new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 21

Most Language Models can be Poets too: An AI Writing Assistant and Constrained Text Generation Studio

Despite rapid advancement in the field of Constrained Natural Language Generation, little time has been spent on exploring the potential of language models which have had their vocabularies lexically, semantically, and/or phonetically constrained. We find that most language models generate compelling text even under significant constraints. We present a simple and universally applicable technique for modifying the output of a language model by compositionally applying filter functions to the language models vocabulary before a unit of text is generated. This approach is plug-and-play and requires no modification to the model. To showcase the value of this technique, we present an easy to use AI writing assistant called Constrained Text Generation Studio (CTGS). CTGS allows users to generate or choose from text with any combination of a wide variety of constraints, such as banning a particular letter, forcing the generated words to have a certain number of syllables, and/or forcing the words to be partial anagrams of another word. We introduce a novel dataset of prose that omits the letter e. We show that our method results in strictly superior performance compared to fine-tuning alone on this dataset. We also present a Huggingface space web-app presenting this technique called Gadsby. The code is available to the public here: https://github.com/Hellisotherpeople/Constrained-Text-Generation-Studio

  • 4 authors
·
Jun 28, 2023

Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling

The dominant approach to generating from language models subject to some constraint is locally constrained decoding (LCD), incrementally sampling tokens at each time step such that the constraint is never violated. Typically, this is achieved through token masking: looping over the vocabulary and excluding non-conforming tokens. There are two important problems with this approach. (i) Evaluating the constraint on every token can be prohibitively expensive -- LM vocabularies often exceed 100,000 tokens. (ii) LCD can distort the global distribution over strings, sampling tokens based only on local information, even if they lead down dead-end paths. This work introduces a new algorithm that addresses both these problems. First, to avoid evaluating a constraint on the full vocabulary at each step of generation, we propose an adaptive rejection sampling algorithm that typically requires orders of magnitude fewer constraint evaluations. Second, we show how this algorithm can be extended to produce low-variance, unbiased estimates of importance weights at a very small additional cost -- estimates that can be soundly used within previously proposed sequential Monte Carlo algorithms to correct for the myopic behavior of local constraint enforcement. Through extensive empirical evaluation in text-to-SQL, molecular synthesis, goal inference, pattern matching, and JSON domains, we show that our approach is superior to state-of-the-art baselines, supporting a broader class of constraints and improving both runtime and performance. Additional theoretical and empirical analyses show that our method's runtime efficiency is driven by its dynamic use of computation, scaling with the divergence between the unconstrained and constrained LM, and as a consequence, runtime improvements are greater for better models.

DefSent+: Improving sentence embeddings of language models by projecting definition sentences into a quasi-isotropic or isotropic vector space of unlimited dictionary entries

This paper presents a significant improvement on the previous conference paper known as DefSent. The prior study seeks to improve sentence embeddings of language models by projecting definition sentences into the vector space of dictionary entries. We discover that this approach is not fully explored due to the methodological limitation of using word embeddings of language models to represent dictionary entries. This leads to two hindrances. First, dictionary entries are constrained by the single-word vocabulary, and thus cannot be fully exploited. Second, semantic representations of language models are known to be anisotropic, but pre-processing word embeddings for DefSent is not allowed because its weight is frozen during training and tied to the prediction layer. In this paper, we propose a novel method to progressively build entry embeddings not subject to the limitations. As a result, definition sentences can be projected into a quasi-isotropic or isotropic vector space of unlimited dictionary entries, so that sentence embeddings of noticeably better quality are attainable. We abbreviate our approach as DefSent+ (a plus version of DefSent), involving the following strengths: 1) the task performance on measuring sentence similarities is significantly improved compared to DefSent; 2) when DefSent+ is used to further train data-augmented models like SIMCSE, SNCSE, and SynCSE, state-of-the-art performance on measuring sentence similarities can be achieved among the approaches without using manually labeled datasets; 3) DefSent+ is also competitive in feature-based transfer for NLP downstream tasks.

  • 1 authors
·
May 25, 2024

Grammar-Aligned Decoding

Large Language Models (LLMs) struggle with reliably generating highly structured outputs, such as program code, mathematical formulas, or well-formed markup. Constrained decoding approaches mitigate this problem by greedily restricting what tokens an LLM can output at each step to guarantee that the output matches a given constraint. Specifically, in grammar-constrained decoding (GCD), the LLM's output must follow a given grammar. In this paper, we demonstrate that GCD techniques (and in general constrained decoding techniques) can distort the LLM's distribution, leading to outputs that are grammatical but appear with likelihoods that are not proportional to the ones given by the LLM, and so ultimately are low-quality. We call the problem of aligning sampling with a grammar constraint, grammar-aligned decoding (GAD), and propose adaptive sampling with approximate expected futures (ASAp), a decoding algorithm that guarantees the output to be grammatical while provably producing outputs that match the conditional probability of the LLM's distribution conditioned on the given grammar constraint. Our algorithm uses prior sample outputs to soundly overapproximate the future grammaticality of different output prefixes. Our evaluation on code generation and structured NLP tasks shows how ASAp often produces outputs with higher likelihood (according to the LLM's distribution) than existing GCD techniques, while still enforcing the desired grammatical constraints.

  • 5 authors
·
May 31, 2024

LLM Tree Search

This project aims to investigate a novel sequence generation method inspired by the AlphaGo paradigm, adapting it for use with large language models (LLMs). The proposed approach involves creating search trees of different possible completions and evaluating these completions based on model confidence. By considering various paths in the search tree and scoring them according to the model's confidence in each completion, we can generate diverse and high-quality sequences. This research explores the implementation of this paradigm by using confidence as a proxy for response quality akin to beam search vijayakumar2016diverse. The primary goal of this paper is to outline the paradigm and demonstrate its potential, rather than focusing on achieving perfect results. The paper will outline the reasons why we believe this paradigm has the potential to improve LLMs in the following manners: 1) increase output quality, 2) decrease errors, 3) eliminate or reduce the compound error problems, 4) generate diverse and creative completions, 5) allow for iterative problem-solving, and 6) self-training. We expect this approach to yield a set of diverse and coherent sequences, offering insights into balancing exploration and exploitation in sequence generation. Potential applications include creative text generation tasks, such as storytelling and content creation, as well as other natural language processing domains, like machine translation and automated summarization. The goal is that the model will be far more effective as it will be able to consider many possible variations allowing it to find the ideal completion. This research aims to contribute to the understanding of effective search strategies in sequence generation and their impact on generating high-quality, varied textual outputs.

  • 1 authors
·
Oct 24, 2024

Token Prepending: A Training-Free Approach for Eliciting Better Sentence Embeddings from LLMs

Extracting sentence embeddings from large language models (LLMs) is a promising direction, as LLMs have demonstrated stronger semantic understanding capabilities. Previous studies typically focus on prompt engineering to elicit sentence embeddings from LLMs by prompting the model to encode sentence information into the embedding of the last token. However, LLMs are mostly decoder-only models with causal attention and the earlier tokens in the sentence cannot attend to the latter tokens, resulting in biased encoding of sentence information and cascading effects on the final decoded token. To this end, we propose a novel Token Prepending (TP) technique that prepends each layer's decoded sentence embedding to the beginning of the sentence in the next layer's input, allowing earlier tokens to attend to the complete sentence information under the causal attention mechanism. The proposed TP technique is a plug-and-play and training-free technique, which means it can be seamlessly integrated with various prompt-based sentence embedding methods and autoregressive LLMs. Extensive experiments on various Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our proposed TP technique can significantly improve the performance of existing prompt-based sentence embedding methods across different LLMs, while incurring negligible additional inference cost.

  • 7 authors
·
Dec 16, 2024

SCOPE: A Generative Approach for LLM Prompt Compression

Prompt compression methods enhance the efficiency of Large Language Models (LLMs) and minimize the cost by reducing the length of input context. The goal of prompt compression is to shorten the LLM prompt while maintaining a high generation quality. However, existing solutions, mainly based on token removal, face challenges such as information loss and structural incoherence, like missing grammar elements in a sentence, or incomplete word phrases after token removal. Such challenges limit the final generation quality of LLM. To overcome these limitations, we present a novel generative prompt compression method. Unlike the existing token removal methods, our method centers at a chunking-and-summarization mechanism. Specifically, our method splits prompt into semantically coherent chunks and rewrites the chunks to be more concise. The chunks are reconstructed into meaningful prompt finally. We design several optimization techniques for the mechanism, including optimized semantic chunking, outlier chunk handling, dynamic compression ratio, compression prioritization, and keyword maintaining. These techniques effectively improve the identifying and preserving of critical information and coherence among texts, as well as providing finer grind control of the compression ratio. We conduct extensive evaluation on question-answering and summarization tasks, with datasets covering multiple different domain. The evaluation shows our method achieves a significantly better compression quality, and higher stability than the state-of-the-art methods, especially under high compression ratio, which proves the effectiveness and practicality of our method.

  • 3 authors
·
Aug 15

Learning to Break the Loop: Analyzing and Mitigating Repetitions for Neural Text Generation

While large-scale neural language models, such as GPT2 and BART, have achieved impressive results on various text generation tasks, they tend to get stuck in undesirable sentence-level loops with maximization-based decoding algorithms (e.g., greedy search). This phenomenon is counter-intuitive since there are few consecutive sentence-level repetitions in human corpora (e.g., 0.02\% in Wikitext-103). To investigate the underlying reasons for generating consecutive sentence-level repetitions, we study the relationship between the probabilities of the repetitive tokens and their previous repetitions in the context. Through our quantitative experiments, we find that 1) Language models have a preference to repeat the previous sentence; 2) The sentence-level repetitions have a self-reinforcement effect: the more times a sentence is repeated in the context, the higher the probability of continuing to generate that sentence; 3) The sentences with higher initial probabilities usually have a stronger self-reinforcement effect. Motivated by our findings, we propose a simple and effective training method DITTO (PseuDo-RepetITion PenalizaTiOn), where the model learns to penalize probabilities of sentence-level repetitions from pseudo repetitive data. Although our method is motivated by mitigating repetitions, experiments show that DITTO not only mitigates the repetition issue without sacrificing perplexity, but also achieves better generation quality. Extensive experiments on open-ended text generation (Wikitext-103) and text summarization (CNN/DailyMail) demonstrate the generality and effectiveness of our method.

  • 6 authors
·
Jun 6, 2022

GROVE: A Retrieval-augmented Complex Story Generation Framework with A Forest of Evidence

Conditional story generation is significant in human-machine interaction, particularly in producing stories with complex plots. While Large language models (LLMs) perform well on multiple NLP tasks, including story generation, it is challenging to generate stories with both complex and creative plots. Existing methods often rely on detailed prompts to guide LLMs to meet target conditions, which inadvertently restrict the creative potential of the generated stories. We argue that leveraging information from exemplary human-written stories facilitates generating more diverse plotlines. Delving deeper into story details helps build complex and credible plots. In this paper, we propose a retrieval-auGmented stoRy generation framework with a fOrest of eVidEnce (GROVE) to enhance stories' complexity. We build a retrieval repository for target conditions to produce few-shot examples to prompt LLMs. Additionally, we design an ``asking-why'' prompting scheme that extracts a forest of evidence, providing compensation for the ambiguities that may occur in the generated story. This iterative process uncovers underlying story backgrounds. Finally, we select the most fitting chains of evidence from the evidence forest and integrate them into the generated story, thereby enhancing the narrative's complexity and credibility. Experimental results and numerous examples verify the effectiveness of our method.

  • 7 authors
·
Oct 8, 2023

Asking Questions the Human Way: Scalable Question-Answer Generation from Text Corpus

The ability to ask questions is important in both human and machine intelligence. Learning to ask questions helps knowledge acquisition, improves question-answering and machine reading comprehension tasks, and helps a chatbot to keep the conversation flowing with a human. Existing question generation models are ineffective at generating a large amount of high-quality question-answer pairs from unstructured text, since given an answer and an input passage, question generation is inherently a one-to-many mapping. In this paper, we propose Answer-Clue-Style-aware Question Generation (ACS-QG), which aims at automatically generating high-quality and diverse question-answer pairs from unlabeled text corpus at scale by imitating the way a human asks questions. Our system consists of: i) an information extractor, which samples from the text multiple types of assistive information to guide question generation; ii) neural question generators, which generate diverse and controllable questions, leveraging the extracted assistive information; and iii) a neural quality controller, which removes low-quality generated data based on text entailment. We compare our question generation models with existing approaches and resort to voluntary human evaluation to assess the quality of the generated question-answer pairs. The evaluation results suggest that our system dramatically outperforms state-of-the-art neural question generation models in terms of the generation quality, while being scalable in the meantime. With models trained on a relatively smaller amount of data, we can generate 2.8 million quality-assured question-answer pairs from a million sentences found in Wikipedia.

  • 5 authors
·
Jan 27, 2020

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding

Recent state-of-the-art natural language understanding models, such as BERT and XLNet, score a pair of sentences (A and B) using multiple cross-attention operations - a process in which each word in sentence A attends to all words in sentence B and vice versa. As a result, computing the similarity between a query sentence and a set of candidate sentences, requires the propagation of all query-candidate sentence-pairs throughout a stack of cross-attention layers. This exhaustive process becomes computationally prohibitive when the number of candidate sentences is large. In contrast, sentence embedding techniques learn a sentence-to-vector mapping and compute the similarity between the sentence vectors via simple elementary operations. In this paper, we introduce Distilled Sentence Embedding (DSE) - a model that is based on knowledge distillation from cross-attentive models, focusing on sentence-pair tasks. The outline of DSE is as follows: Given a cross-attentive teacher model (e.g. a fine-tuned BERT), we train a sentence embedding based student model to reconstruct the sentence-pair scores obtained by the teacher model. We empirically demonstrate the effectiveness of DSE on five GLUE sentence-pair tasks. DSE significantly outperforms several ELMO variants and other sentence embedding methods, while accelerating computation of the query-candidate sentence-pairs similarities by several orders of magnitude, with an average relative degradation of 4.6% compared to BERT. Furthermore, we show that DSE produces sentence embeddings that reach state-of-the-art performance on universal sentence representation benchmarks. Our code is made publicly available at https://github.com/microsoft/Distilled-Sentence-Embedding.

  • 6 authors
·
Aug 14, 2019

From Instructions to Constraints: Language Model Alignment with Automatic Constraint Verification

User alignment is crucial for adapting general-purpose language models (LMs) to downstream tasks, but human annotations are often not available for all types of instructions, especially those with customized constraints. We observe that user instructions typically contain constraints. While assessing response quality in terms of the whole instruction is often costly, efficiently evaluating the satisfaction rate of constraints is feasible. We investigate common constraints in NLP tasks, categorize them into three classes based on the types of their arguments, and propose a unified framework, ACT (Aligning to ConsTraints), to automatically produce supervision signals for user alignment with constraints. Specifically, ACT uses constraint verifiers, which are typically easy to implement in practice, to compute constraint satisfaction rate (CSR) of each response. It samples multiple responses for each prompt and collect preference labels based on their CSR automatically. Subsequently, ACT adapts the LM to the target task through a ranking-based learning process. Experiments on fine-grained entity typing, abstractive summarization, and temporal question answering show that ACT is able to enhance LMs' capability to adhere to different classes of constraints, thereby improving task performance. Further experiments show that the constraint-following capabilities are transferable.

  • 9 authors
·
Mar 10, 2024

Impossible Distillation: from Low-Quality Model to High-Quality Dataset & Model for Summarization and Paraphrasing

It is commonly perceived that the strongest language models (LMs) rely on a combination of massive scale, instruction data, and human feedback to perform specialized tasks -- e.g. summarization and paraphrasing, without supervision. In this paper, we propose that language models can learn to summarize and paraphrase sentences, with none of these 3 factors. We present Impossible Distillation, a framework that distills a task-specific dataset directly from an off-the-shelf LM, even when it is impossible for the LM itself to reliably solve the task. By training a student model on the generated dataset and amplifying its capability through self-distillation, our method yields a high-quality model and dataset from a low-quality teacher model, without the need for scale or supervision. Using Impossible Distillation, we are able to distill an order of magnitude smaller model (with only 770M parameters) that outperforms 175B parameter GPT-3, in both quality and controllability, as confirmed by automatic and human evaluations. Furthermore, as a useful byproduct of our approach, we obtain DIMSUM+, a high-quality dataset with 3.4M sentence summaries and paraphrases. Our analyses show that this dataset, as a purely LM-generated corpus, is more diverse and more effective for generalization to unseen domains than all human-authored datasets -- including Gigaword with 4M samples.

  • 8 authors
·
May 26, 2023 1

Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning

Recently, large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task. Existing methods have explored utilizing LLMs as data annotators to generate synthesized data for training contrastive learning based sentence embedding models such as SimCSE. However, since contrastive learning models are sensitive to the quality of sentence pairs, the effectiveness of these methods is largely influenced by the content generated from LLMs, highlighting the need for more refined generation in the context of sentence representation learning. Building upon this premise, we propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus for training base sentence embedding models into three stages (i.e., sentence generation, sentence pair construction, in-batch training) and refines the generated content at these three distinct stages, ensuring only high-quality sentence pairs are utilized to train a base contrastive learning model. Our extensive experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results. Comprehensive analyses further underscore the potential of our framework in various application scenarios and achieving better sentence representation learning with LLMs.

  • 5 authors
·
Oct 16, 2023

Semantic Probabilistic Control of Language Models

Semantic control entails steering LM generations towards satisfying subtle non-lexical constraints, e.g., toxicity, sentiment, or politeness, attributes that can be captured by a sequence-level verifier. It can thus be viewed as sampling from the LM distribution conditioned on the target attribute, a computationally intractable problem due to the non-decomposable nature of the verifier. Existing approaches to LM control either only deal with syntactic constraints which cannot capture the aforementioned attributes, or rely on sampling to explore the conditional LM distribution, an ineffective estimator for low-probability events. In this work, we leverage a verifier's gradient information to efficiently reason over all generations that satisfy the target attribute, enabling precise steering of LM generations by reweighing the next-token distribution. Starting from an initial sample, we create a local LM distribution favoring semantically similar sentences. This approximation enables the tractable computation of an expected sentence embedding. We use this expected embedding, informed by the verifier's evaluation at the initial sample, to estimate the probability of satisfying the constraint, which directly informs the update to the next-token distribution. We evaluated the effectiveness of our approach in controlling the toxicity, sentiment, and topic-adherence of LMs yielding generations satisfying the constraint with high probability (>95%) without degrading their quality.

  • 4 authors
·
May 3

CORAG: A Cost-Constrained Retrieval Optimization System for Retrieval-Augmented Generation

Large Language Models (LLMs) have demonstrated remarkable generation capabilities but often struggle to access up-to-date information, which can lead to hallucinations. Retrieval-Augmented Generation (RAG) addresses this issue by incorporating knowledge from external databases, enabling more accurate and relevant responses. Due to the context window constraints of LLMs, it is impractical to input the entire external database context directly into the model. Instead, only the most relevant information, referred to as chunks, is selectively retrieved. However, current RAG research faces three key challenges. First, existing solutions often select each chunk independently, overlooking potential correlations among them. Second, in practice the utility of chunks is non-monotonic, meaning that adding more chunks can decrease overall utility. Traditional methods emphasize maximizing the number of included chunks, which can inadvertently compromise performance. Third, each type of user query possesses unique characteristics that require tailored handling, an aspect that current approaches do not fully consider. To overcome these challenges, we propose a cost constrained retrieval optimization system CORAG for retrieval-augmented generation. We employ a Monte Carlo Tree Search (MCTS) based policy framework to find optimal chunk combinations sequentially, allowing for a comprehensive consideration of correlations among chunks. Additionally, rather than viewing budget exhaustion as a termination condition, we integrate budget constraints into the optimization of chunk combinations, effectively addressing the non-monotonicity of chunk utility.

  • 5 authors
·
Nov 1, 2024

Zero-Indexing Internet Search Augmented Generation for Large Language Models

Retrieval augmented generation has emerged as an effective method to enhance large language model performance. This approach typically relies on an internal retrieval module that uses various indexing mechanisms to manage a static pre-processed corpus. However, such a paradigm often falls short when it is necessary to integrate the most up-to-date information that has not been updated into the corpus during generative inference time. In this paper, we explore an alternative approach that leverages standard search engine APIs to dynamically integrate the latest online information (without maintaining any index for any fixed corpus), thereby improving the quality of generated content. We design a collaborative LLM-based paradigm, where we include: (i) a parser-LLM that determines if the Internet augmented generation is demanded and extracts the search keywords if so with a single inference; (ii) a mixed ranking strategy that re-ranks the retrieved HTML files to eliminate bias introduced from the search engine API; and (iii) an extractor-LLM that can accurately and efficiently extract relevant information from the fresh content in each HTML file. We conduct extensive empirical studies to evaluate the performance of this Internet search augmented generation paradigm. The experimental results demonstrate that our method generates content with significantly improved quality. Our system has been successfully deployed in a production environment to serve 01.AI's generative inference requests.

  • 8 authors
·
Nov 29, 2024

Scalable and Domain-General Abstractive Proposition Segmentation

Segmenting text into fine-grained units of meaning is important to a wide range of NLP applications. The default approach of segmenting text into sentences is often insufficient, especially since sentences are usually complex enough to include multiple units of meaning that merit separate treatment in the downstream task. We focus on the task of abstractive proposition segmentation: transforming text into simple, self-contained, well-formed sentences. Several recent works have demonstrated the utility of proposition segmentation with few-shot prompted LLMs for downstream tasks such as retrieval-augmented grounding and fact verification. However, this approach does not scale to large amounts of text and may not always extract all the facts from the input text. In this paper, we first introduce evaluation metrics for the task to measure several dimensions of quality. We then propose a scalable, yet accurate, proposition segmentation model. We model proposition segmentation as a supervised task by training LLMs on existing annotated datasets and show that training yields significantly improved results. We further show that by using the fine-tuned LLMs as teachers for annotating large amounts of multi-domain synthetic distillation data, we can train smaller student models with results similar to the teacher LLMs. We then demonstrate that our technique leads to effective domain generalization, by annotating data in two domains outside the original training data and evaluating on them. Finally, as a key contribution of the paper, we share an easy-to-use API for NLP practitioners to use.

  • 5 authors
·
Jun 28, 2024

DICTDIS: Dictionary Constrained Disambiguation for Improved NMT

Domain-specific neural machine translation (NMT) systems (e.g., in educational applications) are socially significant with the potential to help make information accessible to a diverse set of users in multilingual societies. It is desirable that such NMT systems be lexically constrained and draw from domain-specific dictionaries. Dictionaries could present multiple candidate translations for a source word/phrase due to the polysemous nature of words. The onus is then on the NMT model to choose the contextually most appropriate candidate. Prior work has largely ignored this problem and focused on the single candidate constraint setting wherein the target word or phrase is replaced by a single constraint. In this work we present DictDis, a lexically constrained NMT system that disambiguates between multiple candidate translations derived from dictionaries. We achieve this by augmenting training data with multiple dictionary candidates to actively encourage disambiguation during training by implicitly aligning multiple candidate constraints. We demonstrate the utility of DictDis via extensive experiments on English-Hindi and English-German sentences in a variety of domains including regulatory, finance, engineering. We also present comparisons on standard benchmark test datasets. In comparison with existing approaches for lexically constrained and unconstrained NMT, we demonstrate superior performance with respect to constraint copy and disambiguation related measures on all domains while also obtaining improved fluency of up to 2-3 BLEU points on some domains.

  • 3 authors
·
Oct 13, 2022