Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCoMix: A Comprehensive Benchmark for Multi-Task Comic Understanding
The comic domain is rapidly advancing with the development of single-page analysis and synthesis models. However, evaluation metrics and datasets lag behind, often limited to small-scale or single-style test sets. We introduce a novel benchmark, CoMix, designed to evaluate the multi-task capabilities of models in comic analysis. Unlike existing benchmarks that focus on isolated tasks such as object detection or text recognition, CoMix addresses a broader range of tasks including object detection, speaker identification, character re-identification, reading order, and multi-modal reasoning tasks like character naming and dialogue generation. Our benchmark comprises three existing datasets with expanded annotations to support multi-task evaluation. To mitigate the over-representation of manga-style data, we have incorporated a new dataset of carefully selected American comic-style books, thereby enriching the diversity of comic styles. CoMix is designed to assess pre-trained models in zero-shot and limited fine-tuning settings, probing their transfer capabilities across different comic styles and tasks. The validation split of the benchmark is publicly available for research purposes, and an evaluation server for the held-out test split is also provided. Comparative results between human performance and state-of-the-art models reveal a significant performance gap, highlighting substantial opportunities for advancements in comic understanding. The dataset, baseline models, and code are accessible at the repository link. This initiative sets a new standard for comprehensive comic analysis, providing the community with a common benchmark for evaluation on a large and varied set.
When 'YES' Meets 'BUT': Can Large Models Comprehend Contradictory Humor Through Comparative Reasoning?
Understanding humor-particularly when it involves complex, contradictory narratives that require comparative reasoning-remains a significant challenge for large vision-language models (VLMs). This limitation hinders AI's ability to engage in human-like reasoning and cultural expression. In this paper, we investigate this challenge through an in-depth analysis of comics that juxtapose panels to create humor through contradictions. We introduce the YesBut (V2), a novel benchmark with 1,262 comic images from diverse multilingual and multicultural contexts, featuring comprehensive annotations that capture various aspects of narrative understanding. Using this benchmark, we systematically evaluate a wide range of VLMs through four complementary tasks spanning from surface content comprehension to deep narrative reasoning, with particular emphasis on comparative reasoning between contradictory elements. Our extensive experiments reveal that even the most advanced models significantly underperform compared to humans, with common failures in visual perception, key element identification, comparative analysis and hallucinations. We further investigate text-based training strategies and social knowledge augmentation methods to enhance model performance. Our findings not only highlight critical weaknesses in VLMs' understanding of cultural and creative expressions but also provide pathways toward developing context-aware models capable of deeper narrative understanding though comparative reasoning.
Comics Datasets Framework: Mix of Comics datasets for detection benchmarking
Comics, as a medium, uniquely combine text and images in styles often distinct from real-world visuals. For the past three decades, computational research on comics has evolved from basic object detection to more sophisticated tasks. However, the field faces persistent challenges such as small datasets, inconsistent annotations, inaccessible model weights, and results that cannot be directly compared due to varying train/test splits and metrics. To address these issues, we aim to standardize annotations across datasets, introduce a variety of comic styles into the datasets, and establish benchmark results with clear, replicable settings. Our proposed Comics Datasets Framework standardizes dataset annotations into a common format and addresses the overrepresentation of manga by introducing Comics100, a curated collection of 100 books from the Digital Comics Museum, annotated for detection in our uniform format. We have benchmarked a variety of detection architectures using the Comics Datasets Framework. All related code, model weights, and detailed evaluation processes are available at https://github.com/emanuelevivoli/cdf, ensuring transparency and facilitating replication. This initiative is a significant advancement towards improving object detection in comics, laying the groundwork for more complex computational tasks dependent on precise object recognition.
ComiCap: A VLMs pipeline for dense captioning of Comic Panels
The comic domain is rapidly advancing with the development of single- and multi-page analysis and synthesis models. Recent benchmarks and datasets have been introduced to support and assess models' capabilities in tasks such as detection (panels, characters, text), linking (character re-identification and speaker identification), and analysis of comic elements (e.g., dialog transcription). However, to provide a comprehensive understanding of the storyline, a model must not only extract elements but also understand their relationships and generate highly informative captions. In this work, we propose a pipeline that leverages Vision-Language Models (VLMs) to obtain dense, grounded captions. To construct our pipeline, we introduce an attribute-retaining metric that assesses whether all important attributes are identified in the caption. Additionally, we created a densely annotated test set to fairly evaluate open-source VLMs and select the best captioning model according to our metric. Our pipeline generates dense captions with bounding boxes that are quantitatively and qualitatively superior to those produced by specifically trained models, without requiring any additional training. Using this pipeline, we annotated over 2 million panels across 13,000 books, which will be available on the project page https://github.com/emanuelevivoli/ComiCap.
One missing piece in Vision and Language: A Survey on Comics Understanding
Vision-language models have recently evolved into versatile systems capable of high performance across a range of tasks, such as document understanding, visual question answering, and grounding, often in zero-shot settings. Comics Understanding, a complex and multifaceted field, stands to greatly benefit from these advances. Comics, as a medium, combine rich visual and textual narratives, challenging AI models with tasks that span image classification, object detection, instance segmentation, and deeper narrative comprehension through sequential panels. However, the unique structure of comics -- characterized by creative variations in style, reading order, and non-linear storytelling -- presents a set of challenges distinct from those in other visual-language domains. In this survey, we present a comprehensive review of Comics Understanding from both dataset and task perspectives. Our contributions are fivefold: (1) We analyze the structure of the comics medium, detailing its distinctive compositional elements; (2) We survey the widely used datasets and tasks in comics research, emphasizing their role in advancing the field; (3) We introduce the Layer of Comics Understanding (LoCU) framework, a novel taxonomy that redefines vision-language tasks within comics and lays the foundation for future work; (4) We provide a detailed review and categorization of existing methods following the LoCU framework; (5) Finally, we highlight current research challenges and propose directions for future exploration, particularly in the context of vision-language models applied to comics. This survey is the first to propose a task-oriented framework for comics intelligence and aims to guide future research by addressing critical gaps in data availability and task definition. A project associated with this survey is available at https://github.com/emanuelevivoli/awesome-comics-understanding.
MARVEL: Raster Manga Vectorization via Primitive-wise Deep Reinforcement Learning
Manga is a fashionable Japanese-style comic form that is composed of black-and-white strokes and is generally displayed as raster images on digital devices. Typical mangas have simple textures, wide lines, and few color gradients, which are vectorizable natures to enjoy the merits of vector graphics, e.g., adaptive resolutions and small file sizes. In this paper, we propose MARVEL (MAnga's Raster to VEctor Learning), a primitive-wise approach for vectorizing raster mangas by Deep Reinforcement Learning (DRL). Unlike previous learning-based methods which predict vector parameters for an entire image, MARVEL introduces a new perspective that regards an entire manga as a collection of basic primitives\textemdash stroke lines, and designs a DRL model to decompose the target image into a primitive sequence for achieving accurate vectorization. To improve vectorization accuracies and decrease file sizes, we further propose a stroke accuracy reward to predict accurate stroke lines, and a pruning mechanism to avoid generating erroneous and repeated strokes. Extensive subjective and objective experiments show that our MARVEL can generate impressive results and reaches the state-of-the-art level. Our code is open-source at: https://github.com/SwordHolderSH/Mang2Vec.
Interconnected Kingdoms: Comparing 'A Song of Ice and Fire' Adaptations Across Media Using Complex Networks
In this article, we propose and apply a method to compare adaptations of the same story across different media. We tackle this task by modelling such adaptations through character networks. We compare them by leveraging two concepts at the core of storytelling: the characters involved, and the dynamics of the story. We propose several methods to match characters between media and compare their position in the networks; and perform narrative matching, i.e. match the sequences of narrative units that constitute the plots. We apply these methods to the novel series A Song of Ice and Fire, by G.R.R. Martin, and its comics and TV show adaptations. Our results show that interactions between characters are not sufficient to properly match individual characters between adaptations, but that using some additional information such as character affiliation or gender significantly improves the performance. On the contrary, character interactions convey enough information to perform narrative matching, and allow us to detect the divergence between the original novels and its TV show adaptation.
The Manga Whisperer: Automatically Generating Transcriptions for Comics
In the past few decades, Japanese comics, commonly referred to as Manga, have transcended both cultural and linguistic boundaries to become a true worldwide sensation. Yet, the inherent reliance on visual cues and illustration within manga renders it largely inaccessible to individuals with visual impairments. In this work, we seek to address this substantial barrier, with the aim of ensuring that manga can be appreciated and actively engaged by everyone. Specifically, we tackle the problem of diarisation i.e. generating a transcription of who said what and when, in a fully automatic way. To this end, we make the following contributions: (1) we present a unified model, Magi, that is able to (a) detect panels, text boxes and character boxes, (b) cluster characters by identity (without knowing the number of clusters apriori), and (c) associate dialogues to their speakers; (2) we propose a novel approach that is able to sort the detected text boxes in their reading order and generate a dialogue transcript; (3) we annotate an evaluation benchmark for this task using publicly available [English] manga pages. The code, evaluation datasets and the pre-trained model can be found at: https://github.com/ragavsachdeva/magi.