new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 29

From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models

Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making. Automatic chart understanding has witnessed significant advancements with the rise of large foundation models in recent years. Foundation models, such as large language models, have revolutionized various natural language processing tasks and are increasingly being applied to chart understanding tasks. This survey paper provides a comprehensive overview of the recent developments, challenges, and future directions in chart understanding within the context of these foundation models. We review fundamental building blocks crucial for studying chart understanding tasks. Additionally, we explore various tasks and their evaluation metrics and sources of both charts and textual inputs. Various modeling strategies are then examined, encompassing both classification-based and generation-based approaches, along with tool augmentation techniques that enhance chart understanding performance. Furthermore, we discuss the state-of-the-art performance of each task and discuss how we can improve the performance. Challenges and future directions are addressed, highlighting the importance of several topics, such as domain-specific charts, lack of efforts in developing evaluation metrics, and agent-oriented settings. This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis, providing valuable insights and directions for future research in chart understanding leveraging large foundation models. The studies mentioned in this paper, along with emerging new research, will be continually updated at: https://github.com/khuangaf/Awesome-Chart-Understanding.

VLRewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models

Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems, yet their own evaluation remains under-explored. Current assessment methods primarily rely on AI-annotated preference labels from traditional VL tasks, which can introduce biases and often fail to effectively challenge state-of-the-art models. To address these limitations, we introduce VL-RewardBench, a comprehensive benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks. Through our AI-assisted annotation pipeline combining sample selection with human verification, we curate 1,250 high-quality examples specifically designed to probe model limitations. Comprehensive evaluation across 16 leading large vision-language models, demonstrates VL-RewardBench's effectiveness as a challenging testbed, where even GPT-4o achieves only 65.4% accuracy, and state-of-the-art open-source models such as Qwen2-VL-72B, struggle to surpass random-guessing. Importantly, performance on VL-RewardBench strongly correlates (Pearson's r > 0.9) with MMMU-Pro accuracy using Best-of-N sampling with VL-GenRMs. Analysis experiments uncover three critical insights for improving VL-GenRMs: (i) models predominantly fail at basic visual perception tasks rather than reasoning tasks; (ii) inference-time scaling benefits vary dramatically by model capacity; and (iii) training VL-GenRMs to learn to judge substantially boosts judgment capability (+14.7% accuracy for a 7B VL-GenRM). We believe VL-RewardBench along with the experimental insights will become a valuable resource for advancing VL-GenRMs.

STAR-R1: Spatial TrAnsformation Reasoning by Reinforcing Multimodal LLMs

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, yet they lag significantly behind humans in spatial reasoning. We investigate this gap through Transformation-Driven Visual Reasoning (TVR), a challenging task requiring identification of object transformations across images under varying viewpoints. While traditional Supervised Fine-Tuning (SFT) fails to generate coherent reasoning paths in cross-view settings, sparse-reward Reinforcement Learning (RL) suffers from inefficient exploration and slow convergence. To address these limitations, we propose STAR-R1, a novel framework that integrates a single-stage RL paradigm with a fine-grained reward mechanism tailored for TVR. Specifically, STAR-R1 rewards partial correctness while penalizing excessive enumeration and passive inaction, enabling efficient exploration and precise reasoning. Comprehensive evaluations demonstrate that STAR-R1 achieves state-of-the-art performance across all 11 metrics, outperforming SFT by 23% in cross-view scenarios. Further analysis reveals STAR-R1's anthropomorphic behavior and highlights its unique ability to compare all objects for improving spatial reasoning. Our work provides critical insights in advancing the research of MLLMs and reasoning models. The codes, model weights, and data will be publicly available at https://github.com/zongzhao23/STAR-R1.

Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback

Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.

Enhancing Domain-Specific Retrieval-Augmented Generation: Synthetic Data Generation and Evaluation using Reasoning Models

Retrieval-Augmented Generation (RAG) systems face significant performance gaps when applied to technical domains requiring precise information extraction from complex documents. Current evaluation methodologies relying on document-level metrics inadequately capture token-resolution retrieval accuracy that is critical for domain-related documents. We propose a framework combining granular evaluation metrics with synthetic data generation to optimize domain-specific RAG performance. First, we introduce token-aware metrics Precision Omega and Intersection-over-Union (IoU) that quantify context preservation versus information density trade-offs inherent in technical texts. Second, we develop a reasoning model-driven pipeline using instruction-tuned LLMs (DeepSeek-R1, DeepSeek-R1 distilled variants, and Phi-4) to generate context-anchored QA pairs with discontinuous reference spans across three specialized corpora: SEC 10-K filings (finance), biomedical abstracts (PubMed), and APT threat reports (cybersecurity). Our empirical analysis reveals critical insights: smaller chunks (less than 10 tokens) improve precision by 31-42% (IoU = 0.071 vs. baseline 0.053) at recall costs (-18%), while domain-specific embedding strategies yield 22% variance in optimal chunk sizing (5-20 tokens). The DeepSeek-R1-Distill-Qwen-32B model demonstrates superior concept alignment (+14% mean IoU over alternatives), though no configuration universally dominates. Financial texts favor larger chunks for risk factor coverage (Recall = 0.81 at size = 20), whereas cybersecurity content benefits from atomic segmentation, Precision Omega = 0.28 at size = 5. Our code is available on https://github.com/aryan-jadon/Synthetic-Data-Generation-and-Evaluation-using-Reasoning-Model

SecReEvalBench: A Multi-turned Security Resilience Evaluation Benchmark for Large Language Models

The increasing deployment of large language models in security-sensitive domains necessitates rigorous evaluation of their resilience against adversarial prompt-based attacks. While previous benchmarks have focused on security evaluations with limited and predefined attack domains, such as cybersecurity attacks, they often lack a comprehensive assessment of intent-driven adversarial prompts and the consideration of real-life scenario-based multi-turn attacks. To address this gap, we present SecReEvalBench, the Security Resilience Evaluation Benchmark, which defines four novel metrics: Prompt Attack Resilience Score, Prompt Attack Refusal Logic Score, Chain-Based Attack Resilience Score and Chain-Based Attack Rejection Time Score. Moreover, SecReEvalBench employs six questioning sequences for model assessment: one-off attack, successive attack, successive reverse attack, alternative attack, sequential ascending attack with escalating threat levels and sequential descending attack with diminishing threat levels. In addition, we introduce a dataset customized for the benchmark, which incorporates both neutral and malicious prompts, categorised across seven security domains and sixteen attack techniques. In applying this benchmark, we systematically evaluate five state-of-the-art open-weighted large language models, Llama 3.1, Gemma 2, Mistral v0.3, DeepSeek-R1 and Qwen 3. Our findings offer critical insights into the strengths and weaknesses of modern large language models in defending against evolving adversarial threats. The SecReEvalBench dataset is publicly available at https://kaggle.com/datasets/5a7ee22cf9dab6c93b55a73f630f6c9b42e936351b0ae98fbae6ddaca7fe248d, which provides a groundwork for advancing research in large language model security.

OpenHumanVid: A Large-Scale High-Quality Dataset for Enhancing Human-Centric Video Generation

Recent advancements in visual generation technologies have markedly increased the scale and availability of video datasets, which are crucial for training effective video generation models. However, a significant lack of high-quality, human-centric video datasets presents a challenge to progress in this field. To bridge this gap, we introduce OpenHumanVid, a large-scale and high-quality human-centric video dataset characterized by precise and detailed captions that encompass both human appearance and motion states, along with supplementary human motion conditions, including skeleton sequences and speech audio. To validate the efficacy of this dataset and the associated training strategies, we propose an extension of existing classical diffusion transformer architectures and conduct further pretraining of our models on the proposed dataset. Our findings yield two critical insights: First, the incorporation of a large-scale, high-quality dataset substantially enhances evaluation metrics for generated human videos while preserving performance in general video generation tasks. Second, the effective alignment of text with human appearance, human motion, and facial motion is essential for producing high-quality video outputs. Based on these insights and corresponding methodologies, the straightforward extended network trained on the proposed dataset demonstrates an obvious improvement in the generation of human-centric videos. Project page https://fudan-generative-vision.github.io/OpenHumanVid

LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration

GraphRAG addresses significant challenges in Retrieval-Augmented Generation (RAG) by leveraging graphs with embedded knowledge to enhance the reasoning capabilities of Large Language Models (LLMs). Despite its promising potential, the GraphRAG community currently lacks a unified framework for fine-grained decomposition of the graph-based knowledge retrieval process. Furthermore, there is no systematic categorization or evaluation of existing solutions within the retrieval process. In this paper, we present LEGO-GraphRAG, a modular framework that decomposes the retrieval process of GraphRAG into three interconnected modules: subgraph-extraction, path-filtering, and path-refinement. We systematically summarize and classify the algorithms and neural network (NN) models relevant to each module, providing a clearer understanding of the design space for GraphRAG instances. Additionally, we identify key design factors, such as Graph Coupling and Computational Cost, that influence the effectiveness of GraphRAG implementations. Through extensive empirical studies, we construct high-quality GraphRAG instances using a representative selection of solutions and analyze their impact on retrieval and reasoning performance. Our findings offer critical insights into optimizing GraphRAG instance design, ultimately contributing to the advancement of more accurate and contextually relevant LLM applications.

StressPrompt: Does Stress Impact Large Language Models and Human Performance Similarly?

Human beings often experience stress, which can significantly influence their performance. This study explores whether Large Language Models (LLMs) exhibit stress responses similar to those of humans and whether their performance fluctuates under different stress-inducing prompts. To investigate this, we developed a novel set of prompts, termed StressPrompt, designed to induce varying levels of stress. These prompts were derived from established psychological frameworks and carefully calibrated based on ratings from human participants. We then applied these prompts to several LLMs to assess their responses across a range of tasks, including instruction-following, complex reasoning, and emotional intelligence. The findings suggest that LLMs, like humans, perform optimally under moderate stress, consistent with the Yerkes-Dodson law. Notably, their performance declines under both low and high-stress conditions. Our analysis further revealed that these StressPrompts significantly alter the internal states of LLMs, leading to changes in their neural representations that mirror human responses to stress. This research provides critical insights into the operational robustness and flexibility of LLMs, demonstrating the importance of designing AI systems capable of maintaining high performance in real-world scenarios where stress is prevalent, such as in customer service, healthcare, and emergency response contexts. Moreover, this study contributes to the broader AI research community by offering a new perspective on how LLMs handle different scenarios and their similarities to human cognition.

CUDRT: Benchmarking the Detection of Human vs. Large Language Models Generated Texts

The proliferation of large language models (LLMs) has significantly enhanced text generation capabilities across various industries. However, these models' ability to generate human-like text poses substantial challenges in discerning between human and AI authorship. Despite the effectiveness of existing AI-generated text detectors, their development is hindered by the lack of comprehensive, publicly available benchmarks. Current benchmarks are limited to specific scenarios, such as question answering and text polishing, and predominantly focus on English texts, failing to capture the diverse applications and linguistic nuances of LLMs. To address these limitations, this paper constructs a comprehensive bilingual benchmark in both Chinese and English to evaluate mainstream AI-generated text detectors. We categorize LLM text generation into five distinct operations: Create, Update, Delete, Rewrite, and Translate (CUDRT), encompassing all current LLMs activities. We also establish a robust benchmark evaluation framework to support scalable and reproducible experiments. For each CUDRT category, we have developed extensive datasets to thoroughly assess detector performance. By employing the latest mainstream LLMs specific to each language, our datasets provide a thorough evaluation environment. Extensive experimental results offer critical insights for optimizing AI-generated text detectors and suggest future research directions to improve detection accuracy and generalizability across various scenarios.

Characterizing and Optimizing LLM Inference Workloads on CPU-GPU Coupled Architectures

Large language model (LLM)-based inference workloads increasingly dominate data center costs and resource utilization. Therefore, understanding the inference workload characteristics on evolving CPU-GPU coupled architectures is crucial for optimization. This paper presents an in-depth analysis of LLM inference behavior on loosely-coupled (PCIe A100/H100) and closely-coupled (GH200) systems. We analyze performance dynamics using fine-grained operator-to-kernel trace analysis, facilitated by our novel profiler SKIP and metrics like Total Kernel Launch and Queuing Time (TKLQT). Results show that closely-coupled (CC) GH200 significantly outperforms loosely-coupled (LC) systems at large batch sizes, achieving 1.9x-2.7x faster prefill latency for Llama 3.2-1B. However, our analysis also reveals that GH200 remains CPU-bound up to 4x larger batch sizes than LC systems. In this extended CPU-bound region, we identify the performance characteristics of the Grace CPU as a key factor contributing to higher inference latency at low batch sizes on GH200. We demonstrate that TKLQT accurately identifies this CPU/GPU-bound transition point. Based on this analysis, we further show that kernel fusion offers significant potential to mitigate GH200's low-batch latency bottleneck by reducing kernel launch overhead. This detailed kernel-level characterization provides critical insights for optimizing diverse CPU-GPU coupling strategies. This work is an initial effort, and we plan to explore other major AI/DL workloads that demand different degrees of CPU-GPU heterogeneous architectures.

When Graph meets Multimodal: Benchmarking and Meditating on Multimodal Attributed Graphs Learning

Multimodal Attributed Graphs (MAGs) are ubiquitous in real-world applications, encompassing extensive knowledge through multimodal attributes attached to nodes (e.g., texts and images) and topological structure representing node interactions. Despite its potential to advance diverse research fields like social networks and e-commerce, MAG representation learning (MAGRL) remains underexplored due to the lack of standardized datasets and evaluation frameworks. In this paper, we first propose MAGB, a comprehensive MAG benchmark dataset, featuring curated graphs from various domains with both textual and visual attributes. Based on MAGB dataset, we further systematically evaluate two mainstream MAGRL paradigms: GNN-as-Predictor, which integrates multimodal attributes via Graph Neural Networks (GNNs), and VLM-as-Predictor, which harnesses Vision Language Models (VLMs) for zero-shot reasoning. Extensive experiments on MAGB reveal following critical insights: (i) Modality significances fluctuate drastically with specific domain characteristics. (ii) Multimodal embeddings can elevate the performance ceiling of GNNs. However, intrinsic biases among modalities may impede effective training, particularly in low-data scenarios. (iii) VLMs are highly effective at generating multimodal embeddings that alleviate the imbalance between textual and visual attributes. These discoveries, which illuminate the synergy between multimodal attributes and graph topologies, contribute to reliable benchmarks, paving the way for future MAG research. The MAGB dataset and evaluation pipeline are publicly available at https://github.com/sktsherlock/MAGB.

SimpleGVR: A Simple Baseline for Latent-Cascaded Video Super-Resolution

Latent diffusion models have emerged as a leading paradigm for efficient video generation. However, as user expectations shift toward higher-resolution outputs, relying solely on latent computation becomes inadequate. A promising approach involves decoupling the process into two stages: semantic content generation and detail synthesis. The former employs a computationally intensive base model at lower resolutions, while the latter leverages a lightweight cascaded video super-resolution (VSR) model to achieve high-resolution output. In this work, we focus on studying key design principles for latter cascaded VSR models, which are underexplored currently. First, we propose two degradation strategies to generate training pairs that better mimic the output characteristics of the base model, ensuring alignment between the VSR model and its upstream generator. Second, we provide critical insights into VSR model behavior through systematic analysis of (1) timestep sampling strategies, (2) noise augmentation effects on low-resolution (LR) inputs. These findings directly inform our architectural and training innovations. Finally, we introduce interleaving temporal unit and sparse local attention to achieve efficient training and inference, drastically reducing computational overhead. Extensive experiments demonstrate the superiority of our framework over existing methods, with ablation studies confirming the efficacy of each design choice. Our work establishes a simple yet effective baseline for cascaded video super-resolution generation, offering practical insights to guide future advancements in efficient cascaded synthesis systems.

Human-like object concept representations emerge naturally in multimodal large language models

Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of Large Language Models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? In this study, we combined behavioral and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgments from LLMs and Multimodal LLMs (MLLMs) to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive, and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and MLLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as EBA, PPA, RSC, and FFA. This provides compelling evidence that the object representations in LLMs, while not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.

Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers

Tracking how data is mentioned and used in research papers provides critical insights for improving data discoverability, quality, and production. However, manually identifying and classifying dataset mentions across vast academic literature is resource-intensive and not scalable. This paper presents a machine learning framework that automates dataset mention detection across research domains by leveraging large language models (LLMs), synthetic data, and a two-stage fine-tuning process. We employ zero-shot extraction from research papers, an LLM-as-a-Judge for quality assessment, and a reasoning agent for refinement to generate a weakly supervised synthetic dataset. The Phi-3.5-mini instruct model is pre-fine-tuned on this dataset, followed by fine-tuning on a manually annotated subset. At inference, a ModernBERT-based classifier efficiently filters dataset mentions, reducing computational overhead while maintaining high recall. Evaluated on a held-out manually annotated sample, our fine-tuned model outperforms NuExtract-v1.5 and GLiNER-large-v2.1 in dataset extraction accuracy. Our results highlight how LLM-generated synthetic data can effectively address training data scarcity, improving generalization in low-resource settings. This framework offers a pathway toward scalable monitoring of dataset usage, enhancing transparency, and supporting researchers, funders, and policymakers in identifying data gaps and strengthening data accessibility for informed decision-making.

Unveiling the Mechanisms of Explicit CoT Training: How Chain-of-Thought Enhances Reasoning Generalization

Training large language models (LLMs) with high-quality Chain-of-Thought (CoT) annotations has become a widely adopted strategy due to its significant enhancement of reasoning capabilities. To fully comprehend this approach, two questions naturally arise: (Q1) What advantages does training with CoT offer compared to training without CoT? (Q2) If there are advantages, what are the underlying mechanisms of explicit CoT training? Analyzing the advantages and mechanisms of CoT training is challenging due to the many factors involved. To address this, we conduct a detailed analysis using clear and controllable data distributions and, for the first time, reveal that CoT training offers the following advantages: (1) Training with CoT markedly improves reasoning generalization, extending it from in-distribution (ID) to both ID and out-of-distribution (OOD) scenarios, while also speeding up convergence; (2) Even when training with CoT includes a certain range of erroneous reasoning steps, it still enables the model to learn reasoning patterns, leading to systematic generalization. We further explore the underlying mechanisms from a circuit perspective: (1) The data distribution (e.g., ratio lambda and pattern) plays a crucial role in influencing the model's systematic generalization; (2) CoT training (with two-hop facts) internalizes reasoning into a two-stage generalizing circuit, where the number of stages corresponds to the explicit reasoning steps during training. Our findings elucidate the mechanisms underlying explicit CoT training and offer critical insights into tuning strategies for LLMs to achieve robust generalization.

Scaling Laws for Floating Point Quantization Training

Low-precision training is considered an effective strategy for reducing both training and downstream inference costs. Previous scaling laws for precision mainly focus on integer quantization, which pay less attention to the constituents in floating-point quantization and thus cannot well fit the LLM losses in this scenario. In contrast, while floating-point quantization training is more commonly implemented in production, the research on it has been relatively superficial. In this paper, we thoroughly explore the effects of floating-point quantization targets, exponent bits, mantissa bits, and the calculation granularity of the scaling factor in floating-point quantization training performance of LLM models. While presenting an accurate floating-point quantization unified scaling law, we also provide valuable suggestions for the community: (1) Exponent bits contribute slightly more to the model performance than mantissa bits. We provide the optimal exponent-mantissa bit ratio for different bit numbers, which is available for future reference by hardware manufacturers; (2) We discover the formation of the critical data size in low-precision LLM training. Too much training data exceeding the critical data size will inversely bring in degradation of LLM performance; (3) The optimal floating-point quantization precision is directly proportional to the computational power, but within a wide computational power range, we estimate that the best cost-performance precision lies between 4-8 bits.

Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving

Recent advances in large language models (LLMs) have predominantly focused on maximizing accuracy and reasoning capabilities, often overlooking crucial computational efficiency considerations. While this approach has yielded impressive accuracy improvements, it has led to methods that may be impractical for real-world deployment due to computational overhead and latency constraints. This paper investigates the potential synergy between reasoning enhancement and computational efficiency by analyzing the integration of two contrasting approaches: Quiet-STaR (Self-Taught Reasoner) and REBASE (REward BAlanced SEarch). Through comprehensive empirical analysis using the Mistral-7B model on the GSM8K dataset, we demonstrate that while each method excels in its primary objective-Quiet-STaR achieving superior accuracy (32.03%) despite high computational cost (554.66s runtime, 12.73T FLOPs), and REBASE providing exceptional efficiency (8.47s runtime, 2.35T FLOPs) while maintaining baseline-comparable accuracy (10.94%)-their integration reveals fundamental challenges in reconciling reasoning depth with computational efficiency. The combined approach unexpectedly results in degraded performance (9.38% accuracy, 143.66s runtime), highlighting critical insights about the complex interplay between reasoning enhancement and efficiency optimization in LLMs. Our findings illuminate the need for novel architectures and algorithms specifically designed to bridge the gap between these competing objectives, while providing concrete directions for future research in compute-efficient reasoning methods.

Post Hoc Explanations of Language Models Can Improve Language Models

Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance the performance of these models, particularly on tasks that require reasoning capabilities. However, incorporating such rationales poses challenges in terms of scalability as this requires a high degree of human involvement. In this work, we present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY), which addresses the aforementioned challenges by automating the process of rationale generation. To this end, we leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions. More specifically, we construct automated natural language rationales that embed insights from post hoc explanations to provide corrective signals to LLMs. Extensive experimentation with real-world datasets demonstrates that our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks, including those where prior approaches which rely on human-annotated rationales such as Chain-of-Thought prompting fall short. Our work makes one of the first attempts at highlighting the potential of post hoc explanations as valuable tools for enhancing the effectiveness of LLMs. Furthermore, we conduct additional empirical analyses and ablation studies to demonstrate the impact of each of the components of AMPLIFY, which, in turn, leads to critical insights for refining in-context learning.

PEACE: Empowering Geologic Map Holistic Understanding with MLLMs

Geologic map, as a fundamental diagram in geology science, provides critical insights into the structure and composition of Earth's subsurface and surface. These maps are indispensable in various fields, including disaster detection, resource exploration, and civil engineering. Despite their significance, current Multimodal Large Language Models (MLLMs) often fall short in geologic map understanding. This gap is primarily due to the challenging nature of cartographic generalization, which involves handling high-resolution map, managing multiple associated components, and requiring domain-specific knowledge. To quantify this gap, we construct GeoMap-Bench, the first-ever benchmark for evaluating MLLMs in geologic map understanding, which assesses the full-scale abilities in extracting, referring, grounding, reasoning, and analyzing. To bridge this gap, we introduce GeoMap-Agent, the inaugural agent designed for geologic map understanding, which features three modules: Hierarchical Information Extraction (HIE), Domain Knowledge Injection (DKI), and Prompt-enhanced Question Answering (PEQA). Inspired by the interdisciplinary collaboration among human scientists, an AI expert group acts as consultants, utilizing a diverse tool pool to comprehensively analyze questions. Through comprehensive experiments, GeoMap-Agent achieves an overall score of 0.811 on GeoMap-Bench, significantly outperforming 0.369 of GPT-4o. Our work, emPowering gEologic mAp holistiC undErstanding (PEACE) with MLLMs, paves the way for advanced AI applications in geology, enhancing the efficiency and accuracy of geological investigations.

A Benchmark Dataset with Larger Context for Non-Factoid Question Answering over Islamic Text

Accessing and comprehending religious texts, particularly the Quran (the sacred scripture of Islam) and Ahadith (the corpus of the sayings or traditions of the Prophet Muhammad), in today's digital era necessitates efficient and accurate Question-Answering (QA) systems. Yet, the scarcity of QA systems tailored specifically to the detailed nature of inquiries about the Quranic Tafsir (explanation, interpretation, context of Quran for clarity) and Ahadith poses significant challenges. To address this gap, we introduce a comprehensive dataset meticulously crafted for QA purposes within the domain of Quranic Tafsir and Ahadith. This dataset comprises a robust collection of over 73,000 question-answer pairs, standing as the largest reported dataset in this specialized domain. Importantly, both questions and answers within the dataset are meticulously enriched with contextual information, serving as invaluable resources for training and evaluating tailored QA systems. However, while this paper highlights the dataset's contributions and establishes a benchmark for evaluating QA performance in the Quran and Ahadith domains, our subsequent human evaluation uncovered critical insights regarding the limitations of existing automatic evaluation techniques. The discrepancy between automatic evaluation metrics, such as ROUGE scores, and human assessments became apparent. The human evaluation indicated significant disparities: the model's verdict consistency with expert scholars ranged between 11% to 20%, while its contextual understanding spanned a broader spectrum of 50% to 90%. These findings underscore the necessity for evaluation techniques that capture the nuances and complexities inherent in understanding religious texts, surpassing the limitations of traditional automatic metrics.

BASIR: Budget-Assisted Sectoral Impact Ranking -- A Dataset for Sector Identification and Performance Prediction Using Language Models

Government fiscal policies, particularly annual union budgets, exert significant influence on financial markets. However, real-time analysis of budgetary impacts on sector-specific equity performance remains methodologically challenging and largely unexplored. This study proposes a framework to systematically identify and rank sectors poised to benefit from India's Union Budget announcements. The framework addresses two core tasks: (1) multi-label classification of excerpts from budget transcripts into 81 predefined economic sectors, and (2) performance ranking of these sectors. Leveraging a comprehensive corpus of Indian Union Budget transcripts from 1947 to 2025, we introduce BASIR (Budget-Assisted Sectoral Impact Ranking), an annotated dataset mapping excerpts from budgetary transcripts to sectoral impacts. Our architecture incorporates fine-tuned embeddings for sector identification, coupled with language models that rank sectors based on their predicted performances. Our results demonstrate 0.605 F1-score in sector classification, and 0.997 NDCG score in predicting ranks of sectors based on post-budget performances. The methodology enables investors and policymakers to quantify fiscal policy impacts through structured, data-driven insights, addressing critical gaps in manual analysis. The annotated dataset has been released under CC-BY-NC-SA-4.0 license to advance computational economics research.

DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning in Language Models

A long-standing goal of AI systems is to perform complex multimodal reasoning like humans. Recently, large language models (LLMs) have made remarkable strides in such multi-step reasoning on the language modality solely by leveraging the chain of thought (CoT) to mimic human thinking. However, the transfer of these advancements to multimodal contexts introduces heightened challenges, including but not limited to the impractical need for labor-intensive annotation and the limitations in terms of flexibility, generalizability, and explainability. To evoke CoT reasoning in multimodality, this work first conducts an in-depth analysis of these challenges posed by multimodality and presents two key insights: "keeping critical thinking" and "letting everyone do their jobs" in multimodal CoT reasoning. Furthermore, this study proposes a novel DDCoT prompting that maintains a critical attitude through negative-space prompting and incorporates multimodality into reasoning by first dividing the reasoning responsibility of LLMs into reasoning and recognition and then integrating the visual recognition capability of visual models into the joint reasoning process. The rationales generated by DDCoT not only improve the reasoning abilities of both large and small language models in zero-shot prompting and fine-tuning learning, significantly outperforming state-of-the-art methods but also exhibit impressive generalizability and explainability.

Insights into DeepSeek-V3: Scaling Challenges and Reflections on Hardware for AI Architectures

The rapid scaling of large language models (LLMs) has unveiled critical limitations in current hardware architectures, including constraints in memory capacity, computational efficiency, and interconnection bandwidth. DeepSeek-V3, trained on 2,048 NVIDIA H800 GPUs, demonstrates how hardware-aware model co-design can effectively address these challenges, enabling cost-efficient training and inference at scale. This paper presents an in-depth analysis of the DeepSeek-V3/R1 model architecture and its AI infrastructure, highlighting key innovations such as Multi-head Latent Attention (MLA) for enhanced memory efficiency, Mixture of Experts (MoE) architectures for optimized computation-communication trade-offs, FP8 mixed-precision training to unlock the full potential of hardware capabilities, and a Multi-Plane Network Topology to minimize cluster-level network overhead. Building on the hardware bottlenecks encountered during DeepSeek-V3's development, we engage in a broader discussion with academic and industry peers on potential future hardware directions, including precise low-precision computation units, scale-up and scale-out convergence, and innovations in low-latency communication fabrics. These insights underscore the critical role of hardware and model co-design in meeting the escalating demands of AI workloads, offering a practical blueprint for innovation in next-generation AI systems.

C3PO: Critical-Layer, Core-Expert, Collaborative Pathway Optimization for Test-Time Expert Re-Mixing

Mixture-of-Experts (MoE) Large Language Models (LLMs) suffer from severely sub-optimal expert pathways-our study reveals that naive expert selection learned from pretraining leaves a surprising 10-20% accuracy gap for improvement. Motivated by this observation, we develop a novel class of test-time optimization methods to re-weight or "re-mixing" the experts in different layers jointly for each test sample. Since the test sample's ground truth is unknown, we propose to optimize a surrogate objective defined by the sample's "successful neighbors" from a reference set of samples. We introduce three surrogates and algorithms based on mode-finding, kernel regression, and the average loss of similar reference samples/tasks. To reduce the cost of optimizing whole pathways, we apply our algorithms merely to the core experts' mixing weights in critical layers, which enjoy similar performance but save significant computation. This leads to "Critical-Layer, Core-Expert, Collaborative Pathway Optimization (C3PO)". We apply C3PO to two recent MoE LLMs and examine it on six widely-used benchmarks. It consistently improves the base model by 7-15% in accuracy and outperforms widely used test-time learning baselines, e.g., in-context learning and prompt/prefix tuning, by a large margin. Moreover, C3PO enables MoE LLMs with 1-3B active parameters to outperform LLMs of 7-9B parameters, hence improving MoE's advantages on efficiency. Our thorough ablation study further sheds novel insights on achieving test-time improvement on MoE.

GOAT-Bench: Safety Insights to Large Multimodal Models through Meme-Based Social Abuse

The exponential growth of social media has profoundly transformed how information is created, disseminated, and absorbed, exceeding any precedent in the digital age. Regrettably, this explosion has also spawned a significant increase in the online abuse of memes. Evaluating the negative impact of memes is notably challenging, owing to their often subtle and implicit meanings, which are not directly conveyed through the overt text and imagery. In light of this, large multimodal models (LMMs) have emerged as a focal point of interest due to their remarkable capabilities in handling diverse multimodal tasks. In response to this development, our paper aims to thoroughly examine the capacity of various LMMs (e.g. GPT-4V) to discern and respond to the nuanced aspects of social abuse manifested in memes. We introduce the comprehensive meme benchmark, GOAT-Bench, comprising over 6K varied memes encapsulating themes such as implicit hate speech, sexism, and cyberbullying, etc. Utilizing GOAT-Bench, we delve into the ability of LMMs to accurately assess hatefulness, misogyny, offensiveness, sarcasm, and harmful content. Our extensive experiments across a range of LMMs reveal that current models still exhibit a deficiency in safety awareness, showing insensitivity to various forms of implicit abuse. We posit that this shortfall represents a critical impediment to the realization of safe artificial intelligence. The GOAT-Bench and accompanying resources are publicly accessible at https://goatlmm.github.io/, contributing to ongoing research in this vital field.

Modeling the Human Visual System: Comparative Insights from Response-Optimized and Task-Optimized Vision Models, Language Models, and different Readout Mechanisms

Over the past decade, predictive modeling of neural responses in the primate visual system has advanced significantly, largely driven by various DNN approaches. These include models optimized directly for visual recognition, cross-modal alignment through contrastive objectives, neural response prediction from scratch, and large language model embeddings.Likewise, different readout mechanisms, ranging from fully linear to spatial-feature factorized methods have been explored for mapping network activations to neural responses. Despite the diversity of these approaches, it remains unclear which method performs best across different visual regions. In this study, we systematically compare these approaches for modeling the human visual system and investigate alternative strategies to improve response predictions. Our findings reveal that for early to mid-level visual areas, response-optimized models with visual inputs offer superior prediction accuracy, while for higher visual regions, embeddings from LLMs based on detailed contextual descriptions of images and task-optimized models pretrained on large vision datasets provide the best fit. Through comparative analysis of these modeling approaches, we identified three distinct regions in the visual cortex: one sensitive primarily to perceptual features of the input that are not captured by linguistic descriptions, another attuned to fine-grained visual details representing semantic information, and a third responsive to abstract, global meanings aligned with linguistic content. We also highlight the critical role of readout mechanisms, proposing a novel scheme that modulates receptive fields and feature maps based on semantic content, resulting in an accuracy boost of 3-23% over existing SOTAs for all models and brain regions. Together, these findings offer key insights into building more precise models of the visual system.

Parameter-Efficient Fine-Tuning Methods for Pretrained Language Models: A Critical Review and Assessment

With the continuous growth in the number of parameters of transformer-based pretrained language models (PLMs), particularly the emergence of large language models (LLMs) with billions of parameters, many natural language processing (NLP) tasks have demonstrated remarkable success. However, the enormous size and computational demands of these models pose significant challenges for adapting them to specific downstream tasks, especially in environments with limited computational resources. Parameter Efficient Fine-Tuning (PEFT) offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning. The demands for fine-tuning PLMs, especially LLMs, have led to a surge in the development of PEFT methods, as depicted in Fig. 1. In this paper, we present a comprehensive and systematic review of PEFT methods for PLMs. We summarize these PEFT methods, discuss their applications, and outline future directions. Furthermore, we conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency. By offering insights into the latest advancements and practical applications, this survey serves as an invaluable resource for researchers and practitioners seeking to navigate the challenges and opportunities presented by PEFT in the context of PLMs.

From Accidents to Insights: Leveraging Multimodal Data for Scenario-Driven ADS Testing

The rapid advancements in Autonomous Driving Systems (ADS) have necessitated robust software testing to ensure safety and reliability. However, automating the generation of scalable and concrete test scenarios remains a significant challenge. Current scenario-based test case generation methods often face limitations, such as unrealistic scenes and inaccurate vehicle trajectories. These challenges largely result from the loss of map information during data extraction and the lack of an effective verification mechanism to mitigate hallucinations in large language models (LLMs). This paper introduces TRACE, a scenario-based ADS Test case Generation framework for Critical Scenarios. By leveraging multimodal data to extract challenging scenarios from real-world car crash reports, TRACE constructs numerous critical test cases with less data, significantly enhancing ADS bug detection efficiency. Using in-context learning, chain-of-thought prompting, and self-validation approaches, we use LLMs to extract environmental and road network information from crash reports. For vehicle trajectory planning, data containing map information and vehicle coordinates serves as a knowledge base to build a ChatGPT-based LLM with path-planning capabilities, which we named TrackMate. Based on 50 existing crash reports, our approach successfully tested three ADS models across two simulation platforms, MetaDrive and BeamNG. Of the 290 constructed test scenarios, 127 are identified as critical, as they resulted in vehicle collisions. Additionally, user feedback reveals that TRACE demonstrates superior scenario reconstruction accuracy, with 77.5% of the scenarios being rated as 'mostly or 'totally' consistent, compared to only 27% for the most related SOTA, LCTGen.

Missing Premise exacerbates Overthinking: Are Reasoning Models losing Critical Thinking Skill?

We find that the response length of reasoning LLMs, whether trained by reinforcement learning or supervised learning, drastically increases for ill-posed questions with missing premises (MiP), ending up with redundant and ineffective thinking. This newly introduced scenario exacerbates the general overthinking issue to a large extent, which we name as the MiP-Overthinking. Such failures are against the ``test-time scaling law'' but have been widely observed on multiple datasets we curated with MiP, indicating the harm of cheap overthinking and a lack of critical thinking. Surprisingly, LLMs not specifically trained for reasoning exhibit much better performance on the MiP scenario, producing much shorter responses that quickly identify ill-posed queries. This implies a critical flaw of the current training recipe for reasoning LLMs, which does not encourage efficient thinking adequately, leading to the abuse of thinking patterns. To further investigate the reasons behind such failures, we conduct fine-grained analyses of the reasoning length, overthinking patterns, and location of critical thinking on different types of LLMs. Moreover, our extended ablation study reveals that the overthinking is contagious through the distillation of reasoning models' responses. These results improve the understanding of overthinking and shed novel insights into mitigating the problem.

Dissecting Multiplication in Transformers: Insights into LLMs

Transformer-based large language models have achieved remarkable performance across various natural language processing tasks. However, they often struggle with seemingly easy tasks like arithmetic despite their vast capabilities. This stark disparity raise human's concerns about their safe and ethical use, hinder their widespread adoption.In this paper, we focus on a typical arithmetic task, integer multiplication, to explore and explain the imperfection of transformers in this domain. We provide comprehensive analysis of a vanilla transformer trained to perform n-digit integer multiplication. Our observations indicate that the model decomposes multiplication task into multiple parallel subtasks, sequentially optimizing each subtask for each digit to complete the final multiplication. Based on observation and analysis, we infer the reasons of transformers deficiencies in multiplication tasks lies in their difficulty in calculating successive carryovers and caching intermediate results, and confirmed this inference through experiments. Guided by these findings, we propose improvements to enhance transformers performance on multiplication tasks. These enhancements are validated through rigorous testing and mathematical modeling, not only enhance transformer's interpretability, but also improve its performance, e.g., we achieve over 99.9% accuracy on 5-digit integer multiplication with a tiny transformer, outperform LLMs GPT-4. Our method contributes to the broader fields of model understanding and interpretability, paving the way for analyzing more complex tasks and Transformer models. This work underscores the importance of explainable AI, helping to build trust in large language models and promoting their adoption in critical applications.

Efficient Pruning of Text-to-Image Models: Insights from Pruning Stable Diffusion

As text-to-image models grow increasingly powerful and complex, their burgeoning size presents a significant obstacle to widespread adoption, especially on resource-constrained devices. This paper presents a pioneering study on post-training pruning of Stable Diffusion 2, addressing the critical need for model compression in text-to-image domain. Our study tackles the pruning techniques for the previously unexplored multi-modal generation models, and particularly examines the pruning impact on the textual component and the image generation component separately. We conduct a comprehensive comparison on pruning the model or the single component of the model in various sparsities. Our results yield previously undocumented findings. For example, contrary to established trends in language model pruning, we discover that simple magnitude pruning outperforms more advanced techniques in text-to-image context. Furthermore, our results show that Stable Diffusion 2 can be pruned to 38.5% sparsity with minimal quality loss, achieving a significant reduction in model size. We propose an optimal pruning configuration that prunes the text encoder to 47.5% and the diffusion generator to 35%. This configuration maintains image generation quality while substantially reducing computational requirements. In addition, our work uncovers intriguing questions about information encoding in text-to-image models: we observe that pruning beyond certain thresholds leads to sudden performance drops (unreadable images), suggesting that specific weights encode critical semantics information. This finding opens new avenues for future research in model compression, interoperability, and bias identification in text-to-image models. By providing crucial insights into the pruning behavior of text-to-image models, our study lays the groundwork for developing more efficient and accessible AI-driven image generation systems

Towards Automatic Translation of Machine Learning Visual Insights to Analytical Assertions

We present our vision for developing an automated tool capable of translating visual properties observed in Machine Learning (ML) visualisations into Python assertions. The tool aims to streamline the process of manually verifying these visualisations in the ML development cycle, which is critical as real-world data and assumptions often change post-deployment. In a prior study, we mined 54,070 Jupyter notebooks from Github and created a catalogue of 269 semantically related visualisation-assertion (VA) pairs. Building on this catalogue, we propose to build a taxonomy that organises the VA pairs based on ML verification tasks. The input feature space comprises of a rich source of information mined from the Jupyter notebooks -- visualisations, Python source code, and associated markdown text. The effectiveness of various AI models, including traditional NLP4Code models and modern Large Language Models, will be compared using established machine translation metrics and evaluated through a qualitative study with human participants. The paper also plans to address the challenge of extending the existing VA pair dataset with additional pairs from Kaggle and to compare the tool's effectiveness with commercial generative AI models like ChatGPT. This research not only contributes to the field of ML system validation but also explores novel ways to leverage AI for automating and enhancing software engineering practices in ML.

REST: Stress Testing Large Reasoning Models by Asking Multiple Problems at Once

Recent Large Reasoning Models (LRMs) have achieved remarkable progress on task-specific benchmarks, yet their evaluation methods remain constrained by isolated problem-solving paradigms. Existing benchmarks predominantly assess single-question reasoning through sequential testing, resulting critical limitations: (1) vulnerability to data contamination and less challenging (e.g., DeepSeek-R1 achieves 97.0% on MATH500), forcing costly and perpetual creation of new questions with large human efforts, (2) failure to evaluate models under multi-context pressure, a key requirement for real-world deployment. To bridge this gap, we present REST (Reasoning Evaluation through Simultaneous Testing), a stress-testing framework that concurrently exposes LRMs to multiple problems simultaneously. Beyond basic reasoning, REST specifically evaluates several under-tested capabilities: contextual priority allocation, cross-problem interference resistance, and dynamic cognitive load management. Our evaluation reveals several striking findings: Even state-of-the-art (SOTA) models like DeepSeek-R1 exhibit substantial performance degradation under stress testing. Crucially, REST demonstrates stronger discriminative power than existing benchmarks, revealing pronounced performance differences among models that exhibit similar, near-ceiling performance under single-question evaluations. Some key mechanistic insights emerge from our analysis: (1) the "overthinking trap" is a critical factor contributing to the performance degradation; (2) the models trained with "long2short" technique preserve more accuracy of their single-problem performance under REST, outperforming standard-trained counterparts. These results establish REST as a cost-efficient, future-proof evaluation paradigm that better reflects real-world reasoning demands while reducing reliance on continuous human annotation.

IntellAgent: A Multi-Agent Framework for Evaluating Conversational AI Systems

Large Language Models (LLMs) are transforming artificial intelligence, evolving into task-oriented systems capable of autonomous planning and execution. One of the primary applications of LLMs is conversational AI systems, which must navigate multi-turn dialogues, integrate domain-specific APIs, and adhere to strict policy constraints. However, evaluating these agents remains a significant challenge, as traditional methods fail to capture the complexity and variability of real-world interactions. We introduce IntellAgent, a scalable, open-source multi-agent framework designed to evaluate conversational AI systems comprehensively. IntellAgent automates the creation of diverse, synthetic benchmarks by combining policy-driven graph modeling, realistic event generation, and interactive user-agent simulations. This innovative approach provides fine-grained diagnostics, addressing the limitations of static and manually curated benchmarks with coarse-grained metrics. IntellAgent represents a paradigm shift in evaluating conversational AI. By simulating realistic, multi-policy scenarios across varying levels of complexity, IntellAgent captures the nuanced interplay of agent capabilities and policy constraints. Unlike traditional methods, it employs a graph-based policy model to represent relationships, likelihoods, and complexities of policy interactions, enabling highly detailed diagnostics. IntellAgent also identifies critical performance gaps, offering actionable insights for targeted optimization. Its modular, open-source design supports seamless integration of new domains, policies, and APIs, fostering reproducibility and community collaboration. Our findings demonstrate that IntellAgent serves as an effective framework for advancing conversational AI by addressing challenges in bridging research and deployment. The framework is available at https://github.com/plurai-ai/intellagent

Population Aware Diffusion for Time Series Generation

Diffusion models have shown promising ability in generating high-quality time series (TS) data. Despite the initial success, existing works mostly focus on the authenticity of data at the individual level, but pay less attention to preserving the population-level properties on the entire dataset. Such population-level properties include value distributions for each dimension and distributions of certain functional dependencies (e.g., cross-correlation, CC) between different dimensions. For instance, when generating house energy consumption TS data, the value distributions of the outside temperature and the kitchen temperature should be preserved, as well as the distribution of CC between them. Preserving such TS population-level properties is critical in maintaining the statistical insights of the datasets, mitigating model bias, and augmenting downstream tasks like TS prediction. Yet, it is often overlooked by existing models. Hence, data generated by existing models often bear distribution shifts from the original data. We propose Population-aware Diffusion for Time Series (PaD-TS), a new TS generation model that better preserves the population-level properties. The key novelties of PaD-TS include 1) a new training method explicitly incorporating TS population-level property preservation, and 2) a new dual-channel encoder model architecture that better captures the TS data structure. Empirical results in major benchmark datasets show that PaD-TS can improve the average CC distribution shift score between real and synthetic data by 5.9x while maintaining a performance comparable to state-of-the-art models on individual-level authenticity.

Scaling Law with Learning Rate Annealing

We find that the cross-entropy loss curves of neural language models empirically adhere to a scaling law with learning rate (LR) annealing over training steps (s): $L(s) = L_0 + Acdot S_1^{-alpha} - Ccdot S_2 Where S_1 is forward area and S_2$ is learning rate annealing area. This formulation takes into account two factors: (1) The forward scaling defined as typical scaling law, and (2) the additional loss drop brought by LR annealing. Therefore, this formulation can describe the full loss curve at each step, rather than the single loss point at the end of training. Applying the scaling law with LR annealing and fitting only one or two training curves, we can accurately predict the loss of language model training at any given step and across any learning rate scheduler (LRS). Furthermore, this equation accurately describes the dynamics during training process, and provides a theoretical verification and explanation for numerous experimental findings of previous studies, particularly those focusing on LR schedule and LR annealing. The resulting insights, also serve as a guide for researchers to select critical LRS in advance by prediction using our equation. Most significantly, since all the points in a full training curve follow the equation, we can achieve accurate loss prediction at any given step across any learning rate scheduler, while expending less than 1\% of the computational cost required by the chinchilla scaling law to fit language modeling loss. This approach extremely democratizes scaling law fitting and predicting in developing large language models.

StyleMe3D: Stylization with Disentangled Priors by Multiple Encoders on 3D Gaussians

3D Gaussian Splatting (3DGS) excels in photorealistic scene reconstruction but struggles with stylized scenarios (e.g., cartoons, games) due to fragmented textures, semantic misalignment, and limited adaptability to abstract aesthetics. We propose StyleMe3D, a holistic framework for 3D GS style transfer that integrates multi-modal style conditioning, multi-level semantic alignment, and perceptual quality enhancement. Our key insights include: (1) optimizing only RGB attributes preserves geometric integrity during stylization; (2) disentangling low-, medium-, and high-level semantics is critical for coherent style transfer; (3) scalability across isolated objects and complex scenes is essential for practical deployment. StyleMe3D introduces four novel components: Dynamic Style Score Distillation (DSSD), leveraging Stable Diffusion's latent space for semantic alignment; Contrastive Style Descriptor (CSD) for localized, content-aware texture transfer; Simultaneously Optimized Scale (SOS) to decouple style details and structural coherence; and 3D Gaussian Quality Assessment (3DG-QA), a differentiable aesthetic prior trained on human-rated data to suppress artifacts and enhance visual harmony. Evaluated on NeRF synthetic dataset (objects) and tandt db (scenes) datasets, StyleMe3D outperforms state-of-the-art methods in preserving geometric details (e.g., carvings on sculptures) and ensuring stylistic consistency across scenes (e.g., coherent lighting in landscapes), while maintaining real-time rendering. This work bridges photorealistic 3D GS and artistic stylization, unlocking applications in gaming, virtual worlds, and digital art.

LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems

Interestingly, LLMs yet struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the word "strawberry". There are several popular conjectures (e.g., tokenization, architecture and training data) regarding the reason for deficiency of LLMs in simple word-based counting problems, sharing the similar belief that such failure stems from model pretraining hence probably inevitable during deployment. In this paper, we carefully design multiple evaluation settings to investigate validity of prevalent conjectures. Meanwhile, we measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks. Although specialized LLMs suffer from counting problems as well, we find conjectures about inherent deficiency of LLMs invalid and further seek opportunities to elicit knowledge and capabilities from LLMs that are beneficial to counting tasks. Compared with strategies such as finetuning and in-context learning that are commonly adopted to enhance performance on new or challenging tasks, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks with more accurate responses. We hope our conjecture validation design could provide insights into the study of future critical failure modes of LLMs. Based on challenges in transferring advanced capabilities to much simpler tasks, we call for more attention to model capability acquisition and evaluation. We also highlight the importance of cultivating consciousness of "reasoning before responding" during model pretraining.

MME-Reasoning: A Comprehensive Benchmark for Logical Reasoning in MLLMs

Logical reasoning is a fundamental aspect of human intelligence and an essential capability for multimodal large language models (MLLMs). Despite the significant advancement in multimodal reasoning, existing benchmarks fail to comprehensively evaluate their reasoning abilities due to the lack of explicit categorization for logical reasoning types and an unclear understanding of reasoning. To address these issues, we introduce MME-Reasoning, a comprehensive benchmark designed to evaluate the reasoning ability of MLLMs, which covers all three types of reasoning (i.e., inductive, deductive, and abductive) in its questions. We carefully curate the data to ensure that each question effectively evaluates reasoning ability rather than perceptual skills or knowledge breadth, and extend the evaluation protocols to cover the evaluation of diverse questions. Our evaluation reveals substantial limitations of state-of-the-art MLLMs when subjected to holistic assessments of logical reasoning capabilities. Even the most advanced MLLMs show limited performance in comprehensive logical reasoning, with notable performance imbalances across reasoning types. In addition, we conducted an in-depth analysis of approaches such as ``thinking mode'' and Rule-based RL, which are commonly believed to enhance reasoning abilities. These findings highlight the critical limitations and performance imbalances of current MLLMs in diverse logical reasoning scenarios, providing comprehensive and systematic insights into the understanding and evaluation of reasoning capabilities.

Distilling Diversity and Control in Diffusion Models

Distilled diffusion models suffer from a critical limitation: reduced sample diversity compared to their base counterparts. In this work, we uncover that despite this diversity loss, distilled models retain the fundamental concept representations of base models. We demonstrate control distillation - where control mechanisms like Concept Sliders and LoRAs trained on base models can be seamlessly transferred to distilled models and vice-versa, effectively distilling control without any retraining. This preservation of representational structure prompted our investigation into the mechanisms of diversity collapse during distillation. To understand how distillation affects diversity, we introduce Diffusion Target (DT) Visualization, an analysis and debugging tool that reveals how models predict final outputs at intermediate steps. Through DT-Visualization, we identify generation artifacts, inconsistencies, and demonstrate that initial diffusion timesteps disproportionately determine output diversity, while later steps primarily refine details. Based on these insights, we introduce diversity distillation - a hybrid inference approach that strategically employs the base model for only the first critical timestep before transitioning to the efficient distilled model. Our experiments demonstrate that this simple modification not only restores the diversity capabilities from base to distilled models but surprisingly exceeds it, while maintaining nearly the computational efficiency of distilled inference, all without requiring additional training or model modifications. Our code and data are available at https://distillation.baulab.info

Mobile-MMLU: A Mobile Intelligence Language Understanding Benchmark

Rapid advancements in large language models (LLMs) have increased interest in deploying them on mobile devices for on-device AI applications. Mobile users interact differently with LLMs compared to desktop users, creating unique expectations and data biases. Current benchmark datasets primarily target at server and desktop environments, and there is a notable lack of extensive datasets specifically designed for mobile contexts. Additionally, mobile devices face strict limitations in storage and computing resources, constraining model size and capabilities, thus requiring optimized efficiency and prioritized knowledge. To address these challenges, we introduce Mobile-MMLU, a large-scale benchmark dataset tailored for mobile intelligence. It consists of 16,186 questions across 80 mobile-related fields, designed to evaluate LLM performance in realistic mobile scenarios. A challenging subset, Mobile-MMLU-Pro, provides advanced evaluation similar in size to MMLU-Pro but significantly more difficult than our standard full set. Both benchmarks use multiple-choice, order-invariant questions focused on practical mobile interactions, such as recipe suggestions, travel planning, and essential daily tasks. The dataset emphasizes critical mobile-specific metrics like inference latency, energy consumption, memory usage, and response quality, offering comprehensive insights into model performance under mobile constraints. Moreover, it prioritizes privacy and adaptability, assessing models' ability to perform on-device processing, maintain user privacy, and adapt to personalized usage patterns. Mobile-MMLU family offers a standardized framework for developing and comparing mobile-optimized LLMs, enabling advancements in productivity and decision-making within mobile computing environments. Our code and data are available at: https://github.com/VILA-Lab/Mobile-MMLU.

MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams

Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements. Unlike natural images, their inherently symbolic and abstract nature poses significant challenges for Multimodal Large Language Models (MLLMs). However, current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether MLLMs genuinely understand mathematical diagrams beyond superficial pattern recognition. To address this gap, we introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs. MATHGLANCE comprises 1.2K images and 1.6K carefully curated questions spanning four perception tasks: shape classification, object counting, relationship identification, and object grounding, covering diverse domains including plane geometry, solid geometry, and graphical representations. Our evaluation of MLLMs reveals that their ability to understand diagrams is notably limited, particularly in fine-grained grounding tasks. In response, we construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text pairs explicitly annotated with geometric primitives and precise spatial relationships. Training MLLM on GeoPeP leads to significant gains in perceptual accuracy, which in turn substantially improves mathematical reasoning. Our benchmark and dataset establish critical standards for evaluating and advancing multimodal mathematical understanding, providing valuable resources and insights to foster future MLLM research.

Mix Data or Merge Models? Balancing the Helpfulness, Honesty, and Harmlessness of Large Language Model via Model Merging

Achieving balanced alignment of large language models (LLMs) in terms of Helpfulness, Honesty, and Harmlessness (3H optimization) constitutes a cornerstone of responsible AI, with existing methods like data mixture strategies facing limitations including reliance on expert knowledge and conflicting optimization signals. While model merging offers a promising alternative by integrating specialized models, its potential for 3H optimization remains underexplored. This paper establishes the first comprehensive benchmark for model merging in 3H-aligned LLMs, systematically evaluating 15 methods (12 training-free merging and 3 data mixture techniques) across 10 datasets associated with 5 annotation dimensions, 2 LLM families, and 2 training paradigms. Our analysis reveals three pivotal insights: (i) previously overlooked collaborative/conflicting relationships among 3H dimensions, (ii) the consistent superiority of model merging over data mixture approaches in balancing alignment trade-offs, and (iii) the critical role of parameter-level conflict resolution through redundant component pruning and outlier mitigation. Building on these findings, we propose R-TSVM, a Reweighting-enhanced Task Singular Vector Merging method that incorporates outlier-aware parameter weighting and sparsity-adaptive rank selection strategies adapted to the heavy-tailed parameter distribution and sparsity for LLMs, further improving LLM alignment across multiple evaluations. We release our trained models for further exploration.

Table Meets LLM: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study

Large language models (LLMs) are becoming attractive as few-shot reasoners to solve Natural Language (NL)-related tasks. However, the understanding of their capability to process structured data like tables remains an under-explored area. While tables can be serialized as input for LLMs, there is a lack of comprehensive studies on whether LLMs genuinely comprehend this data. In this paper, we try to understand this by designing a benchmark to evaluate the structural understanding capabilities of LLMs through seven distinct tasks, e.g., cell lookup, row retrieval and size detection. Specially, we perform a series of evaluations on the recent most advanced LLM models, GPT-3.5 and GPT-4 and observe that performance varied with different input choices, including table input format, content order, role prompting, and partition marks. Drawing from the insights gained through the benchmark evaluations, we propose self-augmentation for effective structural prompting, such as critical value / range identification using internal knowledge of LLMs. When combined with carefully chosen input choices, these structural prompting methods lead to promising improvements in LLM performance on a variety of tabular tasks, e.g., TabFact(uparrow2.31%), HybridQA(uparrow2.13%), SQA(uparrow2.72%), Feverous(uparrow0.84%), and ToTTo(uparrow5.68%). We believe that our open source benchmark and proposed prompting methods can serve as a simple yet generic selection for future research. The code and data of this paper will be temporality released at https://anonymous.4open.science/r/StructuredLLM-76F3/README.md and will be replaced with an official one at https://github.com/microsoft/TableProvider later.

TIJO: Trigger Inversion with Joint Optimization for Defending Multimodal Backdoored Models

We present a Multimodal Backdoor Defense technique TIJO (Trigger Inversion using Joint Optimization). Recent work arXiv:2112.07668 has demonstrated successful backdoor attacks on multimodal models for the Visual Question Answering task. Their dual-key backdoor trigger is split across two modalities (image and text), such that the backdoor is activated if and only if the trigger is present in both modalities. We propose TIJO that defends against dual-key attacks through a joint optimization that reverse-engineers the trigger in both the image and text modalities. This joint optimization is challenging in multimodal models due to the disconnected nature of the visual pipeline which consists of an offline feature extractor, whose output is then fused with the text using a fusion module. The key insight enabling the joint optimization in TIJO is that the trigger inversion needs to be carried out in the object detection box feature space as opposed to the pixel space. We demonstrate the effectiveness of our method on the TrojVQA benchmark, where TIJO improves upon the state-of-the-art unimodal methods from an AUC of 0.6 to 0.92 on multimodal dual-key backdoors. Furthermore, our method also improves upon the unimodal baselines on unimodal backdoors. We present ablation studies and qualitative results to provide insights into our algorithm such as the critical importance of overlaying the inverted feature triggers on all visual features during trigger inversion. The prototype implementation of TIJO is available at https://github.com/SRI-CSL/TIJO.

TableEval: A Real-World Benchmark for Complex, Multilingual, and Multi-Structured Table Question Answering

LLMs have shown impressive progress in natural language processing. However, they still face significant challenges in TableQA, where real-world complexities such as diverse table structures, multilingual data, and domain-specific reasoning are crucial. Existing TableQA benchmarks are often limited by their focus on simple flat tables and suffer from data leakage. Furthermore, most benchmarks are monolingual and fail to capture the cross-lingual and cross-domain variability in practical applications. To address these limitations, we introduce TableEval, a new benchmark designed to evaluate LLMs on realistic TableQA tasks. Specifically, TableEval includes tables with various structures (such as concise, hierarchical, and nested tables) collected from four domains (including government, finance, academia, and industry reports). Besides, TableEval features cross-lingual scenarios with tables in Simplified Chinese, Traditional Chinese, and English. To minimize the risk of data leakage, we collect all data from recent real-world documents. Considering that existing TableQA metrics fail to capture semantic accuracy, we further propose SEAT, a new evaluation framework that assesses the alignment between model responses and reference answers at the sub-question level. Experimental results have shown that SEAT achieves high agreement with human judgment. Extensive experiments on TableEval reveal critical gaps in the ability of state-of-the-art LLMs to handle these complex, real-world TableQA tasks, offering insights for future improvements. We make our dataset available here: https://github.com/wenge-research/TableEval.

TextSquare: Scaling up Text-Centric Visual Instruction Tuning

Text-centric visual question answering (VQA) has made great strides with the development of Multimodal Large Language Models (MLLMs), yet open-source models still fall short of leading models like GPT4V and Gemini, partly due to a lack of extensive, high-quality instruction tuning data. To this end, we introduce a new approach for creating a massive, high-quality instruction-tuning dataset, Square-10M, which is generated using closed-source MLLMs. The data construction process, termed Square, consists of four steps: Self-Questioning, Answering, Reasoning, and Evaluation. Our experiments with Square-10M led to three key findings: 1) Our model, TextSquare, considerably surpasses open-source previous state-of-the-art Text-centric MLLMs and sets a new standard on OCRBench(62.2%). It even outperforms top-tier models like GPT4V and Gemini in 6 of 10 text-centric benchmarks. 2) Additionally, we demonstrate the critical role of VQA reasoning data in offering comprehensive contextual insights for specific questions. This not only improves accuracy but also significantly mitigates hallucinations. Specifically, TextSquare scores an average of 75.1% across four general VQA and hallucination evaluation datasets, outperforming previous state-of-the-art models. 3) Notably, the phenomenon observed in scaling text-centric VQA datasets reveals a vivid pattern: the exponential increase of instruction tuning data volume is directly proportional to the improvement in model performance, thereby validating the necessity of the dataset scale and the high quality of Square-10M.

The Imperative of Conversation Analysis in the Era of LLMs: A Survey of Tasks, Techniques, and Trends

In the era of large language models (LLMs), a vast amount of conversation logs will be accumulated thanks to the rapid development trend of language UI. Conversation Analysis (CA) strives to uncover and analyze critical information from conversation data, streamlining manual processes and supporting business insights and decision-making. The need for CA to extract actionable insights and drive empowerment is becoming increasingly prominent and attracting widespread attention. However, the lack of a clear scope for CA leads to a dispersion of various techniques, making it difficult to form a systematic technical synergy to empower business applications. In this paper, we perform a thorough review and systematize CA task to summarize the existing related work. Specifically, we formally define CA task to confront the fragmented and chaotic landscape in this field, and derive four key steps of CA from conversation scene reconstruction, to in-depth attribution analysis, and then to performing targeted training, finally generating conversations based on the targeted training for achieving the specific goals. In addition, we showcase the relevant benchmarks, discuss potential challenges and point out future directions in both industry and academia. In view of current advancements, it is evident that the majority of efforts are still concentrated on the analysis of shallow conversation elements, which presents a considerable gap between the research and business, and with the assist of LLMs, recent work has shown a trend towards research on causality and strategic tasks which are sophisticated and high-level. The analyzed experiences and insights will inevitably have broader application value in business operations that target conversation logs.

AttackSeqBench: Benchmarking Large Language Models' Understanding of Sequential Patterns in Cyber Attacks

The observations documented in Cyber Threat Intelligence (CTI) reports play a critical role in describing adversarial behaviors, providing valuable insights for security practitioners to respond to evolving threats. Recent advancements of Large Language Models (LLMs) have demonstrated significant potential in various cybersecurity applications, including CTI report understanding and attack knowledge graph construction. While previous works have proposed benchmarks that focus on the CTI extraction ability of LLMs, the sequential characteristic of adversarial behaviors within CTI reports remains largely unexplored, which holds considerable significance in developing a comprehensive understanding of how adversaries operate. To address this gap, we introduce AttackSeqBench, a benchmark tailored to systematically evaluate LLMs' capability to understand and reason attack sequences in CTI reports. Our benchmark encompasses three distinct Question Answering (QA) tasks, each task focuses on the varying granularity in adversarial behavior. To alleviate the laborious effort of QA construction, we carefully design an automated dataset construction pipeline to create scalable and well-formulated QA datasets based on real-world CTI reports. To ensure the quality of our dataset, we adopt a hybrid approach of combining human evaluation and systematic evaluation metrics. We conduct extensive experiments and analysis with both fast-thinking and slow-thinking LLMs, while highlighting their strengths and limitations in analyzing the sequential patterns in cyber attacks. The overarching goal of this work is to provide a benchmark that advances LLM-driven CTI report understanding and fosters its application in real-world cybersecurity operations. Our dataset and code are available at https://github.com/Javiery3889/AttackSeqBench .

GRNFormer: A Biologically-Guided Framework for Integrating Gene Regulatory Networks into RNA Foundation Models

Foundation models for single-cell RNA sequencing (scRNA-seq) have shown promising capabilities in capturing gene expression patterns. However, current approaches face critical limitations: they ignore biological prior knowledge encoded in gene regulatory relationships and fail to leverage multi-omics signals that could provide complementary regulatory insights. In this paper, we propose GRNFormer, a new framework that systematically integrates multi-scale Gene Regulatory Networks (GRNs) inferred from multi-omics data into RNA foundation model training. Our framework introduces two key innovations. First, we introduce a pipeline for constructing hierarchical GRNs that capture regulatory relationships at both cell-type-specific and cell-specific resolutions. Second, we design a structure-aware integration framework that addresses the information asymmetry in GRNs through two technical advances: (1) A graph topological adapter using multi-head cross-attention to weight regulatory relationships dynamically, and (2) a novel edge perturbation strategy that perturb GRNs with biologically-informed co-expression links to augment graph neural network training. Comprehensive experiments have been conducted on three representative downstream tasks across multiple model architectures to demonstrate the effectiveness of GRNFormer. It achieves consistent improvements over state-of-the-art (SoTA) baselines: 3.6% increase in drug response prediction correlation, 9.6% improvement in single-cell drug classification AUC, and 1.1% average gain in gene perturbation prediction accuracy.

Farseer: A Refined Scaling Law in Large Language Models

Training Large Language Models (LLMs) is prohibitively expensive, creating a critical scaling gap where insights from small-scale experiments often fail to transfer to resource-intensive production systems, thereby hindering efficient innovation. To bridge this, we introduce Farseer, a novel and refined scaling law offering enhanced predictive accuracy across scales. By systematically constructing a model loss surface L(N,D), Farseer achieves a significantly better fit to empirical data than prior laws (e.g., Chinchilla's law). Our methodology yields accurate, robust, and highly generalizable predictions, demonstrating excellent extrapolation capabilities, improving upon Chinchilla's law by reducing extrapolation error by 433\%. This allows for the reliable evaluation of competing training strategies across all (N,D) settings, enabling conclusions from small-scale ablation studies to be confidently extrapolated to predict large-scale performance. Furthermore, Farseer provides new insights into optimal compute allocation, better reflecting the nuanced demands of modern LLM training. To validate our approach, we trained an extensive suite of approximately 1,000 LLMs across diverse scales and configurations, consuming roughly 3 million NVIDIA H100 GPU hours. We are comprehensively open-sourcing all models, data, results, and logs at https://github.com/Farseer-Scaling-Law/Farseer to foster further research.

LongLLaDA: Unlocking Long Context Capabilities in Diffusion LLMs

Large Language Diffusion Models, or diffusion LLMs, have emerged as a significant focus in NLP research, with substantial effort directed toward understanding their scalability and downstream task performance. However, their long-context capabilities remain unexplored, lacking systematic analysis or methods for context extension. In this work, we present the first systematic investigation comparing the long-context performance of diffusion LLMs and traditional auto-regressive LLMs. We first identify a unique characteristic of diffusion LLMs, unlike auto-regressive LLMs, they maintain remarkably \textit{stable perplexity} during direct context extrapolation. Furthermore, where auto-regressive models fail outright during the Needle-In-A-Haystack task with context exceeding their pretrained length, we discover diffusion LLMs exhibit a distinct \textit{local perception} phenomenon, enabling successful retrieval from recent context segments. We explain both phenomena through the lens of Rotary Position Embedding (RoPE) scaling theory. Building on these observations, we propose LongLLaDA, a training-free method that integrates LLaDA with the NTK-based RoPE extrapolation. Our results validate that established extrapolation scaling laws remain effective for extending the context windows of diffusion LLMs. Furthermore, we identify long-context tasks where diffusion LLMs outperform auto-regressive LLMs and others where they fall short. Consequently, this study establishes the first context extrapolation method for diffusion LLMs while providing essential theoretical insights and empirical benchmarks critical for advancing future research on long-context diffusion LLMs.

What if LLMs Have Different World Views: Simulating Alien Civilizations with LLM-based Agents

In this study, we introduce "CosmoAgent," an innovative artificial intelligence framework utilizing Large Language Models (LLMs) to simulate complex interactions between human and extraterrestrial civilizations, with a special emphasis on Stephen Hawking's cautionary advice about not sending radio signals haphazardly into the universe. The goal is to assess the feasibility of peaceful coexistence while considering potential risks that could threaten well-intentioned civilizations. Employing mathematical models and state transition matrices, our approach quantitatively evaluates the development trajectories of civilizations, offering insights into future decision-making at critical points of growth and saturation. Furthermore, the paper acknowledges the vast diversity in potential living conditions across the universe, which could foster unique cosmologies, ethical codes, and worldviews among various civilizations. Recognizing the Earth-centric bias inherent in current LLM designs, we propose the novel concept of using LLMs with diverse ethical paradigms and simulating interactions between entities with distinct moral principles. This innovative research provides a new way to understand complex inter-civilizational dynamics, expanding our perspective while pioneering novel strategies for conflict resolution, crucial for preventing interstellar conflicts. We have also released the code and datasets to enable further academic investigation into this interesting area of research. The code is available at https://github.com/agiresearch/AlienAgent.

CRAKEN: Cybersecurity LLM Agent with Knowledge-Based Execution

Large Language Model (LLM) agents can automate cybersecurity tasks and can adapt to the evolving cybersecurity landscape without re-engineering. While LLM agents have demonstrated cybersecurity capabilities on Capture-The-Flag (CTF) competitions, they have two key limitations: accessing latest cybersecurity expertise beyond training data, and integrating new knowledge into complex task planning. Knowledge-based approaches that incorporate technical understanding into the task-solving automation can tackle these limitations. We present CRAKEN, a knowledge-based LLM agent framework that improves cybersecurity capability through three core mechanisms: contextual decomposition of task-critical information, iterative self-reflected knowledge retrieval, and knowledge-hint injection that transforms insights into adaptive attack strategies. Comprehensive evaluations with different configurations show CRAKEN's effectiveness in multi-stage vulnerability detection and exploitation compared to previous approaches. Our extensible architecture establishes new methodologies for embedding new security knowledge into LLM-driven cybersecurity agentic systems. With a knowledge database of CTF writeups, CRAKEN obtained an accuracy of 22% on NYU CTF Bench, outperforming prior works by 3% and achieving state-of-the-art results. On evaluation of MITRE ATT&CK techniques, CRAKEN solves 25-30% more techniques than prior work, demonstrating improved cybersecurity capabilities via knowledge-based execution. We make our framework open source to public https://github.com/NYU-LLM-CTF/nyuctf_agents_craken.

SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence

To address the increasing complexity and frequency of cybersecurity incidents emphasized by the recent cybersecurity threat reports with over 10 billion instances, cyber threat intelligence (CTI) plays a critical role in the modern cybersecurity landscape by offering the insights required to understand and combat the constantly evolving nature of cyber threats. Inspired by the powerful capability of large language models (LLMs) in handling complex tasks, in this paper, we introduce a framework to benchmark, elicit, and improve cybersecurity incident analysis and response abilities in LLMs for Security Events (SEvenLLM). Specifically, we create a high-quality bilingual instruction corpus by crawling cybersecurity raw text from cybersecurity websites to overcome the lack of effective data for information extraction. Then, we design a pipeline to auto-select tasks from the tasks pool and convert the raw text into supervised corpora comprised of question and response. The instruction dataset SEvenLLM-Instruct is used to train cybersecurity LLMs with the multi-task learning objective (27 well-designed tasks) for augmenting the analysis of cybersecurity events. Extensive experiments in our curated benchmark (SEvenLLM-bench) demonstrate that SEvenLLM performs more sophisticated threat analysis and fortifies defenses against the evolving landscape of cyber threats.

Judging the Judges: A Collection of LLM-Generated Relevance Judgements

Using Large Language Models (LLMs) for relevance assessments offers promising opportunities to improve Information Retrieval (IR), Natural Language Processing (NLP), and related fields. Indeed, LLMs hold the promise of allowing IR experimenters to build evaluation collections with a fraction of the manual human labor currently required. This could help with fresh topics on which there is still limited knowledge and could mitigate the challenges of evaluating ranking systems in low-resource scenarios, where it is challenging to find human annotators. Given the fast-paced recent developments in the domain, many questions concerning LLMs as assessors are yet to be answered. Among the aspects that require further investigation, we can list the impact of various components in a relevance judgment generation pipeline, such as the prompt used or the LLM chosen. This paper benchmarks and reports on the results of a large-scale automatic relevance judgment evaluation, the LLMJudge challenge at SIGIR 2024, where different relevance assessment approaches were proposed. In detail, we release and benchmark 42 LLM-generated labels of the TREC 2023 Deep Learning track relevance judgments produced by eight international teams who participated in the challenge. Given their diverse nature, these automatically generated relevance judgments can help the community not only investigate systematic biases caused by LLMs but also explore the effectiveness of ensemble models, analyze the trade-offs between different models and human assessors, and advance methodologies for improving automated evaluation techniques. The released resource is available at the following link: https://llm4eval.github.io/LLMJudge-benchmark/

The Ethics of ChatGPT in Medicine and Healthcare: A Systematic Review on Large Language Models (LLMs)

With the introduction of ChatGPT, Large Language Models (LLMs) have received enormous attention in healthcare. Despite their potential benefits, researchers have underscored various ethical implications. While individual instances have drawn much attention, the debate lacks a systematic overview of practical applications currently researched and ethical issues connected to them. Against this background, this work aims to map the ethical landscape surrounding the current stage of deployment of LLMs in medicine and healthcare. Electronic databases and preprint servers were queried using a comprehensive search strategy. Studies were screened and extracted following a modified rapid review approach. Methodological quality was assessed using a hybrid approach. For 53 records, a meta-aggregative synthesis was performed. Four fields of applications emerged and testify to a vivid exploration phase. Advantages of using LLMs are attributed to their capacity in data analysis, personalized information provisioning, support in decision-making, mitigating information loss and enhancing information accessibility. However, we also identifies recurrent ethical concerns connected to fairness, bias, non-maleficence, transparency, and privacy. A distinctive concern is the tendency to produce harmful misinformation or convincingly but inaccurate content. A recurrent plea for ethical guidance and human oversight is evident. Given the variety of use cases, it is suggested that the ethical guidance debate be reframed to focus on defining what constitutes acceptable human oversight across the spectrum of applications. This involves considering diverse settings, varying potentials for harm, and different acceptable thresholds for performance and certainty in healthcare. In addition, a critical inquiry is necessary to determine the extent to which the current experimental use of LLMs is necessary and justified.

LitLLMs, LLMs for Literature Review: Are we there yet?

Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io.

How Are LLMs Mitigating Stereotyping Harms? Learning from Search Engine Studies

With the widespread availability of LLMs since the release of ChatGPT and increased public scrutiny, commercial model development appears to have focused their efforts on 'safety' training concerning legal liabilities at the expense of social impact evaluation. This mimics a similar trend which we could observe for search engine autocompletion some years prior. We draw on scholarship from NLP and search engine auditing and present a novel evaluation task in the style of autocompletion prompts to assess stereotyping in LLMs. We assess LLMs by using four metrics, namely refusal rates, toxicity, sentiment and regard, with and without safety system prompts. Our findings indicate an improvement to stereotyping outputs with the system prompt, but overall a lack of attention by LLMs under study to certain harms classified as toxic, particularly for prompts about peoples/ethnicities and sexual orientation. Mentions of intersectional identities trigger a disproportionate amount of stereotyping. Finally, we discuss the implications of these findings about stereotyping harms in light of the coming intermingling of LLMs and search and the choice of stereotyping mitigation policy to adopt. We address model builders, academics, NLP practitioners and policy makers, calling for accountability and awareness concerning stereotyping harms, be it for training data curation, leader board design and usage, or social impact measurement.

Profiling News Media for Factuality and Bias Using LLMs and the Fact-Checking Methodology of Human Experts

In an age characterized by the proliferation of mis- and disinformation online, it is critical to empower readers to understand the content they are reading. Important efforts in this direction rely on manual or automatic fact-checking, which can be challenging for emerging claims with limited information. Such scenarios can be handled by assessing the reliability and the political bias of the source of the claim, i.e., characterizing entire news outlets rather than individual claims or articles. This is an important but understudied research direction. While prior work has looked into linguistic and social contexts, we do not analyze individual articles or information in social media. Instead, we propose a novel methodology that emulates the criteria that professional fact-checkers use to assess the factuality and political bias of an entire outlet. Specifically, we design a variety of prompts based on these criteria and elicit responses from large language models (LLMs), which we aggregate to make predictions. In addition to demonstrating sizable improvements over strong baselines via extensive experiments with multiple LLMs, we provide an in-depth error analysis of the effect of media popularity and region on model performance. Further, we conduct an ablation study to highlight the key components of our dataset that contribute to these improvements. To facilitate future research, we released our dataset and code at https://github.com/mbzuai-nlp/llm-media-profiling.

A Reliable Knowledge Processing Framework for Combustion Science using Foundation Models

This research explores the integration of large language models (LLMs) into scientific data assimilation, focusing on combustion science as a case study. Leveraging foundational models integrated with Retrieval-Augmented Generation (RAG) framework, the study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature. The multifaceted nature of combustion research emphasizes the critical role of knowledge processing in navigating and extracting valuable information from a vast and diverse pool of sources. The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy. It incorporates prompt engineering and offline open-source LLMs, offering user autonomy in selecting base models. The study provides a thorough examination of text segmentation strategies, conducts comparative studies between LLMs, and explores various optimized prompts to demonstrate the effectiveness of the framework. By incorporating an external database, the framework outperforms a conventional LLM in generating accurate responses and constructing robust arguments. Additionally, the study delves into the investigation of optimized prompt templates for the purpose of efficient extraction of scientific literature. The research addresses concerns related to hallucinations and false research articles by introducing a custom workflow developed with a detection algorithm to filter out inaccuracies. Despite identified areas for improvement, the framework consistently delivers accurate domain-specific responses with minimal human oversight. The prompt-agnostic approach introduced holds promise for future deliberations. The study underscores the significance of integrating LLMs and knowledge processing techniques in scientific research, providing a foundation for advancements in data assimilation and utilization.

The Trilemma of Truth in Large Language Models

We often attribute human characteristics to large language models (LLMs) and claim that they "know" certain things. LLMs have an internal probabilistic knowledge that represents information retained during training. How can we assess the veracity of this knowledge? We examine two common methods for probing the veracity of LLMs and discover several assumptions that are flawed. To address these flawed assumptions, we introduce sAwMIL (short for Sparse Aware Multiple-Instance Learning), a probing method that utilizes the internal activations of LLMs to separate statements into true, false, and neither. sAwMIL is based on multiple-instance learning and conformal prediction. We evaluate sAwMIL on 5 validity criteria across 16 open-source LLMs, including both default and chat-based variants, as well as on 3 new datasets. Among the insights we provide are: (1) the veracity signal is often concentrated in the third quarter of an LLM's depth; (2) truth and falsehood signals are not always symmetric; (3) linear probes perform better on chat models than on default models; (4) nonlinear probes may be required to capture veracity signals for some LLMs with reinforcement learning from human feedback or knowledge distillation; and (5) LLMs capture a third type of signal that is distinct from true and false and is neither true nor false. These findings provide a reliable method for verifying what LLMs "know" and how certain they are of their probabilistic internal knowledge.

Decolonial AI: Decolonial Theory as Sociotechnical Foresight in Artificial Intelligence

This paper explores the important role of critical science, and in particular of post-colonial and decolonial theories, in understanding and shaping the ongoing advances in artificial intelligence. Artificial Intelligence (AI) is viewed as amongst the technological advances that will reshape modern societies and their relations. Whilst the design and deployment of systems that continually adapt holds the promise of far-reaching positive change, they simultaneously pose significant risks, especially to already vulnerable peoples. Values and power are central to this discussion. Decolonial theories use historical hindsight to explain patterns of power that shape our intellectual, political, economic, and social world. By embedding a decolonial critical approach within its technical practice, AI communities can develop foresight and tactics that can better align research and technology development with established ethical principles, centring vulnerable peoples who continue to bear the brunt of negative impacts of innovation and scientific progress. We highlight problematic applications that are instances of coloniality, and using a decolonial lens, submit three tactics that can form a decolonial field of artificial intelligence: creating a critical technical practice of AI, seeking reverse tutelage and reverse pedagogies, and the renewal of affective and political communities. The years ahead will usher in a wave of new scientific breakthroughs and technologies driven by AI research, making it incumbent upon AI communities to strengthen the social contract through ethical foresight and the multiplicity of intellectual perspectives available to us; ultimately supporting future technologies that enable greater well-being, with the goal of beneficence and justice for all.

AI-Driven Scholarly Peer Review via Persistent Workflow Prompting, Meta-Prompting, and Meta-Reasoning

Critical peer review of scientific manuscripts presents a significant challenge for Large Language Models (LLMs), partly due to data limitations and the complexity of expert reasoning. This report introduces Persistent Workflow Prompting (PWP), a potentially broadly applicable prompt engineering methodology designed to bridge this gap using standard LLM chat interfaces (zero-code, no APIs). We present a proof-of-concept PWP prompt for the critical analysis of experimental chemistry manuscripts, featuring a hierarchical, modular architecture (structured via Markdown) that defines detailed analysis workflows. We develop this PWP prompt through iterative application of meta-prompting techniques and meta-reasoning aimed at systematically codifying expert review workflows, including tacit knowledge. Submitted once at the start of a session, this PWP prompt equips the LLM with persistent workflows triggered by subsequent queries, guiding modern reasoning LLMs through systematic, multimodal evaluations. Demonstrations show the PWP-guided LLM identifying major methodological flaws in a test case while mitigating LLM input bias and performing complex tasks, including distinguishing claims from evidence, integrating text/photo/figure analysis to infer parameters, executing quantitative feasibility checks, comparing estimates against claims, and assessing a priori plausibility. To ensure transparency and facilitate replication, we provide full prompts, detailed demonstration analyses, and logs of interactive chats as supplementary resources. Beyond the specific application, this work offers insights into the meta-development process itself, highlighting the potential of PWP, informed by detailed workflow formalization, to enable sophisticated analysis using readily available LLMs for complex scientific tasks.

Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying

Studies have underscored how, regardless of the recent breakthrough and swift advances in AI research, even state-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning. The results seem to suggest that LLMs still work as (highly advanced) data pattern identifiers, scoring poorly when attempting to generalise and solve reasoning problems the models have never previously seen or that are not close to samples presented in their training data. To address this compelling concern, this paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation. We show that employing these critical questions can improve the reasoning capabilities of LLMs. By probing the rationale behind the models' reasoning process, the LLM can assess whether some logical mistake is occurring and correct it before providing the final reply to the user prompt. The underlying idea is drawn from the gold standard of any valid argumentative procedure: the conclusion is valid if it is entailed by accepted premises. Or, to paraphrase such Aristotelian principle in a real-world approximation, characterised by incomplete information and presumptive logic, the conclusion is valid if not proved otherwise. This approach successfully steers the models' output through a reasoning pipeline, resulting in better performance against the baseline and its Chain-of-Thought (CoT) implementation. To this end, an extensive evaluation of the proposed approach on the MT-Bench Reasoning and Math tasks across a range of LLMs is provided.

OMNI: Open-endedness via Models of human Notions of Interestingness

Open-ended algorithms aim to learn new, interesting behaviors forever. That requires a vast environment search space, but there are thus infinitely many possible tasks. Even after filtering for tasks the current agent can learn (i.e., learning progress), countless learnable yet uninteresting tasks remain (e.g., minor variations of previously learned tasks). An Achilles Heel of open-endedness research is the inability to quantify (and thus prioritize) tasks that are not just learnable, but also interesting (e.g., worthwhile and novel). We propose solving this problem by Open-endedness via Models of human Notions of Interestingness (OMNI). The insight is that we can utilize foundation models (FMs) as a model of interestingness (MoI), because they already internalize human concepts of interestingness from training on vast amounts of human-generated data, where humans naturally write about what they find interesting or boring. We show that FM-based MoIs improve open-ended learning by focusing on tasks that are both learnable and interesting, outperforming baselines based on uniform task sampling or learning progress alone. This approach has the potential to dramatically advance the ability to intelligently select which tasks to focus on next (i.e., auto-curricula), and could be seen as AI selecting its own next task to learn, facilitating self-improving AI and AI-Generating Algorithms. Project website at https://www.jennyzhangzt.com/omni/

Early warning signals: The charted and uncharted territories

The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of 'critical slowing down' that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down, (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system; bearing in mind that a positive indication for some systems is a negative indication in others, and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.

Counterfactual Token Generation in Large Language Models

"Sure, I am happy to generate a story for you: Captain Lyra stood at the helm of her trusty ship, the Maelstrom's Fury, gazing out at the endless sea. [...] Lyra's eyes welled up with tears as she realized the bitter truth - she had sacrificed everything for fleeting riches, and lost the love of her crew, her family, and herself." Although this story, generated by a large language model, is captivating, one may wonder -- how would the story have unfolded if the model had chosen "Captain Maeve" as the protagonist instead? We cannot know. State-of-the-art large language models are stateless -- they maintain no internal memory or state. Given a prompt, they generate a sequence of tokens as an output using an autoregressive process. As a consequence, they cannot reason about counterfactual alternatives to tokens they have generated in the past. In this work, our goal is to enhance them with this functionality. To this end, we develop a causal model of token generation that builds upon the Gumbel-Max structural causal model. Our model allows any large language model to perform counterfactual token generation at almost no cost in comparison with vanilla token generation, it is embarrassingly simple to implement, and it does not require any fine-tuning nor prompt engineering. We implement our model on Llama 3 8B-Instruct and Ministral-8B-Instruct and conduct a qualitative and a quantitative analysis of counterfactually generated text. We conclude with a demonstrative application of counterfactual token generation for bias detection, unveiling interesting insights about the model of the world constructed by large language models.

LitSearch: A Retrieval Benchmark for Scientific Literature Search

Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.

This Thing Called Fairness: Disciplinary Confusion Realizing a Value in Technology

The explosion in the use of software in important sociotechnical systems has renewed focus on the study of the way technical constructs reflect policies, norms, and human values. This effort requires the engagement of scholars and practitioners from many disciplines. And yet, these disciplines often conceptualize the operative values very differently while referring to them using the same vocabulary. The resulting conflation of ideas confuses discussions about values in technology at disciplinary boundaries. In the service of improving this situation, this paper examines the value of shared vocabularies, analytics, and other tools that facilitate conversations about values in light of these disciplinary specific conceptualizations, the role such tools play in furthering research and practice, outlines different conceptions of "fairness" deployed in discussions about computer systems, and provides an analytic tool for interdisciplinary discussions and collaborations around the concept of fairness. We use a case study of risk assessments in criminal justice applications to both motivate our effort--describing how conflation of different concepts under the banner of "fairness" led to unproductive confusion--and illustrate the value of the fairness analytic by demonstrating how the rigorous analysis it enables can assist in identifying key areas of theoretical, political, and practical misunderstanding or disagreement, and where desired support alignment or collaboration in the absence of consensus.

Étude cognitive des processus de construction d'une requête dans un système de gestion de connaissances médicales

This article presents the Cogni-CISMeF project, which aims at improving medical information search in the CISMeF system (Catalog and Index of French-language health resources) by including a conversational agent to interact with the user in natural language. To study the cognitive processes involved during the information search, a bottom-up methodology was adopted. Experimentation has been set up to obtain human dialogs between a user (playing the role of patient) dealing with medical information search and a CISMeF expert refining the request. The analysis of these dialogs underlined the use of discursive evidence: vocabulary, reformulation, implicit or explicit expression of user intentions, conversational sequences, etc. A model of artificial agent is proposed. It leads the user in its information search by proposing to him examples, assistance and choices. This model was implemented and integrated in the CISMeF system. ---- Cet article d\'ecrit le projet Cogni-CISMeF qui propose un module de dialogue Homme-Machine \`a int\'egrer dans le syst\`eme d'indexation de connaissances m\'edicales CISMeF (Catalogue et Index des Sites M\'edicaux Francophones). Nous avons adopt\'e une d\'emarche de mod\'elisation cognitive en proc\'edant \`a un recueil de corpus de dialogues entre un utilisateur (jouant le r\^ole d'un patient) d\'esirant une information m\'edicale et un expert CISMeF af inant cette demande pour construire la requ\^ete. Nous avons analys\'e la structure des dialogues ainsi obtenus et avons \'etudi\'e un certain nombre d'indices discursifs : vocabulaire employ\'e, marques de reformulation, commentaires m\'eta et \'epilinguistiques, expression implicite ou explicite des intentions de l'utilisateur, encha\^inement conversationnel, etc. De cette analyse, nous avons construit un mod\`ele d'agent artificiel dot\'e de capacit\'es cognitives capables d'aider l'utilisateur dans sa t\^ache de recherche d'information. Ce mod\`ele a \'et\'e impl\'ement\'e et int\'egr\'e dans le syst\`eme CISMeF.

Dynamic Normativity: Necessary and Sufficient Conditions for Value Alignment

The critical inquiry pervading the realm of Philosophy, and perhaps extending its influence across all Humanities disciplines, revolves around the intricacies of morality and normativity. Surprisingly, in recent years, this thematic thread has woven its way into an unexpected domain, one not conventionally associated with pondering "what ought to be": the field of artificial intelligence (AI) research. Central to morality and AI, we find "alignment", a problem related to the challenges of expressing human goals and values in a manner that artificial systems can follow without leading to unwanted adversarial effects. More explicitly and with our current paradigm of AI development in mind, we can think of alignment as teaching human values to non-anthropomorphic entities trained through opaque, gradient-based learning techniques. This work addresses alignment as a technical-philosophical problem that requires solid philosophical foundations and practical implementations that bring normative theory to AI system development. To accomplish this, we propose two sets of necessary and sufficient conditions that, we argue, should be considered in any alignment process. While necessary conditions serve as metaphysical and metaethical roots that pertain to the permissibility of alignment, sufficient conditions establish a blueprint for aligning AI systems under a learning-based paradigm. After laying such foundations, we present implementations of this approach by using state-of-the-art techniques and methods for aligning general-purpose language systems. We call this framework Dynamic Normativity. Its central thesis is that any alignment process under a learning paradigm that cannot fulfill its necessary and sufficient conditions will fail in producing aligned systems.

AI Transparency in the Age of LLMs: A Human-Centered Research Roadmap

The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large. We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly. However, a central pillar of responsible AI -- transparency -- is largely missing from the current discourse around LLMs. It is paramount to pursue new approaches to provide transparency for LLMs, and years of research at the intersection of AI and human-computer interaction (HCI) highlight that we must do so with a human-centered perspective: Transparency is fundamentally about supporting appropriate human understanding, and this understanding is sought by different stakeholders with different goals in different contexts. In this new era of LLMs, we must develop and design approaches to transparency by considering the needs of stakeholders in the emerging LLM ecosystem, the novel types of LLM-infused applications being built, and the new usage patterns and challenges around LLMs, all while building on lessons learned about how people process, interact with, and make use of information. We reflect on the unique challenges that arise in providing transparency for LLMs, along with lessons learned from HCI and responsible AI research that has taken a human-centered perspective on AI transparency. We then lay out four common approaches that the community has taken to achieve transparency -- model reporting, publishing evaluation results, providing explanations, and communicating uncertainty -- and call out open questions around how these approaches may or may not be applied to LLMs. We hope this provides a starting point for discussion and a useful roadmap for future research.

Into the crossfire: evaluating the use of a language model to crowdsource gun violence reports

Gun violence is a pressing and growing human rights issue that affects nearly every dimension of the social fabric, from healthcare and education to psychology and the economy. Reliable data on firearm events is paramount to developing more effective public policy and emergency responses. However, the lack of comprehensive databases and the risks of in-person surveys prevent human rights organizations from collecting needed data in most countries. Here, we partner with a Brazilian human rights organization to conduct a systematic evaluation of language models to assist with monitoring real-world firearm events from social media data. We propose a fine-tuned BERT-based model trained on Twitter (now X) texts to distinguish gun violence reports from ordinary Portuguese texts. Our model achieves a high AUC score of 0.97. We then incorporate our model into a web application and test it in a live intervention. We study and interview Brazilian analysts who continuously fact-check social media texts to identify new gun violence events. Qualitative assessments show that our solution helped all analysts use their time more efficiently and expanded their search capacities. Quantitative assessments show that the use of our model was associated with more analysts' interactions with online users reporting gun violence. Taken together, our findings suggest that modern Natural Language Processing techniques can help support the work of human rights organizations.

Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task

This study explores the neural and behavioral consequences of LLM-assisted essay writing. Participants were divided into three groups: LLM, Search Engine, and Brain-only (no tools). Each completed three sessions under the same condition. In a fourth session, LLM users were reassigned to Brain-only group (LLM-to-Brain), and Brain-only users were reassigned to LLM condition (Brain-to-LLM). A total of 54 participants took part in Sessions 1-3, with 18 completing session 4. We used electroencephalography (EEG) to assess cognitive load during essay writing, and analyzed essays using NLP, as well as scoring essays with the help from human teachers and an AI judge. Across groups, NERs, n-gram patterns, and topic ontology showed within-group homogeneity. EEG revealed significant differences in brain connectivity: Brain-only participants exhibited the strongest, most distributed networks; Search Engine users showed moderate engagement; and LLM users displayed the weakest connectivity. Cognitive activity scaled down in relation to external tool use. In session 4, LLM-to-Brain participants showed reduced alpha and beta connectivity, indicating under-engagement. Brain-to-LLM users exhibited higher memory recall and activation of occipito-parietal and prefrontal areas, similar to Search Engine users. Self-reported ownership of essays was the lowest in the LLM group and the highest in the Brain-only group. LLM users also struggled to accurately quote their own work. While LLMs offer immediate convenience, our findings highlight potential cognitive costs. Over four months, LLM users consistently underperformed at neural, linguistic, and behavioral levels. These results raise concerns about the long-term educational implications of LLM reliance and underscore the need for deeper inquiry into AI's role in learning.

Challenges and Considerations in Annotating Legal Data: A Comprehensive Overview

The process of annotating data within the legal sector is filled with distinct challenges that differ from other fields, primarily due to the inherent complexities of legal language and documentation. The initial task usually involves selecting an appropriate raw dataset that captures the intricate aspects of legal texts. Following this, extracting text becomes a complicated task, as legal documents often have complex structures, footnotes, references, and unique terminology. The importance of data cleaning is magnified in this context, ensuring that redundant information is eliminated while maintaining crucial legal details and context. Creating comprehensive yet straightforward annotation guidelines is imperative, as these guidelines serve as the road map for maintaining uniformity and addressing the subtle nuances of legal terminology. Another critical aspect is the involvement of legal professionals in the annotation process. Their expertise is valuable in ensuring that the data not only remains contextually accurate but also adheres to prevailing legal standards and interpretations. This paper provides an expanded view of these challenges and aims to offer a foundational understanding and guidance for researchers and professionals engaged in legal data annotation projects. In addition, we provide links to our created and fine-tuned datasets and language models. These resources are outcomes of our discussed projects and solutions to challenges faced while working on them.

Knowledge Graph in Astronomical Research with Large Language Models: Quantifying Driving Forces in Interdisciplinary Scientific Discovery

Identifying and predicting the factors that contribute to the success of interdisciplinary research is crucial for advancing scientific discovery. However, there is a lack of methods to quantify the integration of new ideas and technological advancements in astronomical research and how these new technologies drive further scientific breakthroughs. Large language models, with their ability to extract key concepts from vast literature beyond keyword searches, provide a new tool to quantify such processes. In this study, we extracted concepts in astronomical research from 297,807 publications between 1993 and 2024 using large language models, resulting in a set of 24,939 concepts. These concepts were then used to form a knowledge graph, where the link strength between any two concepts was determined by their relevance through the citation-reference relationships. By calculating this relevance across different time periods, we quantified the impact of numerical simulations and machine learning on astronomical research. The knowledge graph demonstrates two phases of development: a phase where the technology was integrated and another where the technology was explored in scientific discovery. The knowledge graph reveals that despite machine learning has made much inroad in astronomy, there is currently a lack of new concept development at the intersection of AI and Astronomy, which may be the current bottleneck preventing machine learning from further transforming the field of astronomy.

Revealing Fine-Grained Values and Opinions in Large Language Models

Uncovering latent values and opinions in large language models (LLMs) can help identify biases and mitigate potential harm. Recently, this has been approached by presenting LLMs with survey questions and quantifying their stances towards morally and politically charged statements. However, the stances generated by LLMs can vary greatly depending on how they are prompted, and there are many ways to argue for or against a given position. In this work, we propose to address this by analysing a large and robust dataset of 156k LLM responses to the 62 propositions of the Political Compass Test (PCT) generated by 6 LLMs using 420 prompt variations. We perform coarse-grained analysis of their generated stances and fine-grained analysis of the plain text justifications for those stances. For fine-grained analysis, we propose to identify tropes in the responses: semantically similar phrases that are recurrent and consistent across different prompts, revealing patterns in the text that a given LLM is prone to produce. We find that demographic features added to prompts significantly affect outcomes on the PCT, reflecting bias, as well as disparities between the results of tests when eliciting closed-form vs. open domain responses. Additionally, patterns in the plain text rationales via tropes show that similar justifications are repeatedly generated across models and prompts even with disparate stances.

ECtHR-PCR: A Dataset for Precedent Understanding and Prior Case Retrieval in the European Court of Human Rights

In common law jurisdictions, legal practitioners rely on precedents to construct arguments, in line with the doctrine of stare decisis. As the number of cases grow over the years, prior case retrieval (PCR) has garnered significant attention. Besides lacking real-world scale, existing PCR datasets do not simulate a realistic setting, because their queries use complete case documents while only masking references to prior cases. The query is thereby exposed to legal reasoning not yet available when constructing an argument for an undecided case as well as spurious patterns left behind by citation masks, potentially short-circuiting a comprehensive understanding of case facts and legal principles. To address these limitations, we introduce a PCR dataset based on judgements from the European Court of Human Rights (ECtHR), which explicitly separate facts from arguments and exhibit precedential practices, aiding us to develop this PCR dataset to foster systems' comprehensive understanding. We benchmark different lexical and dense retrieval approaches with various negative sampling strategies, adapting them to deal with long text sequences using hierarchical variants. We found that difficulty-based negative sampling strategies were not effective for the PCR task, highlighting the need for investigation into domain-specific difficulty criteria. Furthermore, we observe performance of the dense models degrade with time and calls for further research into temporal adaptation of retrieval models. Additionally, we assess the influence of different views , Halsbury's and Goodhart's, in practice in ECtHR jurisdiction using PCR task.

Using clarification questions to improve software developers' Web search

Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.

Manipulating Large Language Models to Increase Product Visibility

Large language models (LLMs) are increasingly being integrated into search engines to provide natural language responses tailored to user queries. Customers and end-users are also becoming more dependent on these models for quick and easy purchase decisions. In this work, we investigate whether recommendations from LLMs can be manipulated to enhance a product's visibility. We demonstrate that adding a strategic text sequence (STS) -- a carefully crafted message -- to a product's information page can significantly increase its likelihood of being listed as the LLM's top recommendation. To understand the impact of STS, we use a catalog of fictitious coffee machines and analyze its effect on two target products: one that seldom appears in the LLM's recommendations and another that usually ranks second. We observe that the strategic text sequence significantly enhances the visibility of both products by increasing their chances of appearing as the top recommendation. This ability to manipulate LLM-generated search responses provides vendors with a considerable competitive advantage and has the potential to disrupt fair market competition. Just as search engine optimization (SEO) revolutionized how webpages are customized to rank higher in search engine results, influencing LLM recommendations could profoundly impact content optimization for AI-driven search services. Code for our experiments is available at https://github.com/aounon/llm-rank-optimizer.

Evaluating and Mitigating Discrimination in Language Model Decisions

As language models (LMs) advance, interest is growing in applying them to high-stakes societal decisions, such as determining financing or housing eligibility. However, their potential for discrimination in such contexts raises ethical concerns, motivating the need for better methods to evaluate these risks. We present a method for proactively evaluating the potential discriminatory impact of LMs in a wide range of use cases, including hypothetical use cases where they have not yet been deployed. Specifically, we use an LM to generate a wide array of potential prompts that decision-makers may input into an LM, spanning 70 diverse decision scenarios across society, and systematically vary the demographic information in each prompt. Applying this methodology reveals patterns of both positive and negative discrimination in the Claude 2.0 model in select settings when no interventions are applied. While we do not endorse or permit the use of language models to make automated decisions for the high-risk use cases we study, we demonstrate techniques to significantly decrease both positive and negative discrimination through careful prompt engineering, providing pathways toward safer deployment in use cases where they may be appropriate. Our work enables developers and policymakers to anticipate, measure, and address discrimination as language model capabilities and applications continue to expand. We release our dataset and prompts at https://huggingface.co/datasets/Anthropic/discrim-eval

Development of an NLP-driven computer-based test guide for visually impaired students

In recent years, advancements in Natural Language Processing (NLP) techniques have revolutionized the field of accessibility and exclusivity of testing, particularly for visually impaired students (VIS). CBT has shown in years back its relevance in terms of administering exams electronically, making the test process easier, providing quicker and more accurate results, and offering greater flexibility and accessibility for candidates. Yet, its relevance was not felt by the visually impaired students as they cannot access printed documents. Hence, in this paper, we present an NLP-driven Computer-Based Test guide for visually impaired students. It employs a speech technology pre-trained methods to provide real-time assistance and support to visually impaired students. The system utilizes NLP technologies to convert the text-based questions and the associated options in a machine-readable format. Subsequently, the speech technology pre-trained model processes the converted text enabling the VIS to comprehend and analyze the content. Furthermore, we validated that this pre-trained model is not perverse by testing for accuracy using sample audio datasets labels (A, B, C, D, E, F, G) to compare with the voice recordings obtained from 20 VIS which is been predicted by the system to attain values for precision, recall, and F1-scores. These metrics are used to assess the performance of the pre-trained model and have indicated that it is proficient enough to give its better performance to the evaluated system. The methodology adopted for this system is Object Oriented Analysis and Design Methodology (OOADM) where Objects are discussed and built by modeling real-world instances.

Two Case Studies of Experience Prototyping Machine Learning Systems in the Wild

Throughout the course of my Ph.D., I have been designing the user experience (UX) of various machine learning (ML) systems. In this workshop, I share two projects as case studies in which people engage with ML in much more complicated and nuanced ways than the technical HCML work might assume. The first case study describes how cardiology teams in three hospitals used a clinical decision-support system that helps them decide whether and when to implant an artificial heart to a heart failure patient. I demonstrate that physicians cannot draw on their decision-making experience by seeing only patient data on paper. They are also confused by some fundamental premises upon which ML operates. For example, physicians asked: Are ML predictions made based on clinicians' best efforts? Is it ethical to make decisions based on previous patients' collective outcomes? In the second case study, my collaborators and I designed an intelligent text editor, with the goal of improving authors' writing experience with NLP (Natural Language Processing) technologies. We prototyped a number of generative functionalities where the system provides phrase-or-sentence-level writing suggestions upon user request. When writing with the prototype, however, authors shared that they need to "see where the sentence is going two paragraphs later" in order to decide whether the suggestion aligns with their writing; Some even considered adopting machine suggestions as plagiarism, therefore "is simply wrong". By sharing these unexpected and intriguing responses from these real-world ML users, I hope to start a discussion about such previously-unknown complexities and nuances of -- as the workshop proposal states -- "putting ML at the service of people in a way that is accessible, useful, and trustworthy to all".

Annotated History of Modern AI and Deep Learning

Machine learning is the science of credit assignment: finding patterns in observations that predict the consequences of actions and help to improve future performance. Credit assignment is also required for human understanding of how the world works, not only for individuals navigating daily life, but also for academic professionals like historians who interpret the present in light of past events. Here I focus on the history of modern artificial intelligence (AI) which is dominated by artificial neural networks (NNs) and deep learning, both conceptually closer to the old field of cybernetics than to what's been called AI since 1956 (e.g., expert systems and logic programming). A modern history of AI will emphasize breakthroughs outside of the focus of traditional AI text books, in particular, mathematical foundations of today's NNs such as the chain rule (1676), the first NNs (linear regression, circa 1800), and the first working deep learners (1965-). From the perspective of 2022, I provide a timeline of the -- in hindsight -- most important relevant events in the history of NNs, deep learning, AI, computer science, and mathematics in general, crediting those who laid foundations of the field. The text contains numerous hyperlinks to relevant overview sites from my AI Blog. It supplements my previous deep learning survey (2015) which provides hundreds of additional references. Finally, to round it off, I'll put things in a broader historic context spanning the time since the Big Bang until when the universe will be many times older than it is now.

"Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in LLM-Generated Reference Letters

Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.

A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence

By consolidating scattered knowledge, the literature review provides a comprehensive understanding of the investigated topic. However, reading, conducting, or peer-reviewing review papers generally demands a significant investment of time and effort from researchers. To improve efficiency, this paper aims to provide a thorough review of reviews in the PAMI field from diverse perspectives. First, this paper proposes several article-level, field-normalized, and large language model-empowered bibliometric indicators to evaluate reviews. To facilitate this, a meta-data database dubbed RiPAMI, and a topic dataset are constructed. Second, based on these indicators, the study presents comparative analyses of representative reviews, unveiling the characteristics of publications across various fields, periods, and journals. The newly emerging AI-generated literature reviews are also appraised, and the observed differences suggest that most AI-generated reviews still lag behind human-authored reviews in multiple aspects. Third, we briefly provide a subjective evaluation of representative PAMI reviews and introduce a paper structure-based typology of literature reviews. This typology may improve the clarity and effectiveness for scholars in reading and writing reviews, while also serving as a guide for AI systems in generating well-organized reviews. Finally, this work offers insights into the current challenges of literature reviews and envisions future directions for their development.

Structural Text Segmentation of Legal Documents

The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange

Detecting Fallacies in Climate Misinformation: A Technocognitive Approach to Identifying Misleading Argumentation

Misinformation about climate change is a complex societal issue requiring holistic, interdisciplinary solutions at the intersection between technology and psychology. One proposed solution is a "technocognitive" approach, involving the synthesis of psychological and computer science research. Psychological research has identified that interventions in response to misinformation require both fact-based (e.g., factual explanations) and technique-based (e.g., explanations of misleading techniques) content. However, little progress has been made on documenting and detecting fallacies in climate misinformation. In this study, we apply a previously developed critical thinking methodology for deconstructing climate misinformation, in order to develop a dataset mapping different types of climate misinformation to reasoning fallacies. This dataset is used to train a model to detect fallacies in climate misinformation. Our study shows F1 scores that are 2.5 to 3.5 better than previous works. The fallacies that are easiest to detect include fake experts and anecdotal arguments, while fallacies that require background knowledge, such as oversimplification, misrepresentation, and slothful induction, are relatively more difficult to detect. This research lays the groundwork for development of solutions where automatically detected climate misinformation can be countered with generative technique-based corrections.

Neural Rankers for Effective Screening Prioritisation in Medical Systematic Review Literature Search

Medical systematic reviews typically require assessing all the documents retrieved by a search. The reason is two-fold: the task aims for ``total recall''; and documents retrieved using Boolean search are an unordered set, and thus it is unclear how an assessor could examine only a subset. Screening prioritisation is the process of ranking the (unordered) set of retrieved documents, allowing assessors to begin the downstream processes of the systematic review creation earlier, leading to earlier completion of the review, or even avoiding screening documents ranked least relevant. Screening prioritisation requires highly effective ranking methods. Pre-trained language models are state-of-the-art on many IR tasks but have yet to be applied to systematic review screening prioritisation. In this paper, we apply several pre-trained language models to the systematic review document ranking task, both directly and fine-tuned. An empirical analysis compares how effective neural methods compare to traditional methods for this task. We also investigate different types of document representations for neural methods and their impact on ranking performance. Our results show that BERT-based rankers outperform the current state-of-the-art screening prioritisation methods. However, BERT rankers and existing methods can actually be complementary, and thus, further improvements may be achieved if used in conjunction.

Awareness in Practice: Tensions in Access to Sensitive Attribute Data for Antidiscrimination

Organizations cannot address demographic disparities that they cannot see. Recent research on machine learning and fairness has emphasized that awareness of sensitive attributes, such as race and sex, is critical to the development of interventions. However, on the ground, the existence of these data cannot be taken for granted. This paper uses the domains of employment, credit, and healthcare in the United States to surface conditions that have shaped the availability of sensitive attribute data. For each domain, we describe how and when private companies collect or infer sensitive attribute data for antidiscrimination purposes. An inconsistent story emerges: Some companies are required by law to collect sensitive attribute data, while others are prohibited from doing so. Still others, in the absence of legal mandates, have determined that collection and imputation of these data are appropriate to address disparities. This story has important implications for fairness research and its future applications. If companies that mediate access to life opportunities are unable or hesitant to collect or infer sensitive attribute data, then proposed techniques to detect and mitigate bias in machine learning models might never be implemented outside the lab. We conclude that today's legal requirements and corporate practices, while highly inconsistent across domains, offer lessons for how to approach the collection and inference of sensitive data in appropriate circumstances. We urge stakeholders, including machine learning practitioners, to actively help chart a path forward that takes both policy goals and technical needs into account.

Large Language Models for History, Philosophy, and Sociology of Science: Interpretive Uses, Methodological Challenges, and Critical Perspectives

This paper explores the use of large language models (LLMs) as research tools in the history, philosophy, and sociology of science (HPSS). LLMs are remarkably effective at processing unstructured text and inferring meaning from context, offering new affordances that challenge long-standing divides between computational and interpretive methods. This raises both opportunities and challenges for HPSS, which emphasizes interpretive methodologies and understands meaning as context-dependent, ambiguous, and historically situated. We argue that HPSS is uniquely positioned not only to benefit from LLMs' capabilities but also to interrogate their epistemic assumptions and infrastructural implications. To this end, we first offer a concise primer on LLM architectures and training paradigms tailored to non-technical readers. We frame LLMs not as neutral tools but as epistemic infrastructures that encode assumptions about meaning, context, and similarity, conditioned by their training data, architecture, and patterns of use. We then examine how computational techniques enhanced by LLMs, such as structuring data, detecting patterns, and modeling dynamic processes, can be applied to support interpretive research in HPSS. Our analysis compares full-context and generative models, outlines strategies for domain and task adaptation (e.g., continued pretraining, fine-tuning, and retrieval-augmented generation), and evaluates their respective strengths and limitations for interpretive inquiry in HPSS. We conclude with four lessons for integrating LLMs into HPSS: (1) model selection involves interpretive trade-offs; (2) LLM literacy is foundational; (3) HPSS must define its own benchmarks and corpora; and (4) LLMs should enhance, not replace, interpretive methods.

Emo, Love, and God: Making Sense of Urban Dictionary, a Crowd-Sourced Online Dictionary

The Internet facilitates large-scale collaborative projects and the emergence of Web 2.0 platforms, where producers and consumers of content unify, has drastically changed the information market. On the one hand, the promise of the "wisdom of the crowd" has inspired successful projects such as Wikipedia, which has become the primary source of crowd-based information in many languages. On the other hand, the decentralized and often un-monitored environment of such projects may make them susceptible to low quality content. In this work, we focus on Urban Dictionary, a crowd-sourced online dictionary. We combine computational methods with qualitative annotation and shed light on the overall features of Urban Dictionary in terms of growth, coverage and types of content. We measure a high presence of opinion-focused entries, as opposed to the meaning-focused entries that we expect from traditional dictionaries. Furthermore, Urban Dictionary covers many informal, unfamiliar words as well as proper nouns. Urban Dictionary also contains offensive content, but highly offensive content tends to receive lower scores through the dictionary's voting system. The low threshold to include new material in Urban Dictionary enables quick recording of new words and new meanings, but the resulting heterogeneous content can pose challenges in using Urban Dictionary as a source to study language innovation.

Eliciting Personality Traits in Large Language Models

Large Language Models (LLMs) are increasingly being utilized by both candidates and employers in the recruitment context. However, with this comes numerous ethical concerns, particularly related to the lack of transparency in these "black-box" models. Although previous studies have sought to increase the transparency of these models by investigating the personality traits of LLMs, many of the previous studies have provided them with personality assessments to complete. On the other hand, this study seeks to obtain a better understanding of such models by examining their output variations based on different input prompts. Specifically, we use a novel elicitation approach using prompts derived from common interview questions, as well as prompts designed to elicit particular Big Five personality traits to examine whether the models were susceptible to trait-activation like humans are, to measure their personality based on the language used in their outputs. To do so, we repeatedly prompted multiple LMs with different parameter sizes, including Llama-2, Falcon, Mistral, Bloom, GPT, OPT, and XLNet (base and fine tuned versions) and examined their personality using classifiers trained on the myPersonality dataset. Our results reveal that, generally, all LLMs demonstrate high openness and low extraversion. However, whereas LMs with fewer parameters exhibit similar behaviour in personality traits, newer and LMs with more parameters exhibit a broader range of personality traits, with increased agreeableness, emotional stability, and openness. Furthermore, a greater number of parameters is positively associated with openness and conscientiousness. Moreover, fine-tuned models exhibit minor modulations in their personality traits, contingent on the dataset. Implications and directions for future research are discussed.

SciPIP: An LLM-based Scientific Paper Idea Proposer

The exponential growth of knowledge and the increasing complexity of interdisciplinary research pose significant challenges for researchers, including information overload and difficulties in exploring novel ideas. The advancements in large language models (LLMs), such as GPT-4, have shown great potential in enhancing idea proposals, but how to effectively utilize large models for reasonable idea proposal has not been thoroughly explored. This paper proposes a scientific paper idea proposer (SciPIP). Based on a user-provided research background, SciPIP retrieves helpful papers from a literature database while leveraging the capabilities of LLMs to generate more novel and feasible ideas. To this end, 1) we construct a literature retrieval database, extracting lots of papers' multi-dimension information for fast access. Then, a literature retrieval method based on semantics, entity, and citation co-occurrences is proposed to search relevant literature from multiple aspects based on the user-provided background. 2) After literature retrieval, we introduce dual-path idea proposal strategies, where one path infers solutions from the retrieved literature and the other path generates original ideas through model brainstorming. We then combine the two to achieve a good balance between feasibility and originality. Through extensive experiments on the natural language processing (NLP) field, we demonstrate that SciPIP can retrieve citations similar to those of existing top conference papers and generate many ideas consistent with them. Additionally, we evaluate the originality of other ideas generated by SciPIP using large language models, further validating the effectiveness of our proposed method. The code and the database are released at https://github.com/cheerss/SciPIP.

Discrimination through optimization: How Facebook's ad delivery can lead to skewed outcomes

The enormous financial success of online advertising platforms is partially due to the precise targeting features they offer. Although researchers and journalists have found many ways that advertisers can target---or exclude---particular groups of users seeing their ads, comparatively little attention has been paid to the implications of the platform's ad delivery process, comprised of the platform's choices about which users see which ads. It has been hypothesized that this process can "skew" ad delivery in ways that the advertisers do not intend, making some users less likely than others to see particular ads based on their demographic characteristics. In this paper, we demonstrate that such skewed delivery occurs on Facebook, due to market and financial optimization effects as well as the platform's own predictions about the "relevance" of ads to different groups of users. We find that both the advertiser's budget and the content of the ad each significantly contribute to the skew of Facebook's ad delivery. Critically, we observe significant skew in delivery along gender and racial lines for "real" ads for employment and housing opportunities despite neutral targeting parameters. Our results demonstrate previously unknown mechanisms that can lead to potentially discriminatory ad delivery, even when advertisers set their targeting parameters to be highly inclusive. This underscores the need for policymakers and platforms to carefully consider the role of the ad delivery optimization run by ad platforms themselves---and not just the targeting choices of advertisers---in preventing discrimination in digital advertising.

CaseSumm: A Large-Scale Dataset for Long-Context Summarization from U.S. Supreme Court Opinions

This paper introduces CaseSumm, a novel dataset for long-context summarization in the legal domain that addresses the need for longer and more complex datasets for summarization evaluation. We collect 25.6K U.S. Supreme Court (SCOTUS) opinions and their official summaries, known as "syllabuses." Our dataset is the largest open legal case summarization dataset, and is the first to include summaries of SCOTUS decisions dating back to 1815. We also present a comprehensive evaluation of LLM-generated summaries using both automatic metrics and expert human evaluation, revealing discrepancies between these assessment methods. Our evaluation shows Mistral 7b, a smaller open-source model, outperforms larger models on most automatic metrics and successfully generates syllabus-like summaries. In contrast, human expert annotators indicate that Mistral summaries contain hallucinations. The annotators consistently rank GPT-4 summaries as clearer and exhibiting greater sensitivity and specificity. Further, we find that LLM-based evaluations are not more correlated with human evaluations than traditional automatic metrics. Furthermore, our analysis identifies specific hallucinations in generated summaries, including precedent citation errors and misrepresentations of case facts. These findings demonstrate the limitations of current automatic evaluation methods for legal summarization and highlight the critical role of human evaluation in assessing summary quality, particularly in complex, high-stakes domains. CaseSumm is available at https://huggingface.co/datasets/ChicagoHAI/CaseSumm

Between welcome culture and border fence. A dataset on the European refugee crisis in German newspaper reports

Newspaper reports provide a rich source of information on the unfolding of public debate on specific policy fields that can serve as basis for inquiry in political science. Such debates are often triggered by critical events, which attract public attention and incite the reactions of political actors: crisis sparks the debate. However, due to the challenges of reliable annotation and modeling, few large-scale datasets with high-quality annotation are available. This paper introduces DebateNet2.0, which traces the political discourse on the European refugee crisis in the German quality newspaper taz during the year 2015. The core units of our annotation are political claims (requests for specific actions to be taken within the policy field) and the actors who make them (politicians, parties, etc.). The contribution of this paper is twofold. First, we document and release DebateNet2.0 along with its companion R package, mardyR, guiding the reader through the practical and conceptual issues related to the annotation of policy debates in newspapers. Second, we outline and apply a Discourse Network Analysis (DNA) to DebateNet2.0, comparing two crucial moments of the policy debate on the 'refugee crisis': the migration flux through the Mediterranean in April/May and the one along the Balkan route in September/October. Besides the released resources and the case-study, our contribution is also methodological: we talk the reader through the steps from a newspaper article to a discourse network, demonstrating that there is not just one discourse network for the German migration debate, but multiple ones, depending on the topic of interest (political actors, policy fields, time spans).

The Critique of Critique

Critique, as a natural language description for assessing the quality of model-generated content, has been proven to play an essential role in the training, evaluation, and refinement of Large Language Models (LLMs). However, there is a lack of principled understanding in evaluating the quality of the critique itself. In this paper, we pioneer the critique of critique, termed MetaCritique, which is a framework to evaluate the critique from two aspects, i.e., factuality as precision score and comprehensiveness as recall score. We calculate the harmonic mean of precision and recall as the overall rating called F1 score. To obtain a reliable evaluation outcome, we propose Atomic Information Units (AIUs), which describe the critique in a more fine-grained manner. MetaCritique takes each AIU into account and aggregates each AIU's judgment for the overall score. Moreover, given the evaluation process involves intricate reasoning, our MetaCritique provides a natural language rationale to support each judgment. We construct a meta-evaluation dataset containing 300 critiques (2653 AIUs) across four tasks (question answering, reasoning, entailment, and summarization), and we conduct a comparative study to demonstrate the feasibility and effectiveness. Experiments also show superior critique judged by MetaCritique leads to better refinement, indicating generative artificial intelligence indeed has the potential to be significantly advanced with our MetaCritique. We will release relevant code and meta-evaluation datasets at https://github.com/GAIR-NLP/MetaCritique.

Do Large Language Models Latently Perform Multi-Hop Reasoning?

We study whether Large Language Models (LLMs) latently perform multi-hop reasoning with complex prompts such as "The mother of the singer of 'Superstition' is". We look for evidence of a latent reasoning pathway where an LLM (1) latently identifies "the singer of 'Superstition'" as Stevie Wonder, the bridge entity, and (2) uses its knowledge of Stevie Wonder's mother to complete the prompt. We analyze these two hops individually and consider their co-occurrence as indicative of latent multi-hop reasoning. For the first hop, we test if changing the prompt to indirectly mention the bridge entity instead of any other entity increases the LLM's internal recall of the bridge entity. For the second hop, we test if increasing this recall causes the LLM to better utilize what it knows about the bridge entity. We find strong evidence of latent multi-hop reasoning for the prompts of certain relation types, with the reasoning pathway used in more than 80% of the prompts. However, the utilization is highly contextual, varying across different types of prompts. Also, on average, the evidence for the second hop and the full multi-hop traversal is rather moderate and only substantial for the first hop. Moreover, we find a clear scaling trend with increasing model size for the first hop of reasoning but not for the second hop. Our experimental findings suggest potential challenges and opportunities for future development and applications of LLMs.

Measuring Large Language Models Capacity to Annotate Journalistic Sourcing

Since the launch of ChatGPT in late 2022, the capacities of Large Language Models and their evaluation have been in constant discussion and evaluation both in academic research and in the industry. Scenarios and benchmarks have been developed in several areas such as law, medicine and math (Bommasani et al., 2023) and there is continuous evaluation of model variants. One area that has not received sufficient scenario development attention is journalism, and in particular journalistic sourcing and ethics. Journalism is a crucial truth-determination function in democracy (Vincent, 2023), and sourcing is a crucial pillar to all original journalistic output. Evaluating the capacities of LLMs to annotate stories for the different signals of sourcing and how reporters justify them is a crucial scenario that warrants a benchmark approach. It offers potential to build automated systems to contrast more transparent and ethically rigorous forms of journalism with everyday fare. In this paper we lay out a scenario to evaluate LLM performance on identifying and annotating sourcing in news stories on a five-category schema inspired from journalism studies (Gans, 2004). We offer the use case, our dataset and metrics and as the first step towards systematic benchmarking. Our accuracy findings indicate LLM-based approaches have more catching to do in identifying all the sourced statements in a story, and equally, in matching the type of sources. An even harder task is spotting source justifications.

A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly

Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized natural language understanding and generation. They possess deep language comprehension, human-like text generation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have also gained traction in the security community, revealing security vulnerabilities and showcasing their potential in security-related tasks. This paper explores the intersection of LLMs with security and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a comprehensive literature review, the paper categorizes the papers into "The Good" (beneficial LLM applications), "The Bad" (offensive applications), and "The Ugly" (vulnerabilities of LLMs and their defenses). We have some interesting findings. For example, LLMs have proven to enhance code security (code vulnerability detection) and data privacy (data confidentiality protection), outperforming traditional methods. However, they can also be harnessed for various attacks (particularly user-level attacks) due to their human-like reasoning abilities. We have identified areas that require further research efforts. For example, Research on model and parameter extraction attacks is limited and often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent development, requires more exploration. We hope that our work can shed light on the LLMs' potential to both bolster and jeopardize cybersecurity.

A Survey on Data Selection for Language Models

A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the amount of training required. Data selection methods aim to determine which candidate data points to include in the training dataset and how to appropriately sample from the selected data points. The promise of improved data selection methods has caused the volume of research in the area to rapidly expand. However, because deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive, few organizations have the resources for extensive data selection research. Consequently, knowledge of effective data selection practices has become concentrated within a few organizations, many of which do not openly share their findings and methodologies. To narrow this gap in knowledge, we present a comprehensive review of existing literature on data selection methods and related research areas, providing a taxonomy of existing approaches. By describing the current landscape of research, this work aims to accelerate progress in data selection by establishing an entry point for new and established researchers. Additionally, throughout this review we draw attention to noticeable holes in the literature and conclude the paper by proposing promising avenues for future research.

LegalVis: Exploring and Inferring Precedent Citations in Legal Documents

To reduce the number of pending cases and conflicting rulings in the Brazilian Judiciary, the National Congress amended the Constitution, allowing the Brazilian Supreme Court (STF) to create binding precedents (BPs), i.e., a set of understandings that both Executive and lower Judiciary branches must follow. The STF's justices frequently cite the 58 existing BPs in their decisions, and it is of primary relevance that judicial experts could identify and analyze such citations. To assist in this problem, we propose LegalVis, a web-based visual analytics system designed to support the analysis of legal documents that cite or could potentially cite a BP. We model the problem of identifying potential citations (i.e., non-explicit) as a classification problem. However, a simple score is not enough to explain the results; that is why we use an interpretability machine learning method to explain the reason behind each identified citation. For a compelling visual exploration of documents and BPs, LegalVis comprises three interactive visual components: the first presents an overview of the data showing temporal patterns, the second allows filtering and grouping relevant documents by topic, and the last one shows a document's text aiming to interpret the model's output by pointing out which paragraphs are likely to mention the BP, even if not explicitly specified. We evaluated our identification model and obtained an accuracy of 96%; we also made a quantitative and qualitative analysis of the results. The usefulness and effectiveness of LegalVis were evaluated through two usage scenarios and feedback from six domain experts.