new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 31

GAN Dissection: Visualizing and Understanding Generative Adversarial Networks

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian Language

Large Language Models represent state-of-the-art linguistic models designed to equip computers with the ability to comprehend natural language. With its exceptional capacity to capture complex contextual relationships, the LLaMA (Large Language Model Meta AI) family represents a novel advancement in the field of natural language processing by releasing foundational models designed to improve the natural language understanding abilities of the transformer architecture thanks to their large amount of trainable parameters (7, 13, and 70 billion parameters). In many natural language understanding tasks, these models obtain the same performances as private company models such as OpenAI Chat-GPT with the advantage to make publicly available weights and code for research and commercial uses. In this work, we investigate the possibility of Language Adaptation for LLaMA models, explicitly focusing on addressing the challenge of Italian Language coverage. Adopting an open science approach, we explore various tuning approaches to ensure a high-quality text generated in Italian suitable for common tasks in this underrepresented language in the original models' datasets. We aim to release effective text generation models with strong linguistic properties for many tasks that seem challenging using multilingual or general-purpose LLMs. By leveraging an open science philosophy, this study contributes to Language Adaptation strategies for the Italian language by introducing the novel LLaMAntino family of Italian LLMs.

Graph Self-supervised Learning with Accurate Discrepancy Learning

Self-supervised learning of graph neural networks (GNNs) aims to learn an accurate representation of the graphs in an unsupervised manner, to obtain transferable representations of them for diverse downstream tasks. Predictive learning and contrastive learning are the two most prevalent approaches for graph self-supervised learning. However, they have their own drawbacks. While the predictive learning methods can learn the contextual relationships between neighboring nodes and edges, they cannot learn global graph-level similarities. Contrastive learning, while it can learn global graph-level similarities, its objective to maximize the similarity between two differently perturbed graphs may result in representations that cannot discriminate two similar graphs with different properties. To tackle such limitations, we propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA). Specifically, we create multiple perturbations of the given graph with varying degrees of similarity, and train the model to predict whether each graph is the original graph or the perturbed one. Moreover, we further aim to accurately capture the amount of discrepancy for each perturbed graph using the graph edit distance. We validate our D-SLA on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which ours largely outperforms relevant baselines.

Context Aware Grounded Teacher for Source Free Object Detection

We focus on the Source Free Object Detection (SFOD) problem, when source data is unavailable during adaptation, and the model must adapt to the unlabeled target domain. In medical imaging, several approaches have leveraged a semi-supervised student-teacher architecture to bridge domain discrepancy. Context imbalance in labeled training data and significant domain shifts between domains can lead to biased teacher models that produce inaccurate pseudolabels, degrading the student model's performance and causing a mode collapse. Class imbalance, particularly when one class significantly outnumbers another, leads to contextual bias. To tackle the problem of context bias and the significant performance drop of the student model in the SFOD setting, we introduce Grounded Teacher (GT) as a standard framework. In this study, we model contextual relationships using a dedicated relational context module and leverage it to mitigate inherent biases in the model. This approach enables us to apply augmentations to closely related classes, across and within domains, enhancing the performance of underrepresented classes while keeping the effect on dominant classes minimal. We further improve the quality of predictions by implementing an expert foundational branch to supervise the student model. We validate the effectiveness of our approach in mitigating context bias under the SFOD setting through experiments on three medical datasets supported by comprehensive ablation studies. All relevant resources, including preprocessed data, trained model weights, and code, are publicly available at this https://github.com/Tajamul21/Grounded_Teacher.

TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs

Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections across various real-world settings. However, existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes. This lack of rich textual edge annotations significantly limits the exploration of contextual relationships between entities, hindering deeper insights into graph-structured data. To address this gap, we introduce Textual-Edge Graphs Datasets and Benchmark (TEG-DB), a comprehensive and diverse collection of benchmark textual-edge datasets featuring rich textual descriptions on nodes and edges. The TEG-DB datasets are large-scale and encompass a wide range of domains, from citation networks to social networks. In addition, we conduct extensive benchmark experiments on TEG-DB to assess the extent to which current techniques, including pre-trained language models, graph neural networks, and their combinations, can utilize textual node and edge information. Our goal is to elicit advancements in textual-edge graph research, specifically in developing methodologies that exploit rich textual node and edge descriptions to enhance graph analysis and provide deeper insights into complex real-world networks. The entire TEG-DB project is publicly accessible as an open-source repository on Github, accessible at https://github.com/Zhuofeng-Li/TEG-Benchmark.

Pseudo-Q: Generating Pseudo Language Queries for Visual Grounding

Visual grounding, i.e., localizing objects in images according to natural language queries, is an important topic in visual language understanding. The most effective approaches for this task are based on deep learning, which generally require expensive manually labeled image-query or patch-query pairs. To eliminate the heavy dependence on human annotations, we present a novel method, named Pseudo-Q, to automatically generate pseudo language queries for supervised training. Our method leverages an off-the-shelf object detector to identify visual objects from unlabeled images, and then language queries for these objects are obtained in an unsupervised fashion with a pseudo-query generation module. Then, we design a task-related query prompt module to specifically tailor generated pseudo language queries for visual grounding tasks. Further, in order to fully capture the contextual relationships between images and language queries, we develop a visual-language model equipped with multi-level cross-modality attention mechanism. Extensive experimental results demonstrate that our method has two notable benefits: (1) it can reduce human annotation costs significantly, e.g., 31% on RefCOCO without degrading original model's performance under the fully supervised setting, and (2) without bells and whistles, it achieves superior or comparable performance compared to state-of-the-art weakly-supervised visual grounding methods on all the five datasets we have experimented. Code is available at https://github.com/LeapLabTHU/Pseudo-Q.

A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks

Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology.

Improving Editability in Image Generation with Layer-wise Memory

Most real-world image editing tasks require multiple sequential edits to achieve desired results. Current editing approaches, primarily designed for single-object modifications, struggle with sequential editing: especially with maintaining previous edits along with adapting new objects naturally into the existing content. These limitations significantly hinder complex editing scenarios where multiple objects need to be modified while preserving their contextual relationships. We address this fundamental challenge through two key proposals: enabling rough mask inputs that preserve existing content while naturally integrating new elements and supporting consistent editing across multiple modifications. Our framework achieves this through layer-wise memory, which stores latent representations and prompt embeddings from previous edits. We propose Background Consistency Guidance that leverages memorized latents to maintain scene coherence and Multi-Query Disentanglement in cross-attention that ensures natural adaptation to existing content. To evaluate our method, we present a new benchmark dataset incorporating semantic alignment metrics and interactive editing scenarios. Through comprehensive experiments, we demonstrate superior performance in iterative image editing tasks with minimal user effort, requiring only rough masks while maintaining high-quality results throughout multiple editing steps.

GenSE: Generative Speech Enhancement via Language Models using Hierarchical Modeling

Semantic information refers to the meaning conveyed through words, phrases, and contextual relationships within a given linguistic structure. Humans can leverage semantic information, such as familiar linguistic patterns and contextual cues, to reconstruct incomplete or masked speech signals in noisy environments. However, existing speech enhancement (SE) approaches often overlook the rich semantic information embedded in speech, which is crucial for improving intelligibility, speaker consistency, and overall quality of enhanced speech signals. To enrich the SE model with semantic information, we employ language models as an efficient semantic learner and propose a comprehensive framework tailored for language model-based speech enhancement, called GenSE. Specifically, we approach SE as a conditional language modeling task rather than a continuous signal regression problem defined in existing works. This is achieved by tokenizing speech signals into semantic tokens using a pre-trained self-supervised model and into acoustic tokens using a custom-designed single-quantizer neural codec model. To improve the stability of language model predictions, we propose a hierarchical modeling method that decouples the generation of clean semantic tokens and clean acoustic tokens into two distinct stages. Moreover, we introduce a token chain prompting mechanism during the acoustic token generation stage to ensure timbre consistency throughout the speech enhancement process. Experimental results on benchmark datasets demonstrate that our proposed approach outperforms state-of-the-art SE systems in terms of speech quality and generalization capability.

BehaveGPT: A Foundation Model for Large-scale User Behavior Modeling

In recent years, foundational models have revolutionized the fields of language and vision, demonstrating remarkable abilities in understanding and generating complex data; however, similar advances in user behavior modeling have been limited, largely due to the complexity of behavioral data and the challenges involved in capturing intricate temporal and contextual relationships in user activities. To address this, we propose BehaveGPT, a foundational model designed specifically for large-scale user behavior prediction. Leveraging transformer-based architecture and a novel pretraining paradigm, BehaveGPT is trained on vast user behavior datasets, allowing it to learn complex behavior patterns and support a range of downstream tasks, including next behavior prediction, long-term generation, and cross-domain adaptation. Our approach introduces the DRO-based pretraining paradigm tailored for user behavior data, which improves model generalization and transferability by equitably modeling both head and tail behaviors. Extensive experiments on real-world datasets demonstrate that BehaveGPT outperforms state-of-the-art baselines, achieving more than a 10% improvement in macro and weighted recall, showcasing its ability to effectively capture and predict user behavior. Furthermore, we measure the scaling law in the user behavior domain for the first time on the Honor dataset, providing insights into how model performance scales with increased data and parameter sizes.

Utilizing BERT for Information Retrieval: Survey, Applications, Resources, and Challenges

Recent years have witnessed a substantial increase in the use of deep learning to solve various natural language processing (NLP) problems. Early deep learning models were constrained by their sequential or unidirectional nature, such that they struggled to capture the contextual relationships across text inputs. The introduction of bidirectional encoder representations from transformers (BERT) leads to a robust encoder for the transformer model that can understand the broader context and deliver state-of-the-art performance across various NLP tasks. This has inspired researchers and practitioners to apply BERT to practical problems, such as information retrieval (IR). A survey that focuses on a comprehensive analysis of prevalent approaches that apply pretrained transformer encoders like BERT to IR can thus be useful for academia and the industry. In light of this, we revisit a variety of BERT-based methods in this survey, cover a wide range of techniques of IR, and group them into six high-level categories: (i) handling long documents, (ii) integrating semantic information, (iii) balancing effectiveness and efficiency, (iv) predicting the weights of terms, (v) query expansion, and (vi) document expansion. We also provide links to resources, including datasets and toolkits, for BERT-based IR systems. A key highlight of our survey is the comparison between BERT's encoder-based models and the latest generative Large Language Models (LLMs), such as ChatGPT, which rely on decoders. Despite the popularity of LLMs, we find that for specific tasks, finely tuned BERT encoders still outperform, and at a lower deployment cost. Finally, we summarize the comprehensive outcomes of the survey and suggest directions for future research in the area.

iPerceive: Applying Common-Sense Reasoning to Multi-Modal Dense Video Captioning and Video Question Answering

Most prior art in visual understanding relies solely on analyzing the "what" (e.g., event recognition) and "where" (e.g., event localization), which in some cases, fails to describe correct contextual relationships between events or leads to incorrect underlying visual attention. Part of what defines us as human and fundamentally different from machines is our instinct to seek causality behind any association, say an event Y that happened as a direct result of event X. To this end, we propose iPerceive, a framework capable of understanding the "why" between events in a video by building a common-sense knowledge base using contextual cues to infer causal relationships between objects in the video. We demonstrate the effectiveness of our technique using the dense video captioning (DVC) and video question answering (VideoQA) tasks. Furthermore, while most prior work in DVC and VideoQA relies solely on visual information, other modalities such as audio and speech are vital for a human observer's perception of an environment. We formulate DVC and VideoQA tasks as machine translation problems that utilize multiple modalities. By evaluating the performance of iPerceive DVC and iPerceive VideoQA on the ActivityNet Captions and TVQA datasets respectively, we show that our approach furthers the state-of-the-art. Code and samples are available at: iperceive.amanchadha.com.

3D Medical Image Segmentation based on multi-scale MPU-Net

The high cure rate of cancer is inextricably linked to physicians' accuracy in diagnosis and treatment, therefore a model that can accomplish high-precision tumor segmentation has become a necessity in many applications of the medical industry. It can effectively lower the rate of misdiagnosis while considerably lessening the burden on clinicians. However, fully automated target organ segmentation is problematic due to the irregular stereo structure of 3D volume organs. As a basic model for this class of real applications, U-Net excels. It can learn certain global and local features, but still lacks the capacity to grasp spatial long-range relationships and contextual information at multiple scales. This paper proposes a tumor segmentation model MPU-Net for patient volume CT images, which is inspired by Transformer with a global attention mechanism. By combining image serialization with the Position Attention Module, the model attempts to comprehend deeper contextual dependencies and accomplish precise positioning. Each layer of the decoder is also equipped with a multi-scale module and a cross-attention mechanism. The capability of feature extraction and integration at different levels has been enhanced, and the hybrid loss function developed in this study can better exploit high-resolution characteristic information. Moreover, the suggested architecture is tested and evaluated on the Liver Tumor Segmentation Challenge 2017 (LiTS 2017) dataset. Compared with the benchmark model U-Net, MPU-Net shows excellent segmentation results. The dice, accuracy, precision, specificity, IOU, and MCC metrics for the best model segmentation results are 92.17%, 99.08%, 91.91%, 99.52%, 85.91%, and 91.74%, respectively. Outstanding indicators in various aspects illustrate the exceptional performance of this framework in automatic medical image segmentation.

Text-driven Human Motion Generation with Motion Masked Diffusion Model

Text-driven human motion generation is a multimodal task that synthesizes human motion sequences conditioned on natural language. It requires the model to satisfy textual descriptions under varying conditional inputs, while generating plausible and realistic human actions with high diversity. Existing diffusion model-based approaches have outstanding performance in the diversity and multimodality of generation. However, compared to autoregressive methods that train motion encoders before inference, diffusion methods lack in fitting the distribution of human motion features which leads to an unsatisfactory FID score. One insight is that the diffusion model lack the ability to learn the motion relations among spatio-temporal semantics through contextual reasoning. To solve this issue, in this paper, we proposed Motion Masked Diffusion Model (MMDM), a novel human motion masked mechanism for diffusion model to explicitly enhance its ability to learn the spatio-temporal relationships from contextual joints among motion sequences. Besides, considering the complexity of human motion data with dynamic temporal characteristics and spatial structure, we designed two mask modeling strategies: time frames mask and body parts mask. During training, MMDM masks certain tokens in the motion embedding space. Then, the diffusion decoder is designed to learn the whole motion sequence from masked embedding in each sampling step, this allows the model to recover a complete sequence from incomplete representations. Experiments on HumanML3D and KIT-ML dataset demonstrate that our mask strategy is effective by balancing motion quality and text-motion consistency.

Knowledge Distillation via Token-level Relationship Graph

Knowledge distillation is a powerful technique for transferring knowledge from a pre-trained teacher model to a student model. However, the true potential of knowledge transfer has not been fully explored. Existing approaches primarily focus on distilling individual information or instance-level relationships, overlooking the valuable information embedded in token-level relationships, which may be particularly affected by the long-tail effects. To address the above limitations, we propose a novel method called Knowledge Distillation with Token-level Relationship Graph (TRG) that leverages the token-wise relational knowledge to enhance the performance of knowledge distillation. By employing TRG, the student model can effectively emulate higher-level semantic information from the teacher model, resulting in improved distillation results. To further enhance the learning process, we introduce a token-wise contextual loss called contextual loss, which encourages the student model to capture the inner-instance semantic contextual of the teacher model. We conduct experiments to evaluate the effectiveness of the proposed method against several state-of-the-art approaches. Empirical results demonstrate the superiority of TRG across various visual classification tasks, including those involving imbalanced data. Our method consistently outperforms the existing baselines, establishing a new state-of-the-art performance in the field of knowledge distillation.

Bi-directional Contextual Attention for 3D Dense Captioning

3D dense captioning is a task involving the localization of objects and the generation of descriptions for each object in a 3D scene. Recent approaches have attempted to incorporate contextual information by modeling relationships with object pairs or aggregating the nearest neighbor features of an object. However, the contextual information constructed in these scenarios is limited in two aspects: first, objects have multiple positional relationships that exist across the entire global scene, not only near the object itself. Second, it faces with contradicting objectives--where localization and attribute descriptions are generated better with tight localization, while descriptions involving global positional relations are generated better with contextualized features of the global scene. To overcome this challenge, we introduce BiCA, a transformer encoder-decoder pipeline that engages in 3D dense captioning for each object with Bi-directional Contextual Attention. Leveraging parallelly decoded instance queries for objects and context queries for non-object contexts, BiCA generates object-aware contexts, where the contexts relevant to each object is summarized, and context-aware objects, where the objects relevant to the summarized object-aware contexts are aggregated. This extension relieves previous methods from the contradicting objectives, enhancing both localization performance and enabling the aggregation of contextual features throughout the global scene; thus improving caption generation performance simultaneously. Extensive experiments on two of the most widely-used 3D dense captioning datasets demonstrate that our proposed method achieves a significant improvement over prior methods.

From One to More: Contextual Part Latents for 3D Generation

Recent advances in 3D generation have transitioned from multi-view 2D rendering approaches to 3D-native latent diffusion frameworks that exploit geometric priors in ground truth data. Despite progress, three key limitations persist: (1) Single-latent representations fail to capture complex multi-part geometries, causing detail degradation; (2) Holistic latent coding neglects part independence and interrelationships critical for compositional design; (3) Global conditioning mechanisms lack fine-grained controllability. Inspired by human 3D design workflows, we propose CoPart - a part-aware diffusion framework that decomposes 3D objects into contextual part latents for coherent multi-part generation. This paradigm offers three advantages: i) Reduces encoding complexity through part decomposition; ii) Enables explicit part relationship modeling; iii) Supports part-level conditioning. We further develop a mutual guidance strategy to fine-tune pre-trained diffusion models for joint part latent denoising, ensuring both geometric coherence and foundation model priors. To enable large-scale training, we construct Partverse - a novel 3D part dataset derived from Objaverse through automated mesh segmentation and human-verified annotations. Extensive experiments demonstrate CoPart's superior capabilities in part-level editing, articulated object generation, and scene composition with unprecedented controllability.

METOR: A Unified Framework for Mutual Enhancement of Objects and Relationships in Open-vocabulary Video Visual Relationship Detection

Open-vocabulary video visual relationship detection aims to detect objects and their relationships in videos without being restricted by predefined object or relationship categories. Existing methods leverage the rich semantic knowledge of pre-trained vision-language models such as CLIP to identify novel categories. They typically adopt a cascaded pipeline to first detect objects and then classify relationships based on the detected objects, which may lead to error propagation and thus suboptimal performance. In this paper, we propose Mutual EnhancemenT of Objects and Relationships (METOR), a query-based unified framework to jointly model and mutually enhance object detection and relationship classification in open-vocabulary scenarios. Under this framework, we first design a CLIP-based contextual refinement encoding module that extracts visual contexts of objects and relationships to refine the encoding of text features and object queries, thus improving the generalization of encoding to novel categories. Then we propose an iterative enhancement module to alternatively enhance the representations of objects and relationships by fully exploiting their interdependence to improve recognition performance. Extensive experiments on two public datasets, VidVRD and VidOR, demonstrate that our framework achieves state-of-the-art performance.

Mechanistic Interpretation through Contextual Decomposition in Transformers

Transformers exhibit impressive capabilities but are often regarded as black boxes due to challenges in understanding the complex nonlinear relationships between features. Interpreting machine learning models is of paramount importance to mitigate risks, and mechanistic interpretability is in particular of current interest as it opens up a window for guiding manual modifications and reverse-engineering solutions. In this work, we introduce contextual decomposition for transformers (CD-T), extending a prior work on CD for RNNs and CNNs, to address mechanistic interpretation computationally efficiently. CD-T is a flexible interpretation method for transformers. It can capture contributions of combinations of input features or source internal components (e.g. attention heads, feed-forward networks) to (1) final predictions or (2) the output of any target internal component. Using CD-T, we propose a novel algorithm for circuit discovery. On a real-world pathology report classification task: we show CD-T distills a more faithful circuit of attention heads with improved computational efficiency (speed up 2x) than a prior benchmark, path patching. As a versatile interpretation method, CD-T also exhibits exceptional capabilities for local interpretations. CD-T is shown to reliably find words and phrases of contrasting sentiment/topic on SST-2 and AGNews datasets. Through human experiments, we demonstrate CD-T enables users to identify the more accurate of two models and to better trust a model's outputs compared to alternative interpretation methods such as SHAP and LIME.

Can Large Language Models Infer Causal Relationships from Real-World Text?

Understanding and inferring causal relationships from texts is a core aspect of human cognition and is essential for advancing large language models (LLMs) towards artificial general intelligence. Existing work primarily focuses on synthetically generated texts which involve simple causal relationships explicitly mentioned in the text. This fails to reflect the complexities of real-world tasks. In this paper, we investigate whether LLMs are capable of inferring causal relationships from real-world texts. We develop a benchmark drawn from real-world academic literature which includes diverse texts with respect to length, complexity of relationships (different levels of explicitness, number of events, and causal relationships), and domains and sub-domains. To the best of our knowledge, our benchmark is the first-ever real-world dataset for this task. Our experiments on state-of-the-art LLMs evaluated on our proposed benchmark demonstrate significant challenges, with the best-performing model achieving an average F1 score of only 0.477. Analysis reveals common pitfalls: difficulty with implicitly stated information, in distinguishing relevant causal factors from surrounding contextual details, and with connecting causally relevant information spread across lengthy textual passages. By systematically characterizing these deficiencies, our benchmark offers targeted insights for further research into advancing LLM causal reasoning.

Prototype-based Embedding Network for Scene Graph Generation

Current Scene Graph Generation (SGG) methods explore contextual information to predict relationships among entity pairs. However, due to the diverse visual appearance of numerous possible subject-object combinations, there is a large intra-class variation within each predicate category, e.g., "man-eating-pizza, giraffe-eating-leaf", and the severe inter-class similarity between different classes, e.g., "man-holding-plate, man-eating-pizza", in model's latent space. The above challenges prevent current SGG methods from acquiring robust features for reliable relation prediction. In this paper, we claim that the predicate's category-inherent semantics can serve as class-wise prototypes in the semantic space for relieving the challenges. To the end, we propose the Prototype-based Embedding Network (PE-Net), which models entities/predicates with prototype-aligned compact and distinctive representations and thereby establishes matching between entity pairs and predicates in a common embedding space for relation recognition. Moreover, Prototype-guided Learning (PL) is introduced to help PE-Net efficiently learn such entitypredicate matching, and Prototype Regularization (PR) is devised to relieve the ambiguous entity-predicate matching caused by the predicate's semantic overlap. Extensive experiments demonstrate that our method gains superior relation recognition capability on SGG, achieving new state-of-the-art performances on both Visual Genome and Open Images datasets.

Context-Alignment: Activating and Enhancing LLM Capabilities in Time Series

Recently, leveraging pre-trained Large Language Models (LLMs) for time series (TS) tasks has gained increasing attention, which involves activating and enhancing LLMs' capabilities. Many methods aim to activate LLMs' capabilities based on token-level alignment but overlook LLMs' inherent strength on natural language processing -- their deep understanding of linguistic logic and structure rather than superficial embedding processing. We propose Context-Alignment, a new paradigm that aligns TS with a linguistic component in the language environments familiar to LLMs to enable LLMs to contextualize and comprehend TS data, thereby activating their capabilities. Specifically, such context-level alignment comprises structural alignment and logical alignment, which is achieved by a Dual-Scale Context-Alignment GNNs (DSCA-GNNs) applied to TS-language multimodal inputs. Structural alignment utilizes dual-scale nodes to describe hierarchical structure in TS-language, enabling LLMs treat long TS data as a whole linguistic component while preserving intrinsic token features. Logical alignment uses directed edges to guide logical relationships, ensuring coherence in the contextual semantics. Demonstration examples prompt are employed to construct Demonstration Examples based Context-Alignment (DECA) following DSCA-GNNs framework. DECA can be flexibly and repeatedly integrated into various layers of pre-trained LLMs to improve awareness of logic and structure, thereby enhancing performance. Extensive experiments show the effectiveness of DECA and the importance of Context-Alignment across tasks, particularly in few-shot and zero-shot forecasting, confirming that Context-Alignment provide powerful prior knowledge on context.

iReason: Multimodal Commonsense Reasoning using Videos and Natural Language with Interpretability

Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.

RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics

Spatial understanding is a crucial capability for robots to make grounded decisions based on their environment. This foundational skill enables robots not only to perceive their surroundings but also to reason about and interact meaningfully within the world. In modern robotics, these capabilities are taken on by visual language models, and they face significant challenges when applied to spatial reasoning context due to their training data sources. These sources utilize general-purpose image datasets, and they often lack sophisticated spatial scene understanding capabilities. For example, the datasets do not address reference frame comprehension - spatial relationships require clear contextual understanding, whether from an ego-centric, object-centric, or world-centric perspective, which allow for effective real-world interaction. To address this issue, we introduce RoboSpatial, a large-scale spatial understanding dataset consisting of real indoor and tabletop scenes captured as 3D scans and egocentric images, annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5K 3D scans, and 3M annotated spatial relationships, with paired 2D egocentric images and 3D scans to make it both 2D and 3D ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robotics manipulation.

Neural Combinatorial Optimization for Real-World Routing

Vehicle Routing Problems (VRPs) are a class of NP-hard problems ubiquitous in several real-world logistics scenarios that pose significant challenges for optimization. Neural Combinatorial Optimization (NCO) has emerged as a promising alternative to classical approaches, as it can learn fast heuristics to solve VRPs. However, most research works in NCO for VRPs focus on simplified settings, which do not account for asymmetric distances and travel durations that cannot be derived by simple Euclidean distances and unrealistic data distributions, hindering real-world deployment. This work introduces RRNCO (Real Routing NCO) to bridge the gap of NCO between synthetic and real-world VRPs in the critical aspects of both data and modeling. First, we introduce a new, openly available dataset with real-world data containing a diverse dataset of locations, distances, and duration matrices from 100 cities, considering realistic settings with actual routing distances and durations obtained from Open Source Routing Machine (OSRM). Second, we propose a novel approach that efficiently processes both node and edge features through contextual gating, enabling the construction of more informed node embedding, and we finally incorporate an Adaptation Attention Free Module (AAFM) with neural adaptive bias mechanisms that effectively integrates not only distance matrices but also angular relationships between nodes, allowing our model to capture rich structural information. RRNCO achieves state-of-the-art results in real-world VRPs among NCO methods. We make our dataset and code publicly available at https://github.com/ai4co/real-routing-nco.

Discourse-Aware Text Simplification: From Complex Sentences to Linked Propositions

Sentences that present a complex syntax act as a major stumbling block for downstream Natural Language Processing applications whose predictive quality deteriorates with sentence length and complexity. The task of Text Simplification (TS) may remedy this situation. It aims to modify sentences in order to make them easier to process, using a set of rewriting operations, such as reordering, deletion, or splitting. State-of-the-art syntactic TS approaches suffer from two major drawbacks: first, they follow a very conservative approach in that they tend to retain the input rather than transforming it, and second, they ignore the cohesive nature of texts, where context spread across clauses or sentences is needed to infer the true meaning of a statement. To address these problems, we present a discourse-aware TS approach that splits and rephrases complex English sentences within the semantic context in which they occur. Based on a linguistically grounded transformation stage that uses clausal and phrasal disembedding mechanisms, complex sentences are transformed into shorter utterances with a simple canonical structure that can be easily analyzed by downstream applications. With sentence splitting, we thus address a TS task that has hardly been explored so far. Moreover, we introduce the notion of minimality in this context, as we aim to decompose source sentences into a set of self-contained minimal semantic units. To avoid breaking down the input into a disjointed sequence of statements that is difficult to interpret because important contextual information is missing, we incorporate the semantic context between the split propositions in the form of hierarchical structures and semantic relationships. In that way, we generate a semantic hierarchy of minimal propositions that leads to a novel representation of complex assertions that puts a semantic layer on top of the simplified sentences.

STAR: A First-Ever Dataset and A Large-Scale Benchmark for Scene Graph Generation in Large-Size Satellite Imagery

Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it attractive to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, there lack such SGG datasets. Due to the complexity of large-size SAI, mining triplets <subject, relationship, object> heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size SAI. This paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named STAR (Scene graph generaTion in lArge-size satellite imageRy), encompassing over 210K objects and over 400K triplets. To realize SGG in large-size SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI regarding object detection (OBD), pair pruning and relationship prediction for SGG. We also release a SAI-oriented SGG toolkit with about 30 OBD and 10 SGG methods which need further adaptation by our devised modules on our challenging STAR dataset. The dataset and toolkit are available at: https://linlin-dev.github.io/project/STAR.

LightRAG: Simple and Fast Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge sources, enabling more accurate and contextually relevant responses tailored to user needs. However, existing RAG systems have significant limitations, including reliance on flat data representations and inadequate contextual awareness, which can lead to fragmented answers that fail to capture complex inter-dependencies. To address these challenges, we propose LightRAG, which incorporates graph structures into text indexing and retrieval processes. This innovative framework employs a dual-level retrieval system that enhances comprehensive information retrieval from both low-level and high-level knowledge discovery. Additionally, the integration of graph structures with vector representations facilitates efficient retrieval of related entities and their relationships, significantly improving response times while maintaining contextual relevance. This capability is further enhanced by an incremental update algorithm that ensures the timely integration of new data, allowing the system to remain effective and responsive in rapidly changing data environments. Extensive experimental validation demonstrates considerable improvements in retrieval accuracy and efficiency compared to existing approaches. We have made our LightRAG open-source and available at the link: https://github.com/HKUDS/LightRAG.

Let Androids Dream of Electric Sheep: A Human-like Image Implication Understanding and Reasoning Framework

Metaphorical comprehension in images remains a critical challenge for AI systems, as existing models struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. While multimodal large language models (MLLMs) excel in basic Visual Question Answer (VQA) tasks, they struggle with a fundamental limitation on image implication tasks: contextual gaps that obscure the relationships between different visual elements and their abstract meanings. Inspired by the human cognitive process, we propose Let Androids Dream (LAD), a novel framework for image implication understanding and reasoning. LAD addresses contextual missing through the three-stage framework: (1) Perception: converting visual information into rich and multi-level textual representations, (2) Search: iteratively searching and integrating cross-domain knowledge to resolve ambiguity, and (3) Reasoning: generating context-alignment image implication via explicit reasoning. Our framework with the lightweight GPT-4o-mini model achieves SOTA performance compared to 15+ MLLMs on English image implication benchmark and a huge improvement on Chinese benchmark, performing comparable with the GPT-4o model on Multiple-Choice Question (MCQ) and outperforms 36.7% on Open-Style Question (OSQ). Additionally, our work provides new insights into how AI can more effectively interpret image implications, advancing the field of vision-language reasoning and human-AI interaction. Our project is publicly available at https://github.com/MING-ZCH/Let-Androids-Dream-of-Electric-Sheep.

Benchmarking Spatiotemporal Reasoning in LLMs and Reasoning Models: Capabilities and Challenges

Spatiotemporal reasoning plays a key role in Cyber-Physical Systems (CPS). Despite advances in Large Language Models (LLMs) and Large Reasoning Models (LRMs), their capacity to reason about complex spatiotemporal signals remains underexplored. This paper proposes a hierarchical SpatioTemporal reAsoning benchmaRK, STARK, to systematically evaluate LLMs across three levels of reasoning complexity: state estimation (e.g., predicting field variables, localizing and tracking events in space and time), spatiotemporal reasoning over states (e.g., inferring spatial-temporal relationships), and world-knowledge-aware reasoning that integrates contextual and domain knowledge (e.g., intent prediction, landmark-aware navigation). We curate 26 distinct spatiotemporal tasks with diverse sensor modalities, comprising 14,552 challenges where models answer directly or by Python Code Interpreter. Evaluating 3 LRMs and 8 LLMs, we find LLMs achieve limited success in tasks requiring geometric reasoning (e.g., multilateration or triangulation), particularly as complexity increases. Surprisingly, LRMs show robust performance across tasks with various levels of difficulty, often competing or surpassing traditional first-principle-based methods. Our results show that in reasoning tasks requiring world knowledge, the performance gap between LLMs and LRMs narrows, with some LLMs even surpassing LRMs. However, the LRM o3 model continues to achieve leading performance across all evaluated tasks, a result attributed primarily to the larger size of the reasoning models. STARK motivates future innovations in model architectures and reasoning paradigms for intelligent CPS by providing a structured framework to identify limitations in the spatiotemporal reasoning of LLMs and LRMs.

Context is Key: A Benchmark for Forecasting with Essential Textual Information

Forecasting is a critical task in decision-making across numerous domains. While historical numerical data provide a start, they fail to convey the complete context for reliable and accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge and constraints, which can efficiently be communicated through natural language. However, in spite of recent progress with LLM-based forecasters, their ability to effectively integrate this textual information remains an open question. To address this, we introduce "Context is Key" (CiK), a time-series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities; crucially, every task in CiK requires understanding textual context to be solved successfully. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. This benchmark aims to advance multimodal forecasting by promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/.

CORE: A Few-Shot Company Relation Classification Dataset for Robust Domain Adaptation

We introduce CORE, a dataset for few-shot relation classification (RC) focused on company relations and business entities. CORE includes 4,708 instances of 12 relation types with corresponding textual evidence extracted from company Wikipedia pages. Company names and business entities pose a challenge for few-shot RC models due to the rich and diverse information associated with them. For example, a company name may represent the legal entity, products, people, or business divisions depending on the context. Therefore, deriving the relation type between entities is highly dependent on textual context. To evaluate the performance of state-of-the-art RC models on the CORE dataset, we conduct experiments in the few-shot domain adaptation setting. Our results reveal substantial performance gaps, confirming that models trained on different domains struggle to adapt to CORE. Interestingly, we find that models trained on CORE showcase improved out-of-domain performance, which highlights the importance of high-quality data for robust domain adaptation. Specifically, the information richness embedded in business entities allows models to focus on contextual nuances, reducing their reliance on superficial clues such as relation-specific verbs. In addition to the dataset, we provide relevant code snippets to facilitate reproducibility and encourage further research in the field.

SportsHHI: A Dataset for Human-Human Interaction Detection in Sports Videos

Video-based visual relation detection tasks, such as video scene graph generation, play important roles in fine-grained video understanding. However, current video visual relation detection datasets have two main limitations that hinder the progress of research in this area. First, they do not explore complex human-human interactions in multi-person scenarios. Second, the relation types of existing datasets have relatively low-level semantics and can be often recognized by appearance or simple prior information, without the need for detailed spatio-temporal context reasoning. Nevertheless, comprehending high-level interactions between humans is crucial for understanding complex multi-person videos, such as sports and surveillance videos. To address this issue, we propose a new video visual relation detection task: video human-human interaction detection, and build a dataset named SportsHHI for it. SportsHHI contains 34 high-level interaction classes from basketball and volleyball sports. 118,075 human bounding boxes and 50,649 interaction instances are annotated on 11,398 keyframes. To benchmark this, we propose a two-stage baseline method and conduct extensive experiments to reveal the key factors for a successful human-human interaction detector. We hope that SportsHHI can stimulate research on human interaction understanding in videos and promote the development of spatio-temporal context modeling techniques in video visual relation detection.

A Named Entity Based Approach to Model Recipes

Traditional cooking recipes follow a structure which can be modelled very well if the rules and semantics of the different sections of the recipe text are analyzed and represented accurately. We propose a structure that can accurately represent the recipe as well as a pipeline to infer the best representation of the recipe in this uniform structure. The Ingredients section in a recipe typically lists down the ingredients required and corresponding attributes such as quantity, temperature, and processing state. This can be modelled by defining these attributes and their values. The physical entities which make up a recipe can be broadly classified into utensils, ingredients and their combinations that are related by cooking techniques. The instruction section lists down a series of events in which a cooking technique or process is applied upon these utensils and ingredients. We model these relationships in the form of tuples. Thus, using a combination of these methods we model cooking recipe in the dataset RecipeDB to show the efficacy of our method. This mined information model can have several applications which include translating recipes between languages, determining similarity between recipes, generation of novel recipes and estimation of the nutritional profile of recipes. For the purpose of recognition of ingredient attributes, we train the Named Entity Relationship (NER) models and analyze the inferences with the help of K-Means clustering. Our model presented with an F1 score of 0.95 across all datasets. We use a similar NER tagging model for labelling cooking techniques (F1 score = 0.88) and utensils (F1 score = 0.90) within the instructions section. Finally, we determine the temporal sequence of relationships between ingredients, utensils and cooking techniques for modeling the instruction steps.

Link-Context Learning for Multimodal LLMs

The ability to learn from context with novel concepts, and deliver appropriate responses are essential in human conversations. Despite current Multimodal Large Language Models (MLLMs) and Large Language Models (LLMs) being trained on mega-scale datasets, recognizing unseen images or understanding novel concepts in a training-free manner remains a challenge. In-Context Learning (ICL) explores training-free few-shot learning, where models are encouraged to ``learn to learn" from limited tasks and generalize to unseen tasks. In this work, we propose link-context learning (LCL), which emphasizes "reasoning from cause and effect" to augment the learning capabilities of MLLMs. LCL goes beyond traditional ICL by explicitly strengthening the causal relationship between the support set and the query set. By providing demonstrations with causal links, LCL guides the model to discern not only the analogy but also the underlying causal associations between data points, which empowers MLLMs to recognize unseen images and understand novel concepts more effectively. To facilitate the evaluation of this novel approach, we introduce the ISEKAI dataset, comprising exclusively of unseen generated image-label pairs designed for link-context learning. Extensive experiments show that our LCL-MLLM exhibits strong link-context learning capabilities to novel concepts over vanilla MLLMs. Code and data will be released at https://github.com/isekai-portal/Link-Context-Learning.

Domain and Function: A Dual-Space Model of Semantic Relations and Compositions

Given appropriate representations of the semantic relations between carpenter and wood and between mason and stone (for example, vectors in a vector space model), a suitable algorithm should be able to recognize that these relations are highly similar (carpenter is to wood as mason is to stone; the relations are analogous). Likewise, with representations of dog, house, and kennel, an algorithm should be able to recognize that the semantic composition of dog and house, dog house, is highly similar to kennel (dog house and kennel are synonymous). It seems that these two tasks, recognizing relations and compositions, are closely connected. However, up to now, the best models for relations are significantly different from the best models for compositions. In this paper, we introduce a dual-space model that unifies these two tasks. This model matches the performance of the best previous models for relations and compositions. The dual-space model consists of a space for measuring domain similarity and a space for measuring function similarity. Carpenter and wood share the same domain, the domain of carpentry. Mason and stone share the same domain, the domain of masonry. Carpenter and mason share the same function, the function of artisans. Wood and stone share the same function, the function of materials. In the composition dog house, kennel has some domain overlap with both dog and house (the domains of pets and buildings). The function of kennel is similar to the function of house (the function of shelters). By combining domain and function similarities in various ways, we can model relations, compositions, and other aspects of semantics.

Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration

Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.

COBRA Frames: Contextual Reasoning about Effects and Harms of Offensive Statements

Warning: This paper contains content that may be offensive or upsetting. Understanding the harms and offensiveness of statements requires reasoning about the social and situational context in which statements are made. For example, the utterance "your English is very good" may implicitly signal an insult when uttered by a white man to a non-white colleague, but uttered by an ESL teacher to their student would be interpreted as a genuine compliment. Such contextual factors have been largely ignored by previous approaches to toxic language detection. We introduce COBRA frames, the first context-aware formalism for explaining the intents, reactions, and harms of offensive or biased statements grounded in their social and situational context. We create COBRACORPUS, a dataset of 33k potentially offensive statements paired with machine-generated contexts and free-text explanations of offensiveness, implied biases, speaker intents, and listener reactions. To study the contextual dynamics of offensiveness, we train models to generate COBRA explanations, with and without access to the context. We find that explanations by context-agnostic models are significantly worse than by context-aware ones, especially in situations where the context inverts the statement's offensiveness (29% accuracy drop). Our work highlights the importance and feasibility of contextualized NLP by modeling social factors.

RelationBooth: Towards Relation-Aware Customized Object Generation

Customized image generation is crucial for delivering personalized content based on user-provided image prompts, aligning large-scale text-to-image diffusion models with individual needs. However, existing models often overlook the relationships between customized objects in generated images. Instead, this work addresses that gap by focusing on relation-aware customized image generation, which aims to preserve the identities from image prompts while maintaining the predicate relations described in text prompts. Specifically, we introduce RelationBooth, a framework that disentangles identity and relation learning through a well-curated dataset. Our training data consists of relation-specific images, independent object images containing identity information, and text prompts to guide relation generation. Then, we propose two key modules to tackle the two main challenges: generating accurate and natural relations, especially when significant pose adjustments are required, and avoiding object confusion in cases of overlap. First, we introduce a keypoint matching loss that effectively guides the model in adjusting object poses closely tied to their relationships. Second, we incorporate local features from the image prompts to better distinguish between objects, preventing confusion in overlapping cases. Extensive results on three benchmarks demonstrate the superiority of RelationBooth in generating precise relations while preserving object identities across a diverse set of objects and relations. The source code and trained models will be made available to the public.

TransRefer3D: Entity-and-Relation Aware Transformer for Fine-Grained 3D Visual Grounding

Recently proposed fine-grained 3D visual grounding is an essential and challenging task, whose goal is to identify the 3D object referred by a natural language sentence from other distractive objects of the same category. Existing works usually adopt dynamic graph networks to indirectly model the intra/inter-modal interactions, making the model difficult to distinguish the referred object from distractors due to the monolithic representations of visual and linguistic contents. In this work, we exploit Transformer for its natural suitability on permutation-invariant 3D point clouds data and propose a TransRefer3D network to extract entity-and-relation aware multimodal context among objects for more discriminative feature learning. Concretely, we devise an Entity-aware Attention (EA) module and a Relation-aware Attention (RA) module to conduct fine-grained cross-modal feature matching. Facilitated by co-attention operation, our EA module matches visual entity features with linguistic entity features while RA module matches pair-wise visual relation features with linguistic relation features, respectively. We further integrate EA and RA modules into an Entity-and-Relation aware Contextual Block (ERCB) and stack several ERCBs to form our TransRefer3D for hierarchical multimodal context modeling. Extensive experiments on both Nr3D and Sr3D datasets demonstrate that our proposed model significantly outperforms existing approaches by up to 10.6% and claims the new state-of-the-art. To the best of our knowledge, this is the first work investigating Transformer architecture for fine-grained 3D visual grounding task.

ICLR: In-Context Learning of Representations

Recent work has demonstrated that semantics specified by pretraining data influence how representations of different concepts are organized in a large language model (LLM). However, given the open-ended nature of LLMs, e.g., their ability to in-context learn, we can ask whether models alter these pretraining semantics to adopt alternative, context-specified ones. Specifically, if we provide in-context exemplars wherein a concept plays a different role than what the pretraining data suggests, do models reorganize their representations in accordance with these novel semantics? To answer this question, we take inspiration from the theory of conceptual role semantics and define a toy "graph tracing" task wherein the nodes of the graph are referenced via concepts seen during training (e.g., apple, bird, etc.) and the connectivity of the graph is defined via some predefined structure (e.g., a square grid). Given exemplars that indicate traces of random walks on the graph, we analyze intermediate representations of the model and find that as the amount of context is scaled, there is a sudden re-organization from pretrained semantic representations to in-context representations aligned with the graph structure. Further, we find that when reference concepts have correlations in their semantics (e.g., Monday, Tuesday, etc.), the context-specified graph structure is still present in the representations, but is unable to dominate the pretrained structure. To explain these results, we analogize our task to energy minimization for a predefined graph topology, providing evidence towards an implicit optimization process to infer context-specified semantics. Overall, our findings indicate scaling context-size can flexibly re-organize model representations, possibly unlocking novel capabilities.

Is This the Subspace You Are Looking for? An Interpretability Illusion for Subspace Activation Patching

Mechanistic interpretability aims to understand model behaviors in terms of specific, interpretable features, often hypothesized to manifest as low-dimensional subspaces of activations. Specifically, recent studies have explored subspace interventions (such as activation patching) as a way to simultaneously manipulate model behavior and attribute the features behind it to given subspaces. In this work, we demonstrate that these two aims diverge, potentially leading to an illusory sense of interpretability. Counterintuitively, even if a subspace intervention makes the model's output behave as if the value of a feature was changed, this effect may be achieved by activating a dormant parallel pathway leveraging another subspace that is causally disconnected from model outputs. We demonstrate this phenomenon in a distilled mathematical example, in two real-world domains (the indirect object identification task and factual recall), and present evidence for its prevalence in practice. In the context of factual recall, we further show a link to rank-1 fact editing, providing a mechanistic explanation for previous work observing an inconsistency between fact editing performance and fact localization. However, this does not imply that activation patching of subspaces is intrinsically unfit for interpretability. To contextualize our findings, we also show what a success case looks like in a task (indirect object identification) where prior manual circuit analysis informs an understanding of the location of a feature. We explore the additional evidence needed to argue that a patched subspace is faithful.

AUTOHALLUSION: Automatic Generation of Hallucination Benchmarks for Vision-Language Models

Large vision-language models (LVLMs) hallucinate: certain context cues in an image may trigger the language module's overconfident and incorrect reasoning on abnormal or hypothetical objects. Though a few benchmarks have been developed to investigate LVLM hallucinations, they mainly rely on hand-crafted corner cases whose fail patterns may hardly generalize, and finetuning on them could undermine their validity. These motivate us to develop the first automatic benchmark generation approach, AUTOHALLUSION, that harnesses a few principal strategies to create diverse hallucination examples. It probes the language modules in LVLMs for context cues and uses them to synthesize images by: (1) adding objects abnormal to the context cues; (2) for two co-occurring objects, keeping one and excluding the other; or (3) removing objects closely tied to the context cues. It then generates image-based questions whose ground-truth answers contradict the language module's prior. A model has to overcome contextual biases and distractions to reach correct answers, while incorrect or inconsistent answers indicate hallucinations. AUTOHALLUSION enables us to create new benchmarks at the minimum cost and thus overcomes the fragility of hand-crafted benchmarks. It also reveals common failure patterns and reasons, providing key insights to detect, avoid, or control hallucinations. Comprehensive evaluations of top-tier LVLMs, e.g., GPT-4V(ision), Gemini Pro Vision, Claude 3, and LLaVA-1.5, show a 97.7% and 98.7% success rate of hallucination induction on synthetic and real-world datasets of AUTOHALLUSION, paving the way for a long battle against hallucinations.

E-Semiotics

E-Semiotics is a conceptual and practical framework for designing, developing, and managing digital information and knowledge products. It applies semiotic principles to digital environments, focusing on the structural, contextual, and narrative organization of information. Central to E-Semiotics is the concept of ''scenario building,'' which acts as a template or guide for creating and maintaining digital products and services, ensuring usability, adaptability, and efficiency.This approach distinguishes itself from traditional semiotics by addressing the unique features of digital media, such as interactivity, hypertextuality, and modularity. It requires a dual competency in semiotics and technology, making it particularly relevant for developing interactive digital products like e-learning systems, digital libraries, and web portals. E-Semiotics also integrates seamlessly with knowledge management, offering conceptual models and technological tools to optimize the storage, retrieval, and dissemination of information.The methodology includes both a semiotic approach, which focuses on understanding the structural and contextual dimensions of information, and a technological approach, which ensures interoperability, reusability, and scalability of digital tools. It has broad applications in areas such as multi-support publishing, semantic web development, and the creation of dynamic websites and web services. These applications empower organizations, particularly small and medium-sized ones, to leverage digital technologies without extensive technical expertise.E-Semiotics faces challenges like conceptual complexity and economic barriers, but its potential lies in democratizing access to digital tools and fostering innovation. It bridges the gap between theory and practice, offering scalable solutions that respond to evolving user needs. This framework is poised to play a critical role in the digital transformation of communication and knowledge systems, supporting organizations in adapting to the demands of a rapidly changing digital landscape.

Deep Learning-based Code Completion: On the Impact on Performance of Contextual Information

Code completion aims at speeding up code writing by recommending to developers the next tokens they are likely to type. Deep Learning (DL) models pushed the boundaries of code completion by redefining what these coding assistants can do: We moved from predicting few code tokens to automatically generating entire functions. One important factor impacting the performance of DL-based code completion techniques is the context provided as input. With "context" we refer to what the model knows about the code to complete. In a simple scenario, the DL model might be fed with a partially implemented function to complete. In this case, the context is represented by the incomplete function and, based on it, the model must generate a prediction. It is however possible to expand such a context to include additional information, like the whole source code file containing the function to complete, which could be useful to boost the prediction performance. In this work, we present an empirical study investigating how the performance of a DL-based code completion technique is affected by different contexts. We experiment with 8 types of contexts and their combinations. These contexts include: (i) coding contexts, featuring information extracted from the code base in which the code completion is invoked (e.g., code components structurally related to the one to "complete"); (ii) process context, with information aimed at depicting the current status of the project in which a code completion task is triggered (e.g., a textual representation of open issues relevant for the code to complete); and (iii) developer contexts, capturing information about the developer invoking the code completion (e.g., the APIs frequently used). Our results show that additional contextual information can benefit the performance of DL-based code completion, with relative improvements up to +22% in terms of correct predictions.

A Survey of Context Engineering for Large Language Models

The performance of Large Language Models (LLMs) is fundamentally determined by the contextual information provided during inference. This survey introduces Context Engineering, a formal discipline that transcends simple prompt design to encompass the systematic optimization of information payloads for LLMs. We present a comprehensive taxonomy decomposing Context Engineering into its foundational components and the sophisticated implementations that integrate them into intelligent systems. We first examine the foundational components: context retrieval and generation, context processing and context management. We then explore how these components are architecturally integrated to create sophisticated system implementations: retrieval-augmented generation (RAG), memory systems and tool-integrated reasoning, and multi-agent systems. Through this systematic analysis of over 1300 research papers, our survey not only establishes a technical roadmap for the field but also reveals a critical research gap: a fundamental asymmetry exists between model capabilities. While current models, augmented by advanced context engineering, demonstrate remarkable proficiency in understanding complex contexts, they exhibit pronounced limitations in generating equally sophisticated, long-form outputs. Addressing this gap is a defining priority for future research. Ultimately, this survey provides a unified framework for both researchers and engineers advancing context-aware AI.