new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

The Telephone Game: Evaluating Semantic Drift in Unified Models

Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T, as consistency between understanding and generation is critical for downstream use. Existing evaluations consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These single-pass metrics do not reveal whether a model that understands a concept can also render it, nor whether meaning is preserved when cycling between image and text modalities. To address this, we introduce the Unified Consistency Framework for Unified Models (UCF-UM), a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. UCF formulates 3 metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic loss; (ii) Semantic Drift Rate (SDR), that summarizes semantic decay rate; and (iii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO, which is widely used in training; we create a new benchmark ND400, sampled from NoCaps and DOCCI and evaluate on seven recent models. UCF-UM reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantics over many alternations, whereas others like Vila-u drift quickly despite strong single-pass scores. Our results highlight cyclic consistency as a necessary complement to standard I2T and T2I evaluations, and provide practical metrics to consistently assess unified model's cross-modal stability and strength of their shared representations. Code: https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models

  • 6 authors
·
Sep 4

IF-Bench: Benchmarking and Enhancing MLLMs for Infrared Images with Generative Visual Prompting

Recent advances in multimodal large language models (MLLMs) have led to impressive progress across various benchmarks. However, their capability in understanding infrared images remains unexplored. To address this gap, we introduce IF-Bench, the first high-quality benchmark designed for evaluating multimodal understanding of infrared images. IF-Bench consists of 499 images sourced from 23 infrared datasets and 680 carefully curated visual question-answer pairs, covering 10 essential dimensions of image understanding. Based on this benchmark, we systematically evaluate over 40 open-source and closed-source MLLMs, employing cyclic evaluation, bilingual assessment, and hybrid judgment strategies to enhance the reliability of the results. Our analysis reveals how model scale, architecture, and inference paradigms affect infrared image comprehension, providing valuable insights for this area. Furthermore, we propose a training-free generative visual prompting (GenViP) method, which leverages advanced image editing models to translate infrared images into semantically and spatially aligned RGB counterparts, thereby mitigating domain distribution shifts. Extensive experiments demonstrate that our method consistently yields significant performance improvements across a wide range of MLLMs. The benchmark and code are available at https://github.com/casiatao/IF-Bench.

CycliST: A Video Language Model Benchmark for Reasoning on Cyclical State Transitions

We present CycliST, a novel benchmark dataset designed to evaluate Video Language Models (VLM) on their ability for textual reasoning over cyclical state transitions. CycliST captures fundamental aspects of real-world processes by generating synthetic, richly structured video sequences featuring periodic patterns in object motion and visual attributes. CycliST employs a tiered evaluation system that progressively increases difficulty through variations in the number of cyclic objects, scene clutter, and lighting conditions, challenging state-of-the-art models on their spatio-temporal cognition. We conduct extensive experiments with current state-of-the-art VLMs, both open-source and proprietary, and reveal their limitations in generalizing to cyclical dynamics such as linear and orbital motion, as well as time-dependent changes in visual attributes like color and scale. Our results demonstrate that present-day VLMs struggle to reliably detect and exploit cyclic patterns, lack a notion of temporal understanding, and are unable to extract quantitative insights from scenes, such as the number of objects in motion, highlighting a significant technical gap that needs to be addressed. More specifically, we find no single model consistently leads in performance: neither size nor architecture correlates strongly with outcomes, and no model succeeds equally well across all tasks. By providing a targeted challenge and a comprehensive evaluation framework, CycliST paves the way for visual reasoning models that surpass the state-of-the-art in understanding periodic patterns.

  • 7 authors
·
Nov 30