, TREC conducted a clinical decision support track, wherein participants were tasked with finding articles relevant to clinical questions posed by physicians. In total, 87 teams have participated over the past three years, generating 395 runs. During this period, each team has trialled a variety of methods. While there was significant overlap in the methods employed by different teams, the results were varied. Due to the diversity of the platforms used, the results arising from the different techniques are not directly comparable, reducing the ability to build on previous work. By using a stable platform, we have been able to compare different document and query processing techniques, allowing us to experiment with different search parameters. We have used our system to reproduce leading teams runs, and compare the results obtained. By benchmarking our indexing and search techniques, we can statistically test a variety of hypotheses, paving the way for further research.
Efficient Failure Pattern Identification of Predictive Algorithms
Given a (machine learning) classifier and a collection of unlabeled data, how can we efficiently identify misclassification patterns presented in this dataset? To address this problem, we propose a human-machine collaborative framework that consists of a team of human annotators and a sequential recommendation algorithm. The recommendation algorithm is conceptualized as a stochastic sampler that, in each round, queries the annotators a subset of samples for their true labels and obtains the feedback information on whether the samples are misclassified. The sampling mechanism needs to balance between discovering new patterns of misclassification (exploration) and confirming the potential patterns of classification (exploitation). We construct a determinantal point process, whose intensity balances the exploration-exploitation trade-off through the weighted update of the posterior at each round to form the generator of the stochastic sampler. The numerical results empirically demonstrate the competitive performance of our framework on multiple datasets at various signal-to-noise ratios.
GEMRec: Towards Generative Model Recommendation
Recommender Systems are built to retrieve relevant items to satisfy users' information needs. The candidate corpus usually consists of a finite set of items that are ready to be served, such as videos, products, or articles. With recent advances in Generative AI such as GPT and Diffusion models, a new form of recommendation task is yet to be explored where items are to be created by generative models with personalized prompts. Taking image generation as an example, with a single prompt from the user and access to a generative model, it is possible to generate hundreds of new images in a few minutes. How shall we attain personalization in the presence of "infinite" items? In this preliminary study, we propose a two-stage framework, namely Prompt-Model Retrieval and Generated Item Ranking, to approach this new task formulation. We release GEMRec-18K, a prompt-model interaction dataset with 18K images generated by 200 publicly-available generative models paired with a diverse set of 90 textual prompts. Our findings demonstrate the promise of generative model recommendation as a novel personalization problem and the limitations of existing evaluation metrics. We highlight future directions for the RecSys community to advance towards generative recommender systems. Our code and dataset are available at https://github.com/MAPS-research/GEMRec.
Bayesian Networks for Named Entity Prediction in Programming Community Question Answering
Within this study, we propose a new approach for natural language processing using Bayesian networks to predict and analyze the context and how this approach can be applied to the Community Question Answering domain. We discuss how Bayesian networks can detect semantic relationships and dependencies between entities, and this is connected to different score-based approaches of structure-learning. We compared the Bayesian networks with different score metrics, such as the BIC, BDeu, K2 and Chow-Liu trees. Our proposed approach out-performs the baseline model at the precision metric. We also discuss the influence of penalty terms on the structure of Bayesian networks and how they can be used to analyze the relationships between entities. In addition, we examine the visualization of directed acyclic graphs to analyze semantic relationships. The article further identifies issues with detecting certain semantic classes that are separated in the structure of directed acyclic graphs. Finally, we evaluate potential improvements for the Bayesian network approach.
Hierarchical Multi-Interest Co-Network For Coarse-Grained Ranking
In this era of information explosion, a personalized recommendation system is convenient for users to get information they are interested in. To deal with billions of users and items, large-scale online recommendation services usually consist of three stages: candidate generation, coarse-grained ranking, and fine-grained ranking. The success of each stage depends on whether the model accurately captures the interests of users, which are usually hidden in users' behavior data. Previous research shows that users' interests are diverse, and one vector is not sufficient to capture users' different preferences. Therefore, many methods use multiple vectors to encode users' interests. However, there are two unsolved problems: (1) The similarity of different vectors in existing methods is too high, with too much redundant information. Consequently, the interests of users are not fully represented. (2) Existing methods model the long-term and short-term behaviors together, ignoring the differences between them. This paper proposes a Hierarchical Multi-Interest Co-Network (HCN) to capture users' diverse interests in the coarse-grained ranking stage. Specifically, we design a hierarchical multi-interest extraction layer to update users' diverse interest centers iteratively. The multiple embedded vectors obtained in this way contain more information and represent the interests of users better in various aspects. Furthermore, we develop a Co-Interest Network to integrate users' long-term and short-term interests. Experiments on several real-world datasets and one large-scale industrial dataset show that HCN effectively outperforms the state-of-the-art methods. We deploy HCN into a large-scale real world E-commerce system and achieve extra 2.5\% improvements on GMV (Gross Merchandise Value).
textTOvec: Deep Contextualized Neural Autoregressive Topic Models of Language with Distributed Compositional Prior
We address two challenges of probabilistic topic modelling in order to better estimate the probability of a word in a given context, i.e., P(word|context): (1) No Language Structure in Context: Probabilistic topic models ignore word order by summarizing a given context as a "bag-of-word" and consequently the semantics of words in the context is lost. The LSTM-LM learns a vector-space representation of each word by accounting for word order in local collocation patterns and models complex characteristics of language (e.g., syntax and semantics), while the TM simultaneously learns a latent representation from the entire document and discovers the underlying thematic structure. We unite two complementary paradigms of learning the meaning of word occurrences by combining a TM (e.g., DocNADE) and a LM in a unified probabilistic framework, named as ctx-DocNADE. (2) Limited Context and/or Smaller training corpus of documents: In settings with a small number of word occurrences (i.e., lack of context) in short text or data sparsity in a corpus of few documents, the application of TMs is challenging. We address this challenge by incorporating external knowledge into neural autoregressive topic models via a language modelling approach: we use word embeddings as input of a LSTM-LM with the aim to improve the word-topic mapping on a smaller and/or short-text corpus. The proposed DocNADE extension is named as ctx-DocNADEe. We present novel neural autoregressive topic model variants coupled with neural LMs and embeddings priors that consistently outperform state-of-the-art generative TMs in terms of generalization (perplexity), interpretability (topic coherence) and applicability (retrieval and classification) over 6 long-text and 8 short-text datasets from diverse domains.
The Knesset Corpus: An Annotated Corpus of Hebrew Parliamentary Proceedings
We present the Knesset Corpus, a corpus of Hebrew parliamentary proceedings containing over 30 million sentences (over 384 million tokens) from all the (plenary and committee) protocols held in the Israeli parliament between 1998 and 2022. Sentences are annotated with morpho-syntactic information and are associated with detailed meta-information reflecting demographic and political properties of the speakers, based on a large database of parliament members and factions that we compiled. We discuss the structure and composition of the corpus and the various processing steps we applied to it. To demonstrate the utility of this novel dataset we present two use cases. We show that the corpus can be used to examine historical developments in the style of political discussions by showing a reduction in lexical richness in the proceedings over time. We also investigate some differences between the styles of men and women speakers. These use cases exemplify the potential of the corpus to shed light on important trends in the Israeli society, supporting research in linguistics, political science, communication, law, etc.
Relation Extraction in underexplored biomedical domains: A diversity-optimised sampling and synthetic data generation approach
The sparsity of labelled data is an obstacle to the development of Relation Extraction models and the completion of databases in various biomedical areas. While being of high interest in drug-discovery, the natural-products literature, reporting the identification of potential bioactive compounds from organisms, is a concrete example of such an overlooked topic. To mark the start of this new task, we created the first curated evaluation dataset and extracted literature items from the LOTUS database to build training sets. To this end, we developed a new sampler inspired by diversity metrics in ecology, named Greedy Maximum Entropy sampler, or GME-sampler (https://github.com/idiap/gme-sampler). The strategic optimization of both balance and diversity of the selected items in the evaluation set is important given the resource-intensive nature of manual curation. After quantifying the noise in the training set, in the form of discrepancies between the input abstracts text and the expected output labels, we explored different strategies accordingly. Framing the task as an end-to-end Relation Extraction, we evaluated the performance of standard fine-tuning as a generative task and few-shot learning with open Large Language Models (LLaMA 7B-65B). In addition to their evaluation in few-shot settings, we explore the potential of open Large Language Models (Vicuna-13B) as synthetic data generator and propose a new workflow for this purpose. All evaluated models exhibited substantial improvements when fine-tuned on synthetic abstracts rather than the original noisy data. We provide our best performing (f1-score=59.0) BioGPT-Large model for end-to-end RE of natural-products relationships along with all the generated synthetic data and the evaluation dataset. See more details at https://github.com/idiap/abroad-re.
Multi-hop Evidence Retrieval for Cross-document Relation Extraction
Relation Extraction (RE) has been extended to cross-document scenarios because many relations are not simply described in a single document. This inevitably brings the challenge of efficient open-space evidence retrieval to support the inference of cross-document relations, along with the challenge of multi-hop reasoning on top of entities and evidence scattered in an open set of documents. To combat these challenges, we propose MR.COD (Multi-hop evidence retrieval for Cross-document relation extraction), which is a multi-hop evidence retrieval method based on evidence path mining and ranking. We explore multiple variants of retrievers to show evidence retrieval is essential in cross-document RE. We also propose a contextual dense retriever for this setting. Experiments on CodRED show that evidence retrieval with MR.COD effectively acquires crossdocument evidence and boosts end-to-end RE performance in both closed and open settings.
Cousins Of The Vendi Score: A Family Of Similarity-Based Diversity Metrics For Science And Machine Learning
Measuring diversity accurately is important for many scientific fields, including machine learning (ML), ecology, and chemistry. The Vendi Score was introduced as a generic similarity-based diversity metric that extends the Hill number of order q=1 by leveraging ideas from quantum statistical mechanics. Contrary to many diversity metrics in ecology, the Vendi Score accounts for similarity and does not require knowledge of the prevalence of the categories in the collection to be evaluated for diversity. However, the Vendi Score treats each item in a given collection with a level of sensitivity proportional to the item's prevalence. This is undesirable in settings where there is a significant imbalance in item prevalence. In this paper, we extend the other Hill numbers using similarity to provide flexibility in allocating sensitivity to rare or common items. This leads to a family of diversity metrics -- Vendi scores with different levels of sensitivity -- that can be used in a variety of applications. We study the properties of the scores in a synthetic controlled setting where the ground truth diversity is known. We then test their utility in improving molecular simulations via Vendi Sampling. Finally, we use the Vendi scores to better understand the behavior of image generative models in terms of memorization, duplication, diversity, and sample quality.
Multi-scale Attributed Node Embedding
We present network embedding algorithms that capture information about a node from the local distribution over node attributes around it, as observed over random walks following an approach similar to Skip-gram. Observations from neighborhoods of different sizes are either pooled (AE) or encoded distinctly in a multi-scale approach (MUSAE). Capturing attribute-neighborhood relationships over multiple scales is useful for a diverse range of applications, including latent feature identification across disconnected networks with similar attributes. We prove theoretically that matrices of node-feature pointwise mutual information are implicitly factorized by the embeddings. Experiments show that our algorithms are robust, computationally efficient and outperform comparable models on social networks and web graphs.
SciPIP: An LLM-based Scientific Paper Idea Proposer
The exponential growth of knowledge and the increasing complexity of interdisciplinary research pose significant challenges for researchers, including information overload and difficulties in exploring novel ideas. The advancements in large language models (LLMs), such as GPT-4, have shown great potential in enhancing idea proposals, but how to effectively utilize large models for reasonable idea proposal has not been thoroughly explored. This paper proposes a scientific paper idea proposer (SciPIP). Based on a user-provided research background, SciPIP retrieves helpful papers from a literature database while leveraging the capabilities of LLMs to generate more novel and feasible ideas. To this end, 1) we construct a literature retrieval database, extracting lots of papers' multi-dimension information for fast access. Then, a literature retrieval method based on semantics, entity, and citation co-occurrences is proposed to search relevant literature from multiple aspects based on the user-provided background. 2) After literature retrieval, we introduce dual-path idea proposal strategies, where one path infers solutions from the retrieved literature and the other path generates original ideas through model brainstorming. We then combine the two to achieve a good balance between feasibility and originality. Through extensive experiments on the natural language processing (NLP) field, we demonstrate that SciPIP can retrieve citations similar to those of existing top conference papers and generate many ideas consistent with them. Additionally, we evaluate the originality of other ideas generated by SciPIP using large language models, further validating the effectiveness of our proposed method. The code and the database are released at https://github.com/cheerss/SciPIP.
Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings
Machine translation is highly sensitive to the size and quality of the training data, which has led to an increasing interest in collecting and filtering large parallel corpora. In this paper, we propose a new method for this task based on multilingual sentence embeddings. In contrast to previous approaches, which rely on nearest neighbor retrieval with a hard threshold over cosine similarity, our proposed method accounts for the scale inconsistencies of this measure, considering the margin between a given sentence pair and its closest candidates instead. Our experiments show large improvements over existing methods. We outperform the best published results on the BUCC mining task and the UN reconstruction task by more than 10 F1 and 30 precision points, respectively. Filtering the English-German ParaCrawl corpus with our approach, we obtain 31.2 BLEU points on newstest2014, an improvement of more than one point over the best official filtered version.
Reliable Measures of Spread in High Dimensional Latent Spaces
Understanding geometric properties of natural language processing models' latent spaces allows the manipulation of these properties for improved performance on downstream tasks. One such property is the amount of data spread in a model's latent space, or how fully the available latent space is being used. In this work, we define data spread and demonstrate that the commonly used measures of data spread, Average Cosine Similarity and a partition function min/max ratio I(V), do not provide reliable metrics to compare the use of latent space across models. We propose and examine eight alternative measures of data spread, all but one of which improve over these current metrics when applied to seven synthetic data distributions. Of our proposed measures, we recommend one principal component-based measure and one entropy-based measure that provide reliable, relative measures of spread and can be used to compare models of different sizes and dimensionalities.
Graph Retrieval-Augmented Generation: A Survey
Recently, Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining. By referencing an external knowledge base, RAG refines LLM outputs, effectively mitigating issues such as ``hallucination'', lack of domain-specific knowledge, and outdated information. However, the complex structure of relationships among different entities in databases presents challenges for RAG systems. In response, GraphRAG leverages structural information across entities to enable more precise and comprehensive retrieval, capturing relational knowledge and facilitating more accurate, context-aware responses. Given the novelty and potential of GraphRAG, a systematic review of current technologies is imperative. This paper provides the first comprehensive overview of GraphRAG methodologies. We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation. We then outline the core technologies and training methods at each stage. Additionally, we examine downstream tasks, application domains, evaluation methodologies, and industrial use cases of GraphRAG. Finally, we explore future research directions to inspire further inquiries and advance progress in the field.
Meta-Prod2Vec - Product Embeddings Using Side-Information for Recommendation
We propose Meta-Prod2vec, a novel method to compute item similarities for recommendation that leverages existing item metadata. Such scenarios are frequently encountered in applications such as content recommendation, ad targeting and web search. Our method leverages past user interactions with items and their attributes to compute low-dimensional embeddings of items. Specifically, the item metadata is in- jected into the model as side information to regularize the item embeddings. We show that the new item representa- tions lead to better performance on recommendation tasks on an open music dataset.
Biomedical Document Clustering and Visualization based on the Concepts of Diseases
Document clustering is a text mining technique used to provide better document search and browsing in digital libraries or online corpora. A lot of research has been done on biomedical document clustering that is based on using existing ontology. But, associations and co-occurrences of the medical concepts are not well represented by using ontology. In this research, a vector representation of concepts of diseases and similarity measurement between concepts are proposed. They identify the closest concepts of diseases in the context of a corpus. Each document is represented by using the vector space model. A weight scheme is proposed to consider both local content and associations between concepts. A Self-Organizing Map is used as document clustering algorithm. The vector projection and visualization features of SOM enable visualization and analysis of the clusters distributions and relationships on the two dimensional space. The experimental results show that the proposed document clustering framework generates meaningful clusters and facilitate visualization of the clusters based on the concepts of diseases.
End-to-End Retrieval in Continuous Space
Most text-based information retrieval (IR) systems index objects by words or phrases. These discrete systems have been augmented by models that use embeddings to measure similarity in continuous space. But continuous-space models are typically used just to re-rank the top candidates. We consider the problem of end-to-end continuous retrieval, where standard approximate nearest neighbor (ANN) search replaces the usual discrete inverted index, and rely entirely on distances between learned embeddings. By training simple models specifically for retrieval, with an appropriate model architecture, we improve on a discrete baseline by 8% and 26% (MAP) on two similar-question retrieval tasks. We also discuss the problem of evaluation for retrieval systems, and show how to modify existing pairwise similarity datasets for this purpose.
A Multilingual Parallel Corpora Collection Effort for Indian Languages
We present sentence aligned parallel corpora across 10 Indian Languages - Hindi, Telugu, Tamil, Malayalam, Gujarati, Urdu, Bengali, Oriya, Marathi, Punjabi, and English - many of which are categorized as low resource. The corpora are compiled from online sources which have content shared across languages. The corpora presented significantly extends present resources that are either not large enough or are restricted to a specific domain (such as health). We also provide a separate test corpus compiled from an independent online source that can be independently used for validating the performance in 10 Indian languages. Alongside, we report on the methods of constructing such corpora using tools enabled by recent advances in machine translation and cross-lingual retrieval using deep neural network based methods.
Deriving Language Models from Masked Language Models
Masked language models (MLM) do not explicitly define a distribution over language, i.e., they are not language models per se. However, recent work has implicitly treated them as such for the purposes of generation and scoring. This paper studies methods for deriving explicit joint distributions from MLMs, focusing on distributions over two tokens, which makes it possible to calculate exact distributional properties. We find that an approach based on identifying joints whose conditionals are closest to those of the MLM works well and outperforms existing Markov random field-based approaches. We further find that this derived model's conditionals can even occasionally outperform the original MLM's conditionals.
STable: Table Generation Framework for Encoder-Decoder Models
The output structure of database-like tables, consisting of values structured in horizontal rows and vertical columns identifiable by name, can cover a wide range of NLP tasks. Following this constatation, we propose a framework for text-to-table neural models applicable to problems such as extraction of line items, joint entity and relation extraction, or knowledge base population. The permutation-based decoder of our proposal is a generalized sequential method that comprehends information from all cells in the table. The training maximizes the expected log-likelihood for a table's content across all random permutations of the factorization order. During the content inference, we exploit the model's ability to generate cells in any order by searching over possible orderings to maximize the model's confidence and avoid substantial error accumulation, which other sequential models are prone to. Experiments demonstrate a high practical value of the framework, which establishes state-of-the-art results on several challenging datasets, outperforming previous solutions by up to 15%.
CHESS: Contextual Harnessing for Efficient SQL Synthesis
Utilizing large language models (LLMs) for transforming natural language questions into SQL queries (text-to-SQL) is a promising yet challenging approach, particularly when applied to real-world databases with complex and extensive schemas. In particular, effectively incorporating data catalogs and database values for SQL generation remains an obstacle, leading to suboptimal solutions. We address this problem by proposing a new pipeline that effectively retrieves relevant data and context, selects an efficient schema, and synthesizes correct and efficient SQL queries. To increase retrieval precision, our pipeline introduces a hierarchical retrieval method leveraging model-generated keywords, locality-sensitive hashing indexing, and vector databases. Additionally, we have developed an adaptive schema pruning technique that adjusts based on the complexity of the problem and the model's context size. Our approach generalizes to both frontier proprietary models like GPT-4 and open-source models such as Llama-3-70B. Through a series of ablation studies, we demonstrate the effectiveness of each component of our pipeline and its impact on the end-to-end performance. Our method achieves new state-of-the-art performance on the cross-domain challenging BIRD dataset.
M2TRec: Metadata-aware Multi-task Transformer for Large-scale and Cold-start free Session-based Recommendations
Session-based recommender systems (SBRSs) have shown superior performance over conventional methods. However, they show limited scalability on large-scale industrial datasets since most models learn one embedding per item. This leads to a large memory requirement (of storing one vector per item) and poor performance on sparse sessions with cold-start or unpopular items. Using one public and one large industrial dataset, we experimentally show that state-of-the-art SBRSs have low performance on sparse sessions with sparse items. We propose M2TRec, a Metadata-aware Multi-task Transformer model for session-based recommendations. Our proposed method learns a transformation function from item metadata to embeddings, and is thus, item-ID free (i.e., does not need to learn one embedding per item). It integrates item metadata to learn shared representations of diverse item attributes. During inference, new or unpopular items will be assigned identical representations for the attributes they share with items previously observed during training, and thus will have similar representations with those items, enabling recommendations of even cold-start and sparse items. Additionally, M2TRec is trained in a multi-task setting to predict the next item in the session along with its primary category and subcategories. Our multi-task strategy makes the model converge faster and significantly improves the overall performance. Experimental results show significant performance gains using our proposed approach on sparse items on the two datasets.
EasyNER: A Customizable Easy-to-Use Pipeline for Deep Learning- and Dictionary-based Named Entity Recognition from Medical Text
Medical research generates a large number of publications with the PubMed database already containing >35 million research articles. Integration of the knowledge scattered across this large body of literature could provide key insights into physiological mechanisms and disease processes leading to novel medical interventions. However, it is a great challenge for researchers to utilize this information in full since the scale and complexity of the data greatly surpasses human processing abilities. This becomes especially problematic in cases of extreme urgency like the COVID-19 pandemic. Automated text mining can help extract and connect information from the large body of medical research articles. The first step in text mining is typically the identification of specific classes of keywords (e.g., all protein or disease names), so called Named Entity Recognition (NER). Here we present an end-to-end pipeline for NER of typical entities found in medical research articles, including diseases, cells, chemicals, genes/proteins, and species. The pipeline can access and process large medical research article collections (PubMed, CORD-19) or raw text and incorporates a series of deep learning models fine-tuned on the HUNER corpora collection. In addition, the pipeline can perform dictionary-based NER related to COVID-19 and other medical topics. Users can also load their own NER models and dictionaries to include additional entities. The output consists of publication-ready ranked lists and graphs of detected entities and files containing the annotated texts. An associated script allows rapid inspection of the results for specific entities of interest. As model use cases, the pipeline was deployed on two collections of autophagy-related abstracts from PubMed and on the CORD19 dataset, a collection of 764 398 research article abstracts related to COVID-19.
GERNERMED -- An Open German Medical NER Model
The current state of adoption of well-structured electronic health records and integration of digital methods for storing medical patient data in structured formats can often considered as inferior compared to the use of traditional, unstructured text based patient data documentation. Data mining in the field of medical data analysis often needs to rely solely on processing of unstructured data to retrieve relevant data. In natural language processing (NLP), statistical models have been shown successful in various tasks like part-of-speech tagging, relation extraction (RE) and named entity recognition (NER). In this work, we present GERNERMED, the first open, neural NLP model for NER tasks dedicated to detect medical entity types in German text data. Here, we avoid the conflicting goals of protection of sensitive patient data from training data extraction and the publication of the statistical model weights by training our model on a custom dataset that was translated from publicly available datasets in foreign language by a pretrained neural machine translation model. The sample code and the statistical model is available at: https://github.com/frankkramer-lab/GERNERMED
INSIGHTBUDDY-AI: Medication Extraction and Entity Linking using Large Language Models and Ensemble Learning
Medication Extraction and Mining play an important role in healthcare NLP research due to its practical applications in hospital settings, such as their mapping into standard clinical knowledge bases (SNOMED-CT, BNF, etc.). In this work, we investigate state-of-the-art LLMs in text mining tasks on medications and their related attributes such as dosage, route, strength, and adverse effects. In addition, we explore different ensemble learning methods (Stack-Ensemble and Voting-Ensemble) to augment the model performances from individual LLMs. Our ensemble learning result demonstrated better performances than individually fine-tuned base models BERT, RoBERTa, RoBERTa-L, BioBERT, BioClinicalBERT, BioMedRoBERTa, ClinicalBERT, and PubMedBERT across general and specific domains. Finally, we build up an entity linking function to map extracted medical terminologies into the SNOMED-CT codes and the British National Formulary (BNF) codes, which are further mapped to the Dictionary of Medicines and Devices (dm+d), and ICD. Our model's toolkit and desktop applications are publicly available at https://github.com/HECTA-UoM/ensemble-NER.
KGMEL: Knowledge Graph-Enhanced Multimodal Entity Linking
Entity linking (EL) aligns textual mentions with their corresponding entities in a knowledge base, facilitating various applications such as semantic search and question answering. Recent advances in multimodal entity linking (MEL) have shown that combining text and images can reduce ambiguity and improve alignment accuracy. However, most existing MEL methods overlook the rich structural information available in the form of knowledge-graph (KG) triples. In this paper, we propose KGMEL, a novel framework that leverages KG triples to enhance MEL. Specifically, it operates in three stages: (1) Generation: Produces high-quality triples for each mention by employing vision-language models based on its text and images. (2) Retrieval: Learns joint mention-entity representations, via contrastive learning, that integrate text, images, and (generated or KG) triples to retrieve candidate entities for each mention. (3) Reranking: Refines the KG triples of the candidate entities and employs large language models to identify the best-matching entity for the mention. Extensive experiments on benchmark datasets demonstrate that KGMEL outperforms existing methods. Our code and datasets are available at: https://github.com/juyeonnn/KGMEL.
Delving into the Utilisation of ChatGPT in Scientific Publications in Astronomy
Rapid progress in the capabilities of machine learning approaches in natural language processing has culminated in the rise of large language models over the last two years. Recent works have shown unprecedented adoption of these for academic writing, especially in some fields, but their pervasiveness in astronomy has not been studied sufficiently. To remedy this, we extract words that ChatGPT uses more often than humans when generating academic text and search a total of 1 million articles for them. This way, we assess the frequency of word occurrence in published works in astronomy tracked by the NASA Astrophysics Data System since 2000. We then perform a statistical analysis of the occurrences. We identify a list of words favoured by ChatGPT and find a statistically significant increase for these words against a control group in 2024, which matches the trend in other disciplines. These results suggest a widespread adoption of these models in the writing of astronomy papers. We encourage organisations, publishers, and researchers to work together to identify ethical and pragmatic guidelines to maximise the benefits of these systems while maintaining scientific rigour.
A Countrywide Traffic Accident Dataset
Reducing traffic accidents is an important public safety challenge. However, the majority of studies on traffic accident analysis and prediction have used small-scale datasets with limited coverage, which limits their impact and applicability; and existing large-scale datasets are either private, old, or do not include important contextual information such as environmental stimuli (weather, points-of-interest, etc.). In order to help the research community address these shortcomings we have - through a comprehensive process of data collection, integration, and augmentation - created a large-scale publicly available database of accident information named US-Accidents. US-Accidents currently contains data about 2.25 million instances of traffic accidents that took place within the contiguous United States, and over the last three years. Each accident record consists of a variety of intrinsic and contextual attributes such as location, time, natural language description, weather, period-of-day, and points-of-interest. We present this dataset in this paper, along with a wide range of insights gleaned from this dataset with respect to the spatiotemporal characteristics of accidents. The dataset is publicly available at https://smoosavi.org/datasets/us_accidents.
ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation
Generative recommendation (GR) is an emerging paradigm where user actions are tokenized into discrete token patterns and autoregressively generated as predictions. However, existing GR models tokenize each action independently, assigning the same fixed tokens to identical actions across all sequences without considering contextual relationships. This lack of context-awareness can lead to suboptimal performance, as the same action may hold different meanings depending on its surrounding context. To address this issue, we propose ActionPiece to explicitly incorporate context when tokenizing action sequences. In ActionPiece, each action is represented as a set of item features, which serve as the initial tokens. Given the action sequence corpora, we construct the vocabulary by merging feature patterns as new tokens, based on their co-occurrence frequency both within individual sets and across adjacent sets. Considering the unordered nature of feature sets, we further introduce set permutation regularization, which produces multiple segmentations of action sequences with the same semantics. Experiments on public datasets demonstrate that ActionPiece consistently outperforms existing action tokenization methods, improving NDCG@10 by 6.00% to 12.82%.
Entity Embedding-based Anomaly Detection for Heterogeneous Categorical Events
Anomaly detection plays an important role in modern data-driven security applications, such as detecting suspicious access to a socket from a process. In many cases, such events can be described as a collection of categorical values that are considered as entities of different types, which we call heterogeneous categorical events. Due to the lack of intrinsic distance measures among entities, and the exponentially large event space, most existing work relies heavily on heuristics to calculate abnormal scores for events. Different from previous work, we propose a principled and unified probabilistic model APE (Anomaly detection via Probabilistic pairwise interaction and Entity embedding) that directly models the likelihood of events. In this model, we embed entities into a common latent space using their observed co-occurrence in different events. More specifically, we first model the compatibility of each pair of entities according to their embeddings. Then we utilize the weighted pairwise interactions of different entity types to define the event probability. Using Noise-Contrastive Estimation with "context-dependent" noise distribution, our model can be learned efficiently regardless of the large event space. Experimental results on real enterprise surveillance data show that our methods can accurately detect abnormal events compared to other state-of-the-art abnormal detection techniques.
WCLD: Curated Large Dataset of Criminal Cases from Wisconsin Circuit Courts
Machine learning based decision-support tools in criminal justice systems are subjects of intense discussions and academic research. There are important open questions about the utility and fairness of such tools. Academic researchers often rely on a few small datasets that are not sufficient to empirically study various real-world aspects of these questions. In this paper, we contribute WCLD, a curated large dataset of 1.5 million criminal cases from circuit courts in the U.S. state of Wisconsin. We used reliable public data from 1970 to 2020 to curate attributes like prior criminal counts and recidivism outcomes. The dataset contains large number of samples from five racial groups, in addition to information like sex and age (at judgment and first offense). Other attributes in this dataset include neighborhood characteristics obtained from census data, detailed types of offense, charge severity, case decisions, sentence lengths, year of filing etc. We also provide pseudo-identifiers for judge, county and zipcode. The dataset will not only enable researchers to more rigorously study algorithmic fairness in the context of criminal justice, but also relate algorithmic challenges with various systemic issues. We also discuss in detail the process of constructing the dataset and provide a datasheet. The WCLD dataset is available at https://clezdata.github.io/wcld/.
Searching for Scientific Evidence in a Pandemic: An Overview of TREC-COVID
We present an overview of the TREC-COVID Challenge, an information retrieval (IR) shared task to evaluate search on scientific literature related to COVID-19. The goals of TREC-COVID include the construction of a pandemic search test collection and the evaluation of IR methods for COVID-19. The challenge was conducted over five rounds from April to July, 2020, with participation from 92 unique teams and 556 individual submissions. A total of 50 topics (sets of related queries) were used in the evaluation, starting at 30 topics for Round 1 and adding 5 new topics per round to target emerging topics at that state of the still-emerging pandemic. This paper provides a comprehensive overview of the structure and results of TREC-COVID. Specifically, the paper provides details on the background, task structure, topic structure, corpus, participation, pooling, assessment, judgments, results, top-performing systems, lessons learned, and benchmark datasets.
Structural Text Segmentation of Legal Documents
The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange
MUSER: A Multi-View Similar Case Retrieval Dataset
Similar case retrieval (SCR) is a representative legal AI application that plays a pivotal role in promoting judicial fairness. However, existing SCR datasets only focus on the fact description section when judging the similarity between cases, ignoring other valuable sections (e.g., the court's opinion) that can provide insightful reasoning process behind. Furthermore, the case similarities are typically measured solely by the textual semantics of the fact descriptions, which may fail to capture the full complexity of legal cases from the perspective of legal knowledge. In this work, we present MUSER, a similar case retrieval dataset based on multi-view similarity measurement and comprehensive legal element with sentence-level legal element annotations. Specifically, we select three perspectives (legal fact, dispute focus, and law statutory) and build a comprehensive and structured label schema of legal elements for each of them, to enable accurate and knowledgeable evaluation of case similarities. The constructed dataset originates from Chinese civil cases and contains 100 query cases and 4,024 candidate cases. We implement several text classification algorithms for legal element prediction and various retrieval methods for retrieving similar cases on MUSER. The experimental results indicate that incorporating legal elements can benefit the performance of SCR models, but further efforts are still required to address the remaining challenges posed by MUSER. The source code and dataset are released at https://github.com/THUlawtech/MUSER.
Representer Point Selection for Explaining Regularized High-dimensional Models
We introduce a novel class of sample-based explanations we term high-dimensional representers, that can be used to explain the predictions of a regularized high-dimensional model in terms of importance weights for each of the training samples. Our workhorse is a novel representer theorem for general regularized high-dimensional models, which decomposes the model prediction in terms of contributions from each of the training samples: with positive (negative) values corresponding to positive (negative) impact training samples to the model's prediction. We derive consequences for the canonical instances of ell_1 regularized sparse models, and nuclear norm regularized low-rank models. As a case study, we further investigate the application of low-rank models in the context of collaborative filtering, where we instantiate high-dimensional representers for specific popular classes of models. Finally, we study the empirical performance of our proposed methods on three real-world binary classification datasets and two recommender system datasets. We also showcase the utility of high-dimensional representers in explaining model recommendations.
FreestyleRet: Retrieving Images from Style-Diversified Queries
Image Retrieval aims to retrieve corresponding images based on a given query. In application scenarios, users intend to express their retrieval intent through various query styles. However, current retrieval tasks predominantly focus on text-query retrieval exploration, leading to limited retrieval query options and potential ambiguity or bias in user intention. In this paper, we propose the Style-Diversified Query-Based Image Retrieval task, which enables retrieval based on various query styles. To facilitate the novel setting, we propose the first Diverse-Style Retrieval dataset, encompassing diverse query styles including text, sketch, low-resolution, and art. We also propose a light-weighted style-diversified retrieval framework. For various query style inputs, we apply the Gram Matrix to extract the query's textural features and cluster them into a style space with style-specific bases. Then we employ the style-init prompt tuning module to enable the visual encoder to comprehend the texture and style information of the query. Experiments demonstrate that our model, employing the style-init prompt tuning strategy, outperforms existing retrieval models on the style-diversified retrieval task. Moreover, style-diversified queries~(sketch+text, art+text, etc) can be simultaneously retrieved in our model. The auxiliary information from other queries enhances the retrieval performance within the respective query.
Dirichlet-based Per-Sample Weighting by Transition Matrix for Noisy Label Learning
For learning with noisy labels, the transition matrix, which explicitly models the relation between noisy label distribution and clean label distribution, has been utilized to achieve the statistical consistency of either the classifier or the risk. Previous researches have focused more on how to estimate this transition matrix well, rather than how to utilize it. We propose good utilization of the transition matrix is crucial and suggest a new utilization method based on resampling, coined RENT. Specifically, we first demonstrate current utilizations can have potential limitations for implementation. As an extension to Reweighting, we suggest the Dirichlet distribution-based per-sample Weight Sampling (DWS) framework, and compare reweighting and resampling under DWS framework. With the analyses from DWS, we propose RENT, a REsampling method with Noise Transition matrix. Empirically, RENT consistently outperforms existing transition matrix utilization methods, which includes reweighting, on various benchmark datasets. Our code is available at https://github.com/BaeHeeSun/RENT.
CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset
The cross-domain text-to-SQL task aims to build a system that can parse user questions into SQL on complete unseen databases, and the single-domain text-to-SQL task evaluates the performance on identical databases. Both of these setups confront unavoidable difficulties in real-world applications. To this end, we introduce the cross-schema text-to-SQL task, where the databases of evaluation data are different from that in the training data but come from the same domain. Furthermore, we present CSS, a large-scale CrosS-Schema Chinese text-to-SQL dataset, to carry on corresponding studies. CSS originally consisted of 4,340 question/SQL pairs across 2 databases. In order to generalize models to different medical systems, we extend CSS and create 19 new databases along with 29,280 corresponding dataset examples. Moreover, CSS is also a large corpus for single-domain Chinese text-to-SQL studies. We present the data collection approach and a series of analyses of the data statistics. To show the potential and usefulness of CSS, benchmarking baselines have been conducted and reported. Our dataset is publicly available at https://huggingface.co/datasets/zhanghanchong/css.
Sparse Canonical Correlation Analysis
We present a novel method for solving Canonical Correlation Analysis (CCA) in a sparse convex framework using a least squares approach. The presented method focuses on the scenario when one is interested in (or limited to) a primal representation for the first view while having a dual representation for the second view. Sparse CCA (SCCA) minimises the number of features used in both the primal and dual projections while maximising the correlation between the two views. The method is demonstrated on two paired corpuses of English-French and English-Spanish for mate-retrieval. We are able to observe, in the mate-retreival, that when the number of the original features is large SCCA outperforms Kernel CCA (KCCA), learning the common semantic space from a sparse set of features.
Time-Resolved fMRI Shared Response Model using Gaussian Process Factor Analysis
Multi-subject fMRI studies are challenging due to the high variability of both brain anatomy and functional brain topographies across participants. An effective way of aggregating multi-subject fMRI data is to extract a shared representation that filters out unwanted variability among subjects. Some recent work has implemented probabilistic models to extract a shared representation in task fMRI. In the present work, we improve upon these models by incorporating temporal information in the common latent structures. We introduce a new model, Shared Gaussian Process Factor Analysis (S-GPFA), that discovers shared latent trajectories and subject-specific functional topographies, while modelling temporal correlation in fMRI data. We demonstrate the efficacy of our model in revealing ground truth latent structures using simulated data, and replicate experimental performance of time-segment matching and inter-subject similarity on the publicly available Raider and Sherlock datasets. We further test the utility of our model by analyzing its learned model parameters in the large multi-site SPINS dataset, on a social cognition task from participants with and without schizophrenia.
On the Use of ArXiv as a Dataset
The arXiv has collected 1.5 million pre-print articles over 28 years, hosting literature from scientific fields including Physics, Mathematics, and Computer Science. Each pre-print features text, figures, authors, citations, categories, and other metadata. These rich, multi-modal features, combined with the natural graph structure---created by citation, affiliation, and co-authorship---makes the arXiv an exciting candidate for benchmarking next-generation models. Here we take the first necessary steps toward this goal, by providing a pipeline which standardizes and simplifies access to the arXiv's publicly available data. We use this pipeline to extract and analyze a 6.7 million edge citation graph, with an 11 billion word corpus of full-text research articles. We present some baseline classification results, and motivate application of more exciting generative graph models.
Towards Safer Operations: An Expert-involved Dataset of High-Pressure Gas Incidents for Preventing Future Failures
This paper introduces a new IncidentAI dataset for safety prevention. Different from prior corpora that usually contain a single task, our dataset comprises three tasks: named entity recognition, cause-effect extraction, and information retrieval. The dataset is annotated by domain experts who have at least six years of practical experience as high-pressure gas conservation managers. We validate the contribution of the dataset in the scenario of safety prevention. Preliminary results on the three tasks show that NLP techniques are beneficial for analyzing incident reports to prevent future failures. The dataset facilitates future research in NLP and incident management communities. The access to the dataset is also provided (the IncidentAI dataset is available at: https://github.com/Cinnamon/incident-ai-dataset).
U-CREAT: Unsupervised Case Retrieval using Events extrAcTion
The task of Prior Case Retrieval (PCR) in the legal domain is about automatically citing relevant (based on facts and precedence) prior legal cases in a given query case. To further promote research in PCR, in this paper, we propose a new large benchmark (in English) for the PCR task: IL-PCR (Indian Legal Prior Case Retrieval) corpus. Given the complex nature of case relevance and the long size of legal documents, BM25 remains a strong baseline for ranking the cited prior documents. In this work, we explore the role of events in legal case retrieval and propose an unsupervised retrieval method-based pipeline U-CREAT (Unsupervised Case Retrieval using Events Extraction). We find that the proposed unsupervised retrieval method significantly increases performance compared to BM25 and makes retrieval faster by a considerable margin, making it applicable to real-time case retrieval systems. Our proposed system is generic, we show that it generalizes across two different legal systems (Indian and Canadian), and it shows state-of-the-art performance on the benchmarks for both the legal systems (IL-PCR and COLIEE corpora).
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network
Large-scale data sets on scholarly publications are the basis for a variety of bibliometric analyses and natural language processing (NLP) applications. Especially data sets derived from publication's full-text have recently gained attention. While several such data sets already exist, we see key shortcomings in terms of their domain and time coverage, citation network completeness, and representation of full-text content. To address these points, we propose a new version of the data set unarXive. We base our data processing pipeline and output format on two existing data sets, and improve on each of them. Our resulting data set comprises 1.9 M publications spanning multiple disciplines and 32 years. It furthermore has a more complete citation network than its predecessors and retains a richer representation of document structure as well as non-textual publication content such as mathematical notation. In addition to the data set, we provide ready-to-use training/test data for citation recommendation and IMRaD classification. All data and source code is publicly available at https://github.com/IllDepence/unarXive.
Text-guided Foundation Model Adaptation for Pathological Image Classification
The recent surge of foundation models in computer vision and natural language processing opens up perspectives in utilizing multi-modal clinical data to train large models with strong generalizability. Yet pathological image datasets often lack biomedical text annotation and enrichment. Guiding data-efficient image diagnosis from the use of biomedical text knowledge becomes a substantial interest. In this paper, we propose to Connect Image and Text Embeddings (CITE) to enhance pathological image classification. CITE injects text insights gained from language models pre-trained with a broad range of biomedical texts, leading to adapt foundation models towards pathological image understanding. Through extensive experiments on the PatchGastric stomach tumor pathological image dataset, we demonstrate that CITE achieves leading performance compared with various baselines especially when training data is scarce. CITE offers insights into leveraging in-domain text knowledge to reinforce data-efficient pathological image classification. Code is available at https://github.com/Yunkun-Zhang/CITE.
Retrieval-Enhanced Machine Learning: Synthesis and Opportunities
In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
StoryDB: Broad Multi-language Narrative Dataset
This paper presents StoryDB - a broad multi-language dataset of narratives. StoryDB is a corpus of texts that includes stories in 42 different languages. Every language includes 500+ stories. Some of the languages include more than 20 000 stories. Every story is indexed across languages and labeled with tags such as a genre or a topic. The corpus shows rich topical and language variation and can serve as a resource for the study of the role of narrative in natural language processing across various languages including low resource ones. We also demonstrate how the dataset could be used to benchmark three modern multilanguage models, namely, mDistillBERT, mBERT, and XLM-RoBERTa.
Graphs are everywhere -- Psst! In Music Recommendation too
In recent years, graphs have gained prominence across various domains, especially in recommendation systems. Within the realm of music recommendation, graphs play a crucial role in enhancing genre-based recommendations by integrating Mel-Frequency Cepstral Coefficients (MFCC) with advanced graph embeddings. This study explores the efficacy of Graph Convolutional Networks (GCN), GraphSAGE, and Graph Transformer (GT) models in learning embeddings that effectively capture intricate relationships between music items and genres represented within graph structures. Through comprehensive empirical evaluations on diverse real-world music datasets, our findings consistently demonstrate that these graph-based approaches outperform traditional methods that rely solely on MFCC features or collaborative filtering techniques. Specifically, the graph-enhanced models achieve notably higher accuracy in predicting genre-specific preferences and offering relevant music suggestions to users. These results underscore the effectiveness of utilizing graph embeddings to enrich feature representations and exploit latent associations within music data, thereby illustrating their potential to advance the capabilities of personalized and context-aware music recommendation systems. Keywords: graphs, recommendation systems, neural networks, MFCC
UMMAN: Unsupervised Multi-graph Merge Adversarial Network for Disease Prediction Based on Intestinal Flora
The abundance of intestinal flora is closely related to human diseases, but diseases are not caused by a single gut microbe. Instead, they result from the complex interplay of numerous microbial entities. This intricate and implicit connection among gut microbes poses a significant challenge for disease prediction using abundance information from OTU data. Recently, several methods have shown potential in predicting corresponding diseases. However, these methods fail to learn the inner association among gut microbes from different hosts, leading to unsatisfactory performance. In this paper, we present a novel architecture, Unsupervised Multi-graph Merge Adversarial Network (UMMAN). UMMAN can obtain the embeddings of nodes in the Multi-Graph in an unsupervised scenario, so that it helps learn the multiplex association. Our method is the first to combine Graph Neural Network with the task of intestinal flora disease prediction. We employ complex relation-types to construct the Original-Graph and disrupt the relationships among nodes to generate corresponding Shuffled-Graph. We introduce the Node Feature Global Integration (NFGI) module to represent the global features of the graph. Furthermore, we design a joint loss comprising adversarial loss and hybrid attention loss to ensure that the real graph embedding aligns closely with the Original-Graph and diverges from the Shuffled-Graph. Comprehensive experiments on five classical OTU gut microbiome datasets demonstrate the effectiveness and stability of our method. (We will release our code soon.)
Train Once, Deploy Anywhere: Matryoshka Representation Learning for Multimodal Recommendation
Despite recent advancements in language and vision modeling, integrating rich multimodal knowledge into recommender systems continues to pose significant challenges. This is primarily due to the need for efficient recommendation, which requires adaptive and interactive responses. In this study, we focus on sequential recommendation and introduce a lightweight framework called full-scale Matryoshka representation learning for multimodal recommendation (fMRLRec). Our fMRLRec captures item features at different granularities, learning informative representations for efficient recommendation across multiple dimensions. To integrate item features from diverse modalities, fMRLRec employs a simple mapping to project multimodal item features into an aligned feature space. Additionally, we design an efficient linear transformation that embeds smaller features into larger ones, substantially reducing memory requirements for large-scale training on recommendation data. Combined with improved state space modeling techniques, fMRLRec scales to different dimensions and only requires one-time training to produce multiple models tailored to various granularities. We demonstrate the effectiveness and efficiency of fMRLRec on multiple benchmark datasets, which consistently achieves superior performance over state-of-the-art baseline methods. We make our code and data publicly available at https://github.com/yueqirex/fMRLRec.
SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications
We describe the SemEval task of extracting keyphrases and relations between them from scientific documents, which is crucial for understanding which publications describe which processes, tasks and materials. Although this was a new task, we had a total of 26 submissions across 3 evaluation scenarios. We expect the task and the findings reported in this paper to be relevant for researchers working on understanding scientific content, as well as the broader knowledge base population and information extraction communities.
Measuring Domain Knowledge for Early Prediction of Student Performance: A Semantic Approach
The growing popularity of data mining catalyses the researchers to explore various exciting aspects of education. Early prediction of student performance is an emerging area among them. The researchers have used various predictors in performance modelling studies. Although prior cognition can affect student performance, establishing their relationship is still an open research challenge. Quantifying the knowledge from readily available data is the major challenge here. We have proposed a semantic approach for this purpose. Association mining on nearly 0.35 million observations establishes that prior cognition impacts the student performance. The proposed approach of measuring domain knowledge can help the early performance modelling studies to use it as a predictor.
IDIAPers @ Causal News Corpus 2022: Efficient Causal Relation Identification Through a Prompt-based Few-shot Approach
In this paper, we describe our participation in the subtask 1 of CASE-2022, Event Causality Identification with Casual News Corpus. We address the Causal Relation Identification (CRI) task by exploiting a set of simple yet complementary techniques for fine-tuning language models (LMs) on a small number of annotated examples (i.e., a few-shot configuration). We follow a prompt-based prediction approach for fine-tuning LMs in which the CRI task is treated as a masked language modeling problem (MLM). This approach allows LMs natively pre-trained on MLM problems to directly generate textual responses to CRI-specific prompts. We compare the performance of this method against ensemble techniques trained on the entire dataset. Our best-performing submission was fine-tuned with only 256 instances per class, 15.7% of the all available data, and yet obtained the second-best precision (0.82), third-best accuracy (0.82), and an F1-score (0.85) very close to what was reported by the winner team (0.86).
Datasets for Large Language Models: A Comprehensive Survey
This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.
SMHD: A Large-Scale Resource for Exploring Online Language Usage for Multiple Mental Health Conditions
Mental health is a significant and growing public health concern. As language usage can be leveraged to obtain crucial insights into mental health conditions, there is a need for large-scale, labeled, mental health-related datasets of users who have been diagnosed with one or more of such conditions. In this paper, we investigate the creation of high-precision patterns to identify self-reported diagnoses of nine different mental health conditions, and obtain high-quality labeled data without the need for manual labelling. We introduce the SMHD (Self-reported Mental Health Diagnoses) dataset and make it available. SMHD is a novel large dataset of social media posts from users with one or multiple mental health conditions along with matched control users. We examine distinctions in users' language, as measured by linguistic and psychological variables. We further explore text classification methods to identify individuals with mental conditions through their language.
MiCRO: Multi-interest Candidate Retrieval Online
Providing personalized recommendations in an environment where items exhibit ephemerality and temporal relevancy (e.g. in social media) presents a few unique challenges: (1) inductively understanding ephemeral appeal for items in a setting where new items are created frequently, (2) adapting to trends within engagement patterns where items may undergo temporal shifts in relevance, (3) accurately modeling user preferences over this item space where users may express multiple interests. In this work we introduce MiCRO, a generative statistical framework that models multi-interest user preferences and temporal multi-interest item representations. Our framework is specifically formulated to adapt to both new items and temporal patterns of engagement. MiCRO demonstrates strong empirical performance on candidate retrieval experiments performed on two large scale user-item datasets: (1) an open-source temporal dataset of (User, User) follow interactions and (2) a temporal dataset of (User, Tweet) favorite interactions which we will open-source as an additional contribution to the community.
LegalLens: Leveraging LLMs for Legal Violation Identification in Unstructured Text
In this study, we focus on two main tasks, the first for detecting legal violations within unstructured textual data, and the second for associating these violations with potentially affected individuals. We constructed two datasets using Large Language Models (LLMs) which were subsequently validated by domain expert annotators. Both tasks were designed specifically for the context of class-action cases. The experimental design incorporated fine-tuning models from the BERT family and open-source LLMs, and conducting few-shot experiments using closed-source LLMs. Our results, with an F1-score of 62.69\% (violation identification) and 81.02\% (associating victims), show that our datasets and setups can be used for both tasks. Finally, we publicly release the datasets and the code used for the experiments in order to advance further research in the area of legal natural language processing (NLP).
DFIN-SQL: Integrating Focused Schema with DIN-SQL for Superior Accuracy in Large-Scale Databases
The task of converting natural language queries into SQL queries is intricate, necessitating a blend of precise techniques for an accurate translation. The DIN-SQL (Decomposed-In-Context SQL) methodology represents a significant development in this domain. This paper introduces DFIN (Decomposed Focused-In-Context), an innovative extension of DIN-SQL that enhances Text-to-SQL conversion by addressing schema linking errors, which are a major source of inaccuracies. DFIN uniquely alternates between prompting techniques and Retrieval-Augmented Generation (RAG), adapting to the size and complexity of the database schema. A preprocessing phase embeds database definitions and leverages annotated files, akin to those in the BIRD dataset, facilitating the runtime retrieval of pertinent schema information. This strategy significantly reduces the token count for schema linking prompts, enabling the use of a standard GPT-4 model over its larger context variant, thus handling large-scale databases more effectively and economically. Our evaluation on the BIRD dataset, a challenging real-world benchmark, demonstrates that DFIN not only scales efficiently but also improves accuracy, achieving a score of 51.69. This improvement surpasses DIN-SQL method (the current third-place), which is the highest-ranked model employing in-context learning rather than fine-tuning, previously scoring 50.72. The advancement of DFIN underscores the evolving capabilities of in-context learning methodologies combined with advanced language models, offering a promising avenue for future research in complex Text-to-SQL conversion tasks.
Towards Long-Context Time Series Foundation Models
Time series foundation models have shown impressive performance on a variety of tasks, across a wide range of domains, even in zero-shot settings. However, most of these models are designed to handle short univariate time series as an input. This limits their practical use, especially in domains such as healthcare with copious amounts of long and multivariate data with strong temporal and intra-variate dependencies. Our study bridges this gap by cataloging and systematically comparing various context expansion techniques from both language and time series domains, and introducing a novel compressive memory mechanism to allow encoder-only TSFMs to effectively model intra-variate dependencies. We demonstrate the benefits of our approach by imbuing MOMENT, a recent family of multi-task time series foundation models, with the multivariate context.
BIMCV-R: A Landmark Dataset for 3D CT Text-Image Retrieval
The burgeoning integration of 3D medical imaging into healthcare has led to a substantial increase in the workload of medical professionals. To assist clinicians in their diagnostic processes and alleviate their workload, the development of a robust system for retrieving similar case studies presents a viable solution. While the concept holds great promise, the field of 3D medical text-image retrieval is currently limited by the absence of robust evaluation benchmarks and curated datasets. To remedy this, our study presents a groundbreaking dataset, BIMCV-R (This dataset will be released upon acceptance.), which includes an extensive collection of 8,069 3D CT volumes, encompassing over 2 million slices, paired with their respective radiological reports. Expanding upon the foundational work of our dataset, we craft a retrieval strategy, MedFinder. This approach employs a dual-stream network architecture, harnessing the potential of large language models to advance the field of medical image retrieval beyond existing text-image retrieval solutions. It marks our preliminary step towards developing a system capable of facilitating text-to-image, image-to-text, and keyword-based retrieval tasks.
Annif at SemEval-2025 Task 5: Traditional XMTC augmented by LLMs
This paper presents the Annif system in SemEval-2025 Task 5 (LLMs4Subjects), which focussed on subject indexing using large language models (LLMs). The task required creating subject predictions for bibliographic records from the bilingual TIBKAT database using the GND subject vocabulary. Our approach combines traditional natural language processing and machine learning techniques implemented in the Annif toolkit with innovative LLM-based methods for translation and synthetic data generation, and merging predictions from monolingual models. The system ranked first in the all-subjects category and second in the tib-core-subjects category in the quantitative evaluation, and fourth in qualitative evaluations. These findings demonstrate the potential of combining traditional XMTC algorithms with modern LLM techniques to improve the accuracy and efficiency of subject indexing in multilingual contexts.
Biomedical Concept Relatedness -- A large EHR-based benchmark
A promising application of AI to healthcare is the retrieval of information from electronic health records (EHRs), e.g. to aid clinicians in finding relevant information for a consultation or to recruit suitable patients for a study. This requires search capabilities far beyond simple string matching, including the retrieval of concepts (diagnoses, symptoms, medications, etc.) related to the one in question. The suitability of AI methods for such applications is tested by predicting the relatedness of concepts with known relatedness scores. However, all existing biomedical concept relatedness datasets are notoriously small and consist of hand-picked concept pairs. We open-source a novel concept relatedness benchmark overcoming these issues: it is six times larger than existing datasets and concept pairs are chosen based on co-occurrence in EHRs, ensuring their relevance for the application of interest. We present an in-depth analysis of our new dataset and compare it to existing ones, highlighting that it is not only larger but also complements existing datasets in terms of the types of concepts included. Initial experiments with state-of-the-art embedding methods show that our dataset is a challenging new benchmark for testing concept relatedness models.
YT-30M: A multi-lingual multi-category dataset of YouTube comments
This paper introduces two large-scale multilingual comment datasets, YT-30M (and YT-100K) from YouTube. The analysis in this paper is performed on a smaller sample (YT-100K) of YT-30M. Both the datasets: YT-30M (full) and YT-100K (randomly selected 100K sample from YT-30M) are publicly released for further research. YT-30M (YT-100K) contains 32236173 (108694) comments posted by YouTube channel that belong to YouTube categories. Each comment is associated with a video ID, comment ID, commentor name, commentor channel ID, comment text, upvotes, original channel ID and category of the YouTube channel (e.g., 'News & Politics', 'Science & Technology', etc.).
A Dataset of German Legal Documents for Named Entity Recognition
We describe a dataset developed for Named Entity Recognition in German federal court decisions. It consists of approx. 67,000 sentences with over 2 million tokens. The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes: person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law, ordinance, European legal norm, regulation, contract, court decision, and legal literature. The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions. The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format, was developed for training an NER service for German legal documents in the EU project Lynx.
Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
Hierarchical Neural Networks for Sequential Sentence Classification in Medical Scientific Abstracts
Prevalent models based on artificial neural network (ANN) for sentence classification often classify sentences in isolation without considering the context in which sentences appear. This hampers the traditional sentence classification approaches to the problem of sequential sentence classification, where structured prediction is needed for better overall classification performance. In this work, we present a hierarchical sequential labeling network to make use of the contextual information within surrounding sentences to help classify the current sentence. Our model outperforms the state-of-the-art results by 2%-3% on two benchmarking datasets for sequential sentence classification in medical scientific abstracts.
Orthogonal Matrices for MBAT Vector Symbolic Architectures, and a "Soft" VSA Representation for JSON
Vector Symbolic Architectures (VSAs) give a way to represent a complex object as a single fixed-length vector, so that similar objects have similar vector representations. These vector representations then become easy to use for machine learning or nearest-neighbor search. We review a previously proposed VSA method, MBAT (Matrix Binding of Additive Terms), which uses multiplication by random matrices for binding related terms. However, multiplying by such matrices introduces instabilities which can harm performance. Making the random matrices be orthogonal matrices provably fixes this problem. With respect to larger scale applications, we see how to apply MBAT vector representations for any data expressed in JSON. JSON is used in numerous programming languages to express complex data, but its native format appears highly unsuited for machine learning. Expressing JSON as a fixed-length vector makes it readily usable for machine learning and nearest-neighbor search. Creating such JSON vectors also shows that a VSA needs to employ binding operations that are non-commutative. VSAs are now ready to try with full-scale practical applications, including healthcare, pharmaceuticals, and genomics. Keywords: MBAT (Matrix Binding of Additive Terms), VSA (Vector Symbolic Architecture), HDC (Hyperdimensional Computing), Distributed Representations, Binding, Orthogonal Matrices, Recurrent Connections, Machine Learning, Search, JSON, VSA Applications
Language-Based User Profiles for Recommendation
Most conventional recommendation methods (e.g., matrix factorization) represent user profiles as high-dimensional vectors. Unfortunately, these vectors lack interpretability and steerability, and often perform poorly in cold-start settings. To address these shortcomings, we explore the use of user profiles that are represented as human-readable text. We propose the Language-based Factorization Model (LFM), which is essentially an encoder/decoder model where both the encoder and the decoder are large language models (LLMs). The encoder LLM generates a compact natural-language profile of the user's interests from the user's rating history. The decoder LLM uses this summary profile to complete predictive downstream tasks. We evaluate our LFM approach on the MovieLens dataset, comparing it against matrix factorization and an LLM model that directly predicts from the user's rating history. In cold-start settings, we find that our method can have higher accuracy than matrix factorization. Furthermore, we find that generating a compact and human-readable summary often performs comparably with or better than direct LLM prediction, while enjoying better interpretability and shorter model input length. Our results motivate a number of future research directions and potential improvements.
Foundations of Vector Retrieval
Vectors are universal mathematical objects that can represent text, images, speech, or a mix of these data modalities. That happens regardless of whether data is represented by hand-crafted features or learnt embeddings. Collect a large enough quantity of such vectors and the question of retrieval becomes urgently relevant: Finding vectors that are more similar to a query vector. This monograph is concerned with the question above and covers fundamental concepts along with advanced data structures and algorithms for vector retrieval. In doing so, it recaps this fascinating topic and lowers barriers of entry into this rich area of research.
Classifying Dyads for Militarized Conflict Analysis
Understanding the origins of militarized conflict is a complex, yet important undertaking. Existing research seeks to build this understanding by considering bi-lateral relationships between entity pairs (dyadic causes) and multi-lateral relationships among multiple entities (systemic causes). The aim of this work is to compare these two causes in terms of how they correlate with conflict between two entities. We do this by devising a set of textual and graph-based features which represent each of the causes. The features are extracted from Wikipedia and modeled as a large graph. Nodes in this graph represent entities connected by labeled edges representing ally or enemy-relationships. This allows casting the problem as an edge classification task, which we term dyad classification. We propose and evaluate classifiers to determine if a particular pair of entities are allies or enemies. Our results suggest that our systemic features might be slightly better correlates of conflict. Further, we find that Wikipedia articles of allies are semantically more similar than enemies.
MuLMS: A Multi-Layer Annotated Text Corpus for Information Extraction in the Materials Science Domain
Keeping track of all relevant recent publications and experimental results for a research area is a challenging task. Prior work has demonstrated the efficacy of information extraction models in various scientific areas. Recently, several datasets have been released for the yet understudied materials science domain. However, these datasets focus on sub-problems such as parsing synthesis procedures or on sub-domains, e.g., solid oxide fuel cells. In this resource paper, we present MuLMS, a new dataset of 50 open-access articles, spanning seven sub-domains of materials science. The corpus has been annotated by domain experts with several layers ranging from named entities over relations to frame structures. We present competitive neural models for all tasks and demonstrate that multi-task training with existing related resources leads to benefits.
Order Matters: Sequence to sequence for sets
Sequences have become first class citizens in supervised learning thanks to the resurgence of recurrent neural networks. Many complex tasks that require mapping from or to a sequence of observations can now be formulated with the sequence-to-sequence (seq2seq) framework which employs the chain rule to efficiently represent the joint probability of sequences. In many cases, however, variable sized inputs and/or outputs might not be naturally expressed as sequences. For instance, it is not clear how to input a set of numbers into a model where the task is to sort them; similarly, we do not know how to organize outputs when they correspond to random variables and the task is to model their unknown joint probability. In this paper, we first show using various examples that the order in which we organize input and/or output data matters significantly when learning an underlying model. We then discuss an extension of the seq2seq framework that goes beyond sequences and handles input sets in a principled way. In addition, we propose a loss which, by searching over possible orders during training, deals with the lack of structure of output sets. We show empirical evidence of our claims regarding ordering, and on the modifications to the seq2seq framework on benchmark language modeling and parsing tasks, as well as two artificial tasks -- sorting numbers and estimating the joint probability of unknown graphical models.
CitePrompt: Using Prompts to Identify Citation Intent in Scientific Papers
Citations in scientific papers not only help us trace the intellectual lineage but also are a useful indicator of the scientific significance of the work. Citation intents prove beneficial as they specify the role of the citation in a given context. In this paper, we present CitePrompt, a framework which uses the hitherto unexplored approach of prompt-based learning for citation intent classification. We argue that with the proper choice of the pretrained language model, the prompt template, and the prompt verbalizer, we can not only get results that are better than or comparable to those obtained with the state-of-the-art methods but also do it with much less exterior information about the scientific document. We report state-of-the-art results on the ACL-ARC dataset, and also show significant improvement on the SciCite dataset over all baseline models except one. As suitably large labelled datasets for citation intent classification can be quite hard to find, in a first, we propose the conversion of this task to the few-shot and zero-shot settings. For the ACL-ARC dataset, we report a 53.86% F1 score for the zero-shot setting, which improves to 63.61% and 66.99% for the 5-shot and 10-shot settings, respectively.
Exploring the cloud of feature interaction scores in a Rashomon set
Interactions among features are central to understanding the behavior of machine learning models. Recent research has made significant strides in detecting and quantifying feature interactions in single predictive models. However, we argue that the feature interactions extracted from a single pre-specified model may not be trustworthy since: a well-trained predictive model may not preserve the true feature interactions and there exist multiple well-performing predictive models that differ in feature interaction strengths. Thus, we recommend exploring feature interaction strengths in a model class of approximately equally accurate predictive models. In this work, we introduce the feature interaction score (FIS) in the context of a Rashomon set, representing a collection of models that achieve similar accuracy on a given task. We propose a general and practical algorithm to calculate the FIS in the model class. We demonstrate the properties of the FIS via synthetic data and draw connections to other areas of statistics. Additionally, we introduce a Halo plot for visualizing the feature interaction variance in high-dimensional space and a swarm plot for analyzing FIS in a Rashomon set. Experiments with recidivism prediction and image classification illustrate how feature interactions can vary dramatically in importance for similarly accurate predictive models. Our results suggest that the proposed FIS can provide valuable insights into the nature of feature interactions in machine learning models.
LLM as Dataset Analyst: Subpopulation Structure Discovery with Large Language Model
The distribution of subpopulations is an important property hidden within a dataset. Uncovering and analyzing the subpopulation distribution within datasets provides a comprehensive understanding of the datasets, standing as a powerful tool beneficial to various downstream tasks, including Dataset Subpopulation Organization, Subpopulation Shift, and Slice Discovery. Despite its importance, there has been no work that systematically explores the subpopulation distribution of datasets to our knowledge. To address the limitation and solve all the mentioned tasks in a unified way, we introduce a novel concept of subpopulation structures to represent, analyze, and utilize subpopulation distributions within datasets. To characterize the structures in an interpretable manner, we propose the Subpopulation Structure Discovery with Large Language Models (SSD-LLM) framework, which employs world knowledge and instruction-following capabilities of Large Language Models (LLMs) to linguistically analyze informative image captions and summarize the structures. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery.
S^3 -- Semantic Signal Separation
Topic models are useful tools for discovering latent semantic structures in large textual corpora. Topic modeling historically relied on bag-of-words representations of language. This approach makes models sensitive to the presence of stop words and noise, and does not utilize potentially useful contextual information. Recent efforts have been oriented at incorporating contextual neural representations in topic modeling and have been shown to outperform classical topic models. These approaches are, however, typically slow, volatile and still require preprocessing for optimal results. We present Semantic Signal Separation (S^3), a theory-driven topic modeling approach in neural embedding spaces. S^3 conceptualizes topics as independent axes of semantic space, and uncovers these with blind-source separation. Our approach provides the most diverse, highly coherent topics, requires no preprocessing, and is demonstrated to be the fastest contextually sensitive topic model to date. We offer an implementation of S^3, among other approaches, in the Turftopic Python package.
Matching Table Metadata with Business Glossaries Using Large Language Models
Enterprises often own large collections of structured data in the form of large databases or an enterprise data lake. Such data collections come with limited metadata and strict access policies that could limit access to the data contents and, therefore, limit the application of classic retrieval and analysis solutions. As a result, there is a need for solutions that can effectively utilize the available metadata. In this paper, we study the problem of matching table metadata to a business glossary containing data labels and descriptions. The resulting matching enables the use of an available or curated business glossary for retrieval and analysis without or before requesting access to the data contents. One solution to this problem is to use manually-defined rules or similarity measures on column names and glossary descriptions (or their vector embeddings) to find the closest match. However, such approaches need to be tuned through manual labeling and cannot handle many business glossaries that contain a combination of simple as well as complex and long descriptions. In this work, we leverage the power of large language models (LLMs) to design generic matching methods that do not require manual tuning and can identify complex relations between column names and glossaries. We propose methods that utilize LLMs in two ways: a) by generating additional context for column names that can aid with matching b) by using LLMs to directly infer if there is a relation between column names and glossary descriptions. Our preliminary experimental results show the effectiveness of our proposed methods.
ERNIE 2.0: A Continual Pre-training Framework for Language Understanding
Recently, pre-trained models have achieved state-of-the-art results in various language understanding tasks, which indicates that pre-training on large-scale corpora may play a crucial role in natural language processing. Current pre-training procedures usually focus on training the model with several simple tasks to grasp the co-occurrence of words or sentences. However, besides co-occurring, there exists other valuable lexical, syntactic and semantic information in training corpora, such as named entity, semantic closeness and discourse relations. In order to extract to the fullest extent, the lexical, syntactic and semantic information from training corpora, we propose a continual pre-training framework named ERNIE 2.0 which builds and learns incrementally pre-training tasks through constant multi-task learning. Experimental results demonstrate that ERNIE 2.0 outperforms BERT and XLNet on 16 tasks including English tasks on GLUE benchmarks and several common tasks in Chinese. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE.
Infinite Feature Selection: A Graph-based Feature Filtering Approach
We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process.
CLUENER2020: Fine-grained Named Entity Recognition Dataset and Benchmark for Chinese
In this paper, we introduce the NER dataset from CLUE organization (CLUENER2020), a well-defined fine-grained dataset for named entity recognition in Chinese. CLUENER2020 contains 10 categories. Apart from common labels like person, organization, and location, it contains more diverse categories. It is more challenging than current other Chinese NER datasets and could better reflect real-world applications. For comparison, we implement several state-of-the-art baselines as sequence labeling tasks and report human performance, as well as its analysis. To facilitate future work on fine-grained NER for Chinese, we release our dataset, baselines, and leader-board.
Representation, Exploration and Recommendation of Music Playlists
Playlists have become a significant part of our listening experience because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in the usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing, have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. We can apply similar concepts to music to learn fixed length representations for playlists and use those representations for downstream tasks such as playlist discovery, browsing, and recommendation. In this work, we formulate the problem of learning a fixed-length playlist representation in an unsupervised manner, using Sequence-to-sequence (Seq2seq) models, interpreting playlists as sentences and songs as words. We compare our model with two other encoding architectures for baseline comparison. We evaluate our work using the suite of tasks commonly used for assessing sentence embeddings, along with a few additional tasks pertaining to music, and a recommendation task to study the traits captured by the playlist embeddings and their effectiveness for the purpose of music recommendation.
Mycorrhiza: Genotype Assignment usingPhylogenetic Networks
Motivation The genotype assignment problem consists of predicting, from the genotype of an individual, which of a known set of populations it originated from. The problem arises in a variety of contexts, including wildlife forensics, invasive species detection and biodiversity monitoring. Existing approaches perform well under ideal conditions but are sensitive to a variety of common violations of the assumptions they rely on. Results In this article, we introduce Mycorrhiza, a machine learning approach for the genotype assignment problem. Our algorithm makes use of phylogenetic networks to engineer features that encode the evolutionary relationships among samples. Those features are then used as input to a Random Forests classifier. The classification accuracy was assessed on multiple published empirical SNP, microsatellite or consensus sequence datasets with wide ranges of size, geographical distribution and population structure and on simulated datasets. It compared favorably against widely used assessment tests or mixture analysis methods such as STRUCTURE and Admixture, and against another machine-learning based approach using principal component analysis for dimensionality reduction. Mycorrhiza yields particularly significant gains on datasets with a large average fixation index (FST) or deviation from the Hardy-Weinberg equilibrium. Moreover, the phylogenetic network approach estimates mixture proportions with good accuracy.
A Named Entity Based Approach to Model Recipes
Traditional cooking recipes follow a structure which can be modelled very well if the rules and semantics of the different sections of the recipe text are analyzed and represented accurately. We propose a structure that can accurately represent the recipe as well as a pipeline to infer the best representation of the recipe in this uniform structure. The Ingredients section in a recipe typically lists down the ingredients required and corresponding attributes such as quantity, temperature, and processing state. This can be modelled by defining these attributes and their values. The physical entities which make up a recipe can be broadly classified into utensils, ingredients and their combinations that are related by cooking techniques. The instruction section lists down a series of events in which a cooking technique or process is applied upon these utensils and ingredients. We model these relationships in the form of tuples. Thus, using a combination of these methods we model cooking recipe in the dataset RecipeDB to show the efficacy of our method. This mined information model can have several applications which include translating recipes between languages, determining similarity between recipes, generation of novel recipes and estimation of the nutritional profile of recipes. For the purpose of recognition of ingredient attributes, we train the Named Entity Relationship (NER) models and analyze the inferences with the help of K-Means clustering. Our model presented with an F1 score of 0.95 across all datasets. We use a similar NER tagging model for labelling cooking techniques (F1 score = 0.88) and utensils (F1 score = 0.90) within the instructions section. Finally, we determine the temporal sequence of relationships between ingredients, utensils and cooking techniques for modeling the instruction steps.
Otter-Knowledge: benchmarks of multimodal knowledge graph representation learning from different sources for drug discovery
Recent research in representation learning utilizes large databases of proteins or molecules to acquire knowledge of drug and protein structures through unsupervised learning techniques. These pre-trained representations have proven to significantly enhance the accuracy of subsequent tasks, such as predicting the affinity between drugs and target proteins. In this study, we demonstrate that by incorporating knowledge graphs from diverse sources and modalities into the sequences or SMILES representation, we can further enrich the representation and achieve state-of-the-art results on established benchmark datasets. We provide preprocessed and integrated data obtained from 7 public sources, which encompass over 30M triples. Additionally, we make available the pre-trained models based on this data, along with the reported outcomes of their performance on three widely-used benchmark datasets for drug-target binding affinity prediction found in the Therapeutic Data Commons (TDC) benchmarks. Additionally, we make the source code for training models on benchmark datasets publicly available. Our objective in releasing these pre-trained models, accompanied by clean data for model pretraining and benchmark results, is to encourage research in knowledge-enhanced representation learning.
Is Cosine-Similarity of Embeddings Really About Similarity?
Cosine-similarity is the cosine of the angle between two vectors, or equivalently the dot product between their normalizations. A popular application is to quantify semantic similarity between high-dimensional objects by applying cosine-similarity to a learned low-dimensional feature embedding. This can work better but sometimes also worse than the unnormalized dot-product between embedded vectors in practice. To gain insight into this empirical observation, we study embeddings derived from regularized linear models, where closed-form solutions facilitate analytical insights. We derive analytically how cosine-similarity can yield arbitrary and therefore meaningless `similarities.' For some linear models the similarities are not even unique, while for others they are implicitly controlled by the regularization. We discuss implications beyond linear models: a combination of different regularizations are employed when learning deep models; these have implicit and unintended effects when taking cosine-similarities of the resulting embeddings, rendering results opaque and possibly arbitrary. Based on these insights, we caution against blindly using cosine-similarity and outline alternatives.
Large Language Model Evaluation via Matrix Nuclear-Norm
As large language models (LLMs) continue to evolve, efficient evaluation metrics are vital for assessing their ability to compress information and reduce redundancy. While traditional metrics like Matrix Entropy offer valuable insights, they are computationally intensive for large-scale models due to their \( O(n^3) \) time complexity with Singular Value Decomposition (SVD). To mitigate this issue, we introduce the Matrix Nuclear-Norm, which not only serves as a metric to quantify the data compression proficiency of LLM but also provides a convex approximation of matrix rank to capture both predictive discriminability and diversity. By employing the \( L_{1,2}-norm \) to further approximate the nuclear norm, we can effectively assess the model's information compression capabilities. This approach reduces the time complexity to \( O(n^2) \) and eliminates the need for SVD computation. Consequently, the Matrix Nuclear-Norm achieves speeds 8 to 24 times faster than Matrix Entropy for the CEREBRAS-GPT model as sizes increase from 111M to 6.7B. This performance gap becomes more pronounced with larger models, as validated in tests with other models like Pythia. Additionally, evaluations on benchmarks and model responses confirm that our proposed Matrix Nuclear-Norm is a reliable, scalable, and efficient tool for assessing LLMs' performance, striking a balance between accuracy and computational efficiency. The code is available at https://github.com/MLGroupJLU/MatrixNuclearNorm.
A Survey on Large Language Models for Recommendation
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration. We have also created a GitHub repository to index relevant papers on LLMs for recommendation, https://github.com/WLiK/LLM4Rec.
ConceptCarve: Dynamic Realization of Evidence
Finding evidence for human opinion and behavior at scale is a challenging task, often requiring an understanding of sophisticated thought patterns among vast online communities found on social media. For example, studying how gun ownership is related to the perception of Freedom, requires a retrieval system that can operate at scale over social media posts, while dealing with two key challenges: (1) identifying abstract concept instances, (2) which can be instantiated differently across different communities. To address these, we introduce ConceptCarve, an evidence retrieval framework that utilizes traditional retrievers and LLMs to dynamically characterize the search space during retrieval. Our experiments show that ConceptCarve surpasses traditional retrieval systems in finding evidence within a social media community. It also produces an interpretable representation of the evidence for that community, which we use to qualitatively analyze complex thought patterns that manifest differently across the communities.
Comparing Dataset Characteristics that Favor the Apriori, Eclat or FP-Growth Frequent Itemset Mining Algorithms
Frequent itemset mining is a popular data mining technique. Apriori, Eclat, and FP-Growth are among the most common algorithms for frequent itemset mining. Considerable research has been performed to compare the relative performance between these three algorithms, by evaluating the scalability of each algorithm as the dataset size increases. While scalability as data size increases is important, previous papers have not examined the performance impact of similarly sized datasets that contain different itemset characteristics. This paper explores the effects that two dataset characteristics can have on the performance of these three frequent itemset algorithms. To perform this empirical analysis, a dataset generator is created to measure the effects of frequent item density and the maximum transaction size on performance. The generated datasets contain the same number of rows. This provides some insight into dataset characteristics that are conducive to each algorithm. The results of this paper's research demonstrate Eclat and FP-Growth both handle increases in maximum transaction size and frequent itemset density considerably better than the Apriori algorithm. This paper explores the effects that two dataset characteristics can have on the performance of these three frequent itemset algorithms. To perform this empirical analysis, a dataset generator is created to measure the effects of frequent item density and the maximum transaction size on performance. The generated datasets contain the same number of rows. This provides some insight into dataset characteristics that are conducive to each algorithm. The results of this paper's research demonstrate Eclat and FP-Growth both handle increases in maximum transaction size and frequent itemset density considerably better than the Apriori algorithm.
PMIndiaSum: Multilingual and Cross-lingual Headline Summarization for Languages in India
This paper introduces PMIndiaSum, a new multilingual and massively parallel headline summarization corpus focused on languages in India. Our corpus covers four language families, 14 languages, and the largest to date, 196 language pairs. It provides a testing ground for all cross-lingual pairs. We detail our workflow to construct the corpus, including data acquisition, processing, and quality assurance. Furthermore, we publish benchmarks for monolingual, cross-lingual, and multilingual summarization by fine-tuning, prompting, as well as translate-and-summarize. Experimental results confirm the crucial role of our data in aiding the summarization of Indian texts. Our dataset is publicly available and can be freely modified and re-distributed.
Robust Graph Structure Learning via Multiple Statistical Tests
Graph structure learning aims to learn connectivity in a graph from data. It is particularly important for many computer vision related tasks since no explicit graph structure is available for images for most cases. A natural way to construct a graph among images is to treat each image as a node and assign pairwise image similarities as weights to corresponding edges. It is well known that pairwise similarities between images are sensitive to the noise in feature representations, leading to unreliable graph structures. We address this problem from the viewpoint of statistical tests. By viewing the feature vector of each node as an independent sample, the decision of whether creating an edge between two nodes based on their similarity in feature representation can be thought as a {it single} statistical test. To improve the robustness in the decision of creating an edge, multiple samples are drawn and integrated by {it multiple} statistical tests to generate a more reliable similarity measure, consequentially more reliable graph structure. The corresponding elegant matrix form named B-Attention is designed for efficiency. The effectiveness of multiple tests for graph structure learning is verified both theoretically and empirically on multiple clustering and ReID benchmark datasets. Source codes are available at https://github.com/Thomas-wyh/B-Attention.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset
We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questions---sampled from Bing's search query logs---each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages---extracted from 3,563,535 web documents retrieved by Bing---that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models.
Unsupervised Matching of Data and Text
Entity resolution is a widely studied problem with several proposals to match records across relations. Matching textual content is a widespread task in many applications, such as question answering and search. While recent methods achieve promising results for these two tasks, there is no clear solution for the more general problem of matching textual content and structured data. We introduce a framework that supports this new task in an unsupervised setting for any pair of corpora, being relational tables or text documents. Our method builds a fine-grained graph over the content of the corpora and derives word embeddings to represent the objects to match in a low dimensional space. The learned representation enables effective and efficient matching at different granularity, from relational tuples to text sentences and paragraphs. Our flexible framework can exploit pre-trained resources, but it does not depends on their existence and achieves better quality performance in matching content when the vocabulary is domain specific. We also introduce optimizations in the graph creation process with an "expand and compress" approach that first identifies new valid relationships across elements, to improve matching, and then prunes nodes and edges, to reduce the graph size. Experiments on real use cases and public datasets show that our framework produces embeddings that outperform word embeddings and fine-tuned language models both in results' quality and in execution times.
Learning High-Quality and General-Purpose Phrase Representations
Phrase representations play an important role in data science and natural language processing, benefiting various tasks like Entity Alignment, Record Linkage, Fuzzy Joins, and Paraphrase Classification. The current state-of-the-art method involves fine-tuning pre-trained language models for phrasal embeddings using contrastive learning. However, we have identified areas for improvement. First, these pre-trained models tend to be unnecessarily complex and require to be pre-trained on a corpus with context sentences. Second, leveraging the phrase type and morphology gives phrase representations that are both more precise and more flexible. We propose an improved framework to learn phrase representations in a context-free fashion. The framework employs phrase type classification as an auxiliary task and incorporates character-level information more effectively into the phrase representation. Furthermore, we design three granularities of data augmentation to increase the diversity of training samples. Our experiments across a wide range of tasks show that our approach generates superior phrase embeddings compared to previous methods while requiring a smaller model size. The code is available at \faGithub~ https://github.com/tigerchen52/PEARL abstract
A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval Techniques
Recent developments in representational learning for information retrieval can be organized in a conceptual framework that establishes two pairs of contrasts: sparse vs. dense representations and unsupervised vs. learned representations. Sparse learned representations can further be decomposed into expansion and term weighting components. This framework allows us to understand the relationship between recently proposed techniques such as DPR, ANCE, DeepCT, DeepImpact, and COIL, and furthermore, gaps revealed by our analysis point to "low hanging fruit" in terms of techniques that have yet to be explored. We present a novel technique dubbed "uniCOIL", a simple extension of COIL that achieves to our knowledge the current state-of-the-art in sparse retrieval on the popular MS MARCO passage ranking dataset. Our implementation using the Anserini IR toolkit is built on the Lucene search library and thus fully compatible with standard inverted indexes.
Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces
Knowledge graph embedding (KGE) is an increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
SemEval-2023 Task 7: Multi-Evidence Natural Language Inference for Clinical Trial Data
This paper describes the results of SemEval 2023 task 7 -- Multi-Evidence Natural Language Inference for Clinical Trial Data (NLI4CT) -- consisting of 2 tasks, a Natural Language Inference (NLI) task, and an evidence selection task on clinical trial data. The proposed challenges require multi-hop biomedical and numerical reasoning, which are of significant importance to the development of systems capable of large-scale interpretation and retrieval of medical evidence, to provide personalized evidence-based care. Task 1, the entailment task, received 643 submissions from 40 participants, and Task 2, the evidence selection task, received 364 submissions from 23 participants. The tasks are challenging, with the majority of submitted systems failing to significantly outperform the majority class baseline on the entailment task, and we observe significantly better performance on the evidence selection task than on the entailment task. Increasing the number of model parameters leads to a direct increase in performance, far more significant than the effect of biomedical pre-training. Future works could explore the limitations of large models for generalization and numerical inference, and investigate methods to augment clinical datasets to allow for more rigorous testing and to facilitate fine-tuning. We envisage that the dataset, models, and results of this task will be useful to the biomedical NLI and evidence retrieval communities. The dataset, competition leaderboard, and website are publicly available.
Untangling Gaussian Mixtures
Tangles were originally introduced as a concept to formalize regions of high connectivity in graphs. In recent years, they have also been discovered as a link between structural graph theory and data science: when interpreting similarity in data sets as connectivity between points, finding clusters in the data essentially amounts to finding tangles in the underlying graphs. This paper further explores the potential of tangles in data sets as a means for a formal study of clusters. Real-world data often follow a normal distribution. Accounting for this, we develop a quantitative theory of tangles in data sets drawn from Gaussian mixtures. To this end, we equip the data with a graph structure that models similarity between the points and allows us to apply tangle theory to the data. We provide explicit conditions under which tangles associated with the marginal Gaussian distributions exist asymptotically almost surely. This can be considered as a sufficient formal criterion for the separabability of clusters in the data.
Relation-aware Ensemble Learning for Knowledge Graph Embedding
Knowledge graph (KG) embedding is a fundamental task in natural language processing, and various methods have been proposed to explore semantic patterns in distinctive ways. In this paper, we propose to learn an ensemble by leveraging existing methods in a relation-aware manner. However, exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods. To address this issue, we propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently. This algorithm has the same computation cost as general ensemble methods but with much better performance. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed method in efficiently searching relation-aware ensemble weights and achieving state-of-the-art embedding performance. The code is public at https://github.com/LARS-research/RelEns.
kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval
Candidate generation is the first stage in recommendation systems, where a light-weight system is used to retrieve potentially relevant items for an input user. These candidate items are then ranked and pruned in later stages of recommender systems using a more complex ranking model. Since candidate generation is the top of the recommendation funnel, it is important to retrieve a high-recall candidate set to feed into downstream ranking models. A common approach for candidate generation is to leverage approximate nearest neighbor (ANN) search from a single dense query embedding; however, this approach this can yield a low-diversity result set with many near duplicates. As users often have multiple interests, candidate retrieval should ideally return a diverse set of candidates reflective of the user's multiple interests. To this end, we introduce kNN-Embed, a general approach to improving diversity in dense ANN-based retrieval. kNN-Embed represents each user as a smoothed mixture over learned item clusters that represent distinct `interests' of the user. By querying each of a user's mixture component in proportion to their mixture weights, we retrieve a high-diversity set of candidates reflecting elements from each of a user's interests. We experimentally compare kNN-Embed to standard ANN candidate retrieval, and show significant improvements in overall recall and improved diversity across three datasets. Accompanying this work, we open source a large Twitter follow-graph dataset, to spur further research in graph-mining and representation learning for recommender systems.
ESCOXLM-R: Multilingual Taxonomy-driven Pre-training for the Job Market Domain
The increasing number of benchmarks for Natural Language Processing (NLP) tasks in the computational job market domain highlights the demand for methods that can handle job-related tasks such as skill extraction, skill classification, job title classification, and de-identification. While some approaches have been developed that are specific to the job market domain, there is a lack of generalized, multilingual models and benchmarks for these tasks. In this study, we introduce a language model called ESCOXLM-R, based on XLM-R, which uses domain-adaptive pre-training on the European Skills, Competences, Qualifications and Occupations (ESCO) taxonomy, covering 27 languages. The pre-training objectives for ESCOXLM-R include dynamic masked language modeling and a novel additional objective for inducing multilingual taxonomical ESCO relations. We comprehensively evaluate the performance of ESCOXLM-R on 6 sequence labeling and 3 classification tasks in 4 languages and find that it achieves state-of-the-art results on 6 out of 9 datasets. Our analysis reveals that ESCOXLM-R performs better on short spans and outperforms XLM-R on entity-level and surface-level span-F1, likely due to ESCO containing short skill and occupation titles, and encoding information on the entity-level.
Integrating Knowledge Graph embedding and pretrained Language Models in Hypercomplex Spaces
Knowledge Graphs, such as Wikidata, comprise structural and textual knowledge in order to represent knowledge. For each of the two modalities dedicated approaches for graph embedding and language models learn patterns that allow for predicting novel structural knowledge. Few approaches have integrated learning and inference with both modalities and these existing ones could only partially exploit the interaction of structural and textual knowledge. In our approach, we build on existing strong representations of single modalities and we use hypercomplex algebra to represent both, (i), single-modality embedding as well as, (ii), the interaction between different modalities and their complementary means of knowledge representation. More specifically, we suggest Dihedron and Quaternion representations of 4D hypercomplex numbers to integrate four modalities namely structural knowledge graph embedding, word-level representations (e.g.\ Word2vec, Fasttext), sentence-level representations (Sentence transformer), and document-level representations (sentence transformer, Doc2vec). Our unified vector representation scores the plausibility of labelled edges via Hamilton and Dihedron products, thus modeling pairwise interactions between different modalities. Extensive experimental evaluation on standard benchmark datasets shows the superiority of our two new models using abundant textual information besides sparse structural knowledge to enhance performance in link prediction tasks.
Large Language Models Struggle to Learn Long-Tail Knowledge
The internet contains a wealth of knowledge -- from the birthdays of historical figures to tutorials on how to code -- all of which may be learned by language models. However, there is a huge variability in the number of times a given piece of information appears on the web. In this paper, we study the relationship between the knowledge memorized by large language models and the information in their pre-training datasets. In particular, we show that a language model's ability to answer a fact-based question relates to how many documents associated with that question were seen during pre-training. We identify these relevant documents by entity linking pre-training datasets and counting documents that contain the same entities as a given question-answer pair. Our results demonstrate strong correlational and causal relationships between accuracy and relevant document count for numerous question answering datasets (e.g., TriviaQA), pre-training corpora (e.g., ROOTS), and model sizes (e.g., 176B parameters). Moreover, we find that while larger models are better at learning long-tail knowledge, we estimate that today's models must be scaled by many orders of magnitude to reach competitive QA performance on questions with little support in the pre-training data. Finally, we show that retrieval-augmentation can reduce the dependence on relevant document count, presenting a promising approach for capturing the long-tail.
OutRank: Speeding up AutoML-based Model Search for Large Sparse Data sets with Cardinality-aware Feature Ranking
The design of modern recommender systems relies on understanding which parts of the feature space are relevant for solving a given recommendation task. However, real-world data sets in this domain are often characterized by their large size, sparsity, and noise, making it challenging to identify meaningful signals. Feature ranking represents an efficient branch of algorithms that can help address these challenges by identifying the most informative features and facilitating the automated search for more compact and better-performing models (AutoML). We introduce OutRank, a system for versatile feature ranking and data quality-related anomaly detection. OutRank was built with categorical data in mind, utilizing a variant of mutual information that is normalized with regard to the noise produced by features of the same cardinality. We further extend the similarity measure by incorporating information on feature similarity and combined relevance. The proposed approach's feasibility is demonstrated by speeding up the state-of-the-art AutoML system on a synthetic data set with no performance loss. Furthermore, we considered a real-life click-through-rate prediction data set where it outperformed strong baselines such as random forest-based approaches. The proposed approach enables exploration of up to 300% larger feature spaces compared to AutoML-only approaches, enabling faster search for better models on off-the-shelf hardware.
What Makes Sentences Semantically Related: A Textual Relatedness Dataset and Empirical Study
The degree of semantic relatedness of two units of language has long been considered fundamental to understanding meaning. Additionally, automatically determining relatedness has many applications such as question answering and summarization. However, prior NLP work has largely focused on semantic similarity, a subset of relatedness, because of a lack of relatedness datasets. In this paper, we introduce a dataset for Semantic Textual Relatedness, STR-2022, that has 5,500 English sentence pairs manually annotated using a comparative annotation framework, resulting in fine-grained scores. We show that human intuition regarding relatedness of sentence pairs is highly reliable, with a repeat annotation correlation of 0.84. We use the dataset to explore questions on what makes sentences semantically related. We also show the utility of STR-2022 for evaluating automatic methods of sentence representation and for various downstream NLP tasks. Our dataset, data statement, and annotation questionnaire can be found at: https://doi.org/10.5281/zenodo.7599667
SemEval 2023 Task 6: LegalEval - Understanding Legal Texts
In populous countries, pending legal cases have been growing exponentially. There is a need for developing NLP-based techniques for processing and automatically understanding legal documents. To promote research in the area of Legal NLP we organized the shared task LegalEval - Understanding Legal Texts at SemEval 2023. LegalEval task has three sub-tasks: Task-A (Rhetorical Roles Labeling) is about automatically structuring legal documents into semantically coherent units, Task-B (Legal Named Entity Recognition) deals with identifying relevant entities in a legal document and Task-C (Court Judgement Prediction with Explanation) explores the possibility of automatically predicting the outcome of a legal case along with providing an explanation for the prediction. In total 26 teams (approx. 100 participants spread across the world) submitted systems paper. In each of the sub-tasks, the proposed systems outperformed the baselines; however, there is a lot of scope for improvement. This paper describes the tasks, and analyzes techniques proposed by various teams.
Text-Driven Neural Collaborative Filtering Model for Paper Source Tracing
Identifying significant references within the complex interrelations of a citation knowledge graph is challenging, which encompasses connections through citations, authorship, keywords, and other relational attributes. The Paper Source Tracing (PST) task seeks to automate the identification of pivotal references for given scholarly articles utilizing advanced data mining techniques. In the KDD CUP 2024, we design a recommendation-based framework tailored for the PST task. This framework employs the Neural Collaborative Filtering (NCF) model to generate final predictions. To process the textual attributes of the papers and extract input features for the model, we utilize SciBERT, a pre-trained language model. According to the experimental results, our method achieved a score of 0.37814 on the Mean Average Precision (MAP) metric, outperforming baseline models and ranking 11th among all participating teams. The source code is publicly available at https://github.com/MyLove-XAB/KDDCupFinal.
A Comprehensive Survey on Vector Database: Storage and Retrieval Technique, Challenge
A vector database is used to store high-dimensional data that cannot be characterized by traditional DBMS. Although there are not many articles describing existing or introducing new vector database architectures, the approximate nearest neighbor search problem behind vector databases has been studied for a long time, and considerable related algorithmic articles can be found in the literature. This article attempts to comprehensively review relevant algorithms to provide a general understanding of this booming research area. The basis of our framework categorises these studies by the approach of solving ANNS problem, respectively hash-based, tree-based, graph-based and quantization-based approaches. Then we present an overview of existing challenges for vector databases. Lastly, we sketch how vector databases can be combined with large language models and provide new possibilities.
S2ORC: The Semantic Scholar Open Research Corpus
We introduce S2ORC, a large corpus of 81.1M English-language academic papers spanning many academic disciplines. The corpus consists of rich metadata, paper abstracts, resolved bibliographic references, as well as structured full text for 8.1M open access papers. Full text is annotated with automatically-detected inline mentions of citations, figures, and tables, each linked to their corresponding paper objects. In S2ORC, we aggregate papers from hundreds of academic publishers and digital archives into a unified source, and create the largest publicly-available collection of machine-readable academic text to date. We hope this resource will facilitate research and development of tools and tasks for text mining over academic text.
Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems
The choice of embedding model is a crucial step in the design of Retrieval Augmented Generation (RAG) systems. Given the sheer volume of available options, identifying clusters of similar models streamlines this model selection process. Relying solely on benchmark performance scores only allows for a weak assessment of model similarity. Thus, in this study, we evaluate the similarity of embedding models within the context of RAG systems. Our assessment is two-fold: We use Centered Kernel Alignment to compare embeddings on a pair-wise level. Additionally, as it is especially pertinent to RAG systems, we evaluate the similarity of retrieval results between these models using Jaccard and rank similarity. We compare different families of embedding models, including proprietary ones, across five datasets from the popular Benchmark Information Retrieval (BEIR). Through our experiments we identify clusters of models corresponding to model families, but interestingly, also some inter-family clusters. Furthermore, our analysis of top-k retrieval similarity reveals high-variance at low k values. We also identify possible open-source alternatives to proprietary models, with Mistral exhibiting the highest similarity to OpenAI models.
A Pipeline for Business Intelligence and Data-Driven Root Cause Analysis on Categorical Data
Business intelligence (BI) is any knowledge derived from existing data that may be strategically applied within a business. Data mining is a technique or method for extracting BI from data using statistical data modeling. Finding relationships or correlations between the various data items that have been collected can be used to boost business performance or at the very least better comprehend what is going on. Root cause analysis (RCA) is discovering the root causes of problems or events to identify appropriate solutions. RCA can show why an event occurred and this can help in avoiding occurrences of an issue in the future. This paper proposes a new clustering + association rule mining pipeline for getting business insights from data. The results of this pipeline are in the form of association rules having consequents, antecedents, and various metrics to evaluate these rules. The results of this pipeline can help in anchoring important business decisions and can also be used by data scientists for updating existing models or while developing new ones. The occurrence of any event is explained by its antecedents in the generated rules. Hence this output can also help in data-driven root cause analysis.
SLIM: Sparsified Late Interaction for Multi-Vector Retrieval with Inverted Indexes
This paper introduces Sparsified Late Interaction for Multi-vector (SLIM) retrieval with inverted indexes. Multi-vector retrieval methods have demonstrated their effectiveness on various retrieval datasets, and among them, ColBERT is the most established method based on the late interaction of contextualized token embeddings of pre-trained language models. However, efficient ColBERT implementations require complex engineering and cannot take advantage of off-the-shelf search libraries, impeding their practical use. To address this issue, SLIM first maps each contextualized token vector to a sparse, high-dimensional lexical space before performing late interaction between these sparse token embeddings. We then introduce an efficient two-stage retrieval architecture that includes inverted index retrieval followed by a score refinement module to approximate the sparsified late interaction, which is fully compatible with off-the-shelf lexical search libraries such as Lucene. SLIM achieves competitive accuracy on MS MARCO Passages and BEIR compared to ColBERT while being much smaller and faster on CPUs. To our knowledge, we are the first to explore using sparse token representations for multi-vector retrieval. Source code and data are integrated into the Pyserini IR toolkit.
STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases
Answering real-world user queries, such as product search, often requires accurate retrieval of information from semi-structured knowledge bases or databases that involve blend of unstructured (e.g., textual descriptions of products) and structured (e.g., entity relations of products) information. However, previous works have mostly studied textual and relational retrieval tasks as separate topics. To address the gap, we develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Relational Knowledge Bases. We design a novel pipeline to synthesize natural and realistic user queries that integrate diverse relational information and complex textual properties, as well as their ground-truth answers. Moreover, we rigorously conduct human evaluation to validate the quality of our benchmark, which covers a variety of practical applications, including product recommendations, academic paper searches, and precision medicine inquiries. Our benchmark serves as a comprehensive testbed for evaluating the performance of retrieval systems, with an emphasis on retrieval approaches driven by large language models (LLMs). Our experiments suggest that the STARK datasets present significant challenges to the current retrieval and LLM systems, indicating the demand for building more capable retrieval systems that can handle both textual and relational aspects.
Concrete Sentence Spaces for Compositional Distributional Models of Meaning
Coecke, Sadrzadeh, and Clark (arXiv:1003.4394v1 [cs.CL]) developed a compositional model of meaning for distributional semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map, by constructing a corpus-based vector space for the type of sentence. Our construction method is based on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This enables us to compare meanings of sentences by simply taking the inner product of their vectors.
Pretrained Language Models for Sequential Sentence Classification
As a step toward better document-level understanding, we explore classification of a sequence of sentences into their corresponding categories, a task that requires understanding sentences in context of the document. Recent successful models for this task have used hierarchical models to contextualize sentence representations, and Conditional Random Fields (CRFs) to incorporate dependencies between subsequent labels. In this work, we show that pretrained language models, BERT (Devlin et al., 2018) in particular, can be used for this task to capture contextual dependencies without the need for hierarchical encoding nor a CRF. Specifically, we construct a joint sentence representation that allows BERT Transformer layers to directly utilize contextual information from all words in all sentences. Our approach achieves state-of-the-art results on four datasets, including a new dataset of structured scientific abstracts.
Improving Music Genre Classification from Multi-Modal Properties of Music and Genre Correlations Perspective
Music genre classification has been widely studied in past few years for its various applications in music information retrieval. Previous works tend to perform unsatisfactorily, since those methods only use audio content or jointly use audio content and lyrics content inefficiently. In addition, as genres normally co-occur in a music track, it is desirable to capture and model the genre correlations to improve the performance of multi-label music genre classification. To solve these issues, we present a novel multi-modal method leveraging audio-lyrics contrastive loss and two symmetric cross-modal attention, to align and fuse features from audio and lyrics. Furthermore, based on the nature of the multi-label classification, a genre correlations extraction module is presented to capture and model potential genre correlations. Extensive experiments demonstrate that our proposed method significantly surpasses other multi-label music genre classification methods and achieves state-of-the-art result on Music4All dataset.
Mitigating Data Sparsity for Short Text Topic Modeling by Topic-Semantic Contrastive Learning
To overcome the data sparsity issue in short text topic modeling, existing methods commonly rely on data augmentation or the data characteristic of short texts to introduce more word co-occurrence information. However, most of them do not make full use of the augmented data or the data characteristic: they insufficiently learn the relations among samples in data, leading to dissimilar topic distributions of semantically similar text pairs. To better address data sparsity, in this paper we propose a novel short text topic modeling framework, Topic-Semantic Contrastive Topic Model (TSCTM). To sufficiently model the relations among samples, we employ a new contrastive learning method with efficient positive and negative sampling strategies based on topic semantics. This contrastive learning method refines the representations, enriches the learning signals, and thus mitigates the sparsity issue. Extensive experimental results show that our TSCTM outperforms state-of-the-art baselines regardless of the data augmentation availability, producing high-quality topics and topic distributions.
MARS: Matching Attribute-aware Representations for Text-based Sequential Recommendation
Sequential recommendation aims to predict the next item a user is likely to prefer based on their sequential interaction history. Recently, text-based sequential recommendation has emerged as a promising paradigm that uses pre-trained language models to exploit textual item features to enhance performance and facilitate knowledge transfer to unseen datasets. However, existing text-based recommender models still struggle with two key challenges: (i) representing users and items with multiple attributes, and (ii) matching items with complex user interests. To address these challenges, we propose a novel model, Matching Attribute-aware Representations for Text-based Sequential Recommendation (MARS). MARS extracts detailed user and item representations through attribute-aware text encoding, capturing diverse user intents with multiple attribute-aware representations. It then computes user-item scores via attribute-wise interaction matching, effectively capturing attribute-level user preferences. Our extensive experiments demonstrate that MARS significantly outperforms existing sequential models, achieving improvements of up to 24.43% and 29.26% in Recall@10 and NDCG@10 across five benchmark datasets. Code is available at https://github.com/junieberry/MARS
Functional Map of the World
We present a new dataset, Functional Map of the World (fMoW), which aims to inspire the development of machine learning models capable of predicting the functional purpose of buildings and land use from temporal sequences of satellite images and a rich set of metadata features. The metadata provided with each image enables reasoning about location, time, sun angles, physical sizes, and other features when making predictions about objects in the image. Our dataset consists of over 1 million images from over 200 countries. For each image, we provide at least one bounding box annotation containing one of 63 categories, including a "false detection" category. We present an analysis of the dataset along with baseline approaches that reason about metadata and temporal views. Our data, code, and pretrained models have been made publicly available.
MobIE: A German Dataset for Named Entity Recognition, Entity Linking and Relation Extraction in the Mobility Domain
We present MobIE, a German-language dataset, which is human-annotated with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities. The dataset consists of 3,232 social media texts and traffic reports with 91K tokens, and contains 20.5K annotated entities, 13.1K of which are linked to a knowledge base. A subset of the dataset is human-annotated with seven mobility-related, n-ary relation types, while the remaining documents are annotated using a weakly-supervised labeling approach implemented with the Snorkel framework. To the best of our knowledge, this is the first German-language dataset that combines annotations for NER, EL and RE, and thus can be used for joint and multi-task learning of these fundamental information extraction tasks. We make MobIE public at https://github.com/dfki-nlp/mobie.
Learning Word Vectors for 157 Languages
Distributed word representations, or word vectors, have recently been applied to many tasks in natural language processing, leading to state-of-the-art performance. A key ingredient to the successful application of these representations is to train them on very large corpora, and use these pre-trained models in downstream tasks. In this paper, we describe how we trained such high quality word representations for 157 languages. We used two sources of data to train these models: the free online encyclopedia Wikipedia and data from the common crawl project. We also introduce three new word analogy datasets to evaluate these word vectors, for French, Hindi and Polish. Finally, we evaluate our pre-trained word vectors on 10 languages for which evaluation datasets exists, showing very strong performance compared to previous models.
MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows
Scientific innovation relies on detailed workflows, which include critical steps such as analyzing literature, generating ideas, validating these ideas, interpreting results, and inspiring follow-up research. However, scientific publications that document these workflows are extensive and unstructured. This makes it difficult for both human researchers and AI systems to effectively navigate and explore the space of scientific innovation. To address this issue, we introduce MASSW, a comprehensive text dataset on Multi-Aspect Summarization of Scientific Workflows. MASSW includes more than 152,000 peer-reviewed publications from 17 leading computer science conferences spanning the past 50 years. Using Large Language Models (LLMs), we automatically extract five core aspects from these publications -- context, key idea, method, outcome, and projected impact -- which correspond to five key steps in the research workflow. These structured summaries facilitate a variety of downstream tasks and analyses. The quality of the LLM-extracted summaries is validated by comparing them with human annotations. We demonstrate the utility of MASSW through multiple novel machine-learning tasks that can be benchmarked using this new dataset, which make various types of predictions and recommendations along the scientific workflow. MASSW holds significant potential for researchers to create and benchmark new AI methods for optimizing scientific workflows and fostering scientific innovation in the field. Our dataset is openly available at https://github.com/xingjian-zhang/massw.
Under-Counted Tensor Completion with Neural Incorporation of Attributes
Systematic under-counting effects are observed in data collected across many disciplines, e.g., epidemiology and ecology. Under-counted tensor completion (UC-TC) is well-motivated for many data analytics tasks, e.g., inferring the case numbers of infectious diseases at unobserved locations from under-counted case numbers in neighboring regions. However, existing methods for similar problems often lack supports in theory, making it hard to understand the underlying principles and conditions beyond empirical successes. In this work, a low-rank Poisson tensor model with an expressive unknown nonlinear side information extractor is proposed for under-counted multi-aspect data. A joint low-rank tensor completion and neural network learning algorithm is designed to recover the model. Moreover, the UC-TC formulation is supported by theoretical analysis showing that the fully counted entries of the tensor and each entry's under-counting probability can be provably recovered from partial observations -- under reasonable conditions. To our best knowledge, the result is the first to offer theoretical supports for under-counted multi-aspect data completion. Simulations and real-data experiments corroborate the theoretical claims.
Beyond Relevance: An Adaptive Exploration-Based Framework for Personalized Recommendations
Recommender systems must balance personalization, diversity, and robustness to cold-start scenarios to remain effective in dynamic content environments. This paper introduces an adaptive, exploration-based recommendation framework that adjusts to evolving user preferences and content distributions to promote diversity and novelty without compromising relevance. The system represents items using sentence-transformer embeddings and organizes them into semantically coherent clusters through an online algorithm with adaptive thresholding. A user-controlled exploration mechanism enhances diversity by selectively sampling from under-explored clusters. Experiments on the MovieLens dataset show that enabling exploration reduces intra-list similarity from 0.34 to 0.26 and increases unexpectedness to 0.73, outperforming collaborative filtering and popularity-based baselines. A/B testing with 300 simulated users reveals a strong link between interaction history and preference for diversity, with 72.7% of long-term users favoring exploratory recommendations. Computational analysis confirms that clustering and recommendation processes scale linearly with the number of clusters. These results demonstrate that adaptive exploration effectively mitigates over-specialization while preserving personalization and efficiency.
GRES: Generalized Referring Expression Segmentation
Referring Expression Segmentation (RES) aims to generate a segmentation mask for the object described by a given language expression. Existing classic RES datasets and methods commonly support single-target expressions only, i.e., one expression refers to one target object. Multi-target and no-target expressions are not considered. This limits the usage of RES in practice. In this paper, we introduce a new benchmark called Generalized Referring Expression Segmentation (GRES), which extends the classic RES to allow expressions to refer to an arbitrary number of target objects. Towards this, we construct the first large-scale GRES dataset called gRefCOCO that contains multi-target, no-target, and single-target expressions. GRES and gRefCOCO are designed to be well-compatible with RES, facilitating extensive experiments to study the performance gap of the existing RES methods on the GRES task. In the experimental study, we find that one of the big challenges of GRES is complex relationship modeling. Based on this, we propose a region-based GRES baseline ReLA that adaptively divides the image into regions with sub-instance clues, and explicitly models the region-region and region-language dependencies. The proposed approach ReLA achieves new state-of-the-art performance on the both newly proposed GRES and classic RES tasks. The proposed gRefCOCO dataset and method are available at https://henghuiding.github.io/GRES.
Wojood: Nested Arabic Named Entity Corpus and Recognition using BERT
This paper presents Wojood, a corpus for Arabic nested Named Entity Recognition (NER). Nested entities occur when one entity mention is embedded inside another entity mention. Wojood consists of about 550K Modern Standard Arabic (MSA) and dialect tokens that are manually annotated with 21 entity types including person, organization, location, event and date. More importantly, the corpus is annotated with nested entities instead of the more common flat annotations. The data contains about 75K entities and 22.5% of which are nested. The inter-annotator evaluation of the corpus demonstrated a strong agreement with Cohen's Kappa of 0.979 and an F1-score of 0.976. To validate our data, we used the corpus to train a nested NER model based on multi-task learning and AraBERT (Arabic BERT). The model achieved an overall micro F1-score of 0.884. Our corpus, the annotation guidelines, the source code and the pre-trained model are publicly available.
Enriching Music Descriptions with a Finetuned-LLM and Metadata for Text-to-Music Retrieval
Text-to-Music Retrieval, finding music based on a given natural language query, plays a pivotal role in content discovery within extensive music databases. To address this challenge, prior research has predominantly focused on a joint embedding of music audio and text, utilizing it to retrieve music tracks that exactly match descriptive queries related to musical attributes (i.e. genre, instrument) and contextual elements (i.e. mood, theme). However, users also articulate a need to explore music that shares similarities with their favorite tracks or artists, such as I need a similar track to Superstition by Stevie Wonder. To address these concerns, this paper proposes an improved Text-to-Music Retrieval model, denoted as TTMR++, which utilizes rich text descriptions generated with a finetuned large language model and metadata. To accomplish this, we obtained various types of seed text from several existing music tag and caption datasets and a knowledge graph dataset of artists and tracks. The experimental results show the effectiveness of TTMR++ in comparison to state-of-the-art music-text joint embedding models through a comprehensive evaluation involving various musical text queries.
Learning to Generate Novel Scientific Directions with Contextualized Literature-based Discovery
Literature-Based Discovery (LBD) aims to discover new scientific knowledge by mining papers and generating hypotheses. Standard LBD is limited to predicting pairwise relations between discrete concepts (e.g., drug-disease links), and ignores critical contexts like experimental settings (e.g., a specific patient population where a drug is evaluated) and background motivations (e.g., to find drugs without specific side effects). We address these limitations with a novel formulation of contextualized-LBD (C-LBD): generating scientific hypotheses in natural language, while grounding them in a context that controls the hypothesis search space. We present a modeling framework using retrieval of ``inspirations'' from past scientific papers. Our evaluations reveal that GPT-4 tends to generate ideas with overall low technical depth and novelty, while our inspiration prompting approaches partially mitigate this issue. Our work represents a first step toward building language models that generate new ideas derived from scientific literature.
Distributed Representations of Words and Phrases and their Compositionality
The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.
Visually-Aware Context Modeling for News Image Captioning
News Image Captioning aims to create captions from news articles and images, emphasizing the connection between textual context and visual elements. Recognizing the significance of human faces in news images and the face-name co-occurrence pattern in existing datasets, we propose a face-naming module for learning better name embeddings. Apart from names, which can be directly linked to an image area (faces), news image captions mostly contain context information that can only be found in the article. We design a retrieval strategy using CLIP to retrieve sentences that are semantically close to the image, mimicking human thought process of linking articles to images. Furthermore, to tackle the problem of the imbalanced proportion of article context and image context in captions, we introduce a simple yet effective method Contrasting with Language Model backbone (CoLaM) to the training pipeline. We conduct extensive experiments to demonstrate the efficacy of our framework. We out-perform the previous state-of-the-art (without external data) by 7.97/5.80 CIDEr scores on GoodNews/NYTimes800k. Our code is available at https://github.com/tingyu215/VACNIC.
LePaRD: A Large-Scale Dataset of Judges Citing Precedents
We present the Legal Passage Retrieval Dataset LePaRD. LePaRD is a massive collection of U.S. federal judicial citations to precedent in context. The dataset aims to facilitate work on legal passage prediction, a challenging practice-oriented legal retrieval and reasoning task. Legal passage prediction seeks to predict relevant passages from precedential court decisions given the context of a legal argument. We extensively evaluate various retrieval approaches on LePaRD, and find that classification appears to work best. However, we note that legal precedent prediction is a difficult task, and there remains significant room for improvement. We hope that by publishing LePaRD, we will encourage others to engage with a legal NLP task that promises to help expand access to justice by reducing the burden associated with legal research. A subset of the LePaRD dataset is freely available and the whole dataset will be released upon publication.
From Matching to Generation: A Survey on Generative Information Retrieval
Information Retrieval (IR) systems are crucial tools for users to access information, which have long been dominated by traditional methods relying on similarity matching. With the advancement of pre-trained language models, generative information retrieval (GenIR) emerges as a novel paradigm, attracting increasing attention. Based on the form of information provided to users, current research in GenIR can be categorized into two aspects: (1) Generative Document Retrieval (GR) leverages the generative model's parameters for memorizing documents, enabling retrieval by directly generating relevant document identifiers without explicit indexing. (2) Reliable Response Generation employs language models to directly generate information users seek, breaking the limitations of traditional IR in terms of document granularity and relevance matching while offering flexibility, efficiency, and creativity to meet practical needs. This paper aims to systematically review the latest research progress in GenIR. We will summarize the advancements in GR regarding model training and structure, document identifier, incremental learning, etc., as well as progress in reliable response generation in aspects of internal knowledge memorization, external knowledge augmentation, etc. We also review the evaluation, challenges and future developments in GenIR systems. This review aims to offer a comprehensive reference for researchers, encouraging further development in the GenIR field. Github Repository: https://github.com/RUC-NLPIR/GenIR-Survey
Real-Time Community Detection in Large Social Networks on a Laptop
For a broad range of research, governmental and commercial applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As social media data sets are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present a single-machine real-time system for large-scale graph processing that allows analysts to interactively explore graph structures. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates user similarities while being robust to noise and queryable in real-time. We achieve single machine real-time performance by compressing the neighbourhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e. communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetise their data, helping them to continue to provide free services that are valued by billions of people globally.