Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSemantic Network Interpretation
Network interpretation as an effort to reveal the features learned by a network remains largely visualization-based. In this paper, our goal is to tackle semantic network interpretation at both filter and decision level. For filter-level interpretation, we represent the concepts a filter encodes with a probability distribution of visual attributes. The decision-level interpretation is achieved by textual summarization that generates an explanatory sentence containing clues behind a network's decision. A Bayesian inference algorithm is proposed to automatically associate filters and network decisions with visual attributes. Human study confirms that the semantic interpretation is a beneficial alternative or complement to visualization methods. We demonstrate the crucial role that semantic network interpretation can play in understanding a network's failure patterns. More importantly, semantic network interpretation enables a better understanding of the correlation between a model's performance and its distribution metrics like filter selectivity and concept sparseness.
Leveraging Uncertainty Estimates To Improve Classifier Performance
Binary classification involves predicting the label of an instance based on whether the model score for the positive class exceeds a threshold chosen based on the application requirements (e.g., maximizing recall for a precision bound). However, model scores are often not aligned with the true positivity rate. This is especially true when the training involves a differential sampling across classes or there is distributional drift between train and test settings. In this paper, we provide theoretical analysis and empirical evidence of the dependence of model score estimation bias on both uncertainty and score itself. Further, we formulate the decision boundary selection in terms of both model score and uncertainty, prove that it is NP-hard, and present algorithms based on dynamic programming and isotonic regression. Evaluation of the proposed algorithms on three real-world datasets yield 25%-40% gain in recall at high precision bounds over the traditional approach of using model score alone, highlighting the benefits of leveraging uncertainty.
AVIS: Autonomous Visual Information Seeking with Large Language Models
In this paper, we propose an autonomous information seeking visual question answering framework, AVIS. Our method leverages a Large Language Model (LLM) to dynamically strategize the utilization of external tools and to investigate their outputs, thereby acquiring the indispensable knowledge needed to provide answers to the posed questions. Responding to visual questions that necessitate external knowledge, such as "What event is commemorated by the building depicted in this image?", is a complex task. This task presents a combinatorial search space that demands a sequence of actions, including invoking APIs, analyzing their responses, and making informed decisions. We conduct a user study to collect a variety of instances of human decision-making when faced with this task. This data is then used to design a system comprised of three components: an LLM-powered planner that dynamically determines which tool to use next, an LLM-powered reasoner that analyzes and extracts key information from the tool outputs, and a working memory component that retains the acquired information throughout the process. The collected user behavior serves as a guide for our system in two key ways. First, we create a transition graph by analyzing the sequence of decisions made by users. This graph delineates distinct states and confines the set of actions available at each state. Second, we use examples of user decision-making to provide our LLM-powered planner and reasoner with relevant contextual instances, enhancing their capacity to make informed decisions. We show that AVIS achieves state-of-the-art results on knowledge-intensive visual question answering benchmarks such as Infoseek and OK-VQA.
Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models
Numerous applications of large language models (LLMs) rely on their ability to perform step-by-step reasoning. However, the reasoning behavior of LLMs remains poorly understood, posing challenges to research, development, and safety. To address this gap, we introduce landscape of thoughts-the first visualization tool for users to inspect the reasoning paths of chain-of-thought and its derivatives on any multi-choice dataset. Specifically, we represent the states in a reasoning path as feature vectors that quantify their distances to all answer choices. These features are then visualized in two-dimensional plots using t-SNE. Qualitative and quantitative analysis with the landscape of thoughts effectively distinguishes between strong and weak models, correct and incorrect answers, as well as different reasoning tasks. It also uncovers undesirable reasoning patterns, such as low consistency and high uncertainty. Additionally, users can adapt our tool to a model that predicts the property they observe. We showcase this advantage by adapting our tool to a lightweight verifier that evaluates the correctness of reasoning paths. The code is publicly available at: https://github.com/tmlr-group/landscape-of-thoughts.
A Holistic Approach to Unifying Automatic Concept Extraction and Concept Importance Estimation
In recent years, concept-based approaches have emerged as some of the most promising explainability methods to help us interpret the decisions of Artificial Neural Networks (ANNs). These methods seek to discover intelligible visual 'concepts' buried within the complex patterns of ANN activations in two key steps: (1) concept extraction followed by (2) importance estimation. While these two steps are shared across methods, they all differ in their specific implementations. Here, we introduce a unifying theoretical framework that comprehensively defines and clarifies these two steps. This framework offers several advantages as it allows us: (i) to propose new evaluation metrics for comparing different concept extraction approaches; (ii) to leverage modern attribution methods and evaluation metrics to extend and systematically evaluate state-of-the-art concept-based approaches and importance estimation techniques; (iii) to derive theoretical guarantees regarding the optimality of such methods. We further leverage our framework to try to tackle a crucial question in explainability: how to efficiently identify clusters of data points that are classified based on a similar shared strategy. To illustrate these findings and to highlight the main strategies of a model, we introduce a visual representation called the strategic cluster graph. Finally, we present https://serre-lab.github.io/Lens, a dedicated website that offers a complete compilation of these visualizations for all classes of the ImageNet dataset.
The magnitude vector of images
The magnitude of a finite metric space has recently emerged as a novel invariant quantity, allowing to measure the effective size of a metric space. Despite encouraging first results demonstrating the descriptive abilities of the magnitude, such as being able to detect the boundary of a metric space, the potential use cases of magnitude remain under-explored. In this work, we investigate the properties of the magnitude on images, an important data modality in many machine learning applications. By endowing each individual images with its own metric space, we are able to define the concept of magnitude on images and analyse the individual contribution of each pixel with the magnitude vector. In particular, we theoretically show that the previously known properties of boundary detection translate to edge detection abilities in images. Furthermore, we demonstrate practical use cases of magnitude for machine learning applications and propose a novel magnitude model that consists of a computationally efficient magnitude computation and a learnable metric. By doing so, we address the computational hurdle that used to make magnitude impractical for many applications and open the way for the adoption of magnitude in machine learning research.
A Robust and Efficient Boundary Point Detection Method by Measuring Local Direction Dispersion
Boundary point detection aims to outline the external contour structure of clusters and enhance the inter-cluster discrimination, thus bolstering the performance of the downstream classification and clustering tasks. However, existing boundary point detectors are sensitive to density heterogeneity or cannot identify boundary points in concave structures and high-dimensional manifolds. In this work, we propose a robust and efficient boundary point detection method based on Local Direction Dispersion (LoDD). The core of boundary point detection lies in measuring the difference between boundary points and internal points. It is a common observation that an internal point is surrounded by its neighbors in all directions, while the neighbors of a boundary point tend to be distributed only in a certain directional range. By considering this observation, we adopt density-independent K-Nearest Neighbors (KNN) method to determine neighboring points and design a centrality metric LoDD using the eigenvalues of the covariance matrix to depict the distribution uniformity of KNN. We also develop a grid-structure assumption of data distribution to determine the parameters adaptively. The effectiveness of LoDD is demonstrated on synthetic datasets, real-world benchmarks, and application of training set split for deep learning model and hole detection on point cloud data. The datasets and toolkit are available at: https://github.com/ZPGuiGroupWhu/lodd.
Follow the Flow: Fine-grained Flowchart Attribution with Neurosymbolic Agents
Flowcharts are a critical tool for visualizing decision-making processes. However, their non-linear structure and complex visual-textual relationships make it challenging to interpret them using LLMs, as vision-language models frequently hallucinate nonexistent connections and decision paths when analyzing these diagrams. This leads to compromised reliability for automated flowchart processing in critical domains such as logistics, health, and engineering. We introduce the task of Fine-grained Flowchart Attribution, which traces specific components grounding a flowchart referring LLM response. Flowchart Attribution ensures the verifiability of LLM predictions and improves explainability by linking generated responses to the flowchart's structure. We propose FlowPathAgent, a neurosymbolic agent that performs fine-grained post hoc attribution through graph-based reasoning. It first segments the flowchart, then converts it into a structured symbolic graph, and then employs an agentic approach to dynamically interact with the graph, to generate attribution paths. Additionally, we present FlowExplainBench, a novel benchmark for evaluating flowchart attributions across diverse styles, domains, and question types. Experimental results show that FlowPathAgent mitigates visual hallucinations in LLM answers over flowchart QA, outperforming strong baselines by 10-14% on our proposed FlowExplainBench dataset.
InDL: A New Dataset and Benchmark for In-Diagram Logic Interpretation based on Visual Illusion
This paper introduces a novel approach to evaluating deep learning models' capacity for in-diagram logic interpretation. Leveraging the intriguing realm of visual illusions, we establish a unique dataset, InDL, designed to rigorously test and benchmark these models. Deep learning has witnessed remarkable progress in domains such as computer vision and natural language processing. However, models often stumble in tasks requiring logical reasoning due to their inherent 'black box' characteristics, which obscure the decision-making process. Our work presents a new lens to understand these models better by focusing on their handling of visual illusions -- a complex interplay of perception and logic. We utilize six classic geometric optical illusions to create a comparative framework between human and machine visual perception. This methodology offers a quantifiable measure to rank models, elucidating potential weaknesses and providing actionable insights for model improvements. Our experimental results affirm the efficacy of our benchmarking strategy, demonstrating its ability to effectively rank models based on their logic interpretation ability. As part of our commitment to reproducible research, the source code and datasets will be made publicly available at https://github.com/rabbit-magic-wh/InDL
OCTET: Object-aware Counterfactual Explanations
Nowadays, deep vision models are being widely deployed in safety-critical applications, e.g., autonomous driving, and explainability of such models is becoming a pressing concern. Among explanation methods, counterfactual explanations aim to find minimal and interpretable changes to the input image that would also change the output of the model to be explained. Such explanations point end-users at the main factors that impact the decision of the model. However, previous methods struggle to explain decision models trained on images with many objects, e.g., urban scenes, which are more difficult to work with but also arguably more critical to explain. In this work, we propose to tackle this issue with an object-centric framework for counterfactual explanation generation. Our method, inspired by recent generative modeling works, encodes the query image into a latent space that is structured in a way to ease object-level manipulations. Doing so, it provides the end-user with control over which search directions (e.g., spatial displacement of objects, style modification, etc.) are to be explored during the counterfactual generation. We conduct a set of experiments on counterfactual explanation benchmarks for driving scenes, and we show that our method can be adapted beyond classification, e.g., to explain semantic segmentation models. To complete our analysis, we design and run a user study that measures the usefulness of counterfactual explanations in understanding a decision model. Code is available at https://github.com/valeoai/OCTET.
ViG-Bias: Visually Grounded Bias Discovery and Mitigation
The proliferation of machine learning models in critical decision making processes has underscored the need for bias discovery and mitigation strategies. Identifying the reasons behind a biased system is not straightforward, since in many occasions they are associated with hidden spurious correlations which are not easy to spot. Standard approaches rely on bias audits performed by analyzing model performance in pre-defined subgroups of data samples, usually characterized by common attributes like gender or ethnicity when it comes to people, or other specific attributes defining semantically coherent groups of images. However, it is not always possible to know a-priori the specific attributes defining the failure modes of visual recognition systems. Recent approaches propose to discover these groups by leveraging large vision language models, which enable the extraction of cross-modal embeddings and the generation of textual descriptions to characterize the subgroups where a certain model is underperforming. In this work, we argue that incorporating visual explanations (e.g. heatmaps generated via GradCAM or other approaches) can boost the performance of such bias discovery and mitigation frameworks. To this end, we introduce Visually Grounded Bias Discovery and Mitigation (ViG-Bias), a simple yet effective technique which can be integrated to a variety of existing frameworks to improve both, discovery and mitigation performance. Our comprehensive evaluation shows that incorporating visual explanations enhances existing techniques like DOMINO, FACTS and Bias-to-Text, across several challenging datasets, including CelebA, Waterbirds, and NICO++.
Expertise Trees Resolve Knowledge Limitations in Collective Decision-Making
Experts advising decision-makers are likely to display expertise which varies as a function of the problem instance. In practice, this may lead to sub-optimal or discriminatory decisions against minority cases. In this work we model such changes in depth and breadth of knowledge as a partitioning of the problem space into regions of differing expertise. We provide here new algorithms that explicitly consider and adapt to the relationship between problem instances and experts' knowledge. We first propose and highlight the drawbacks of a naive approach based on nearest neighbor queries. To address these drawbacks we then introduce a novel algorithm - expertise trees - that constructs decision trees enabling the learner to select appropriate models. We provide theoretical insights and empirically validate the improved performance of our novel approach on a range of problems for which existing methods proved to be inadequate.
GraphOmni: A Comprehensive and Extendable Benchmark Framework for Large Language Models on Graph-theoretic Tasks
In this paper, we presented GraphOmni, a comprehensive benchmark framework for systematically evaluating the graph reasoning capabilities of LLMs. By analyzing critical dimensions, including graph types, serialization formats, and prompt schemes, we provided extensive insights into the strengths and limitations of current LLMs. Our empirical findings emphasize that no single serialization or prompting strategy consistently outperforms others. Motivated by these insights, we propose a reinforcement learning-based approach that dynamically selects the best serialization-prompt pairings, resulting in significant accuracy improvements. GraphOmni's modular and extensible design establishes a robust foundation for future research, facilitating advancements toward general-purpose graph reasoning models.
ChessVision -- A Dataset for Logically Coherent Multi-label Classification
Starting with early successes in computer vision tasks, deep learning based techniques have since overtaken state of the art approaches in a multitude of domains. However, it has been demonstrated time and again that these techniques fail to capture semantic context and logical constraints, instead often relying on spurious correlations to arrive at the answer. Since application of deep learning techniques to critical scenarios are dependent on adherence to domain specific constraints, several attempts have been made to address this issue. One limitation holding back a thorough exploration of this area, is a lack of suitable datasets which feature a rich set of rules. In order to address this, we present the ChessVision Dataset, consisting of 200,000+ images of annotated chess games in progress, requiring recreation of the game state from its corresponding image. This is accompanied by a curated set of rules which constrains the set of predictions to "reasonable" game states, and are designed to probe key semantic abilities like localization and enumeration. Alongside standard metrics, additional metrics to measure performance with regards to logical consistency is presented. We analyze several popular and state of the art vision models on this task, and show that, although their performance on standard metrics are laudable, they produce a plethora of incoherent results, indicating that this dataset presents a significant challenge for future works.
Benchmarking Human and Automated Prompting in the Segment Anything Model
The remarkable capabilities of the Segment Anything Model (SAM) for tackling image segmentation tasks in an intuitive and interactive manner has sparked interest in the design of effective visual prompts. Such interest has led to the creation of automated point prompt selection strategies, typically motivated from a feature extraction perspective. However, there is still very little understanding of how appropriate these automated visual prompting strategies are, particularly when compared to humans, across diverse image domains. Additionally, the performance benefits of including such automated visual prompting strategies within the finetuning process of SAM also remains unexplored, as does the effect of interpretable factors like distance between the prompt points on segmentation performance. To bridge these gaps, we leverage a recently released visual prompting dataset, PointPrompt, and introduce a number of benchmarking tasks that provide an array of opportunities to improve the understanding of the way human prompts differ from automated ones and what underlying factors make for effective visual prompts. We demonstrate that the resulting segmentation scores obtained by humans are approximately 29% higher than those given by automated strategies and identify potential features that are indicative of prompting performance with R^2 scores over 0.5. Additionally, we demonstrate that performance when using automated methods can be improved by up to 68% via a finetuning approach. Overall, our experiments not only showcase the existing gap between human prompts and automated methods, but also highlight potential avenues through which this gap can be leveraged to improve effective visual prompt design. Further details along with the dataset links and codes are available at https://github.com/olivesgatech/PointPrompt
Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills
People's decision-making abilities often fail to improve or may even erode when they rely on AI for decision-support, even when the AI provides informative explanations. We argue this is partly because people intuitively seek contrastive explanations, which clarify the difference between the AI's decision and their own reasoning, while most AI systems offer "unilateral" explanations that justify the AI's decision but do not account for users' thinking. To align human-AI knowledge on decision tasks, we introduce a framework for generating human-centered contrastive explanations that explain the difference between AI's choice and a predicted, likely human choice about the same task. Results from a large-scale experiment (N = 628) demonstrate that contrastive explanations significantly enhance users' independent decision-making skills compared to unilateral explanations, without sacrificing decision accuracy. Amid rising deskilling concerns, our research demonstrates that incorporating human reasoning into AI design can foster human skill development.
Understanding Bias in Large-Scale Visual Datasets
A recent study has shown that large-scale visual datasets are very biased: they can be easily classified by modern neural networks. However, the concrete forms of bias among these datasets remain unclear. In this study, we propose a framework to identify the unique visual attributes distinguishing these datasets. Our approach applies various transformations to extract semantic, structural, boundary, color, and frequency information from datasets, and assess how much each type of information reflects their bias. We further decompose their semantic bias with object-level analysis, and leverage natural language methods to generate detailed, open-ended descriptions of each dataset's characteristics. Our work aims to help researchers understand the bias in existing large-scale pre-training datasets, and build more diverse and representative ones in the future. Our project page and code are available at http://boyazeng.github.io/understand_bias .
Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought
Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs) on complex reasoning tasks. Recently, a series of studies attempt to explain the mechanisms underlying CoT, aiming to deepen the understanding of its efficacy. Nevertheless, the existing research faces two major challenges: (1) a lack of quantitative metrics to assess CoT capabilities and (2) a dearth of guidance on optimizing CoT performance. Motivated by this, in this work, we introduce a novel reasoning boundary framework (RBF) to address these challenges. To solve the lack of quantification, we first define a reasoning boundary (RB) to quantify the upper-bound of CoT and establish a combination law for RB, enabling a practical quantitative approach applicable to various real-world CoT tasks. To address the lack of optimization, we propose three categories of RBs. We further optimize these categories with combination laws focused on RB promotion and reasoning path optimization for CoT improvement. Through extensive experiments on 27 models and 5 tasks, the study validates the existence and rationality of the proposed framework. Furthermore, it explains the effectiveness of 10 CoT strategies and guides optimization from two perspectives. We hope this work can provide a comprehensive understanding of the boundaries and optimization strategies for reasoning in LLMs. Our code and data are available at https://github.com/LightChen233/reasoning-boundary.
In Search of Verifiability: Explanations Rarely Enable Complementary Performance in AI-Advised Decision Making
The current literature on AI-advised decision making -- involving explainable AI systems advising human decision makers -- presents a series of inconclusive and confounding results. To synthesize these findings, we propose a simple theory that elucidates the frequent failure of AI explanations to engender appropriate reliance and complementary decision making performance. We argue explanations are only useful to the extent that they allow a human decision maker to verify the correctness of an AI's prediction, in contrast to other desiderata, e.g., interpretability or spelling out the AI's reasoning process. Prior studies find in many decision making contexts AI explanations do not facilitate such verification. Moreover, most tasks fundamentally do not allow easy verification, regardless of explanation method, limiting the potential benefit of any type of explanation. We also compare the objective of complementary performance with that of appropriate reliance, decomposing the latter into the notions of outcome-graded and strategy-graded reliance.
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.
Analyzing LLMs' Knowledge Boundary Cognition Across Languages Through the Lens of Internal Representations
While understanding the knowledge boundaries of LLMs is crucial to prevent hallucination, research on knowledge boundaries of LLMs has predominantly focused on English. In this work, we present the first study to analyze how LLMs recognize knowledge boundaries across different languages by probing their internal representations when processing known and unknown questions in multiple languages. Our empirical studies reveal three key findings: 1) LLMs' perceptions of knowledge boundaries are encoded in the middle to middle-upper layers across different languages. 2) Language differences in knowledge boundary perception follow a linear structure, which motivates our proposal of a training-free alignment method that effectively transfers knowledge boundary perception ability across languages, thereby helping reduce hallucination risk in low-resource languages; 3) Fine-tuning on bilingual question pair translation further enhances LLMs' recognition of knowledge boundaries across languages. Given the absence of standard testbeds for cross-lingual knowledge boundary analysis, we construct a multilingual evaluation suite comprising three representative types of knowledge boundary data. Our code and datasets are publicly available at https://github.com/DAMO-NLP-SG/LLM-Multilingual-Knowledge-Boundaries.
Understanding the Role of Human Intuition on Reliance in Human-AI Decision-Making with Explanations
AI explanations are often mentioned as a way to improve human-AI decision-making, but empirical studies have not found consistent evidence of explanations' effectiveness and, on the contrary, suggest that they can increase overreliance when the AI system is wrong. While many factors may affect reliance on AI support, one important factor is how decision-makers reconcile their own intuition -- beliefs or heuristics, based on prior knowledge, experience, or pattern recognition, used to make judgments -- with the information provided by the AI system to determine when to override AI predictions. We conduct a think-aloud, mixed-methods study with two explanation types (feature- and example-based) for two prediction tasks to explore how decision-makers' intuition affects their use of AI predictions and explanations, and ultimately their choice of when to rely on AI. Our results identify three types of intuition involved in reasoning about AI predictions and explanations: intuition about the task outcome, features, and AI limitations. Building on these, we summarize three observed pathways for decision-makers to apply their own intuition and override AI predictions. We use these pathways to explain why (1) the feature-based explanations we used did not improve participants' decision outcomes and increased their overreliance on AI, and (2) the example-based explanations we used improved decision-makers' performance over feature-based explanations and helped achieve complementary human-AI performance. Overall, our work identifies directions for further development of AI decision-support systems and explanation methods that help decision-makers effectively apply their intuition to achieve appropriate reliance on AI.
Abstract Visual Reasoning with Tangram Shapes
We introduce KiloGram, a resource for studying abstract visual reasoning in humans and machines. Drawing on the history of tangram puzzles as stimuli in cognitive science, we build a richly annotated dataset that, with >1k distinct stimuli, is orders of magnitude larger and more diverse than prior resources. It is both visually and linguistically richer, moving beyond whole shape descriptions to include segmentation maps and part labels. We use this resource to evaluate the abstract visual reasoning capacities of recent multi-modal models. We observe that pre-trained weights demonstrate limited abstract reasoning, which dramatically improves with fine-tuning. We also observe that explicitly describing parts aids abstract reasoning for both humans and models, especially when jointly encoding the linguistic and visual inputs. KiloGram is available at https://lil.nlp.cornell.edu/kilogram .
Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers
Deep learning has recently seen rapid development and received significant attention due to its state-of-the-art performance on previously-thought hard problems. However, because of the internal complexity and nonlinear structure of deep neural networks, the underlying decision making processes for why these models are achieving such performance are challenging and sometimes mystifying to interpret. As deep learning spreads across domains, it is of paramount importance that we equip users of deep learning with tools for understanding when a model works correctly, when it fails, and ultimately how to improve its performance. Standardized toolkits for building neural networks have helped democratize deep learning; visual analytics systems have now been developed to support model explanation, interpretation, debugging, and improvement. We present a survey of the role of visual analytics in deep learning research, which highlights its short yet impactful history and thoroughly summarizes the state-of-the-art using a human-centered interrogative framework, focusing on the Five W's and How (Why, Who, What, How, When, and Where). We conclude by highlighting research directions and open research problems. This survey helps researchers and practitioners in both visual analytics and deep learning to quickly learn key aspects of this young and rapidly growing body of research, whose impact spans a diverse range of domains.
CLASH: Evaluating Language Models on Judging High-Stakes Dilemmas from Multiple Perspectives
Navigating high-stakes dilemmas involving conflicting values is challenging even for humans, let alone for AI. Yet prior work in evaluating the reasoning capabilities of large language models (LLMs) in such situations has been limited to everyday scenarios. To close this gap, this work first introduces CLASH (Character perspective-based LLM Assessments in Situations with High-stakes), a meticulously curated dataset consisting of 345 high-impact dilemmas along with 3,795 individual perspectives of diverse values. In particular, we design CLASH in a way to support the study of critical aspects of value-based decision-making processes which are missing from prior work, including understanding decision ambivalence and psychological discomfort as well as capturing the temporal shifts of values in characters' perspectives. By benchmarking 10 open and closed frontier models, we uncover several key findings. (1) Even the strongest models, such as GPT-4o and Claude-Sonnet, achieve less than 50% accuracy in identifying situations where the decision should be ambivalent, while they perform significantly better in clear-cut scenarios. (2) While LLMs reasonably predict psychological discomfort as marked by human, they inadequately comprehend perspectives involving value shifts, indicating a need for LLMs to reason over complex values. (3) Our experiments also reveal a significant correlation between LLMs' value preferences and their steerability towards a given value. (4) Finally, LLMs exhibit greater steerability when engaged in value reasoning from a third-party perspective, compared to a first-person setup, though certain value pairs benefit uniquely from the first-person framing.
Capture the Flag: Uncovering Data Insights with Large Language Models
The extraction of a small number of relevant insights from vast amounts of data is a crucial component of data-driven decision-making. However, accomplishing this task requires considerable technical skills, domain expertise, and human labor. This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data, leveraging recent advances in reasoning and code generation techniques. We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset. We further propose two proof-of-concept agents, with different inner workings, and compare their ability to capture such flags in a real-world sales dataset. While the work reported here is preliminary, our results are sufficiently interesting to mandate future exploration by the community.
Sightation Counts: Leveraging Sighted User Feedback in Building a BLV-aligned Dataset of Diagram Descriptions
Often, the needs and visual abilities differ between the annotator group and the end user group. Generating detailed diagram descriptions for blind and low-vision (BLV) users is one such challenging domain. Sighted annotators could describe visuals with ease, but existing studies have shown that direct generations by them are costly, bias-prone, and somewhat lacking by BLV standards. In this study, we ask sighted individuals to assess -- rather than produce -- diagram descriptions generated by vision-language models (VLM) that have been guided with latent supervision via a multi-pass inference. The sighted assessments prove effective and useful to professional educators who are themselves BLV and teach visually impaired learners. We release Sightation, a collection of diagram description datasets spanning 5k diagrams and 137k samples for completion, preference, retrieval, question answering, and reasoning training purposes and demonstrate their fine-tuning potential in various downstream tasks.
From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making. Automatic chart understanding has witnessed significant advancements with the rise of large foundation models in recent years. Foundation models, such as large language models, have revolutionized various natural language processing tasks and are increasingly being applied to chart understanding tasks. This survey paper provides a comprehensive overview of the recent developments, challenges, and future directions in chart understanding within the context of these foundation models. We review fundamental building blocks crucial for studying chart understanding tasks. Additionally, we explore various tasks and their evaluation metrics and sources of both charts and textual inputs. Various modeling strategies are then examined, encompassing both classification-based and generation-based approaches, along with tool augmentation techniques that enhance chart understanding performance. Furthermore, we discuss the state-of-the-art performance of each task and discuss how we can improve the performance. Challenges and future directions are addressed, highlighting the importance of several topics, such as domain-specific charts, lack of efforts in developing evaluation metrics, and agent-oriented settings. This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis, providing valuable insights and directions for future research in chart understanding leveraging large foundation models. The studies mentioned in this paper, along with emerging new research, will be continually updated at: https://github.com/khuangaf/Awesome-Chart-Understanding.
Ambiguity-Aware In-Context Learning with Large Language Models
In-context learning (ICL) i.e. showing LLMs only a few task-specific demonstrations has led to downstream gains with no task-specific fine-tuning required. However, LLMs are sensitive to the choice of prompts, and therefore a crucial research question is how to select good demonstrations for ICL. One effective strategy is leveraging semantic similarity between the ICL demonstrations and test inputs by using a text retriever, which however is sub-optimal as that does not consider the LLM's existing knowledge about that task. From prior work (Min et al., 2022), we already know that labels paired with the demonstrations bias the model predictions. This leads us to our hypothesis whether considering LLM's existing knowledge about the task, especially with respect to the output label space can help in a better demonstration selection strategy. Through extensive experimentation on three text classification tasks, we find that it is beneficial to not only choose semantically similar ICL demonstrations but also to choose those demonstrations that help resolve the inherent label ambiguity surrounding the test example. Interestingly, we find that including demonstrations that the LLM previously mis-classified and also fall on the test example's decision boundary, brings the most performance gain.
Rethinking Explainability as a Dialogue: A Practitioner's Perspective
As practitioners increasingly deploy machine learning models in critical domains such as health care, finance, and policy, it becomes vital to ensure that domain experts function effectively alongside these models. Explainability is one way to bridge the gap between human decision-makers and machine learning models. However, most of the existing work on explainability focuses on one-off, static explanations like feature importances or rule lists. These sorts of explanations may not be sufficient for many use cases that require dynamic, continuous discovery from stakeholders. In the literature, few works ask decision-makers about the utility of existing explanations and other desiderata they would like to see in an explanation going forward. In this work, we address this gap and carry out a study where we interview doctors, healthcare professionals, and policymakers about their needs and desires for explanations. Our study indicates that decision-makers would strongly prefer interactive explanations in the form of natural language dialogues. Domain experts wish to treat machine learning models as "another colleague", i.e., one who can be held accountable by asking why they made a particular decision through expressive and accessible natural language interactions. Considering these needs, we outline a set of five principles researchers should follow when designing interactive explanations as a starting place for future work. Further, we show why natural language dialogues satisfy these principles and are a desirable way to build interactive explanations. Next, we provide a design of a dialogue system for explainability and discuss the risks, trade-offs, and research opportunities of building these systems. Overall, we hope our work serves as a starting place for researchers and engineers to design interactive explainability systems.
FigureQA: An Annotated Figure Dataset for Visual Reasoning
We introduce FigureQA, a visual reasoning corpus of over one million question-answer pairs grounded in over 100,000 images. The images are synthetic, scientific-style figures from five classes: line plots, dot-line plots, vertical and horizontal bar graphs, and pie charts. We formulate our reasoning task by generating questions from 15 templates; questions concern various relationships between plot elements and examine characteristics like the maximum, the minimum, area-under-the-curve, smoothness, and intersection. To resolve, such questions often require reference to multiple plot elements and synthesis of information distributed spatially throughout a figure. To facilitate the training of machine learning systems, the corpus also includes side data that can be used to formulate auxiliary objectives. In particular, we provide the numerical data used to generate each figure as well as bounding-box annotations for all plot elements. We study the proposed visual reasoning task by training several models, including the recently proposed Relation Network as a strong baseline. Preliminary results indicate that the task poses a significant machine learning challenge. We envision FigureQA as a first step towards developing models that can intuitively recognize patterns from visual representations of data.
Overclocking LLM Reasoning: Monitoring and Controlling Thinking Path Lengths in LLMs
Recently, techniques such as explicit structured reasoning have demonstrated strong test-time scaling behavior by enforcing a separation between the model's internal "thinking" process and the final response. A key factor influencing answer quality in this setting is the length of the thinking stage. When the reasoning is too short, the model may fail to capture the complexity of the task. Conversely, when it is too long, the model may overthink, leading to unnecessary computation and degraded performance. This paper explores and exploits the underlying mechanisms by which LLMs understand and regulate the length of their reasoning during explicit thought processes. First, we show that LLMs encode their progress through the reasoning process and introduce an interactive progress bar visualization, which is then used to reveal insights on the model's planning dynamics. Second, we manipulate the internal progress encoding during inference to reduce unnecessary steps and generate a more concise and decisive chain of thoughts. Our empirical results demonstrate that this "overclocking" method mitigates overthinking, improves answer accuracy, and reduces inference latency. Our code is publicly available.
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
UI-R1: Enhancing Action Prediction of GUI Agents by Reinforcement Learning
The recent DeepSeek-R1 has showcased the emergence of reasoning capabilities in LLMs through reinforcement learning (RL) with rule-based rewards. Building on this idea, we are the first to explore how rule-based RL can enhance the reasoning capabilities of multimodal large language models (MLLMs) for graphic user interface (GUI) action prediction tasks. To this end, we curate a small yet high-quality dataset of 136 challenging tasks, encompassing five common action types on mobile devices. We also introduce a unified rule-based action reward, enabling model optimization via policy-based algorithms such as Group Relative Policy Optimization (GRPO). Experimental results demonstrate that our proposed data-efficient model, UI-R1-3B, achieves substantial improvements on both in-domain (ID) and out-of-domain (OOD) tasks. Specifically, on the ID benchmark AndroidControl, the action type accuracy improves by 15%, while grounding accuracy increases by 10.3%, compared with the base model (i.e. Qwen2.5-VL-3B). On the OOD GUI grounding benchmark ScreenSpot-Pro, our model surpasses the base model by 6.0% and achieves competitive performance with larger models (e.g., OS-Atlas-7B), which are trained via supervised fine-tuning (SFT) on 76K data. These results underscore the potential of rule-based reinforcement learning to advance GUI understanding and control, paving the way for future research in this domain.
CHART-6: Human-Centered Evaluation of Data Visualization Understanding in Vision-Language Models
Data visualizations are powerful tools for communicating patterns in quantitative data. Yet understanding any data visualization is no small feat -- succeeding requires jointly making sense of visual, numerical, and linguistic inputs arranged in a conventionalized format one has previously learned to parse. Recently developed vision-language models are, in principle, promising candidates for developing computational models of these cognitive operations. However, it is currently unclear to what degree these models emulate human behavior on tasks that involve reasoning about data visualizations. This gap reflects limitations in prior work that has evaluated data visualization understanding in artificial systems using measures that differ from those typically used to assess these abilities in humans. Here we evaluated eight vision-language models on six data visualization literacy assessments designed for humans and compared model responses to those of human participants. We found that these models performed worse than human participants on average, and this performance gap persisted even when using relatively lenient criteria to assess model performance. Moreover, while relative performance across items was somewhat correlated between models and humans, all models produced patterns of errors that were reliably distinct from those produced by human participants. Taken together, these findings suggest significant opportunities for further development of artificial systems that might serve as useful models of how humans reason about data visualizations. All code and data needed to reproduce these results are available at: https://osf.io/e25mu/?view_only=399daff5a14d4b16b09473cf19043f18.
X-Boundary: Establishing Exact Safety Boundary to Shield LLMs from Multi-Turn Jailbreaks without Compromising Usability
Despite the rapid development of safety alignment techniques for LLMs, defending against multi-turn jailbreaks is still a challenging task. In this paper, we conduct a comprehensive comparison, revealing that some existing defense methods can improve the robustness of LLMs against multi-turn jailbreaks but compromise usability, i.e., reducing general capabilities or causing the over-refusal problem. From the perspective of mechanism interpretability of LLMs, we discover that these methods fail to establish a boundary that exactly distinguishes safe and harmful feature representations. Therefore, boundary-safe representations close to harmful representations are inevitably disrupted, leading to a decline in usability. To address this issue, we propose X-Boundary to push harmful representations away from boundary-safe representations and obtain an exact distinction boundary. In this way, harmful representations can be precisely erased without disrupting safe ones. Experimental results show that X-Boundary achieves state-of-the-art defense performance against multi-turn jailbreaks, while reducing the over-refusal rate by about 20% and maintaining nearly complete general capability. Furthermore, we theoretically prove and empirically verify that X-Boundary can accelerate the convergence process during training. Please see our code at: https://github.com/AI45Lab/X-Boundary.
Emergent Linear Representations in World Models of Self-Supervised Sequence Models
How do sequence models represent their decision-making process? Prior work suggests that Othello-playing neural network learned nonlinear models of the board state (Li et al., 2023). In this work, we provide evidence of a closely related linear representation of the board. In particular, we show that probing for "my colour" vs. "opponent's colour" may be a simple yet powerful way to interpret the model's internal state. This precise understanding of the internal representations allows us to control the model's behaviour with simple vector arithmetic. Linear representations enable significant interpretability progress, which we demonstrate with further exploration of how the world model is computed.
On the Complexity of Bayesian Generalization
We consider concept generalization at a large scale in the diverse and natural visual spectrum. Established computational modes (i.e., rule-based or similarity-based) are primarily studied isolated and focus on confined and abstract problem spaces. In this work, we study these two modes when the problem space scales up, and the complexity of concepts becomes diverse. Specifically, at the representational level, we seek to answer how the complexity varies when a visual concept is mapped to the representation space. Prior psychology literature has shown that two types of complexities (i.e., subjective complexity and visual complexity) (Griffiths and Tenenbaum, 2003) build an inverted-U relation (Donderi, 2006; Sun and Firestone, 2021). Leveraging Representativeness of Attribute (RoA), we computationally confirm the following observation: Models use attributes with high RoA to describe visual concepts, and the description length falls in an inverted-U relation with the increment in visual complexity. At the computational level, we aim to answer how the complexity of representation affects the shift between the rule- and similarity-based generalization. We hypothesize that category-conditioned visual modeling estimates the co-occurrence frequency between visual and categorical attributes, thus potentially serving as the prior for the natural visual world. Experimental results show that representations with relatively high subjective complexity outperform those with relatively low subjective complexity in the rule-based generalization, while the trend is the opposite in the similarity-based generalization.
Querying Easily Flip-flopped Samples for Deep Active Learning
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data. One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is. The sample's distance to the decision boundary is a natural measure of predictive uncertainty, but it is often intractable to compute, especially for complex decision boundaries formed in multiclass classification tasks. To address this issue, this paper proposes the {\it least disagree metric} (LDM), defined as the smallest probability of disagreement of the predicted label, and an estimator for LDM proven to be asymptotically consistent under mild assumptions. The estimator is computationally efficient and can be easily implemented for deep learning models using parameter perturbation. The LDM-based active learning is performed by querying unlabeled data with the smallest LDM. Experimental results show that our LDM-based active learning algorithm obtains state-of-the-art overall performance on all considered datasets and deep architectures.
Ferret-UI: Grounded Mobile UI Understanding with Multimodal LLMs
Recent advancements in multimodal large language models (MLLMs) have been noteworthy, yet, these general-domain MLLMs often fall short in their ability to comprehend and interact effectively with user interface (UI) screens. In this paper, we present Ferret-UI, a new MLLM tailored for enhanced understanding of mobile UI screens, equipped with referring, grounding, and reasoning capabilities. Given that UI screens typically exhibit a more elongated aspect ratio and contain smaller objects of interest (e.g., icons, texts) than natural images, we incorporate "any resolution" on top of Ferret to magnify details and leverage enhanced visual features. Specifically, each screen is divided into 2 sub-images based on the original aspect ratio (i.e., horizontal division for portrait screens and vertical division for landscape screens). Both sub-images are encoded separately before being sent to LLMs. We meticulously gather training samples from an extensive range of elementary UI tasks, such as icon recognition, find text, and widget listing. These samples are formatted for instruction-following with region annotations to facilitate precise referring and grounding. To augment the model's reasoning ability, we further compile a dataset for advanced tasks, including detailed description, perception/interaction conversations, and function inference. After training on the curated datasets, Ferret-UI exhibits outstanding comprehension of UI screens and the capability to execute open-ended instructions. For model evaluation, we establish a comprehensive benchmark encompassing all the aforementioned tasks. Ferret-UI excels not only beyond most open-source UI MLLMs, but also surpasses GPT-4V on all the elementary UI tasks.
Evaluating the Semantic Profiling Abilities of LLMs for Natural Language Utterances in Data Visualization
Automatically generating data visualizations in response to human utterances on datasets necessitates a deep semantic understanding of the data utterance, including implicit and explicit references to data attributes, visualization tasks, and necessary data preparation steps. Natural Language Interfaces (NLIs) for data visualization have explored ways to infer such information, yet challenges persist due to inherent uncertainty in human speech. Recent advances in Large Language Models (LLMs) provide an avenue to address these challenges, but their ability to extract the relevant semantic information remains unexplored. In this study, we evaluate four publicly available LLMs (GPT-4, Gemini-Pro, Llama3, and Mixtral), investigating their ability to comprehend utterances even in the presence of uncertainty and identify the relevant data context and visual tasks. Our findings reveal that LLMs are sensitive to uncertainties in utterances. Despite this sensitivity, they are able to extract the relevant data context. However, LLMs struggle with inferring visualization tasks. Based on these results, we highlight future research directions on using LLMs for visualization generation.
Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities
Decision-focused learning (DFL) is an emerging paradigm that integrates machine learning (ML) and constrained optimization to enhance decision quality by training ML models in an end-to-end system. This approach shows significant potential to revolutionize combinatorial decision-making in real-world applications that operate under uncertainty, where estimating unknown parameters within decision models is a major challenge. This paper presents a comprehensive review of DFL, providing an in-depth analysis of both gradient-based and gradient-free techniques used to combine ML and constrained optimization. It evaluates the strengths and limitations of these techniques and includes an extensive empirical evaluation of eleven methods across seven problems. The survey also offers insights into recent advancements and future research directions in DFL. Code and benchmark: https://github.com/PredOpt/predopt-benchmarks
Prototype-based Dataset Comparison
Dataset summarisation is a fruitful approach to dataset inspection. However, when applied to a single dataset the discovery of visual concepts is restricted to those most prominent. We argue that a comparative approach can expand upon this paradigm to enable richer forms of dataset inspection that go beyond the most prominent concepts. To enable dataset comparison we present a module that learns concept-level prototypes across datasets. We leverage self-supervised learning to discover these prototypes without supervision, and we demonstrate the benefits of our approach in two case-studies. Our findings show that dataset comparison extends dataset inspection and we hope to encourage more works in this direction. Code and usage instructions available at https://github.com/Nanne/ProtoSim
DiagrammerGPT: Generating Open-Domain, Open-Platform Diagrams via LLM Planning
Text-to-image (T2I) generation has seen significant growth over the past few years. Despite this, there has been little work on generating diagrams with T2I models. A diagram is a symbolic/schematic representation that explains information using structurally rich and spatially complex visualizations (e.g., a dense combination of related objects, text labels, directional arrows, connection lines, etc.). Existing state-of-the-art T2I models often fail at diagram generation because they lack fine-grained object layout control when many objects are densely connected via complex relations such as arrows/lines and also often fail to render comprehensible text labels. To address this gap, we present DiagrammerGPT, a novel two-stage text-to-diagram generation framework that leverages the layout guidance capabilities of LLMs (e.g., GPT-4) to generate more accurate open-domain, open-platform diagrams. In the first stage, we use LLMs to generate and iteratively refine 'diagram plans' (in a planner-auditor feedback loop) which describe all the entities (objects and text labels), their relationships (arrows or lines), and their bounding box layouts. In the second stage, we use a diagram generator, DiagramGLIGEN, and a text label rendering module to generate diagrams following the diagram plans. To benchmark the text-to-diagram generation task, we introduce AI2D-Caption, a densely annotated diagram dataset built on top of the AI2D dataset. We show quantitatively and qualitatively that our DiagrammerGPT framework produces more accurate diagrams, outperforming existing T2I models. We also provide comprehensive analysis including open-domain diagram generation, vector graphic diagram generation in different platforms, human-in-the-loop diagram plan editing, and multimodal planner/auditor LLMs (e.g., GPT-4Vision). We hope our work can inspire further research on diagram generation via T2I models and LLMs.
FairVis: Visual Analytics for Discovering Intersectional Bias in Machine Learning
The growing capability and accessibility of machine learning has led to its application to many real-world domains and data about people. Despite the benefits algorithmic systems may bring, models can reflect, inject, or exacerbate implicit and explicit societal biases into their outputs, disadvantaging certain demographic subgroups. Discovering which biases a machine learning model has introduced is a great challenge, due to the numerous definitions of fairness and the large number of potentially impacted subgroups. We present FairVis, a mixed-initiative visual analytics system that integrates a novel subgroup discovery technique for users to audit the fairness of machine learning models. Through FairVis, users can apply domain knowledge to generate and investigate known subgroups, and explore suggested and similar subgroups. FairVis' coordinated views enable users to explore a high-level overview of subgroup performance and subsequently drill down into detailed investigation of specific subgroups. We show how FairVis helps to discover biases in two real datasets used in predicting income and recidivism. As a visual analytics system devoted to discovering bias in machine learning, FairVis demonstrates how interactive visualization may help data scientists and the general public understand and create more equitable algorithmic systems.
Legend: Leveraging Representation Engineering to Annotate Safety Margin for Preference Datasets
The success of the reward model in distinguishing between responses with subtle safety differences depends critically on the high-quality preference dataset, which should capture the fine-grained nuances of harmful and harmless responses. This motivates the need to develop a dataset involving preference margins, which accurately quantify how harmless one response is compared to another. In this paper, we take the first step to propose an effective and cost-efficient framework to promote the margin-enhanced preference dataset development. Our framework, Legend, Leverages representation engineering to annotate preference datasets. It constructs the specific direction within the LLM's embedding space that represents safety. By leveraging this safety direction, Legend can then leverage the semantic distances of paired responses along this direction to annotate margins automatically. We experimentally demonstrate our effectiveness in both reward modeling and harmless alignment for LLMs. Legend also stands out for its efficiency, requiring only the inference time rather than additional training. This efficiency allows for easier implementation and scalability, making Legend particularly valuable for practical applications in aligning LLMs with safe conversations.
RuleReasoner: Reinforced Rule-based Reasoning via Domain-aware Dynamic Sampling
Rule-based reasoning has been acknowledged as one of the fundamental problems in reasoning, while deviations in rule formats, types, and complexity in real-world applications pose severe challenges. Recent studies have shown that large reasoning models (LRMs) have remarkable reasoning capabilities, and their performance is substantially enhanced by reinforcement learning (RL). However, it remains an open question whether small reasoning models (SRMs) can learn rule-based reasoning effectively with robust generalization across diverse tasks and domains. To address this, we introduce Reinforced Rule-based Reasoning, a.k.a. RuleReasoner, a simple yet effective method to conduct rule-based reasoning via a wide collection of curated tasks and a novel domain-aware dynamic sampling approach. Specifically, RuleReasoner resamples each training batch by updating the sampling weights of different domains based on historical rewards. This facilitates domain augmentation and flexible online learning schedules for RL, obviating the need for pre-hoc human-engineered mix-training recipes used in existing methods. Empirical evaluations on in-distribution (ID) and out-of-distribution (OOD) benchmarks reveal that RuleReasoner outperforms frontier LRMs by a significant margin (Delta4.1% average points on eight ID tasks and Delta10.4% average points on three OOD tasks over OpenAI-o1). Notably, our approach also exhibits higher computational efficiency compared to prior dynamic sampling methods for RL.
Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole. In such a paradigm, humans are found to rarely trigger analytical thinking and face difficulties in communicating the nuances of conflicting opinions to the AI when disagreements occur. To tackle this challenge, we propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making. Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates. To empower AI with deliberative capabilities, we designed Deliberative AI, which leverages large language models (LLMs) as a bridge between humans and domain-specific models to enable flexible conversational interactions and faithful information provision. An exploratory evaluation on a graduate admissions task shows that Deliberative AI outperforms conventional explainable AI (XAI) assistants in improving humans' appropriate reliance and task performance. Based on a mixed-methods analysis of participant behavior, perception, user experience, and open-ended feedback, we draw implications for future AI-assisted decision tool design.
Explain by Evidence: An Explainable Memory-based Neural Network for Question Answering
Interpretability and explainability of deep neural networks are challenging due to their scale, complexity, and the agreeable notions on which the explaining process rests. Previous work, in particular, has focused on representing internal components of neural networks through human-friendly visuals and concepts. On the other hand, in real life, when making a decision, human tends to rely on similar situations and/or associations in the past. Hence arguably, a promising approach to make the model transparent is to design it in a way such that the model explicitly connects the current sample with the seen ones, and bases its decision on these samples. Grounded on that principle, we propose in this paper an explainable, evidence-based memory network architecture, which learns to summarize the dataset and extract supporting evidences to make its decision. Our model achieves state-of-the-art performance on two popular question answering datasets (i.e. TrecQA and WikiQA). Via further analysis, we show that this model can reliably trace the errors it has made in the validation step to the training instances that might have caused these errors. We believe that this error-tracing capability provides significant benefit in improving dataset quality in many applications.
BPP-Search: Enhancing Tree of Thought Reasoning for Mathematical Modeling Problem Solving
LLMs exhibit advanced reasoning capabilities, offering the potential to transform natural language questions into mathematical models. However, existing open-source datasets in operations research domain lack detailed annotations of the modeling process, such as variable definitions, focusing solely on objective values, which hinders reinforcement learning applications. To address this, we release the StructuredOR dataset, annotated with comprehensive labels that capture the complete mathematical modeling process. We further propose BPP-Search, a algorithm that integrates reinforcement learning into a tree-of-thought structure using Beam search, a Process reward model, and a pairwise Preference algorithm. This approach enables efficient exploration of tree structures, avoiding exhaustive search while improving accuracy. Extensive experiments on StructuredOR, NL4OPT, and MAMO-ComplexLP datasets show that BPP-Search significantly outperforms state-of-the-art methods. In tree-based reasoning, BPP-Search excels in accuracy and efficiency, enabling faster retrieval of correct solutions.
SpatialViz-Bench: Automatically Generated Spatial Visualization Reasoning Tasks for MLLMs
Humans can directly imagine and manipulate visual images in their minds, a capability known as spatial visualization. While multi-modal Large Language Models (MLLMs) support imagination-based reasoning, spatial visualization remains insufficiently evaluated, typically embedded within broader mathematical and logical assessments. Existing evaluations often rely on IQ tests or math competitions that may overlap with training data, compromising assessment reliability. To this end, we introduce SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visualization with 12 tasks across 4 sub-abilities, comprising 1,180 automatically generated problems. Our evaluation of 33 state-of-the-art MLLMs not only reveals wide performance variations and demonstrates the benchmark's strong discriminative power, but also uncovers counter-intuitive findings: models exhibit unexpected behaviors by showing difficulty perception that misaligns with human intuition, displaying dramatic 2D-to-3D performance cliffs, and defaulting to formula derivation despite spatial tasks requiring visualization alone. SpatialVizBench empirically demonstrates that state-of-the-art MLLMs continue to exhibit deficiencies in spatial visualization tasks, thereby addressing a significant lacuna in the field. The benchmark is publicly available.
WebUI: A Dataset for Enhancing Visual UI Understanding with Web Semantics
Modeling user interfaces (UIs) from visual information allows systems to make inferences about the functionality and semantics needed to support use cases in accessibility, app automation, and testing. Current datasets for training machine learning models are limited in size due to the costly and time-consuming process of manually collecting and annotating UIs. We crawled the web to construct WebUI, a large dataset of 400,000 rendered web pages associated with automatically extracted metadata. We analyze the composition of WebUI and show that while automatically extracted data is noisy, most examples meet basic criteria for visual UI modeling. We applied several strategies for incorporating semantics found in web pages to increase the performance of visual UI understanding models in the mobile domain, where less labeled data is available: (i) element detection, (ii) screen classification and (iii) screen similarity.
Foundation Models for Decision Making: Problems, Methods, and Opportunities
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.
Synthesizing mixed-integer linear programming models from natural language descriptions
Numerous real-world decision-making problems can be formulated and solved using Mixed-Integer Linear Programming (MILP) models. However, the transformation of these problems into MILP models heavily relies on expertise in operations research and mathematical optimization, which restricts non-experts' accessibility to MILP. To address this challenge, we propose a framework for automatically formulating MILP models from unstructured natural language descriptions of decision problems, which integrates Large Language Models (LLMs) and mathematical modeling techniques. This framework consists of three phases: i) identification of decision variables, ii) classification of objective and constraints, and iii) finally, generation of MILP models. In this study, we present a constraint classification scheme and a set of constraint templates that can guide the LLMs in synthesizing a complete MILP model. After fine-tuning LLMs, our approach can identify and synthesize logic constraints in addition to classic demand and resource constraints. The logic constraints have not been studied in existing work. To evaluate the performance of the proposed framework, we extend the NL4Opt dataset with more problem descriptions and constraint types, and with the new dataset, we compare our framework with one-step model generation methods offered by LLMs. The experimental results reveal that with respect to the accuracies of generating the correct model, objective, and constraints, our method which integrates constraint classification and templates with LLMs significantly outperforms the others. The prototype system that we developed has a great potential to capture more constraints for more complex MILPs. It opens up opportunities for developing training tools for operations research practitioners and has the potential to be a powerful tool for automatic decision problem modeling and solving in practice.
VisPath: Automated Visualization Code Synthesis via Multi-Path Reasoning and Feedback-Driven Optimization
Unprecedented breakthroughs in Large Language Models (LLMs) has amplified its penetration into application of automated visualization code generation. Few-shot prompting and query expansion techniques have notably enhanced data visualization performance, however, still fail to overcome ambiguity and complexity of natural language queries - imposing an inherent burden for manual human intervention. To mitigate such limitations, we propose a holistic framework VisPath : A Multi-Path Reasoning and Feedback-Driven Optimization Framework for Visualization Code Generation, which systematically enhances code quality through structured reasoning and refinement. VisPath is a multi-stage framework, specially designed to handle underspecified queries. To generate a robust final visualization code, it first utilizes initial query to generate diverse reformulated queries via Chain-of-Thought (CoT) prompting, each representing a distinct reasoning path. Refined queries are used to produce candidate visualization scripts, consequently executed to generate multiple images. Comprehensively assessing correctness and quality of outputs, VisPath generates feedback for each image, which are then fed to aggregation module to generate optimal result. Extensive experiments on benchmarks including MatPlotBench and the Qwen-Agent Code Interpreter Benchmark show that VisPath significantly outperforms state-of-the-art (SOTA) methods, increased up to average 17%, offering a more reliable solution for AI-driven visualization code generation.
PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM
Layout generation is the keystone in achieving automated graphic design, requiring arranging the position and size of various multi-modal design elements in a visually pleasing and constraint-following manner. Previous approaches are either inefficient for large-scale applications or lack flexibility for varying design requirements. Our research introduces a unified framework for automated graphic layout generation, leveraging the multi-modal large language model (MLLM) to accommodate diverse design tasks. In contrast, our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts under specific visual and textual constraints, including user-defined natural language specifications. We conducted extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks, demonstrating the effectiveness of our method. Moreover, recognizing existing datasets' limitations in capturing the complexity of real-world graphic designs, we propose two new datasets for much more challenging tasks (user-constrained generation and complicated poster), further validating our model's utility in real-life settings. Marking by its superior accessibility and adaptability, this approach further automates large-scale graphic design tasks. The code and datasets will be publicly available on https://github.com/posterllava/PosterLLaVA.
Lexi: Self-Supervised Learning of the UI Language
Humans can learn to operate the user interface (UI) of an application by reading an instruction manual or how-to guide. Along with text, these resources include visual content such as UI screenshots and images of application icons referenced in the text. We explore how to leverage this data to learn generic visio-linguistic representations of UI screens and their components. These representations are useful in many real applications, such as accessibility, voice navigation, and task automation. Prior UI representation models rely on UI metadata (UI trees and accessibility labels), which is often missing, incompletely defined, or not accessible. We avoid such a dependency, and propose Lexi, a pre-trained vision and language model designed to handle the unique features of UI screens, including their text richness and context sensitivity. To train Lexi we curate the UICaption dataset consisting of 114k UI images paired with descriptions of their functionality. We evaluate Lexi on four tasks: UI action entailment, instruction-based UI image retrieval, grounding referring expressions, and UI entity recognition.
Multimodal Explanations: Justifying Decisions and Pointing to the Evidence
Deep models that are both effective and explainable are desirable in many settings; prior explainable models have been unimodal, offering either image-based visualization of attention weights or text-based generation of post-hoc justifications. We propose a multimodal approach to explanation, and argue that the two modalities provide complementary explanatory strengths. We collect two new datasets to define and evaluate this task, and propose a novel model which can provide joint textual rationale generation and attention visualization. Our datasets define visual and textual justifications of a classification decision for activity recognition tasks (ACT-X) and for visual question answering tasks (VQA-X). We quantitatively show that training with the textual explanations not only yields better textual justification models, but also better localizes the evidence that supports the decision. We also qualitatively show cases where visual explanation is more insightful than textual explanation, and vice versa, supporting our thesis that multimodal explanation models offer significant benefits over unimodal approaches.
VisRL: Intention-Driven Visual Perception via Reinforced Reasoning
Visual understanding is inherently intention-driven - humans selectively focus on different regions of a scene based on their goals. Recent advances in large multimodal models (LMMs) enable flexible expression of such intentions through natural language, allowing queries to guide visual reasoning processes. Frameworks like Visual Chain-of-Thought have demonstrated the benefit of incorporating explicit reasoning steps, where the model predicts a focus region before answering a query. However, existing approaches rely heavily on supervised training with annotated intermediate bounding boxes, which severely limits scalability due to the combinatorial explosion of intention-region pairs. To overcome this limitation, we propose VisRL, the first framework that applies reinforcement learning (RL) to the problem of intention-driven visual perception. VisRL optimizes the entire visual reasoning process using only reward signals. By treating intermediate focus selection as an internal decision optimized through trial-and-error, our method eliminates the need for costly region annotations while aligning more closely with how humans learn to perceive the world. Extensive experiments across multiple benchmarks show that VisRL consistently outperforms strong baselines, demonstrating both its effectiveness and its strong generalization across different LMMs. Our code is available at https://github.com/zhangquanchen/VisRL.
Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning
Inspired by the success of DeepSeek-R1, we explore the potential of rule-based reinforcement learning (RL) in large reasoning models. To analyze reasoning dynamics, we use synthetic logic puzzles as training data due to their controllable complexity and straightforward answer verification. We make some key technical contributions that lead to effective and stable RL training: a system prompt that emphasizes the thinking and answering process, a stringent format reward function that penalizes outputs for taking shortcuts, and a straightforward training recipe that achieves stable convergence. Our 7B model develops advanced reasoning skills-such as reflection, verification, and summarization-that are absent from the logic corpus. Remarkably, after training on just 5K logic problems, it demonstrates generalization abilities to the challenging math benchmarks AIME and AMC.
SeeBel: Seeing is Believing
Semantic Segmentation is a significant research field in Computer Vision. Despite being a widely studied subject area, many visualization tools do not exist that capture segmentation quality and dataset statistics such as a class imbalance in the same view. While the significance of discovering and introspecting the correlation between dataset statistics and AI model performance for dense prediction computer vision tasks such as semantic segmentation is well established in the computer vision literature, to the best of our knowledge, no visualization tools have been proposed to view and analyze the aforementioned tasks. Our project aims to bridge this gap by proposing three visualizations that enable users to compare dataset statistics and AI performance for segmenting all images, a single image in the dataset, explore the AI model's attention on image regions once trained and browse the quality of masks predicted by AI for any selected (by user) number of objects under the same tool. Our project tries to further increase the interpretability of the trained AI model for segmentation by visualizing its image attention weights. For visualization, we use Scatterplot and Heatmap to encode correlation and features, respectively. We further propose to conduct surveys on real users to study the efficacy of our visualization tool in computer vision and AI domain. The full system can be accessed at https://github.com/dipta007/SeeBel
Decision-Oriented Dialogue for Human-AI Collaboration
We describe a class of tasks called decision-oriented dialogues, in which AI assistants such as large language models (LMs) must collaborate with one or more humans via natural language to help them make complex decisions. We formalize three domains in which users face everyday decisions: (1) choosing an assignment of reviewers to conference papers, (2) planning a multi-step itinerary in a city, and (3) negotiating travel plans for a group of friends. In each of these settings, AI assistants and users have disparate abilities that they must combine to arrive at the best decision: assistants can access and process large amounts of information, while users have preferences and constraints external to the system. For each task, we build a dialogue environment where agents receive a reward based on the quality of the final decision they reach. We evaluate LMs in self-play and in collaboration with humans and find that they fall short compared to human assistants, achieving much lower rewards despite engaging in longer dialogues. We highlight a number of challenges models face in decision-oriented dialogues, ranging from goal-directed behavior to reasoning and optimization, and release our environments as a testbed for future work.
TM-TREK at SemEval-2024 Task 8: Towards LLM-Based Automatic Boundary Detection for Human-Machine Mixed Text
With the increasing prevalence of text generated by large language models (LLMs), there is a growing concern about distinguishing between LLM-generated and human-written texts in order to prevent the misuse of LLMs, such as the dissemination of misleading information and academic dishonesty. Previous research has primarily focused on classifying text as either entirely human-written or LLM-generated, neglecting the detection of mixed texts that contain both types of content. This paper explores LLMs' ability to identify boundaries in human-written and machine-generated mixed texts. We approach this task by transforming it into a token classification problem and regard the label turning point as the boundary. Notably, our ensemble model of LLMs achieved first place in the 'Human-Machine Mixed Text Detection' sub-task of the SemEval'24 Competition Task 8. Additionally, we investigate factors that influence the capability of LLMs in detecting boundaries within mixed texts, including the incorporation of extra layers on top of LLMs, combination of segmentation loss, and the impact of pretraining. Our findings aim to provide valuable insights for future research in this area.
Assessing Judging Bias in Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities, raising important questions about their biases in LLM-as-a-judge settings. We present a comprehensive benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets. Through investigation of bandwagon, authority, position, and distraction biases, we uncover four key findings: (1) despite their advanced reasoning capabilities, LRMs remain susceptible to the above biases; (2) LRMs demonstrate better robustness than LLMs specifically on fact-related datasets; (3) LRMs exhibit notable position bias, preferring options in later positions; and (4) we identify a novel "superficial reflection bias" where phrases mimicking reasoning (e.g., "wait, let me think...") significantly influence model judgments. To address these biases, we design and evaluate three mitigation strategies: specialized system prompts that reduce judging biases by up to 19\% in preference alignment datasets and 14\% in fact-related datasets, in-context learning that provides up to 27\% improvement on preference tasks but shows inconsistent results on factual tasks, and a self-reflection mechanism that reduces biases by up to 10\% in preference datasets and 16\% in fact-related datasets, with self-reflection proving particularly effective for LRMs. Our work provides crucial insights for developing more reliable LLM-as-a-Judge frameworks, especially as LRMs become increasingly deployed as automated judges.
G-FOCUS: Towards a Robust Method for Assessing UI Design Persuasiveness
Evaluating user interface (UI) design effectiveness extends beyond aesthetics to influencing user behavior, a principle central to Design Persuasiveness. A/B testing is the predominant method for determining which UI variations drive higher user engagement, but it is costly and time-consuming. While recent Vision-Language Models (VLMs) can process automated UI analysis, current approaches focus on isolated design attributes rather than comparative persuasiveness-the key factor in optimizing user interactions. To address this, we introduce WiserUI-Bench, a benchmark designed for Pairwise UI Design Persuasiveness Assessment task, featuring 300 real-world UI image pairs labeled with A/B test results and expert rationales. Additionally, we propose G-FOCUS, a novel inference-time reasoning strategy that enhances VLM-based persuasiveness assessment by reducing position bias and improving evaluation accuracy. Experimental results show that G-FOCUS surpasses existing inference strategies in consistency and accuracy for pairwise UI evaluation. Through promoting VLM-driven evaluation of UI persuasiveness, our work offers an approach to complement A/B testing, propelling progress in scalable UI preference modeling and design optimization. Code and data will be released publicly.
Charting the Sociotechnical Gap in Explainable AI: A Framework to Address the Gap in XAI
Explainable AI (XAI) systems are sociotechnical in nature; thus, they are subject to the sociotechnical gap--divide between the technical affordances and the social needs. However, charting this gap is challenging. In the context of XAI, we argue that charting the gap improves our problem understanding, which can reflexively provide actionable insights to improve explainability. Utilizing two case studies in distinct domains, we empirically derive a framework that facilitates systematic charting of the sociotechnical gap by connecting AI guidelines in the context of XAI and elucidating how to use them to address the gap. We apply the framework to a third case in a new domain, showcasing its affordances. Finally, we discuss conceptual implications of the framework, share practical considerations in its operationalization, and offer guidance on transferring it to new contexts. By making conceptual and practical contributions to understanding the sociotechnical gap in XAI, the framework expands the XAI design space.
State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding
As more non-AI experts use complex AI systems for daily tasks, there has been an increasing effort to develop methods that produce explanations of AI decision making that are understandable by non-AI experts. Towards this effort, leveraging higher-level concepts and producing concept-based explanations have become a popular method. Most concept-based explanations have been developed for classification techniques, and we posit that the few existing methods for sequential decision making are limited in scope. In this work, we first contribute a desiderata for defining concepts in sequential decision making settings. Additionally, inspired by the Protege Effect which states explaining knowledge often reinforces one's self-learning, we explore how concept-based explanations of an RL agent's decision making can in turn improve the agent's learning rate, as well as improve end-user understanding of the agent's decision making. To this end, we contribute a unified framework, State2Explanation (S2E), that involves learning a joint embedding model between state-action pairs and concept-based explanations, and leveraging such learned model to both (1) inform reward shaping during an agent's training, and (2) provide explanations to end-users at deployment for improved task performance. Our experimental validations, in Connect 4 and Lunar Lander, demonstrate the success of S2E in providing a dual-benefit, successfully informing reward shaping and improving agent learning rate, as well as significantly improving end user task performance at deployment time.
Legal Rule Induction: Towards Generalizable Principle Discovery from Analogous Judicial Precedents
Legal rules encompass not only codified statutes but also implicit adjudicatory principles derived from precedents that contain discretionary norms, social morality, and policy. While computational legal research has advanced in applying established rules to cases, inducing legal rules from judicial decisions remains understudied, constrained by limitations in model inference efficacy and symbolic reasoning capability. The advent of Large Language Models (LLMs) offers unprecedented opportunities for automating the extraction of such latent principles, yet progress is stymied by the absence of formal task definitions, benchmark datasets, and methodologies. To address this gap, we formalize Legal Rule Induction (LRI) as the task of deriving concise, generalizable doctrinal rules from sets of analogous precedents, distilling their shared preconditions, normative behaviors, and legal consequences. We introduce the first LRI benchmark, comprising 5,121 case sets (38,088 Chinese cases in total) for model tuning and 216 expert-annotated gold test sets. Experimental results reveal that: 1) State-of-the-art LLMs struggle with over-generalization and hallucination; 2) Training on our dataset markedly enhances LLMs capabilities in capturing nuanced rule patterns across similar cases.
Do Answers to Boolean Questions Need Explanations? Yes
Existing datasets that contain boolean questions, such as BoolQ and TYDI QA , provide the user with a YES/NO response to the question. However, a one word response is not sufficient for an explainable system. We promote explainability by releasing a new set of annotations marking the evidence in existing TyDi QA and BoolQ datasets. We show that our annotations can be used to train a model that extracts improved evidence spans compared to models that rely on existing resources. We confirm our findings with a user study which shows that our extracted evidence spans enhance the user experience. We also provide further insight into the challenges of answering boolean questions, such as passages containing conflicting YES and NO answers, and varying degrees of relevance of the predicted evidence.
Perception-R1: Pioneering Perception Policy with Reinforcement Learning
Inspired by the success of DeepSeek-R1, we explore the potential of rule-based reinforcement learning (RL) in MLLM post-training for perception policy learning. While promising, our initial experiments reveal that incorporating a thinking process through RL does not consistently lead to performance gains across all visual perception tasks. This leads us to delve into the essential role of RL in the context of visual perception. In this work, we return to the fundamentals and explore the effects of RL on different perception tasks. We observe that the perceptual complexity is a major factor in determining the effectiveness of RL. We also observe that reward design plays a crucial role in further approching the upper limit of model perception. To leverage these findings, we propose Perception-R1, a scalable RL framework using GRPO during MLLM post-training. With a standard Qwen2.5-VL-3B-Instruct, Perception-R1 achieves +4.2% on RefCOCO+, +17.9% on PixMo-Count, +4.2% on PageOCR, and notably, 31.9% AP on COCO2017 val for the first time, establishing a strong baseline for perception policy learning.
Jigsaw-R1: A Study of Rule-based Visual Reinforcement Learning with Jigsaw Puzzles
The application of rule-based reinforcement learning (RL) to multimodal large language models (MLLMs) introduces unique challenges and potential deviations from findings in text-only domains, particularly for perception-heavy tasks. This paper provides a comprehensive study of rule-based visual RL, using jigsaw puzzles as a structured experimental framework. Jigsaw puzzles offer inherent ground truth, adjustable difficulty, and demand complex decision-making, making them ideal for this study. Our research reveals several key findings: Firstly, we find that MLLMs, initially performing near to random guessing on the simplest jigsaw puzzles, achieve near-perfect accuracy and generalize to complex, unseen configurations through fine-tuning. Secondly, training on jigsaw puzzles can induce generalization to other visual tasks, with effectiveness tied to specific task configurations. Thirdly, MLLMs can learn and generalize with or without explicit reasoning, though open-source models often favor direct answering. Consequently, even when trained for step-by-step reasoning, they can ignore the thinking process in deriving the final answer. Fourthly, we observe that complex reasoning patterns appear to be pre-existing rather than emergent, with their frequency increasing alongside training and task difficulty. Finally, our results demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning (SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although these observations are based on jigsaw puzzles and may vary across other visual tasks, this research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding rule-based visual RL and its potential in multimodal learning. The code is available at: https://github.com/zifuwanggg/Jigsaw-R1.
Thought Anchors: Which LLM Reasoning Steps Matter?
Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified ``broadcasting'' sentences that receive disproportionate attention from all future sentences via ``receiver'' attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.
On Evaluating Explanation Utility for Human-AI Decision Making in NLP
Is explainability a false promise? This debate has emerged from the insufficient evidence that explanations aid people in situations they are introduced for. More human-centered, application-grounded evaluations of explanations are needed to settle this. Yet, with no established guidelines for such studies in NLP, researchers accustomed to standardized proxy evaluations must discover appropriate measurements, tasks, datasets, and sensible models for human-AI teams in their studies. To help with this, we first review fitting existing metrics. We then establish requirements for datasets to be suitable for application-grounded evaluations. Among over 50 datasets available for explainability research in NLP, we find that 4 meet our criteria. By finetuning Flan-T5-3B, we demonstrate the importance of reassessing the state of the art to form and study human-AI teams. Finally, we present the exemplar studies of human-AI decision-making for one of the identified suitable tasks -- verifying the correctness of a legal claim given a contract.
MiCo: Multi-image Contrast for Reinforcement Visual Reasoning
This work explores enabling Chain-of-Thought (CoT) reasoning to link visual cues across multiple images. A straightforward solution is to adapt rule-based reinforcement learning for Vision-Language Models (VLMs). However, such methods typically rely on manually curated question-answer pairs, which can be particularly challenging when dealing with fine grained visual details and complex logic across images. Inspired by self-supervised visual representation learning, we observe that images contain inherent constraints that can serve as supervision. Based on this insight, we construct image triplets comprising two augmented views of the same image and a third, similar but distinct image. During training, the model is prompted to generate a reasoning process to compare these images (i.e., determine same or different). Then we optimize the model with rule-based reinforcement learning. Due to the high visual similarity and the presence of augmentations, the model must attend to subtle visual changes and perform logical reasoning to succeed. Experiments show that, although trained solely on visual comparison tasks, the learned reasoning ability generalizes effectively to a wide range of questions. Without relying on any human-annotated question-answer pairs, our method achieves significant improvements on multi-image reasoning benchmarks and shows strong performance on general vision tasks.
Causal Strategic Classification: A Tale of Two Shifts
When users can benefit from certain predictive outcomes, they may be prone to act to achieve those outcome, e.g., by strategically modifying their features. The goal in strategic classification is therefore to train predictive models that are robust to such behavior. However, the conventional framework assumes that changing features does not change actual outcomes, which depicts users as "gaming" the system. Here we remove this assumption, and study learning in a causal strategic setting where true outcomes do change. Focusing on accuracy as our primary objective, we show how strategic behavior and causal effects underlie two complementing forms of distribution shift. We characterize these shifts, and propose a learning algorithm that balances between these two forces and over time, and permits end-to-end training. Experiments on synthetic and semi-synthetic data demonstrate the utility of our approach.
Challenging common interpretability assumptions in feature attribution explanations
As machine learning and algorithmic decision making systems are increasingly being leveraged in high-stakes human-in-the-loop settings, there is a pressing need to understand the rationale of their predictions. Researchers have responded to this need with explainable AI (XAI), but often proclaim interpretability axiomatically without evaluation. When these systems are evaluated, they are often tested through offline simulations with proxy metrics of interpretability (such as model complexity). We empirically evaluate the veracity of three common interpretability assumptions through a large scale human-subjects experiment with a simple "placebo explanation" control. We find that feature attribution explanations provide marginal utility in our task for a human decision maker and in certain cases result in worse decisions due to cognitive and contextual confounders. This result challenges the assumed universal benefit of applying these methods and we hope this work will underscore the importance of human evaluation in XAI research. Supplemental materials -- including anonymized data from the experiment, code to replicate the study, an interactive demo of the experiment, and the models used in the analysis -- can be found at: https://doi.pizza/challenging-xai.
Forgotten Polygons: Multimodal Large Language Models are Shape-Blind
Despite strong performance on vision-language tasks, Multimodal Large Language Models (MLLMs) struggle with mathematical problem-solving, with both open-source and state-of-the-art models falling short of human performance on visual-math benchmarks. To systematically examine visual-mathematical reasoning in MLLMs, we (1) evaluate their understanding of geometric primitives, (2) test multi-step reasoning, and (3) explore a potential solution to improve visual reasoning capabilities. Our findings reveal fundamental shortcomings in shape recognition, with top models achieving under 50% accuracy in identifying regular polygons. We analyze these failures through the lens of dual-process theory and show that MLLMs rely on System 1 (intuitive, memorized associations) rather than System 2 (deliberate reasoning). Consequently, MLLMs fail to count the sides of both familiar and novel shapes, suggesting they have neither learned the concept of sides nor effectively process visual inputs. Finally, we propose Visually Cued Chain-of-Thought (VC-CoT) prompting, which enhances multi-step mathematical reasoning by explicitly referencing visual annotations in diagrams, boosting GPT-4o's accuracy on an irregular polygon side-counting task from 7% to 93%. Our findings suggest that System 2 reasoning in MLLMs remains an open problem, and visually-guided prompting is essential for successfully engaging visual reasoning. Code available at: https://github.com/rsinghlab/Shape-Blind.
Towards Explainable Artificial Intelligence (XAI): A Data Mining Perspective
Given the complexity and lack of transparency in deep neural networks (DNNs), extensive efforts have been made to make these systems more interpretable or explain their behaviors in accessible terms. Unlike most reviews, which focus on algorithmic and model-centric perspectives, this work takes a "data-centric" view, examining how data collection, processing, and analysis contribute to explainable AI (XAI). We categorize existing work into three categories subject to their purposes: interpretations of deep models, referring to feature attributions and reasoning processes that correlate data points with model outputs; influences of training data, examining the impact of training data nuances, such as data valuation and sample anomalies, on decision-making processes; and insights of domain knowledge, discovering latent patterns and fostering new knowledge from data and models to advance social values and scientific discovery. Specifically, we distill XAI methodologies into data mining operations on training and testing data across modalities, such as images, text, and tabular data, as well as on training logs, checkpoints, models and other DNN behavior descriptors. In this way, our study offers a comprehensive, data-centric examination of XAI from a lens of data mining methods and applications.
CGBA: Curvature-aware Geometric Black-box Attack
Decision-based black-box attacks often necessitate a large number of queries to craft an adversarial example. Moreover, decision-based attacks based on querying boundary points in the estimated normal vector direction often suffer from inefficiency and convergence issues. In this paper, we propose a novel query-efficient curvature-aware geometric decision-based black-box attack (CGBA) that conducts boundary search along a semicircular path on a restricted 2D plane to ensure finding a boundary point successfully irrespective of the boundary curvature. While the proposed CGBA attack can work effectively for an arbitrary decision boundary, it is particularly efficient in exploiting the low curvature to craft high-quality adversarial examples, which is widely seen and experimentally verified in commonly used classifiers under non-targeted attacks. In contrast, the decision boundaries often exhibit higher curvature under targeted attacks. Thus, we develop a new query-efficient variant, CGBA-H, that is adapted for the targeted attack. In addition, we further design an algorithm to obtain a better initial boundary point at the expense of some extra queries, which considerably enhances the performance of the targeted attack. Extensive experiments are conducted to evaluate the performance of our proposed methods against some well-known classifiers on the ImageNet and CIFAR10 datasets, demonstrating the superiority of CGBA and CGBA-H over state-of-the-art non-targeted and targeted attacks, respectively. The source code is available at https://github.com/Farhamdur/CGBA.
WizMap: Scalable Interactive Visualization for Exploring Large Machine Learning Embeddings
Machine learning models often learn latent embedding representations that capture the domain semantics of their training data. These embedding representations are valuable for interpreting trained models, building new models, and analyzing new datasets. However, interpreting and using embeddings can be challenging due to their opaqueness, high dimensionality, and the large size of modern datasets. To tackle these challenges, we present WizMap, an interactive visualization tool to help researchers and practitioners easily explore large embeddings. With a novel multi-resolution embedding summarization method and a familiar map-like interaction design, WizMap enables users to navigate and interpret embedding spaces with ease. Leveraging modern web technologies such as WebGL and Web Workers, WizMap scales to millions of embedding points directly in users' web browsers and computational notebooks without the need for dedicated backend servers. WizMap is open-source and available at the following public demo link: https://poloclub.github.io/wizmap.
Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models
Large language models (LLMs) have exhibited impressive performance in language comprehension and various reasoning tasks. However, their abilities in spatial reasoning, a crucial aspect of human cognition, remain relatively unexplored. Human possess a remarkable ability to create mental images of unseen objects and actions through a process known as the Mind's Eye, enabling the imagination of the unseen world. Inspired by this cognitive capacity, we propose Visualization-of-Thought (VoT) prompting. VoT aims to elicit spatial reasoning of LLMs by visualizing their reasoning traces, thereby guiding subsequent reasoning steps. We employed VoT for multi-hop spatial reasoning tasks, including natural language navigation, visual navigation, and visual tiling in 2D grid worlds. Experimental results demonstrated that VoT significantly enhances the spatial reasoning abilities of LLMs. Notably, VoT outperformed existing multimodal large language models (MLLMs) in these tasks. While VoT works surprisingly well on LLMs, the ability to generate mental images to facilitate spatial reasoning resembles the mind's eye process, suggesting its potential viability in MLLMs.
Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making
We aim to evaluate Large Language Models (LLMs) for embodied decision making. While a significant body of work has been leveraging LLMs for decision making in embodied environments, we still lack a systematic understanding of their performance because they are usually applied in different domains, for different purposes, and built based on different inputs and outputs. Furthermore, existing evaluations tend to rely solely on a final success rate, making it difficult to pinpoint what ability is missing in LLMs and where the problem lies, which in turn blocks embodied agents from leveraging LLMs effectively and selectively. To address these limitations, we propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks and input-output specifications of LLM-based modules. Specifically, it allows us to unify 1) a broad set of embodied decision-making tasks involving both state and temporally extended goals, 2) four commonly-used LLM-based modules for decision making: goal interpretation, subgoal decomposition, action sequencing, and transition modeling, and 3) a collection of fine-grained metrics which break down evaluation into various types of errors, such as hallucination errors, affordance errors, various types of planning errors, etc. Overall, our benchmark offers a comprehensive assessment of LLMs' performance for different subtasks, pinpointing the strengths and weaknesses in LLM-powered embodied AI systems, and providing insights for effective and selective use of LLMs in embodied decision making.
LIDA: A Tool for Automatic Generation of Grammar-Agnostic Visualizations and Infographics using Large Language Models
Systems that support users in the automatic creation of visualizations must address several subtasks - understand the semantics of data, enumerate relevant visualization goals and generate visualization specifications. In this work, we pose visualization generation as a multi-stage generation problem and argue that well-orchestrated pipelines based on large language models (LLMs) such as ChatGPT/GPT-4 and image generation models (IGMs) are suitable to addressing these tasks. We present LIDA, a novel tool for generating grammar-agnostic visualizations and infographics. LIDA comprises of 4 modules - A SUMMARIZER that converts data into a rich but compact natural language summary, a GOAL EXPLORER that enumerates visualization goals given the data, a VISGENERATOR that generates, refines, executes and filters visualization code and an INFOGRAPHER module that yields data-faithful stylized graphics using IGMs. LIDA provides a python api, and a hybrid user interface (direct manipulation and multilingual natural language) for interactive chart, infographics and data story generation. Learn more about the project here - https://microsoft.github.io/lida/
Bridging State and History Representations: Understanding Self-Predictive RL
Representations are at the core of all deep reinforcement learning (RL) methods for both Markov decision processes (MDPs) and partially observable Markov decision processes (POMDPs). Many representation learning methods and theoretical frameworks have been developed to understand what constitutes an effective representation. However, the relationships between these methods and the shared properties among them remain unclear. In this paper, we show that many of these seemingly distinct methods and frameworks for state and history abstractions are, in fact, based on a common idea of self-predictive abstraction. Furthermore, we provide theoretical insights into the widely adopted objectives and optimization, such as the stop-gradient technique, in learning self-predictive representations. These findings together yield a minimalist algorithm to learn self-predictive representations for states and histories. We validate our theories by applying our algorithm to standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These findings culminate in a set of preliminary guidelines for RL practitioners.
Concept-Based Explainable Artificial Intelligence: Metrics and Benchmarks
Concept-based explanation methods, such as concept bottleneck models (CBMs), aim to improve the interpretability of machine learning models by linking their decisions to human-understandable concepts, under the critical assumption that such concepts can be accurately attributed to the network's feature space. However, this foundational assumption has not been rigorously validated, mainly because the field lacks standardised metrics and benchmarks to assess the existence and spatial alignment of such concepts. To address this, we propose three metrics: the concept global importance metric, the concept existence metric, and the concept location metric, including a technique for visualising concept activations, i.e., concept activation mapping. We benchmark post-hoc CBMs to illustrate their capabilities and challenges. Through qualitative and quantitative experiments, we demonstrate that, in many cases, even the most important concepts determined by post-hoc CBMs are not present in input images; moreover, when they are present, their saliency maps fail to align with the expected regions by either activating across an entire object or misidentifying relevant concept-specific regions. We analyse the root causes of these limitations, such as the natural correlation of concepts. Our findings underscore the need for more careful application of concept-based explanation techniques especially in settings where spatial interpretability is critical.
ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models
Recent advances in reasoning-centric language models have highlighted reinforcement learning (RL) as a promising method for aligning models with verifiable rewards. However, it remains contentious whether RL truly expands a model's reasoning capabilities or merely amplifies high-reward outputs already latent in the base model's distribution, and whether continually scaling up RL compute reliably leads to improved reasoning performance. In this work, we challenge prevailing assumptions by demonstrating that prolonged RL (ProRL) training can uncover novel reasoning strategies that are inaccessible to base models, even under extensive sampling. We introduce ProRL, a novel training methodology that incorporates KL divergence control, reference policy resetting, and a diverse suite of tasks. Our empirical analysis reveals that RL-trained models consistently outperform base models across a wide range of pass@k evaluations, including scenarios where base models fail entirely regardless of the number of attempts. We further show that reasoning boundary improvements correlates strongly with task competence of base model and training duration, suggesting that RL can explore and populate new regions of solution space over time. These findings offer new insights into the conditions under which RL meaningfully expands reasoning boundaries in language models and establish a foundation for future work on long-horizon RL for reasoning. We release model weights to support further research: https://huggingface.co/nvidia/Nemotron-Research-Reasoning-Qwen-1.5B
FairLay-ML: Intuitive Remedies for Unfairness in Data-Driven Social-Critical Algorithms
This thesis explores open-sourced machine learning (ML) model explanation tools to understand whether these tools can allow a layman to visualize, understand, and suggest intuitive remedies to unfairness in ML-based decision-support systems. Machine learning models trained on datasets biased against minority groups are increasingly used to guide life-altering social decisions, prompting the urgent need to study their logic for unfairness. Due to this problem's impact on vast populations of the general public, it is critical for the layperson -- not just subject matter experts in social justice or machine learning experts -- to understand the nature of unfairness within these algorithms and the potential trade-offs. Existing research on fairness in machine learning focuses mostly on the mathematical definitions and tools to understand and remedy unfair models, with some directly citing user-interactive tools as necessary for future work. This thesis presents FairLay-ML, a proof-of-concept GUI integrating some of the most promising tools to provide intuitive explanations for unfair logic in ML models by integrating existing research tools (e.g. Local Interpretable Model-Agnostic Explanations) with existing ML-focused GUI (e.g. Python Streamlit). We test FairLay-ML using models of various accuracy and fairness generated by an unfairness detector tool, Parfait-ML, and validate our results using Themis. Our study finds that the technology stack used for FairLay-ML makes it easy to install and provides real-time black-box explanations of pre-trained models to users. Furthermore, the explanations provided translate to actionable remedies.
ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natural Language
The use of natural language interfaces (NLIs) for the creation of charts is becoming increasingly popular due to the intuitiveness of natural language interactions. One key challenge in this approach is to accurately capture user intents and transform them to proper chart specifications. This obstructs the wide use of NLI in chart generation, as users' natural language inputs are generally abstract (i.e., ambiguous or under-specified), without a clear specification of visual encodings. Recently, pre-trained large language models (LLMs) have exhibited superior performance in understanding and generating natural language, demonstrating great potential for downstream tasks. Inspired by this major trend, we propose ChartGPT, generating charts from abstract natural language inputs. However, LLMs are struggling to address complex logic problems. To enable the model to accurately specify the complex parameters and perform operations in chart generation, we decompose the generation process into a step-by-step reasoning pipeline, so that the model only needs to reason a single and specific sub-task during each run. Moreover, LLMs are pre-trained on general datasets, which might be biased for the task of chart generation. To provide adequate visualization knowledge, we create a dataset consisting of abstract utterances and charts and improve model performance through fine-tuning. We further design an interactive interface for ChartGPT that allows users to check and modify the intermediate outputs of each step. The effectiveness of the proposed system is evaluated through quantitative evaluations and a user study.
A Survey Of Methods For Explaining Black Box Models
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
From Interaction to Impact: Towards Safer AI Agents Through Understanding and Evaluating UI Operation Impacts
With advances in generative AI, there is increasing work towards creating autonomous agents that can manage daily tasks by operating user interfaces (UIs). While prior research has studied the mechanics of how AI agents might navigate UIs and understand UI structure, the effects of agents and their autonomous actions-particularly those that may be risky or irreversible-remain under-explored. In this work, we investigate the real-world impacts and consequences of UI actions by AI agents. We began by developing a taxonomy of the impacts of UI actions through a series of workshops with domain experts. Following this, we conducted a data synthesis study to gather realistic UI screen traces and action data that users perceive as impactful. We then used our impact categories to annotate our collected data and data repurposed from existing UI navigation datasets. Our quantitative evaluations of different large language models (LLMs) and variants demonstrate how well different LLMs can understand the impacts of UI actions that might be taken by an agent. We show that our taxonomy enhances the reasoning capabilities of these LLMs for understanding the impacts of UI actions, but our findings also reveal significant gaps in their ability to reliably classify more nuanced or complex categories of impact.
Interactive Reasoning: Visualizing and Controlling Chain-of-Thought Reasoning in Large Language Models
The output quality of large language models (LLMs) can be improved via "reasoning": generating segments of chain-of-thought (CoT) content to further condition the model prior to producing user-facing output. While these chains contain valuable information, they are verbose and lack explicit organization, making them tedious to review. Moreover, they lack opportunities for user feedback, such as to remove unwanted considerations, add desired ones, or clarify unclear assumptions. We introduce Interactive Reasoning, an interaction design that visualizes chain-of-thought outputs as a hierarchy of topics and enables user review and modification. We implement interactive reasoning in Hippo, a prototype for AI-assisted decision making in the face of uncertain trade-offs. In a user study with 16 participants, we find that interactive reasoning in Hippo allows users to quickly identify and interrupt erroneous generations, efficiently steer the model towards customized responses, and better understand both model reasoning and model outputs. Our work contributes to a new paradigm that incorporates user oversight into LLM reasoning processes.
Visual Spatial Reasoning
Spatial relations are a basic part of human cognition. However, they are expressed in natural language in a variety of ways, and previous work has suggested that current vision-and-language models (VLMs) struggle to capture relational information. In this paper, we present Visual Spatial Reasoning (VSR), a dataset containing more than 10k natural text-image pairs with 65 types of spatial relations in English (such as: under, in front of, and facing). While using a seemingly simple annotation format, we show how the dataset includes challenging linguistic phenomena, such as varying reference frames. We demonstrate a large gap between human and model performance: the human ceiling is above 95%, while state-of-the-art models only achieve around 70%. We observe that VLMs' by-relation performances have little correlation with the number of training examples and the tested models are in general incapable of recognising relations concerning the orientations of objects.
Data Formulator 2: Iteratively Creating Rich Visualizations with AI
To create rich visualizations, data analysts often need to iterate back and forth among data processing and chart specification to achieve their goals. To achieve this, analysts need not only proficiency in data transformation and visualization tools but also efforts to manage the branching history consisting of many different versions of data and charts. Recent LLM-powered AI systems have greatly improved visualization authoring experiences, for example by mitigating manual data transformation barriers via LLMs' code generation ability. However, these systems do not work well for iterative visualization authoring, because they often require analysts to provide, in a single turn, a text-only prompt that fully describes the complex visualization task to be performed, which is unrealistic to both users and models in many cases. In this paper, we present Data Formulator 2, an LLM-powered visualization system to address these challenges. With Data Formulator 2, users describe their visualization intent with blended UI and natural language inputs, and data transformation are delegated to AI. To support iteration, Data Formulator 2 lets users navigate their iteration history and reuse previous designs towards new ones so that they don't need to start from scratch every time. In a user study with eight participants, we observed that Data Formulator 2 allows participants to develop their own iteration strategies to complete challenging data exploration sessions.
Imagine while Reasoning in Space: Multimodal Visualization-of-Thought
Chain-of-Thought (CoT) prompting has proven highly effective for enhancing complex reasoning in Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Yet, it struggles in complex spatial reasoning tasks. Nonetheless, human cognition extends beyond language alone, enabling the remarkable capability to think in both words and images. Inspired by this mechanism, we propose a new reasoning paradigm, Multimodal Visualization-of-Thought (MVoT). It enables visual thinking in MLLMs by generating image visualizations of their reasoning traces. To ensure high-quality visualization, we introduce token discrepancy loss into autoregressive MLLMs. This innovation significantly improves both visual coherence and fidelity. We validate this approach through several dynamic spatial reasoning tasks. Experimental results reveal that MVoT demonstrates competitive performance across tasks. Moreover, it exhibits robust and reliable improvements in the most challenging scenarios where CoT fails. Ultimately, MVoT establishes new possibilities for complex reasoning tasks where visual thinking can effectively complement verbal reasoning.
How do Observable Users Decompose D3 Code? A Qualitative Study
Many toolkit developers seek to streamline the visualization programming process through structured support such as prescribed templates and example galleries. However, few projects examine how users organize their own visualization programs and how their coding choices may deviate from the intents of toolkit developers, impacting visualization prototyping and design. Further, is it possible to infer users' reasoning indirectly through their code, even when users copy code from other sources? We explore this question through a qualitative analysis of 715 D3 programs on Observable. We identify three levels of program organization based on how users decompose their code into smaller blocks: Program-, Chart-, and Component-Level code decomposition, with a strong preference for Component-Level reasoning. In a series of interviews, we corroborate that these levels reflect how Observable users reason about visualization programs. We compare common user-made components with those theorized in the Grammar of Graphics to assess overlap in user and toolkit developer reasoning. We find that, while the Grammar of Graphics covers basic visualizations well, it falls short in describing complex visualization types, especially those with animation, interaction, and parameterization components. Our findings highlight how user practices differ from formal grammars and reinforce ongoing efforts to rethink visualization toolkit support, including augmenting learning tools and AI assistants to better reflect real-world coding strategies.
A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover shortcomings. Existing benchmarks for visual question answering can help, but have strong biases that models can exploit to correctly answer questions without reasoning. They also conflate multiple sources of error, making it hard to pinpoint model weaknesses. We present a diagnostic dataset that tests a range of visual reasoning abilities. It contains minimal biases and has detailed annotations describing the kind of reasoning each question requires. We use this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations.
VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity
Visual reasoning is central to human cognition, enabling individuals to interpret and abstractly understand their environment. Although recent Multimodal Large Language Models (MLLMs) have demonstrated impressive performance across language and vision-language tasks, existing benchmarks primarily measure recognition-based skills and inadequately assess true visual reasoning capabilities. To bridge this critical gap, we introduce VERIFY, a benchmark explicitly designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs. VERIFY compels models to reason primarily from visual information, providing minimal textual context to reduce reliance on domain-specific knowledge and linguistic biases. Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes. Additionally, we propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns. Our comprehensive benchmarking of leading MLLMs uncovers significant limitations, underscoring the need for a balanced and holistic approach to both perception and reasoning. For more teaser and testing, visit our project page (https://verify-eqh.pages.dev/).
MTP: A Dataset for Multi-Modal Turning Points in Casual Conversations
Detecting critical moments, such as emotional outbursts or changes in decisions during conversations, is crucial for understanding shifts in human behavior and their consequences. Our work introduces a novel problem setting focusing on these moments as turning points (TPs), accompanied by a meticulously curated, high-consensus, human-annotated multi-modal dataset. We provide precise timestamps, descriptions, and visual-textual evidence high-lighting changes in emotions, behaviors, perspectives, and decisions at these turning points. We also propose a framework, TPMaven, utilizing state-of-the-art vision-language models to construct a narrative from the videos and large language models to classify and detect turning points in our multi-modal dataset. Evaluation results show that TPMaven achieves an F1-score of 0.88 in classification and 0.61 in detection, with additional explanations aligning with human expectations.
Allowing humans to interactively guide machines where to look does not always improve a human-AI team's classification accuracy
Via thousands of papers in Explainable AI (XAI), attention maps vaswani2017attention and feature attribution maps bansal2020sam have been established as a common means for explaining the input features that are important to AI's decisions. It is an interesting but unexplored question whether allowing users to edit the importance scores of input features at test time would improve the human-AI team's accuracy on downstream tasks. In this paper, we address this question by taking CHM-Corr, a state-of-the-art, ante-hoc explanation method taesiri2022visual that first predicts patch-wise correspondences between the input and the training-set images, and then uses them to make classification decisions. We build an interactive interface on top of CHM-Corr, enabling users to directly edit the initial feature attribution map provided by CHM-Corr. Via our CHM-Corr++ interface, users gain insights into if, when, and how the model changes its outputs, enhancing understanding beyond static explanations. Our user study with 18 machine learning researchers who performed sim1,400 decisions shows that our interactive approach does not improve user accuracy on CUB-200 bird image classification over static explanations. This challenges the belief that interactivity inherently boosts XAI effectiveness~sokol2020one,sun2022exploring,shen2024towards,singh2024rethinking,mindlin2024beyond,lakkaraju2022rethinking,cheng2019explaining,liu2021understanding and raises needs for future research. Our work contributes to the field by open-sourcing an interactive tool for manipulating model attention, and it lays the groundwork for future research to enable effective human-AI interaction in computer vision. We release code and data on https://anonymous.4open.science/r/CHMCorrPlusPlus/{github}. Our interface are available http://137.184.82.109:7080/{here}.
LIVS: A Pluralistic Alignment Dataset for Inclusive Public Spaces
We introduce the Local Intersectional Visual Spaces (LIVS) dataset, a benchmark for multi-criteria alignment of text-to-image (T2I) models in inclusive urban planning. Developed through a two-year participatory process with 30 community organizations, LIVS encodes diverse spatial preferences across 634 initial concepts, consolidated into six core criteria: Accessibility, Safety, Comfort, Invitingness, Inclusivity, and Diversity, through 37,710 pairwise comparisons. Using Direct Preference Optimization (DPO) to fine-tune Stable Diffusion XL, we observed a measurable increase in alignment with community preferences, though a significant proportion of neutral ratings highlights the complexity of modeling intersectional needs. Additionally, as annotation volume increases, accuracy shifts further toward the DPO-tuned model, suggesting that larger-scale preference data enhances fine-tuning effectiveness. LIVS underscores the necessity of integrating context-specific, stakeholder-driven criteria into generative modeling and provides a resource for evaluating AI alignment methodologies across diverse socio-spatial contexts.
Reasoning Limitations of Multimodal Large Language Models. A case study of Bongard Problems
Abstract visual reasoning (AVR) encompasses a suite of tasks whose solving requires the ability to discover common concepts underlying the set of pictures through an analogy-making process, similarly to human IQ tests. Bongard Problems (BPs), proposed in 1968, constitute a fundamental challenge in this domain mainly due to their requirement to combine visual reasoning and verbal description. This work poses a question whether multimodal large language models (MLLMs) inherently designed to combine vision and language are capable of tackling BPs. To this end, we propose a set of diverse MLLM-suited strategies to tackle BPs and examine four popular proprietary MLLMs: GPT-4o, GPT-4 Turbo, Gemini 1.5 Pro, and Claude 3.5 Sonnet, and four open models: InternVL2-8B, LLaVa-1.6 Mistral-7B, Phi-3.5-Vision, and Pixtral 12B. The above MLLMs are compared on three BP datasets: a set of original BP instances relying on synthetic, geometry-based images and two recent datasets based on real-world images, i.e., Bongard-HOI and Bongard-OpenWorld. The experiments reveal significant limitations of MLLMs in solving BPs. In particular, the models struggle to solve the classical set of synthetic BPs, despite their visual simplicity. Though their performance ameliorates on real-world concepts expressed in Bongard-HOI and Bongard-OpenWorld, the models still have difficulty in utilizing new information to improve their predictions, as well as utilizing a dialog context window effectively. To capture the reasons of performance discrepancy between synthetic and real-world AVR domains, we propose Bongard-RWR, a new BP dataset consisting of real-world images that translates concepts from hand-crafted synthetic BPs to real-world concepts. The MLLMs' results on Bongard-RWR suggest that their poor performance on classical BPs is not due to domain specificity but rather reflects their general AVR limitations.
ScaleViz: Scaling Visualization Recommendation Models on Large Data
Automated visualization recommendations (vis-rec) help users to derive crucial insights from new datasets. Typically, such automated vis-rec models first calculate a large number of statistics from the datasets and then use machine-learning models to score or classify multiple visualizations choices to recommend the most effective ones, as per the statistics. However, state-of-the art models rely on very large number of expensive statistics and therefore using such models on large datasets become infeasible due to prohibitively large computational time, limiting the effectiveness of such techniques to most real world complex and large datasets. In this paper, we propose a novel reinforcement-learning (RL) based framework that takes a given vis-rec model and a time-budget from the user and identifies the best set of input statistics that would be most effective while generating the visual insights within a given time budget, using the given model. Using two state-of-the-art vis-rec models applied on three large real-world datasets, we show the effectiveness of our technique in significantly reducing time-to visualize with very small amount of introduced error. Our approach is about 10X times faster compared to the baseline approaches that introduce similar amounts of error.
Beyond Importance Scores: Interpreting Tabular ML by Visualizing Feature Semantics
Interpretability is becoming an active research topic as machine learning (ML) models are more widely used to make critical decisions. Tabular data is one of the most commonly used modes of data in diverse applications such as healthcare and finance. Much of the existing interpretability methods used for tabular data only report feature-importance scores -- either locally (per example) or globally (per model) -- but they do not provide interpretation or visualization of how the features interact. We address this limitation by introducing Feature Vectors, a new global interpretability method designed for tabular datasets. In addition to providing feature-importance, Feature Vectors discovers the inherent semantic relationship among features via an intuitive feature visualization technique. Our systematic experiments demonstrate the empirical utility of this new method by applying it to several real-world datasets. We further provide an easy-to-use Python package for Feature Vectors.
WCLD: Curated Large Dataset of Criminal Cases from Wisconsin Circuit Courts
Machine learning based decision-support tools in criminal justice systems are subjects of intense discussions and academic research. There are important open questions about the utility and fairness of such tools. Academic researchers often rely on a few small datasets that are not sufficient to empirically study various real-world aspects of these questions. In this paper, we contribute WCLD, a curated large dataset of 1.5 million criminal cases from circuit courts in the U.S. state of Wisconsin. We used reliable public data from 1970 to 2020 to curate attributes like prior criminal counts and recidivism outcomes. The dataset contains large number of samples from five racial groups, in addition to information like sex and age (at judgment and first offense). Other attributes in this dataset include neighborhood characteristics obtained from census data, detailed types of offense, charge severity, case decisions, sentence lengths, year of filing etc. We also provide pseudo-identifiers for judge, county and zipcode. The dataset will not only enable researchers to more rigorously study algorithmic fairness in the context of criminal justice, but also relate algorithmic challenges with various systemic issues. We also discuss in detail the process of constructing the dataset and provide a datasheet. The WCLD dataset is available at https://clezdata.github.io/wcld/.
Cognitive Paradigms for Evaluating VLMs on Visual Reasoning Task
Advancing machine visual reasoning requires a deeper understanding of how Vision-Language Models (VLMs) process and interpret complex visual patterns. This work introduces a novel, cognitively-inspired evaluation framework to systematically analyze VLM reasoning on natural image-based Bongard Problems. We propose three structured paradigms -- Direct Visual Rule Learning, Deductive Rule Learning, and Componential Analysis -- designed to progressively enforce step-wise reasoning and disentangle the interplay between perception and reasoning. Our evaluation shows that advanced, closed-source VLMs (GPT-4o and Gemini 2.0) achieve near-superhuman performance, particularly when provided with high-quality image descriptions, while open-source models exhibit a significant performance bottleneck due to deficiencies in perception. An ablation study further confirms that perception, rather than reasoning, is the primary limiting factor, as open-source models apply extracted rules effectively when given accurate descriptions. These findings underscore the critical role of robust multimodal perception in enhancing generalizable visual reasoning and highlight the importance of structured, step-wise reasoning paradigms for advancing machine intelligence.
ChessGPT: Bridging Policy Learning and Language Modeling
When solving decision-making tasks, humans typically depend on information from two key sources: (1) Historical policy data, which provides interaction replay from the environment, and (2) Analytical insights in natural language form, exposing the invaluable thought process or strategic considerations. Despite this, the majority of preceding research focuses on only one source: they either use historical replay exclusively to directly learn policy or value functions, or engaged in language model training utilizing mere language corpus. In this paper, we argue that a powerful autonomous agent should cover both sources. Thus, we propose ChessGPT, a GPT model bridging policy learning and language modeling by integrating data from these two sources in Chess games. Specifically, we build a large-scale game and language dataset related to chess. Leveraging the dataset, we showcase two model examples ChessCLIP and ChessGPT, integrating policy learning and language modeling. Finally, we propose a full evaluation framework for evaluating language model's chess ability. Experimental results validate our model and dataset's effectiveness. We open source our code, model, and dataset at https://github.com/waterhorse1/ChessGPT.
Neural Relation Graph: A Unified Framework for Identifying Label Noise and Outlier Data
Diagnosing and cleaning data is a crucial step for building robust machine learning systems. However, identifying problems within large-scale datasets with real-world distributions is challenging due to the presence of complex issues such as label errors, under-representation, and outliers. In this paper, we propose a unified approach for identifying the problematic data by utilizing a largely ignored source of information: a relational structure of data in the feature-embedded space. To this end, we present scalable and effective algorithms for detecting label errors and outlier data based on the relational graph structure of data. We further introduce a visualization tool that provides contextual information of a data point in the feature-embedded space, serving as an effective tool for interactively diagnosing data. We evaluate the label error and outlier/out-of-distribution (OOD) detection performances of our approach on the large-scale image, speech, and language domain tasks, including ImageNet, ESC-50, and SST2. Our approach achieves state-of-the-art detection performance on all tasks considered and demonstrates its effectiveness in debugging large-scale real-world datasets across various domains. We release codes at https://github.com/snu-mllab/Neural-Relation-Graph.
Humanlike Cognitive Patterns as Emergent Phenomena in Large Language Models
Research on emergent patterns in Large Language Models (LLMs) has gained significant traction in both psychology and artificial intelligence, motivating the need for a comprehensive review that offers a synthesis of this complex landscape. In this article, we systematically review LLMs' capabilities across three important cognitive domains: decision-making biases, reasoning, and creativity. We use empirical studies drawing on established psychological tests and compare LLMs' performance to human benchmarks. On decision-making, our synthesis reveals that while LLMs demonstrate several human-like biases, some biases observed in humans are absent, indicating cognitive patterns that only partially align with human decision-making. On reasoning, advanced LLMs like GPT-4 exhibit deliberative reasoning akin to human System-2 thinking, while smaller models fall short of human-level performance. A distinct dichotomy emerges in creativity: while LLMs excel in language-based creative tasks, such as storytelling, they struggle with divergent thinking tasks that require real-world context. Nonetheless, studies suggest that LLMs hold considerable potential as collaborators, augmenting creativity in human-machine problem-solving settings. Discussing key limitations, we also offer guidance for future research in areas such as memory, attention, and open-source model development.
Towards credible visual model interpretation with path attribution
Originally inspired by game-theory, path attribution framework stands out among the post-hoc model interpretation tools due to its axiomatic nature. However, recent developments show that this framework can still suffer from counter-intuitive results. Moreover, specifically for deep visual models, the existing path-based methods also fall short on conforming to the original intuitions that are the basis of the claimed axiomatic properties of this framework. We address these problems with a systematic investigation, and pinpoint the conditions in which the counter-intuitive results can be avoided for deep visual model interpretation with the path attribution strategy. We also devise a scheme to preclude the conditions in which visual model interpretation can invalidate the axiomatic properties of path attribution. These insights are combined into a method that enables reliable visual model interpretation. Our findings are establish empirically with multiple datasets, models and evaluation metrics. Extensive experiments show a consistent performance gain of our method over the baselines.
What Makes a Face Look like a Hat: Decoupling Low-level and High-level Visual Properties with Image Triplets
In visual decision making, high-level features, such as object categories, have a strong influence on choice. However, the impact of low-level features on behavior is less understood partly due to the high correlation between high- and low-level features in the stimuli presented (e.g., objects of the same category are more likely to share low-level features). To disentangle these effects, we propose a method that de-correlates low- and high-level visual properties in a novel set of stimuli. Our method uses two Convolutional Neural Networks (CNNs) as candidate models of the ventral visual stream: the CORnet-S that has high neural predictivity in high-level, IT-like responses and the VGG-16 that has high neural predictivity in low-level responses. Triplets (root, image1, image2) of stimuli are parametrized by the level of low- and high-level similarity of images extracted from the different layers. These stimuli are then used in a decision-making task where participants are tasked to choose the most similar-to-the-root image. We found that different networks show differing abilities to predict the effects of low-versus-high-level similarity: while CORnet-S outperforms VGG-16 in explaining human choices based on high-level similarity, VGG-16 outperforms CORnet-S in explaining human choices based on low-level similarity. Using Brain-Score, we observed that the behavioral prediction abilities of different layers of these networks qualitatively corresponded to their ability to explain neural activity at different levels of the visual hierarchy. In summary, our algorithm for stimulus set generation enables the study of how different representations in the visual stream affect high-level cognitive behaviors.
VisText: A Benchmark for Semantically Rich Chart Captioning
Captions that describe or explain charts help improve recall and comprehension of the depicted data and provide a more accessible medium for people with visual disabilities. However, current approaches for automatically generating such captions struggle to articulate the perceptual or cognitive features that are the hallmark of charts (e.g., complex trends and patterns). In response, we introduce VisText: a dataset of 12,441 pairs of charts and captions that describe the charts' construction, report key statistics, and identify perceptual and cognitive phenomena. In VisText, a chart is available as three representations: a rasterized image, a backing data table, and a scene graph -- a hierarchical representation of a chart's visual elements akin to a web page's Document Object Model (DOM). To evaluate the impact of VisText, we fine-tune state-of-the-art language models on our chart captioning task and apply prefix-tuning to produce captions that vary the semantic content they convey. Our models generate coherent, semantically rich captions and perform on par with state-of-the-art chart captioning models across machine translation and text generation metrics. Through qualitative analysis, we identify six broad categories of errors that our models make that can inform future work.
When to Show a Suggestion? Integrating Human Feedback in AI-Assisted Programming
AI powered code-recommendation systems, such as Copilot and CodeWhisperer, provide code suggestions inside a programmer's environment (e.g., an IDE) with the aim of improving productivity. We pursue mechanisms for leveraging signals about programmers' acceptance and rejection of code suggestions to guide recommendations. We harness data drawn from interactions with GitHub Copilot, a system used by millions of programmers, to develop interventions that can save time for programmers. We introduce a utility-theoretic framework to drive decisions about suggestions to display versus withhold. The approach, conditional suggestion display from human feedback (CDHF), relies on a cascade of models that provide the likelihood that recommended code will be accepted. These likelihoods are used to selectively hide suggestions, reducing both latency and programmer verification time. Using data from 535 programmers, we perform a retrospective evaluation of CDHF and show that we can avoid displaying a significant fraction of suggestions that would have been rejected. We further demonstrate the importance of incorporating the programmer's latent unobserved state in decisions about when to display suggestions through an ablation study. Finally, we showcase how using suggestion acceptance as a reward signal for guiding the display of suggestions can lead to suggestions of reduced quality, indicating an unexpected pitfall.
ARCLE: The Abstraction and Reasoning Corpus Learning Environment for Reinforcement Learning
This paper introduces ARCLE, an environment designed to facilitate reinforcement learning research on the Abstraction and Reasoning Corpus (ARC). Addressing this inductive reasoning benchmark with reinforcement learning presents these challenges: a vast action space, a hard-to-reach goal, and a variety of tasks. We demonstrate that an agent with proximal policy optimization can learn individual tasks through ARCLE. The adoption of non-factorial policies and auxiliary losses led to performance enhancements, effectively mitigating issues associated with action spaces and goal attainment. Based on these insights, we propose several research directions and motivations for using ARCLE, including MAML, GFlowNets, and World Models.
Counterfactual Visual Explanations
In this work, we develop a technique to produce counterfactual visual explanations. Given a 'query' image I for which a vision system predicts class c, a counterfactual visual explanation identifies how I could change such that the system would output a different specified class c'. To do this, we select a 'distractor' image I' that the system predicts as class c' and identify spatial regions in I and I' such that replacing the identified region in I with the identified region in I' would push the system towards classifying I as c'. We apply our approach to multiple image classification datasets generating qualitative results showcasing the interpretability and discriminativeness of our counterfactual explanations. To explore the effectiveness of our explanations in teaching humans, we present machine teaching experiments for the task of fine-grained bird classification. We find that users trained to distinguish bird species fare better when given access to counterfactual explanations in addition to training examples.
ChartQA: A Benchmark for Question Answering about Charts with Visual and Logical Reasoning
Charts are very popular for analyzing data. When exploring charts, people often ask a variety of complex reasoning questions that involve several logical and arithmetic operations. They also commonly refer to visual features of a chart in their questions. However, most existing datasets do not focus on such complex reasoning questions as their questions are template-based and answers come from a fixed-vocabulary. In this work, we present a large-scale benchmark covering 9.6K human-written questions as well as 23.1K questions generated from human-written chart summaries. To address the unique challenges in our benchmark involving visual and logical reasoning over charts, we present two transformer-based models that combine visual features and the data table of the chart in a unified way to answer questions. While our models achieve the state-of-the-art results on the previous datasets as well as on our benchmark, the evaluation also reveals several challenges in answering complex reasoning questions.
SliderSpace: Decomposing the Visual Capabilities of Diffusion Models
We present SliderSpace, a framework for automatically decomposing the visual capabilities of diffusion models into controllable and human-understandable directions. Unlike existing control methods that require a user to specify attributes for each edit direction individually, SliderSpace discovers multiple interpretable and diverse directions simultaneously from a single text prompt. Each direction is trained as a low-rank adaptor, enabling compositional control and the discovery of surprising possibilities in the model's latent space. Through extensive experiments on state-of-the-art diffusion models, we demonstrate SliderSpace's effectiveness across three applications: concept decomposition, artistic style exploration, and diversity enhancement. Our quantitative evaluation shows that SliderSpace-discovered directions decompose the visual structure of model's knowledge effectively, offering insights into the latent capabilities encoded within diffusion models. User studies further validate that our method produces more diverse and useful variations compared to baselines. Our code, data and trained weights are available at https://sliderspace.baulab.info
Full Automation of Goal-driven LLM Dialog Threads with And-Or Recursors and Refiner Oracles
We automate deep step-by step reasoning in an LLM dialog thread by recursively exploring alternatives (OR-nodes) and expanding details (AND-nodes) up to a given depth. Starting from a single succinct task-specific initiator we steer the automated dialog thread to stay focussed on the task by synthesizing a prompt that summarizes the depth-first steps taken so far. Our algorithm is derived from a simple recursive descent implementation of a Horn Clause interpreter, except that we accommodate our logic engine to fit the natural language reasoning patterns LLMs have been trained on. Semantic similarity to ground-truth facts or oracle advice from another LLM instance is used to restrict the search space and validate the traces of justification steps returned as answers. At the end, the unique minimal model of a generated Horn Clause program collects the results of the reasoning process. As applications, we sketch implementations of consequence predictions, causal explanations, recommendation systems and topic-focussed exploration of scientific literature.
Towards End-to-End Embodied Decision Making via Multi-modal Large Language Model: Explorations with GPT4-Vision and Beyond
In this study, we explore the potential of Multimodal Large Language Models (MLLMs) in improving embodied decision-making processes for agents. While Large Language Models (LLMs) have been widely used due to their advanced reasoning skills and vast world knowledge, MLLMs like GPT4-Vision offer enhanced visual understanding and reasoning capabilities. We investigate whether state-of-the-art MLLMs can handle embodied decision-making in an end-to-end manner and whether collaborations between LLMs and MLLMs can enhance decision-making. To address these questions, we introduce a new benchmark called PCA-EVAL, which evaluates embodied decision-making from the perspectives of Perception, Cognition, and Action. Additionally, we propose HOLMES, a multi-agent cooperation framework that allows LLMs to leverage MLLMs and APIs to gather multimodal information for informed decision-making. We compare end-to-end embodied decision-making and HOLMES on our benchmark and find that the GPT4-Vision model demonstrates strong end-to-end embodied decision-making abilities, outperforming GPT4-HOLMES in terms of average decision accuracy (+3%). However, this performance is exclusive to the latest GPT4-Vision model, surpassing the open-source state-of-the-art MLLM by 26%. Our results indicate that powerful MLLMs like GPT4-Vision hold promise for decision-making in embodied agents, offering new avenues for MLLM research.
OpenThinkIMG: Learning to Think with Images via Visual Tool Reinforcement Learning
While humans can flexibly leverage interactive visual cognition for complex problem-solving, enabling Large Vision-Language Models (LVLMs) to learn similarly adaptive behaviors with visual tools remains challenging. A significant hurdle is the current lack of standardized infrastructure, which hinders integrating diverse tools, generating rich interaction data, and training robust agents effectively. To address these gaps, we introduce OpenThinkIMG, the first open-source, comprehensive end-to-end framework for tool-augmented LVLMs. It features standardized vision tool interfaces, scalable trajectory generation for policy initialization, and a flexible training environment. Furthermore, considering supervised fine-tuning (SFT) on static demonstrations offers limited policy generalization for dynamic tool invocation, we propose a novel reinforcement learning (RL) framework V-ToolRL to train LVLMs to learn adaptive policies for invoking external vision tools. V-ToolRL enables LVLMs to autonomously discover optimal tool-usage strategies by directly optimizing for task success using feedback from tool interactions. We empirically validate V-ToolRL on challenging chart reasoning tasks. Our RL-trained agent, built upon a Qwen2-VL-2B, significantly outperforms its SFT-initialized counterpart (+28.83 points) and surpasses established supervised tool-learning baselines like Taco and CogCom by an average of +12.7 points. Notably, it also surpasses prominent closed-source models like GPT-4.1 by +8.68 accuracy points. We hope OpenThinkIMG can serve as a foundational framework for advancing dynamic, tool-augmented visual reasoning, helping the community develop AI agents that can genuinely "think with images".
Tailored Visions: Enhancing Text-to-Image Generation with Personalized Prompt Rewriting
Despite significant progress in the field, it is still challenging to create personalized visual representations that align closely with the desires and preferences of individual users. This process requires users to articulate their ideas in words that are both comprehensible to the models and accurately capture their vision, posing difficulties for many users. In this paper, we tackle this challenge by leveraging historical user interactions with the system to enhance user prompts. We propose a novel approach that involves rewriting user prompts based on a newly collected large-scale text-to-image dataset with over 300k prompts from 3115 users. Our rewriting model enhances the expressiveness and alignment of user prompts with their intended visual outputs. Experimental results demonstrate the superiority of our methods over baseline approaches, as evidenced in our new offline evaluation method and online tests. Our code and dataset are available at https://github.com/zzjchen/Tailored-Visions .
Beyond No: Quantifying AI Over-Refusal and Emotional Attachment Boundaries
We present an open-source benchmark and evaluation framework for assessing emotional boundary handling in Large Language Models (LLMs). Using a dataset of 1156 prompts across six languages, we evaluated three leading LLMs (GPT-4o, Claude-3.5 Sonnet, and Mistral-large) on their ability to maintain appropriate emotional boundaries through pattern-matched response analysis. Our framework quantifies responses across seven key patterns: direct refusal, apology, explanation, deflection, acknowledgment, boundary setting, and emotional awareness. Results demonstrate significant variation in boundary-handling approaches, with Claude-3.5 achieving the highest overall score (8.69/10) and producing longer, more nuanced responses (86.51 words on average). We identified a substantial performance gap between English (average score 25.62) and non-English interactions (< 0.22), with English responses showing markedly higher refusal rates (43.20% vs. < 1% for non-English). Pattern analysis revealed model-specific strategies, such as Mistral's preference for deflection (4.2%) and consistently low empathy scores across all models (< 0.06). Limitations include potential oversimplification through pattern matching, lack of contextual understanding in response analysis, and binary classification of complex emotional responses. Future work should explore more nuanced scoring methods, expand language coverage, and investigate cultural variations in emotional boundary expectations. Our benchmark and methodology provide a foundation for systematic evaluation of LLM emotional intelligence and boundary-setting capabilities.
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Large datasets have become commonplace in NLP research. However, the increased emphasis on data quantity has made it challenging to assess the quality of data. We introduce Data Maps---a model-based tool to characterize and diagnose datasets. We leverage a largely ignored source of information: the behavior of the model on individual instances during training (training dynamics) for building data maps. This yields two intuitive measures for each example---the model's confidence in the true class, and the variability of this confidence across epochs---obtained in a single run of training. Experiments across four datasets show that these model-dependent measures reveal three distinct regions in the data map, each with pronounced characteristics. First, our data maps show the presence of "ambiguous" regions with respect to the model, which contribute the most towards out-of-distribution generalization. Second, the most populous regions in the data are "easy to learn" for the model, and play an important role in model optimization. Finally, data maps uncover a region with instances that the model finds "hard to learn"; these often correspond to labeling errors. Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.
DNNs May Determine Major Properties of Their Outputs Early, with Timing Possibly Driven by Bias
This paper argues that deep neural networks (DNNs) mostly determine their outputs during the early stages of inference, where biases inherent in the model play a crucial role in shaping this process. We draw a parallel between this phenomenon and human decision-making, which often relies on fast, intuitive heuristics. Using diffusion models (DMs) as a case study, we demonstrate that DNNs often make early-stage decision-making influenced by the type and extent of bias in their design and training. Our findings offer a new perspective on bias mitigation, efficient inference, and the interpretation of machine learning systems. By identifying the temporal dynamics of decision-making in DNNs, this paper aims to inspire further discussion and research within the machine learning community.
Latent Compass: Creation by Navigation
In Marius von Senden's Space and Sight, a newly sighted blind patient describes the experience of a corner as lemon-like, because corners "prick" sight like lemons prick the tongue. Prickliness, here, is a dimension in the feature space of sensory experience, an effect of the perceived on the perceiver that arises where the two interact. In the account of the newly sighted, an effect familiar from one interaction translates to a novel context. Perception serves as the vehicle for generalization, in that an effect shared across different experiences produces a concrete abstraction grounded in those experiences. Cezanne and the post-impressionists, fluent in the language of experience translation, realized that the way to paint a concrete form that best reflected reality was to paint not what they saw, but what it was like to see. We envision a future of creation using AI where what it is like to see is replicable, transferrable, manipulable - part of the artist's palette that is both grounded in a particular context, and generalizable beyond it. An active line of research maps human-interpretable features onto directions in GAN latent space. Supervised and self-supervised approaches that search for anticipated directions or use off-the-shelf classifiers to drive image manipulation in embedding space are limited in the variety of features they can uncover. Unsupervised approaches that discover useful new directions show that the space of perceptually meaningful directions is nowhere close to being fully mapped. As this space is broad and full of creative potential, we want tools for direction discovery that capture the richness and generalizability of human perception. Our approach puts creators in the discovery loop during real-time tool use, in order to identify directions that are perceptually meaningful to them, and generate interpretable image translations along those directions.
Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?
Algorithmic approaches to interpreting machine learning models have proliferated in recent years. We carry out human subject tests that are the first of their kind to isolate the effect of algorithmic explanations on a key aspect of model interpretability, simulatability, while avoiding important confounding experimental factors. A model is simulatable when a person can predict its behavior on new inputs. Through two kinds of simulation tests involving text and tabular data, we evaluate five explanations methods: (1) LIME, (2) Anchor, (3) Decision Boundary, (4) a Prototype model, and (5) a Composite approach that combines explanations from each method. Clear evidence of method effectiveness is found in very few cases: LIME improves simulatability in tabular classification, and our Prototype method is effective in counterfactual simulation tests. We also collect subjective ratings of explanations, but we do not find that ratings are predictive of how helpful explanations are. Our results provide the first reliable and comprehensive estimates of how explanations influence simulatability across a variety of explanation methods and data domains. We show that (1) we need to be careful about the metrics we use to evaluate explanation methods, and (2) there is significant room for improvement in current methods. All our supporting code, data, and models are publicly available at: https://github.com/peterbhase/InterpretableNLP-ACL2020
Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate models across three dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities.
Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement
The ability to derive underlying principles from a handful of observations and then generalize to novel situations -- known as inductive reasoning -- is central to human intelligence. Prior work suggests that language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks. In this work, we conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement, a technique that more closely mirrors the human inductive process than standard input-output prompting. Iterative hypothesis refinement employs a three-step process: proposing, selecting, and refining hypotheses in the form of textual rules. By examining the intermediate rules, we observe that LMs are phenomenal hypothesis proposers (i.e., generating candidate rules), and when coupled with a (task-specific) symbolic interpreter that is able to systematically filter the proposed set of rules, this hybrid approach achieves strong results across inductive reasoning benchmarks that require inducing causal relations, language-like instructions, and symbolic concepts. However, they also behave as puzzling inductive reasoners, showing notable performance gaps between rule induction (i.e., identifying plausible rules) and rule application (i.e., applying proposed rules to instances), suggesting that LMs are proposing hypotheses without being able to actually apply the rules. Through empirical and human analyses, we further reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.
LawFlow : Collecting and Simulating Lawyers' Thought Processes
Legal practitioners, particularly those early in their careers, face complex, high-stakes tasks that require adaptive, context-sensitive reasoning. While AI holds promise in supporting legal work, current datasets and models are narrowly focused on isolated subtasks and fail to capture the end-to-end decision-making required in real-world practice. To address this gap, we introduce LawFlow, a dataset of complete end-to-end legal workflows collected from trained law students, grounded in real-world business entity formation scenarios. Unlike prior datasets focused on input-output pairs or linear chains of thought, LawFlow captures dynamic, modular, and iterative reasoning processes that reflect the ambiguity, revision, and client-adaptive strategies of legal practice. Using LawFlow, we compare human and LLM-generated workflows, revealing systematic differences in structure, reasoning flexibility, and plan execution. Human workflows tend to be modular and adaptive, while LLM workflows are more sequential, exhaustive, and less sensitive to downstream implications. Our findings also suggest that legal professionals prefer AI to carry out supportive roles, such as brainstorming, identifying blind spots, and surfacing alternatives, rather than executing complex workflows end-to-end. Building on these findings, we propose a set of design suggestions, rooted in empirical observations, that align AI assistance with human goals of clarity, completeness, creativity, and efficiency, through hybrid planning, adaptive execution, and decision-point support. Our results highlight both the current limitations of LLMs in supporting complex legal workflows and opportunities for developing more collaborative, reasoning-aware legal AI systems. All data and code are available on our project page (https://minnesotanlp.github.io/LawFlow-website/).
HIVE: Evaluating the Human Interpretability of Visual Explanations
As AI technology is increasingly applied to high-impact, high-risk domains, there have been a number of new methods aimed at making AI models more human interpretable. Despite the recent growth of interpretability work, there is a lack of systematic evaluation of proposed techniques. In this work, we introduce HIVE (Human Interpretability of Visual Explanations), a novel human evaluation framework that assesses the utility of explanations to human users in AI-assisted decision making scenarios, and enables falsifiable hypothesis testing, cross-method comparison, and human-centered evaluation of visual interpretability methods. To the best of our knowledge, this is the first work of its kind. Using HIVE, we conduct IRB-approved human studies with nearly 1000 participants and evaluate four methods that represent the diversity of computer vision interpretability works: GradCAM, BagNet, ProtoPNet, and ProtoTree. Our results suggest that explanations engender human trust, even for incorrect predictions, yet are not distinct enough for users to distinguish between correct and incorrect predictions. We open-source HIVE to enable future studies and encourage more human-centered approaches to interpretability research.
Plugin estimators for selective classification with out-of-distribution detection
Real-world classifiers can benefit from the option of abstaining from predicting on samples where they have low confidence. Such abstention is particularly useful on samples which are close to the learned decision boundary, or which are outliers with respect to the training sample. These settings have been the subject of extensive but disjoint study in the selective classification (SC) and out-of-distribution (OOD) detection literature. Recent work on selective classification with OOD detection (SCOD) has argued for the unified study of these problems; however, the formal underpinnings of this problem are still nascent, and existing techniques are heuristic in nature. In this paper, we propose new plugin estimators for SCOD that are theoretically grounded, effective, and generalise existing approaches from the SC and OOD detection literature. In the course of our analysis, we formally explicate how na\"{i}ve use of existing SC and OOD detection baselines may be inadequate for SCOD. We empirically demonstrate that our approaches yields competitive SC and OOD detection performance compared to baselines from both literatures.
Towards Trustable Skin Cancer Diagnosis via Rewriting Model's Decision
Deep neural networks have demonstrated promising performance on image recognition tasks. However, they may heavily rely on confounding factors, using irrelevant artifacts or bias within the dataset as the cue to improve performance. When a model performs decision-making based on these spurious correlations, it can become untrustable and lead to catastrophic outcomes when deployed in the real-world scene. In this paper, we explore and try to solve this problem in the context of skin cancer diagnosis. We introduce a human-in-the-loop framework in the model training process such that users can observe and correct the model's decision logic when confounding behaviors happen. Specifically, our method can automatically discover confounding factors by analyzing the co-occurrence behavior of the samples. It is capable of learning confounding concepts using easily obtained concept exemplars. By mapping the black-box model's feature representation onto an explainable concept space, human users can interpret the concept and intervene via first order-logic instruction. We systematically evaluate our method on our newly crafted, well-controlled skin lesion dataset and several public skin lesion datasets. Experiments show that our method can effectively detect and remove confounding factors from datasets without any prior knowledge about the category distribution and does not require fully annotated concept labels. We also show that our method enables the model to focus on clinical-related concepts, improving the model's performance and trustworthiness during model inference.
CRAFT: Concept Recursive Activation FacTorization for Explainability
Attribution methods, which employ heatmaps to identify the most influential regions of an image that impact model decisions, have gained widespread popularity as a type of explainability method. However, recent research has exposed the limited practical value of these methods, attributed in part to their narrow focus on the most prominent regions of an image -- revealing "where" the model looks, but failing to elucidate "what" the model sees in those areas. In this work, we try to fill in this gap with CRAFT -- a novel approach to identify both "what" and "where" by generating concept-based explanations. We introduce 3 new ingredients to the automatic concept extraction literature: (i) a recursive strategy to detect and decompose concepts across layers, (ii) a novel method for a more faithful estimation of concept importance using Sobol indices, and (iii) the use of implicit differentiation to unlock Concept Attribution Maps. We conduct both human and computer vision experiments to demonstrate the benefits of the proposed approach. We show that the proposed concept importance estimation technique is more faithful to the model than previous methods. When evaluating the usefulness of the method for human experimenters on a human-centered utility benchmark, we find that our approach significantly improves on two of the three test scenarios. Our code is freely available at github.com/deel-ai/Craft.
Do Large Language Models Learn Human-Like Strategic Preferences?
In this paper, we evaluate whether LLMs learn to make human-like preference judgements in strategic scenarios as compared with known empirical results. Solar and Mistral are shown to exhibit stable value-based preference consistent with humans and exhibit human-like preference for cooperation in the prisoner's dilemma (including stake-size effect) and traveler's dilemma (including penalty-size effect). We establish a relationship between model size, value-based preference, and superficiality. Finally, results here show that models tending to be less brittle have relied on sliding window attention suggesting a potential link. Additionally, we contribute a novel method for constructing preference relations from arbitrary LLMs and support for a hypothesis regarding human behavior in the traveler's dilemma.
FinChart-Bench: Benchmarking Financial Chart Comprehension in Vision-Language Models
Large vision-language models (LVLMs) have made significant progress in chart understanding. However, financial charts, characterized by complex temporal structures and domain-specific terminology, remain notably underexplored. We introduce FinChart-Bench, the first benchmark specifically focused on real-world financial charts. FinChart-Bench comprises 1,200 financial chart images collected from 2015 to 2024, each annotated with True/False (TF), Multiple Choice (MC), and Question Answering (QA) questions, totaling 7,016 questions. We conduct a comprehensive evaluation of 25 state-of-the-art LVLMs on FinChart-Bench. Our evaluation reveals critical insights: (1) the performance gap between open-source and closed-source models is narrowing, (2) performance degradation occurs in upgraded models within families, (3) many models struggle with instruction following, (4) both advanced models show significant limitations in spatial reasoning abilities, and (5) current LVLMs are not reliable enough to serve as automated evaluators. These findings highlight important limitations in current LVLM capabilities for financial chart understanding. The FinChart-Bench dataset is available at https://huggingface.co/datasets/Tizzzzy/FinChart-Bench.
Chat2VIS: Generating Data Visualisations via Natural Language using ChatGPT, Codex and GPT-3 Large Language Models
The field of data visualisation has long aimed to devise solutions for generating visualisations directly from natural language text. Research in Natural Language Interfaces (NLIs) has contributed towards the development of such techniques. However, the implementation of workable NLIs has always been challenging due to the inherent ambiguity of natural language, as well as in consequence of unclear and poorly written user queries which pose problems for existing language models in discerning user intent. Instead of pursuing the usual path of developing new iterations of language models, this study uniquely proposes leveraging the advancements in pre-trained large language models (LLMs) such as ChatGPT and GPT-3 to convert free-form natural language directly into code for appropriate visualisations. This paper presents a novel system, Chat2VIS, which takes advantage of the capabilities of LLMs and demonstrates how, with effective prompt engineering, the complex problem of language understanding can be solved more efficiently, resulting in simpler and more accurate end-to-end solutions than prior approaches. Chat2VIS shows that LLMs together with the proposed prompts offer a reliable approach to rendering visualisations from natural language queries, even when queries are highly misspecified and underspecified. This solution also presents a significant reduction in costs for the development of NLI systems, while attaining greater visualisation inference abilities compared to traditional NLP approaches that use hand-crafted grammar rules and tailored models. This study also presents how LLM prompts can be constructed in a way that preserves data security and privacy while being generalisable to different datasets. This work compares the performance of GPT-3, Codex and ChatGPT across a number of case studies and contrasts the performances with prior studies.
Expand VSR Benchmark for VLLM to Expertize in Spatial Rules
Distinguishing spatial relations is a basic part of human cognition which requires fine-grained perception on cross-instance. Although benchmarks like MME, MMBench and SEED comprehensively have evaluated various capabilities which already include visual spatial reasoning(VSR). There is still a lack of sufficient quantity and quality evaluation and optimization datasets for Vision Large Language Models(VLLMs) specifically targeting visual positional reasoning. To handle this, we first diagnosed current VLLMs with the VSR dataset and proposed a unified test set. We found current VLLMs to exhibit a contradiction of over-sensitivity to language instructions and under-sensitivity to visual positional information. By expanding the original benchmark from two aspects of tunning data and model structure, we mitigated this phenomenon. To our knowledge, we expanded spatially positioned image data controllably using diffusion models for the first time and integrated original visual encoding(CLIP) with other 3 powerful visual encoders(SigLIP, SAM and DINO). After conducting combination experiments on scaling data and models, we obtained a VLLM VSR Expert(VSRE) that not only generalizes better to different instructions but also accurately distinguishes differences in visual positional information. VSRE achieved over a 27\% increase in accuracy on the VSR test set. It becomes a performant VLLM on the position reasoning of both the VSR dataset and relevant subsets of other evaluation benchmarks. We open-sourced the expanded model with data and Appendix at https://github.com/peijin360/vsre and hope it will accelerate advancements in VLLM on VSR learning.
The Linear Representation Hypothesis and the Geometry of Large Language Models
Informally, the 'linear representation hypothesis' is the idea that high-level concepts are represented linearly as directions in some representation space. In this paper, we address two closely related questions: What does "linear representation" actually mean? And, how do we make sense of geometric notions (e.g., cosine similarity or projection) in the representation space? To answer these, we use the language of counterfactuals to give two formalizations of "linear representation", one in the output (word) representation space, and one in the input (sentence) space. We then prove these connect to linear probing and model steering, respectively. To make sense of geometric notions, we use the formalization to identify a particular (non-Euclidean) inner product that respects language structure in a sense we make precise. Using this causal inner product, we show how to unify all notions of linear representation. In particular, this allows the construction of probes and steering vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the existence of linear representations of concepts, the connection to interpretation and control, and the fundamental role of the choice of inner product.
Interpreting Black-box Machine Learning Models for High Dimensional Datasets
Deep neural networks (DNNs) have been shown to outperform traditional machine learning algorithms in a broad variety of application domains due to their effectiveness in modeling complex problems and handling high-dimensional datasets. Many real-life datasets, however, are of increasingly high dimensionality, where a large number of features may be irrelevant for both supervised and unsupervised learning tasks. The inclusion of such features would not only introduce unwanted noise but also increase computational complexity. Furthermore, due to high non-linearity and dependency among a large number of features, DNN models tend to be unavoidably opaque and perceived as black-box methods because of their not well-understood internal functioning. Their algorithmic complexity is often simply beyond the capacities of humans to understand the interplay among myriads of hyperparameters. A well-interpretable model can identify statistically significant features and explain the way they affect the model's outcome. In this paper, we propose an efficient method to improve the interpretability of black-box models for classification tasks in the case of high-dimensional datasets. First, we train a black-box model on a high-dimensional dataset to learn the embeddings on which the classification is performed. To decompose the inner working principles of the black-box model and to identify top-k important features, we employ different probing and perturbing techniques. We then approximate the behavior of the black-box model by means of an interpretable surrogate model on the top-k feature space. Finally, we derive decision rules and local explanations from the surrogate model to explain individual decisions. Our approach outperforms state-of-the-art methods like TabNet and XGboost when tested on different datasets with varying dimensionality between 50 and 20,000 w.r.t metrics and explainability.
GRIT: Teaching MLLMs to Think with Images
Recent studies have demonstrated the efficacy of using Reinforcement Learning (RL) in building reasoning models that articulate chains of thoughts prior to producing final answers. However, despite ongoing advances that aim at enabling reasoning for vision-language tasks, existing open-source visual reasoning models typically generate reasoning content with pure natural language, lacking explicit integration of visual information. This limits their ability to produce clearly articulated and visually grounded reasoning chains. To this end, we propose Grounded Reasoning with Images and Texts (GRIT), a novel method for training MLLMs to think with images. GRIT introduces a grounded reasoning paradigm, in which models generate reasoning chains that interleave natural language and explicit bounding box coordinates. These coordinates point to regions of the input image that the model consults during its reasoning process. Additionally, GRIT is equipped with a reinforcement learning approach, GRPO-GR, built upon the GRPO algorithm. GRPO-GR employs robust rewards focused on the final answer accuracy and format of the grounded reasoning output, which eliminates the need for data with reasoning chain annotations or explicit bounding box labels. As a result, GRIT achieves exceptional data efficiency, requiring as few as 20 image-question-answer triplets from existing datasets. Comprehensive evaluations demonstrate that GRIT effectively trains MLLMs to produce coherent and visually grounded reasoning chains, showing a successful unification of reasoning and grounding abilities.
V-LoL: A Diagnostic Dataset for Visual Logical Learning
Despite the successes of recent developments in visual AI, different shortcomings still exist; from missing exact logical reasoning, to abstract generalization abilities, to understanding complex and noisy scenes. Unfortunately, existing benchmarks, were not designed to capture more than a few of these aspects. Whereas deep learning datasets focus on visually complex data but simple visual reasoning tasks, inductive logic datasets involve complex logical learning tasks, however, lack the visual component. To address this, we propose the visual logical learning dataset, V-LoL, that seamlessly combines visual and logical challenges. Notably, we introduce the first instantiation of V-LoL, V-LoL-Trains, -- a visual rendition of a classic benchmark in symbolic AI, the Michalski train problem. By incorporating intricate visual scenes and flexible logical reasoning tasks within a versatile framework, V-LoL-Trains provides a platform for investigating a wide range of visual logical learning challenges. We evaluate a variety of AI systems including traditional symbolic AI, neural AI, as well as neuro-symbolic AI. Our evaluations demonstrate that even state-of-the-art AI faces difficulties in dealing with visual logical learning challenges, highlighting unique advantages and limitations specific to each methodology. Overall, V-LoL opens up new avenues for understanding and enhancing current abilities in visual logical learning for AI systems.
Computational Approaches for App-to-App Retrieval and Design Consistency Check
Extracting semantic representations from mobile user interfaces (UI) and using the representations for designers' decision-making processes have shown the potential to be effective computational design support tools. Current approaches rely on machine learning models trained on small-sized mobile UI datasets to extract semantic vectors and use screenshot-to-screenshot comparison to retrieve similar-looking UIs given query screenshots. However, the usability of these methods is limited because they are often not open-sourced and have complex training pipelines for practitioners to follow, and are unable to perform screenshot set-to-set (i.e., app-to-app) retrieval. To this end, we (1) employ visual models trained with large web-scale images and test whether they could extract a UI representation in a zero-shot way and outperform existing specialized models, and (2) use mathematically founded methods to enable app-to-app retrieval and design consistency analysis. Our experiments show that our methods not only improve upon previous retrieval models but also enable multiple new applications.
ChartCheck: An Evidence-Based Fact-Checking Dataset over Real-World Chart Images
Data visualizations are common in the real-world. We often use them in data sources such as scientific documents, news articles, textbooks, and social media to summarize key information in a visual form. Charts can also mislead its audience by communicating false information or biasing them towards a specific agenda. Verifying claims against charts is not a straightforward process. It requires analyzing both the text and visual components of the chart, considering characteristics such as colors, positions, and orientations. Moreover, to determine if a claim is supported by the chart content often requires different types of reasoning. To address this challenge, we introduce ChartCheck, a novel dataset for fact-checking against chart images. ChartCheck is the first large-scale dataset with 1.7k real-world charts and 10.5k human-written claims and explanations. We evaluated the dataset on state-of-the-art models and achieved an accuracy of 73.9 in the finetuned setting. Additionally, we identified chart characteristics and reasoning types that challenge the models.
Neural Circuit Diagrams: Robust Diagrams for the Communication, Implementation, and Analysis of Deep Learning Architectures
Diagrams matter. Unfortunately, the deep learning community has no standard method for diagramming architectures. The current combination of linear algebra notation and ad-hoc diagrams fails to offer the necessary precision to understand architectures in all their detail. However, this detail is critical for faithful implementation, mathematical analysis, further innovation, and ethical assurances. I present neural circuit diagrams, a graphical language tailored to the needs of communicating deep learning architectures. Neural circuit diagrams naturally keep track of the changing arrangement of data, precisely show how operations are broadcast over axes, and display the critical parallel behavior of linear operations. A lingering issue with existing diagramming methods is the inability to simultaneously express the detail of axes and the free arrangement of data, which neural circuit diagrams solve. Their compositional structure is analogous to code, creating a close correspondence between diagrams and implementation. In this work, I introduce neural circuit diagrams for an audience of machine learning researchers. After introducing neural circuit diagrams, I cover a host of architectures to show their utility and breed familiarity. This includes the transformer architecture, convolution (and its difficult-to-explain extensions), residual networks, the U-Net, and the vision transformer. I include a Jupyter notebook that provides evidence for the close correspondence between diagrams and code. Finally, I examine backpropagation using neural circuit diagrams. I show their utility in providing mathematical insight and analyzing algorithms' time and space complexities.
Self-supervised Pretraining for Decision Foundation Model: Formulation, Pipeline and Challenges
Decision-making is a dynamic process requiring perception, memory, and reasoning to make choices and find optimal policies. Traditional approaches to decision-making suffer from sample efficiency and generalization, while large-scale self-supervised pretraining has enabled fast adaptation with fine-tuning or few-shot learning in language and vision. We thus argue to integrate knowledge acquired from generic large-scale self-supervised pretraining into downstream decision-making problems. We propose Pretrain-Then-Adapt pipeline and survey recent work on data collection, pretraining objectives and adaptation strategies for decision-making pretraining and downstream inference. Finally, we identify critical challenges and future directions for developing decision foundation model with the help of generic and flexible self-supervised pretraining.
Mastering Spatial Graph Prediction of Road Networks
Accurately predicting road networks from satellite images requires a global understanding of the network topology. We propose to capture such high-level information by introducing a graph-based framework that simulates the addition of sequences of graph edges using a reinforcement learning (RL) approach. In particular, given a partially generated graph associated with a satellite image, an RL agent nominates modifications that maximize a cumulative reward. As opposed to standard supervised techniques that tend to be more restricted to commonly used surrogate losses, these rewards can be based on various complex, potentially non-continuous, metrics of interest. This yields more power and flexibility to encode problem-dependent knowledge. Empirical results on several benchmark datasets demonstrate enhanced performance and increased high-level reasoning about the graph topology when using a tree-based search. We further highlight the superiority of our approach under substantial occlusions by introducing a new synthetic benchmark dataset for this task.
Zebra-CoT: A Dataset for Interleaved Vision Language Reasoning
Humans often use visual aids, for example diagrams or sketches, when solving complex problems. Training multimodal models to do the same, known as Visual Chain of Thought (Visual CoT), is challenging due to: (1) poor off-the-shelf visual CoT performance, which hinders reinforcement learning, and (2) the lack of high-quality visual CoT training data. We introduce Zebra-CoT, a diverse large-scale dataset with 182,384 samples, containing logically coherent interleaved text-image reasoning traces. We focus on four categories of tasks where sketching or visual reasoning is especially natural, spanning scientific questions such as geometry, physics, and algorithms; 2D visual reasoning tasks like visual search and jigsaw puzzles; 3D reasoning tasks including 3D multi-hop inference, embodied and robot planning; visual logic problems and strategic games like chess. Fine-tuning the Anole-7B model on the Zebra-CoT training corpus results in an improvement of +12% in our test-set accuracy and yields up to +13% performance gain on standard VLM benchmark evaluations. Fine-tuning Bagel-7B yields a model that generates high-quality interleaved visual reasoning chains, underscoring Zebra-CoT's effectiveness for developing multimodal reasoning abilities. We open-source our dataset and models to support development and evaluation of visual CoT.
VIVA: A Benchmark for Vision-Grounded Decision-Making with Human Values
Large vision language models (VLMs) have demonstrated significant potential for integration into daily life, making it crucial for them to incorporate human values when making decisions in real-world situations. This paper introduces VIVA, a benchmark for VIsion-grounded decision-making driven by human VAlues. While most large VLMs focus on physical-level skills, our work is the first to examine their multimodal capabilities in leveraging human values to make decisions under a vision-depicted situation. VIVA contains 1,240 images depicting diverse real-world situations and the manually annotated decisions grounded in them. Given an image there, the model should select the most appropriate action to address the situation and provide the relevant human values and reason underlying the decision. Extensive experiments based on VIVA show the limitation of VLMs in using human values to make multimodal decisions. Further analyses indicate the potential benefits of exploiting action consequences and predicted human values.
OmniSpatial: Towards Comprehensive Spatial Reasoning Benchmark for Vision Language Models
Spatial reasoning is a key aspect of cognitive psychology and remains a major bottleneck for current vision-language models (VLMs). While extensive research has aimed to evaluate or improve VLMs' understanding of basic spatial relations, such as distinguishing left from right, near from far, and object counting, these tasks represent only the most fundamental level of spatial reasoning. In this work, we introduce OmniSpatial, a comprehensive and challenging benchmark for spatial reasoning, grounded in cognitive psychology. OmniSpatial covers four major categories: dynamic reasoning, complex spatial logic, spatial interaction, and perspective-taking, with 50 fine-grained subcategories. Through Internet data crawling and careful manual annotation, we construct over 1.5K question-answer pairs. Extensive experiments show that both open- and closed-source VLMs, as well as existing reasoning and spatial understanding models, exhibit significant limitations in comprehensive spatial understanding. We further analyze failure cases and propose potential directions for future research.
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
This article presents the prediction difference analysis method for visualizing the response of a deep neural network to a specific input. When classifying images, the method highlights areas in a given input image that provide evidence for or against a certain class. It overcomes several shortcoming of previous methods and provides great additional insight into the decision making process of classifiers. Making neural network decisions interpretable through visualization is important both to improve models and to accelerate the adoption of black-box classifiers in application areas such as medicine. We illustrate the method in experiments on natural images (ImageNet data), as well as medical images (MRI brain scans).
Explainable Data-Driven Optimization: From Context to Decision and Back Again
Data-driven optimization uses contextual information and machine learning algorithms to find solutions to decision problems with uncertain parameters. While a vast body of work is dedicated to interpreting machine learning models in the classification setting, explaining decision pipelines involving learning algorithms remains unaddressed. This lack of interpretability can block the adoption of data-driven solutions as practitioners may not understand or trust the recommended decisions. We bridge this gap by introducing a counterfactual explanation methodology tailored to explain solutions to data-driven problems. We introduce two classes of explanations and develop methods to find nearest explanations of random forest and nearest-neighbor predictors. We demonstrate our approach by explaining key problems in operations management such as inventory management and routing.
Interactive Medical Image Analysis with Concept-based Similarity Reasoning
The ability to interpret and intervene model decisions is important for the adoption of computer-aided diagnosis methods in clinical workflows. Recent concept-based methods link the model predictions with interpretable concepts and modify their activation scores to interact with the model. However, these concepts are at the image level, which hinders the model from pinpointing the exact patches the concepts are activated. Alternatively, prototype-based methods learn representations from training image patches and compare these with test image patches, using the similarity scores for final class prediction. However, interpreting the underlying concepts of these patches can be challenging and often necessitates post-hoc guesswork. To address this issue, this paper introduces the novel Concept-based Similarity Reasoning network (CSR), which offers (i) patch-level prototype with intrinsic concept interpretation, and (ii) spatial interactivity. First, the proposed CSR provides localized explanation by grounding prototypes of each concept on image regions. Second, our model introduces novel spatial-level interaction, allowing doctors to engage directly with specific image areas, making it an intuitive and transparent tool for medical imaging. CSR improves upon prior state-of-the-art interpretable methods by up to 4.5\% across three biomedical datasets. Our code is released at https://github.com/tadeephuy/InteractCSR.
Look, Remember and Reason: Visual Reasoning with Grounded Rationales
Large language models have recently shown human level performance on a variety of reasoning tasks. However, the ability of these models to perform complex visual reasoning has not been studied in detail yet. A key challenge in many visual reasoning tasks is that the visual information needs to be tightly integrated in the reasoning process. We propose to address this challenge by drawing inspiration from human visual problem solving which depends on a variety of low-level visual capabilities. It can often be cast as the three step-process of ``Look, Remember, Reason'': visual information is incrementally extracted using low-level visual routines in a step-by-step fashion until a final answer is reached. We follow the same paradigm to enable existing large language models, with minimal changes to the architecture, to solve visual reasoning problems. To this end, we introduce rationales over the visual input that allow us to integrate low-level visual capabilities, such as object recognition and tracking, as surrogate tasks. We show competitive performance on diverse visual reasoning tasks from the CLEVR, CATER, and ACRE datasets over state-of-the-art models designed specifically for these tasks.
Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning
Spatial reasoning plays a vital role in both human cognition and machine intelligence, prompting new research into language models' (LMs) capabilities in this regard. However, existing benchmarks reveal shortcomings in evaluating qualitative spatial reasoning (QSR). These benchmarks typically present oversimplified scenarios or unclear natural language descriptions, hindering effective evaluation. We present a novel benchmark for assessing QSR in LMs, which is grounded in realistic 3D simulation data, offering a series of diverse room layouts with various objects and their spatial relationships. This approach provides a more detailed and context-rich narrative for spatial reasoning evaluation, diverging from traditional, toy-task-oriented scenarios. Our benchmark encompasses a broad spectrum of qualitative spatial relationships, including topological, directional, and distance relations. These are presented with different viewing points, varied granularities, and density of relation constraints to mimic real-world complexities. A key contribution is our logic-based consistency-checking tool, which enables the assessment of multiple plausible solutions, aligning with real-world scenarios where spatial relationships are often open to interpretation. Our benchmark evaluation of advanced LMs reveals their strengths and limitations in spatial reasoning. They face difficulties with multi-hop spatial reasoning and interpreting a mix of different view descriptions, pointing to areas for future improvement.
Cascading Biases: Investigating the Effect of Heuristic Annotation Strategies on Data and Models
Cognitive psychologists have documented that humans use cognitive heuristics, or mental shortcuts, to make quick decisions while expending less effort. While performing annotation work on crowdsourcing platforms, we hypothesize that such heuristic use among annotators cascades on to data quality and model robustness. In this work, we study cognitive heuristic use in the context of annotating multiple-choice reading comprehension datasets. We propose tracking annotator heuristic traces, where we tangibly measure low-effort annotation strategies that could indicate usage of various cognitive heuristics. We find evidence that annotators might be using multiple such heuristics, based on correlations with a battery of psychological tests. Importantly, heuristic use among annotators determines data quality along several dimensions: (1) known biased models, such as partial input models, more easily solve examples authored by annotators that rate highly on heuristic use, (2) models trained on annotators scoring highly on heuristic use don't generalize as well, and (3) heuristic-seeking annotators tend to create qualitatively less challenging examples. Our findings suggest that tracking heuristic usage among annotators can potentially help with collecting challenging datasets and diagnosing model biases.
Generating Pedagogically Meaningful Visuals for Math Word Problems: A New Benchmark and Analysis of Text-to-Image Models
Visuals are valuable tools for teaching math word problems (MWPs), helping young learners interpret textual descriptions into mathematical expressions before solving them. However, creating such visuals is labor-intensive and there is a lack of automated methods to support this process. In this paper, we present Math2Visual, an automatic framework for generating pedagogically meaningful visuals from MWP text descriptions. Math2Visual leverages a pre-defined visual language and a design space grounded in interviews with math teachers, to illustrate the core mathematical relationships in MWPs. Using Math2Visual, we construct an annotated dataset of 1,903 visuals and evaluate Text-to-Image (TTI) models for their ability to generate visuals that align with our design. We further fine-tune several TTI models with our dataset, demonstrating improvements in educational visual generation. Our work establishes a new benchmark for automated generation of pedagogically meaningful visuals and offers insights into key challenges in producing multimodal educational content, such as the misrepresentation of mathematical relationships and the omission of essential visual elements.
JuStRank: Benchmarking LLM Judges for System Ranking
Given the rapid progress of generative AI, there is a pressing need to systematically compare and choose between the numerous models and configurations available. The scale and versatility of such evaluations make the use of LLM-based judges a compelling solution for this challenge. Crucially, this approach requires first to validate the quality of the LLM judge itself. Previous work has focused on instance-based assessment of LLM judges, where a judge is evaluated over a set of responses, or response pairs, while being agnostic to their source systems. We argue that this setting overlooks critical factors affecting system-level ranking, such as a judge's positive or negative bias towards certain systems. To address this gap, we conduct the first large-scale study of LLM judges as system rankers. System scores are generated by aggregating judgment scores over multiple system outputs, and the judge's quality is assessed by comparing the resulting system ranking to a human-based ranking. Beyond overall judge assessment, our analysis provides a fine-grained characterization of judge behavior, including their decisiveness and bias.
Overlooked factors in concept-based explanations: Dataset choice, concept learnability, and human capability
Concept-based interpretability methods aim to explain deep neural network model predictions using a predefined set of semantic concepts. These methods evaluate a trained model on a new, "probe" dataset and correlate model predictions with the visual concepts labeled in that dataset. Despite their popularity, they suffer from limitations that are not well-understood and articulated by the literature. In this work, we analyze three commonly overlooked factors in concept-based explanations. First, the choice of the probe dataset has a profound impact on the generated explanations. Our analysis reveals that different probe datasets may lead to very different explanations, and suggests that the explanations are not generalizable outside the probe dataset. Second, we find that concepts in the probe dataset are often less salient and harder to learn than the classes they claim to explain, calling into question the correctness of the explanations. We argue that only visually salient concepts should be used in concept-based explanations. Finally, while existing methods use hundreds or even thousands of concepts, our human studies reveal a much stricter upper bound of 32 concepts or less, beyond which the explanations are much less practically useful. We make suggestions for future development and analysis of concept-based interpretability methods. Code for our analysis and user interface can be found at https://github.com/princetonvisualai/OverlookedFactors
CaT-BENCH: Benchmarking Language Model Understanding of Causal and Temporal Dependencies in Plans
Understanding the abilities of LLMs to reason about natural language plans, such as instructional text and recipes, is critical to reliably using them in decision-making systems. A fundamental aspect of plans is the temporal order in which their steps needs to be executed, which reflects the underlying causal dependencies between them. We introduce CaT-Bench, a benchmark of Step Order Prediction questions, which test whether a step must necessarily occur before or after another in cooking recipe plans. We use this to evaluate how well frontier LLMs understand causal and temporal dependencies. We find that SOTA LLMs are underwhelming (best zero-shot is only 0.59 in F1), and are biased towards predicting dependence more often, perhaps relying on temporal order of steps as a heuristic. While prompting for explanations and using few-shot examples improve performance, the best F1 result is only 0.73. Further, human evaluation of explanations along with answer correctness show that, on average, humans do not agree with model reasoning. Surprisingly, we also find that explaining after answering leads to better performance than normal chain-of-thought prompting, and LLM answers are not consistent across questions about the same step pairs. Overall, results show that LLMs' ability to detect dependence between steps has significant room for improvement.
SEAGraph: Unveiling the Whole Story of Paper Review Comments
Peer review, as a cornerstone of scientific research, ensures the integrity and quality of scholarly work by providing authors with objective feedback for refinement. However, in the traditional peer review process, authors often receive vague or insufficiently detailed feedback, which provides limited assistance and leads to a more time-consuming review cycle. If authors can identify some specific weaknesses in their paper, they can not only address the reviewer's concerns but also improve their work. This raises the critical question of how to enhance authors' comprehension of review comments. In this paper, we present SEAGraph, a novel framework developed to clarify review comments by uncovering the underlying intentions behind them. We construct two types of graphs for each paper: the semantic mind graph, which captures the author's thought process, and the hierarchical background graph, which delineates the research domains related to the paper. A retrieval method is then designed to extract relevant content from both graphs, facilitating coherent explanations for the review comments. Extensive experiments show that SEAGraph excels in review comment understanding tasks, offering significant benefits to authors.
Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion
Diffusion-based generative models' impressive ability to create convincing images has captured global attention. However, their complex internal structures and operations often make them difficult for non-experts to understand. We present Diffusion Explainer, the first interactive visualization tool that explains how Stable Diffusion transforms text prompts into images. Diffusion Explainer tightly integrates a visual overview of Stable Diffusion's complex components with detailed explanations of their underlying operations, enabling users to fluidly transition between multiple levels of abstraction through animations and interactive elements. By comparing the evolutions of image representations guided by two related text prompts over refinement timesteps, users can discover the impact of prompts on image generation. Diffusion Explainer runs locally in users' web browsers without the need for installation or specialized hardware, broadening the public's education access to modern AI techniques. Our open-sourced tool is available at: https://poloclub.github.io/diffusion-explainer/.
PROC2PDDL: Open-Domain Planning Representations from Texts
Planning in a text-based environment continues to be a major challenge for AI systems. Recent approaches have used language models to predict a planning domain definition (e.g., PDDL) but have only been evaluated in closed-domain simulated environments. To address this, we present Proc2PDDL , the first dataset containing open-domain procedural texts paired with expert-annotated PDDL representations. Using this dataset, we evaluate state-of-the-art models on defining the preconditions and effects of actions. We show that Proc2PDDL is highly challenging, with GPT-3.5's success rate close to 0% and GPT-4's around 35%. Our analysis shows both syntactic and semantic errors, indicating LMs' deficiency in both generating domain-specific prgorams and reasoning about events. We hope this analysis and dataset helps future progress towards integrating the best of LMs and formal planning.
Interpretable Neural-Symbolic Concept Reasoning
Deep learning methods are highly accurate, yet their opaque decision process prevents them from earning full human trust. Concept-based models aim to address this issue by learning tasks based on a set of human-understandable concepts. However, state-of-the-art concept-based models rely on high-dimensional concept embedding representations which lack a clear semantic meaning, thus questioning the interpretability of their decision process. To overcome this limitation, we propose the Deep Concept Reasoner (DCR), the first interpretable concept-based model that builds upon concept embeddings. In DCR, neural networks do not make task predictions directly, but they build syntactic rule structures using concept embeddings. DCR then executes these rules on meaningful concept truth degrees to provide a final interpretable and semantically-consistent prediction in a differentiable manner. Our experiments show that DCR: (i) improves up to +25% w.r.t. state-of-the-art interpretable concept-based models on challenging benchmarks (ii) discovers meaningful logic rules matching known ground truths even in the absence of concept supervision during training, and (iii), facilitates the generation of counterfactual examples providing the learnt rules as guidance.
Dense Extreme Inception Network for Edge Detection
<<<This is a pre-acceptance version, please, go through Pattern Recognition Journal on Sciencedirect to read the final version>>>. Edge detection is the basis of many computer vision applications. State of the art predominantly relies on deep learning with two decisive factors: dataset content and network's architecture. Most of the publicly available datasets are not curated for edge detection tasks. Here, we offer a solution to this constraint. First, we argue that edges, contours and boundaries, despite their overlaps, are three distinct visual features requiring separate benchmark datasets. To this end, we present a new dataset of edges. Second, we propose a novel architecture, termed Dense Extreme Inception Network for Edge Detection (DexiNed), that can be trained from scratch without any pre-trained weights. DexiNed outperforms other algorithms in the presented dataset. It also generalizes well to other datasets without any fine-tuning. The higher quality of DexiNed is also perceptually evident thanks to the sharper and finer edges it outputs.
Prompt4Vis: Prompting Large Language Models with Example Mining and Schema Filtering for Tabular Data Visualization
Data visualization (DV) systems are increasingly recognized for their profound capability to uncover insights from vast datasets, gaining attention across both industry and academia. Crafting data queries is an essential process within certain declarative visualization languages (DVLs, e.g., Vega-Lite, EChart.). The evolution of natural language processing (NLP) technologies has streamlined the use of natural language interfaces to visualize tabular data, offering a more accessible and intuitive user experience. However, current methods for converting natural language questions into data visualization queries, such as Seq2Vis, ncNet, and RGVisNet, despite utilizing complex neural network architectures, still fall short of expectations and have great room for improvement. Large language models (LLMs) such as ChatGPT and GPT-4, have established new benchmarks in a variety of NLP tasks, fundamentally altering the landscape of the field. Inspired by these advancements, we introduce a novel framework, Prompt4Vis, leveraging LLMs and in-context learning to enhance the performance of generating data visualization from natural language. Prompt4Vis comprises two key components: (1) a multi-objective example mining module, designed to find out the truly effective examples that strengthen the LLM's in-context learning capabilities for text-to-vis; (2) a schema filtering module, which is proposed to simplify the schema of the database. Extensive experiments through 5-fold cross-validation on the NVBench dataset demonstrate the superiority of Prompt4Vis, which notably surpasses the state-of-the-art (SOTA) RGVisNet by approximately 35.9% and 71.3% on dev and test sets, respectively. To the best of our knowledge, Prompt4Vis is the first work that introduces in-context learning into the text-to-vis for generating data visualization queries.
RouteExplainer: An Explanation Framework for Vehicle Routing Problem
The Vehicle Routing Problem (VRP) is a widely studied combinatorial optimization problem and has been applied to various practical problems. While the explainability for VRP is significant for improving the reliability and interactivity in practical VRP applications, it remains unexplored. In this paper, we propose RouteExplainer, a post-hoc explanation framework that explains the influence of each edge in a generated route. Our framework realizes this by rethinking a route as the sequence of actions and extending counterfactual explanations based on the action influence model to VRP. To enhance the explanation, we additionally propose an edge classifier that infers the intentions of each edge, a loss function to train the edge classifier, and explanation-text generation by Large Language Models (LLMs). We quantitatively evaluate our edge classifier on four different VRPs. The results demonstrate its rapid computation while maintaining reasonable accuracy, thereby highlighting its potential for deployment in practical applications. Moreover, on the subject of a tourist route, we qualitatively evaluate explanations generated by our framework. This evaluation not only validates our framework but also shows the synergy between explanation frameworks and LLMs. See https://ntt-dkiku.github.io/xai-vrp for our code, datasets, models, and demo.
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Machine learning models routinely automate decisions in applications like lending and hiring. In such settings, consumer protection rules require companies that deploy models to explain predictions to decision subjects. These rules are motivated, in part, by the belief that explanations can promote recourse by revealing information that individuals can use to contest or improve their outcomes. In practice, many companies comply with these rules by providing individuals with a list of the most important features for their prediction, which they identify based on feature importance scores from feature attribution methods such as SHAP or LIME. In this work, we show how these practices can undermine consumers by highlighting features that would not lead to an improved outcome and by explaining predictions that cannot be changed. We propose to address these issues by highlighting features based on their responsiveness score -- i.e., the probability that an individual can attain a target prediction by changing a specific feature. We develop efficient methods to compute responsiveness scores for any model and any dataset. We conduct an extensive empirical study on the responsiveness of explanations in lending. Our results show that standard practices in consumer finance can backfire by presenting consumers with reasons without recourse, and demonstrate how our approach improves consumer protection by highlighting responsive features and identifying fixed predictions.
ViC-Bench: Benchmarking Visual-Interleaved Chain-of-Thought Capability in MLLMs with Free-Style Intermediate State Representations
Visual-Interleaved Chain-of-Thought (VI-CoT) enables MLLMs to continually update their understanding and decisions based on step-wise intermediate visual states (IVS), much like a human would, which demonstrates impressive success in various tasks, thereby leading to emerged advancements in related benchmarks. Despite promising progress, current benchmarks provide models with relatively fixed IVS, rather than free-style IVS, whch might forcibly distort the original thinking trajectories, failing to evaluate their intrinsic reasoning capabilities. More importantly, existing benchmarks neglect to systematically explore the impact factors that IVS would impart to untamed reasoning performance. To tackle above gaps, we introduce a specialized benchmark termed ViC-Bench, consisting of four representive tasks: maze navigation, jigsaw puzzle, embodied long-horizon planning, and complex counting, where each task has dedicated free-style IVS generation pipeline supporting function calls. To systematically examine VI-CoT capability, we propose a thorough evaluation suite incorporating a progressive three-stage strategy with targeted new metrics. Besides, we establish Incremental Prompting Information Injection (IPII) strategy to ablatively explore the prompting factors for VI-CoT. We extensively conduct evaluations for 18 advanced MLLMs, revealing key insights into their VI-CoT capability. Our proposed benchmark is publicly open at Huggingface.
Show or Tell? A Benchmark To Evaluate Visual and Textual Prompts in Semantic Segmentation
Prompt engineering has shown remarkable success with large language models, yet its systematic exploration in computer vision remains limited. In semantic segmentation, both textual and visual prompts offer distinct advantages: textual prompts through open-vocabulary methods allow segmentation of arbitrary categories, while visual reference prompts provide intuitive reference examples. However, existing benchmarks evaluate these modalities in isolation, without direct comparison under identical conditions. We present Show or Tell (SoT), a novel benchmark specifically designed to evaluate both visual and textual prompts for semantic segmentation across 14 datasets spanning 7 diverse domains (common scenes, urban, food, waste, parts, tools, and land-cover). We evaluate 5 open-vocabulary methods and 4 visual reference prompt approaches, adapting the latter to handle multi-class segmentation through a confidence-based mask merging strategy. Our extensive experiments reveal that open-vocabulary methods excel with common concepts easily described by text but struggle with complex domains like tools, while visual reference prompt methods achieve good average results but exhibit high variability depending on the input prompt. Through comprehensive quantitative and qualitative analysis, we identify the strengths and weaknesses of both prompting modalities, providing valuable insights to guide future research in vision foundation models for segmentation tasks.
Fast and Accurate Zero-Training Classification for Tabular Engineering Data
In engineering design, navigating complex decision-making landscapes demands a thorough exploration of the design, performance, and constraint spaces, often impeded by resource-intensive simulations. Data-driven methods can mitigate this challenge by harnessing historical data to delineate feasible domains, accelerate optimization, or evaluate designs. However, the implementation of these methods usually demands machine-learning expertise and multiple trials to choose the right method and hyperparameters. This makes them less accessible for numerous engineering situations. Additionally, there is an inherent trade-off between training speed and accuracy, with faster methods sometimes compromising precision. In our paper, we demonstrate that a recently released general-purpose transformer-based classification model, TabPFN, is both fast and accurate. Notably, it requires no dataset-specific training to assess new tabular data. TabPFN is a Prior-Data Fitted Network, which undergoes a one-time offline training across a broad spectrum of synthetic datasets and performs in-context learning. We evaluated TabPFN's efficacy across eight engineering design classification problems, contrasting it with seven other algorithms, including a state-of-the-art AutoML method. For these classification challenges, TabPFN consistently outperforms in speed and accuracy. It is also the most data-efficient and provides the added advantage of being differentiable and giving uncertainty estimates. Our findings advocate for the potential of pre-trained models that learn from synthetic data and require no domain-specific tuning to make data-driven engineering design accessible to a broader community and open ways to efficient general-purpose models valid across applications. Furthermore, we share a benchmark problem set for evaluating new classification algorithms in engineering design.
DiffusionPID: Interpreting Diffusion via Partial Information Decomposition
Text-to-image diffusion models have made significant progress in generating naturalistic images from textual inputs, and demonstrate the capacity to learn and represent complex visual-semantic relationships. While these diffusion models have achieved remarkable success, the underlying mechanisms driving their performance are not yet fully accounted for, with many unanswered questions surrounding what they learn, how they represent visual-semantic relationships, and why they sometimes fail to generalize. Our work presents Diffusion Partial Information Decomposition (DiffusionPID), a novel technique that applies information-theoretic principles to decompose the input text prompt into its elementary components, enabling a detailed examination of how individual tokens and their interactions shape the generated image. We introduce a formal approach to analyze the uniqueness, redundancy, and synergy terms by applying PID to the denoising model at both the image and pixel level. This approach enables us to characterize how individual tokens and their interactions affect the model output. We first present a fine-grained analysis of characteristics utilized by the model to uniquely localize specific concepts, we then apply our approach in bias analysis and show it can recover gender and ethnicity biases. Finally, we use our method to visually characterize word ambiguity and similarity from the model's perspective and illustrate the efficacy of our method for prompt intervention. Our results show that PID is a potent tool for evaluating and diagnosing text-to-image diffusion models.
Eliciting Human Preferences with Language Models
Language models (LMs) can be directed to perform target tasks by using labeled examples or natural language prompts. But selecting examples or writing prompts for can be challenging--especially in tasks that involve unusual edge cases, demand precise articulation of nebulous preferences, or require an accurate mental model of LM behavior. We propose to use *LMs themselves* to guide the task specification process. In this paper, we introduce **Generative Active Task Elicitation (GATE)**: a learning framework in which models elicit and infer intended behavior through free-form, language-based interaction with users. We study GATE in three domains: email validation, content recommendation, and moral reasoning. In preregistered experiments, we show that LMs prompted to perform GATE (e.g., by generating open-ended questions or synthesizing informative edge cases) elicit responses that are often more informative than user-written prompts or labels. Users report that interactive task elicitation requires less effort than prompting or example labeling and surfaces novel considerations not initially anticipated by users. Our findings suggest that LM-driven elicitation can be a powerful tool for aligning models to complex human preferences and values.
BEE: Metric-Adapted Explanations via Baseline Exploration-Exploitation
Two prominent challenges in explainability research involve 1) the nuanced evaluation of explanations and 2) the modeling of missing information through baseline representations. The existing literature introduces diverse evaluation metrics, each scrutinizing the quality of explanations through distinct lenses. Additionally, various baseline representations have been proposed, each modeling the notion of missingness differently. Yet, a consensus on the ultimate evaluation metric and baseline representation remains elusive. This work acknowledges the diversity in explanation metrics and baselines, demonstrating that different metrics exhibit preferences for distinct explanation maps resulting from the utilization of different baseline representations and distributions. To address the diversity in metrics and accommodate the variety of baseline representations in a unified manner, we propose Baseline Exploration-Exploitation (BEE) - a path-integration method that introduces randomness to the integration process by modeling the baseline as a learned random tensor. This tensor follows a learned mixture of baseline distributions optimized through a contextual exploration-exploitation procedure to enhance performance on the specific metric of interest. By resampling the baseline from the learned distribution, BEE generates a comprehensive set of explanation maps, facilitating the selection of the best-performing explanation map in this broad set for the given metric. Extensive evaluations across various model architectures showcase the superior performance of BEE in comparison to state-of-the-art explanation methods on a variety of objective evaluation metrics.
CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures
Explaining Artificial Intelligence (AI) decisions is a major challenge nowadays in AI, in particular when applied to sensitive scenarios like medicine and law. However, the need to explain the rationale behind decisions is a main issue also for human-based deliberation as it is important to justify why a certain decision has been taken. Resident medical doctors for instance are required not only to provide a (possibly correct) diagnosis, but also to explain how they reached a certain conclusion. Developing new tools to aid residents to train their explanation skills is therefore a central objective of AI in education. In this paper, we follow this direction, and we present, to the best of our knowledge, the first multilingual dataset for Medical Question Answering where correct and incorrect diagnoses for a clinical case are enriched with a natural language explanation written by doctors. These explanations have been manually annotated with argument components (i.e., premise, claim) and argument relations (i.e., attack, support), resulting in the Multilingual CasiMedicos-Arg dataset which consists of 558 clinical cases in four languages (English, Spanish, French, Italian) with explanations, where we annotated 5021 claims, 2313 premises, 2431 support relations, and 1106 attack relations. We conclude by showing how competitive baselines perform over this challenging dataset for the argument mining task.
Concept-based Explanations for Out-Of-Distribution Detectors
Out-of-distribution (OOD) detection plays a crucial role in ensuring the safe deployment of deep neural network (DNN) classifiers. While a myriad of methods have focused on improving the performance of OOD detectors, a critical gap remains in interpreting their decisions. We help bridge this gap by providing explanations for OOD detectors based on learned high-level concepts. We first propose two new metrics for assessing the effectiveness of a particular set of concepts for explaining OOD detectors: 1) detection completeness, which quantifies the sufficiency of concepts for explaining an OOD-detector's decisions, and 2) concept separability, which captures the distributional separation between in-distribution and OOD data in the concept space. Based on these metrics, we propose an unsupervised framework for learning a set of concepts that satisfy the desired properties of high detection completeness and concept separability, and demonstrate its effectiveness in providing concept-based explanations for diverse off-the-shelf OOD detectors. We also show how to identify prominent concepts contributing to the detection results, and provide further reasoning about their decisions.
Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions
This paper examines the role of cognitive biases in the decision-making processes of large language models (LLMs), challenging the conventional goal of eliminating all biases. We show that certain cognitive biases when properly balanced, can enhance decision-making efficiency through rational deviations and heuristic shortcuts. By introducing heuristic moderation and an abstention option, which allows LLMs to withhold responses when uncertain, we reduce error rates, improve decision accuracy, and optimize decision rates. Using the Balance Rigor and Utility (BRU) dataset, developed through expert collaboration, our findings demonstrate that targeted inspection of cognitive biases aligns LLM decisions more closely with human reasoning, enhancing reliability and suggesting strategies for future improvements. This approach offers a novel way to leverage cognitive biases to improve the practical utility of LLMs across various applications.
Relation-Aware Diffusion Model for Controllable Poster Layout Generation
Poster layout is a crucial aspect of poster design. Prior methods primarily focus on the correlation between visual content and graphic elements. However, a pleasant layout should also consider the relationship between visual and textual contents and the relationship between elements. In this study, we introduce a relation-aware diffusion model for poster layout generation that incorporates these two relationships in the generation process. Firstly, we devise a visual-textual relation-aware module that aligns the visual and textual representations across modalities, thereby enhancing the layout's efficacy in conveying textual information. Subsequently, we propose a geometry relation-aware module that learns the geometry relationship between elements by comprehensively considering contextual information. Additionally, the proposed method can generate diverse layouts based on user constraints. To advance research in this field, we have constructed a poster layout dataset named CGL-Dataset V2. Our proposed method outperforms state-of-the-art methods on CGL-Dataset V2. The data and code will be available at https://github.com/liuan0803/RADM.
CONSCENDI: A Contrastive and Scenario-Guided Distillation Approach to Guardrail Models for Virtual Assistants
A wave of new task-based virtual assistants has been fueled by increasingly powerful large language models, such as GPT-4. These conversational agents can be customized to serve customer-specific use cases, but ensuring that agent-generated text conforms to designer-specified rules included in prompt instructions alone is challenging. Therefore, chatbot designers often use another model, called a guardrail model, to verify that the agent output aligns with their rules and constraints. We explore using a distillation approach to guardrail models to monitor the output of the first model using training data from GPT-4. We find two crucial steps to our CONSCENDI process: scenario-augmented generation and contrastive training examples. When generating conversational data, we generate a set of rule-breaking scenarios, which enumerate a diverse set of high-level ways a rule can be violated. This scenario-guided approach produces a diverse training set of rule-violating conversations, and it provides chatbot designers greater control over the classification process. We also prompt GPT-4 to also generate contrastive examples by altering conversations with violations into acceptable conversations. This set of borderline, contrastive examples enables the distilled model to learn finer-grained distinctions between what is acceptable and what is not. We find that CONSCENDI results in guardrail models that improve over baselines.
Fine-Tuned Large Language Model for Visualization System: A Study on Self-Regulated Learning in Education
Large Language Models (LLMs) have shown great potential in intelligent visualization systems, especially for domain-specific applications. Integrating LLMs into visualization systems presents challenges, and we categorize these challenges into three alignments: domain problems with LLMs, visualization with LLMs, and interaction with LLMs. To achieve these alignments, we propose a framework and outline a workflow to guide the application of fine-tuned LLMs to enhance visual interactions for domain-specific tasks. These alignment challenges are critical in education because of the need for an intelligent visualization system to support beginners' self-regulated learning. Therefore, we apply the framework to education and introduce Tailor-Mind, an interactive visualization system designed to facilitate self-regulated learning for artificial intelligence beginners. Drawing on insights from a preliminary study, we identify self-regulated learning tasks and fine-tuning objectives to guide visualization design and tuning data construction. Our focus on aligning visualization with fine-tuned LLM makes Tailor-Mind more like a personalized tutor. Tailor-Mind also supports interactive recommendations to help beginners better achieve their learning goals. Model performance evaluations and user studies confirm that Tailor-Mind improves the self-regulated learning experience, effectively validating the proposed framework.
Bridging the Novice-Expert Gap via Models of Decision-Making: A Case Study on Remediating Math Mistakes
Scaling high-quality tutoring remains a major challenge in education. Due to growing demand, many platforms employ novice tutors who, unlike experienced educators, struggle to address student mistakes and thus fail to seize prime learning opportunities. Our work explores the potential of large language models (LLMs) to close the novice-expert knowledge gap in remediating math mistakes. We contribute Bridge, a method that uses cognitive task analysis to translate an expert's latent thought process into a decision-making model for remediation. This involves an expert identifying (A) the student's error, (B) a remediation strategy, and (C) their intention before generating a response. We construct a dataset of 700 real tutoring conversations, annotated by experts with their decisions. We evaluate state-of-the-art LLMs on our dataset and find that the expert's decision-making model is critical for LLMs to close the gap: responses from GPT4 with expert decisions (e.g., "simplify the problem") are +76% more preferred than without. Additionally, context-sensitive decisions are critical to closing pedagogical gaps: random decisions decrease GPT4's response quality by -97% than expert decisions. Our work shows the potential of embedding expert thought processes in LLM generations to enhance their capability to bridge novice-expert knowledge gaps. Our dataset and code can be found at: https://github.com/rosewang2008/bridge.
On the Diagram of Thought
We introduce Diagram of Thought (DoT), a framework that models iterative reasoning in large language models (LLMs) as the construction of a directed acyclic graph (DAG) within a single model. Unlike traditional approaches that represent reasoning as linear chains or trees, DoT organizes propositions, critiques, refinements, and verifications into a cohesive DAG structure, allowing the model to explore complex reasoning pathways while maintaining logical consistency. Each node in the diagram corresponds to a proposition that has been proposed, critiqued, refined, or verified, enabling the LLM to iteratively improve its reasoning through natural language feedback. By leveraging auto-regressive next-token prediction with role-specific tokens, DoT facilitates seamless transitions between proposing ideas and critically evaluating them, providing richer feedback than binary signals. Furthermore, we formalize the DoT framework using Topos Theory, providing a mathematical foundation that ensures logical consistency and soundness in the reasoning process. This approach enhances both the training and inference processes within a single LLM, eliminating the need for multiple models or external control mechanisms. DoT offers a conceptual framework for designing next-generation reasoning-specialized models, emphasizing training efficiency, robust reasoning capabilities, and theoretical grounding. The code is available at https://github.com/diagram-of-thought/diagram-of-thought.
ActionBert: Leveraging User Actions for Semantic Understanding of User Interfaces
As mobile devices are becoming ubiquitous, regularly interacting with a variety of user interfaces (UIs) is a common aspect of daily life for many people. To improve the accessibility of these devices and to enable their usage in a variety of settings, building models that can assist users and accomplish tasks through the UI is vitally important. However, there are several challenges to achieve this. First, UI components of similar appearance can have different functionalities, making understanding their function more important than just analyzing their appearance. Second, domain-specific features like Document Object Model (DOM) in web pages and View Hierarchy (VH) in mobile applications provide important signals about the semantics of UI elements, but these features are not in a natural language format. Third, owing to a large diversity in UIs and absence of standard DOM or VH representations, building a UI understanding model with high coverage requires large amounts of training data. Inspired by the success of pre-training based approaches in NLP for tackling a variety of problems in a data-efficient way, we introduce a new pre-trained UI representation model called ActionBert. Our methodology is designed to leverage visual, linguistic and domain-specific features in user interaction traces to pre-train generic feature representations of UIs and their components. Our key intuition is that user actions, e.g., a sequence of clicks on different UI components, reveals important information about their functionality. We evaluate the proposed model on a wide variety of downstream tasks, ranging from icon classification to UI component retrieval based on its natural language description. Experiments show that the proposed ActionBert model outperforms multi-modal baselines across all downstream tasks by up to 15.5%.
Do Vision-Language Models Really Understand Visual Language?
Visual language is a system of communication that conveys information through symbols, shapes, and spatial arrangements. Diagrams are a typical example of a visual language depicting complex concepts and their relationships in the form of an image. The symbolic nature of diagrams presents significant challenges for building models capable of understanding them. Yet, recent studies seem to suggest that Large Vision-Language Models (LVLMs) can even tackle complex reasoning tasks involving diagrams. In this paper, we investigate this phenomenon by developing a comprehensive test suite to evaluate the diagram comprehension capability of LVLMs. Our test suite uses a variety of questions focused on concept entities and their relationships over a set of synthetic as well as real diagrams across several domains to evaluate the recognition and reasoning abilities of models. Our evaluation of three LVLMs (GPT-4V, GPT-4o, and Gemini) shows that while these models can accurately identify and reason about entities, their ability to understand relationships is notably limited. Further testing reveals that the decent performance on diagram understanding largely stems from leveraging their background knowledge as shortcuts to identify and reason about the relational information. Thus, we conclude that LVLMs have a limited capability for genuine diagram understanding, and their impressive performance in diagram reasoning is an illusion emanating from other confounding factors, such as the background knowledge in the models.
DendroMap: Visual Exploration of Large-Scale Image Datasets for Machine Learning with Treemaps
In this paper, we present DendroMap, a novel approach to interactively exploring large-scale image datasets for machine learning (ML). ML practitioners often explore image datasets by generating a grid of images or projecting high-dimensional representations of images into 2-D using dimensionality reduction techniques (e.g., t-SNE). However, neither approach effectively scales to large datasets because images are ineffectively organized and interactions are insufficiently supported. To address these challenges, we develop DendroMap by adapting Treemaps, a well-known visualization technique. DendroMap effectively organizes images by extracting hierarchical cluster structures from high-dimensional representations of images. It enables users to make sense of the overall distributions of datasets and interactively zoom into specific areas of interests at multiple levels of abstraction. Our case studies with widely-used image datasets for deep learning demonstrate that users can discover insights about datasets and trained models by examining the diversity of images, identifying underperforming subgroups, and analyzing classification errors. We conducted a user study that evaluates the effectiveness of DendroMap in grouping and searching tasks by comparing it with a gridified version of t-SNE and found that participants preferred DendroMap. DendroMap is available at https://div-lab.github.io/dendromap/.
Reward Reports for Reinforcement Learning
Building systems that are good for society in the face of complex societal effects requires a dynamic approach. Recent approaches to machine learning (ML) documentation have demonstrated the promise of discursive frameworks for deliberation about these complexities. However, these developments have been grounded in a static ML paradigm, leaving the role of feedback and post-deployment performance unexamined. Meanwhile, recent work in reinforcement learning has shown that the effects of feedback and optimization objectives on system behavior can be wide-ranging and unpredictable. In this paper we sketch a framework for documenting deployed and iteratively updated learning systems, which we call Reward Reports. Taking inspiration from various contributions to the technical literature on reinforcement learning, we outline Reward Reports as living documents that track updates to design choices and assumptions behind what a particular automated system is optimizing for. They are intended to track dynamic phenomena arising from system deployment, rather than merely static properties of models or data. After presenting the elements of a Reward Report, we discuss a concrete example: Meta's BlenderBot 3 chatbot. Several others for game-playing (DeepMind's MuZero), content recommendation (MovieLens), and traffic control (Project Flow) are included in the appendix.
DiG-IN: Diffusion Guidance for Investigating Networks -- Uncovering Classifier Differences Neuron Visualisations and Visual Counterfactual Explanations
While deep learning has led to huge progress in complex image classification tasks like ImageNet, unexpected failure modes, e.g. via spurious features, call into question how reliably these classifiers work in the wild. Furthermore, for safety-critical tasks the black-box nature of their decisions is problematic, and explanations or at least methods which make decisions plausible are needed urgently. In this paper, we address these problems by generating images that optimize a classifier-derived objective using a framework for guided image generation. We analyze the decisions of image classifiers by visual counterfactual explanations (VCEs), detection of systematic mistakes by analyzing images where classifiers maximally disagree, and visualization of neurons and spurious features. In this way, we validate existing observations, e.g. the shape bias of adversarially robust models, as well as novel failure modes, e.g. systematic errors of zero-shot CLIP classifiers. Moreover, our VCEs outperform previous work while being more versatile.
CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities
Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.
SPHERE: A Hierarchical Evaluation on Spatial Perception and Reasoning for Vision-Language Models
Current vision-language models may incorporate single-dimensional spatial cues, such as depth, object boundary, and basic spatial directions (e.g. left, right, front, back), yet often lack the multi-dimensional spatial reasoning necessary for human-like understanding and real-world applications. To address this gap, we develop SPHERE (Spatial Perception and Hierarchical Evaluation of REasoning), a hierarchical evaluation framework with a new human-annotated dataset to pinpoint model strengths and weaknesses, advancing from single-skill tasks to multi-skill tasks, and ultimately to complex reasoning tasks that require the integration of multiple spatial and visual cues with logical reasoning. Benchmark evaluation of state-of-the-art open-source models reveal significant shortcomings, especially in the abilities to understand distance and proximity, to reason from both allocentric and egocentric viewpoints, and to perform complex reasoning in a physical context. This work underscores the need for more advanced approaches to spatial understanding and reasoning, paving the way for improvements in vision-language models and their alignment with human-like spatial capabilities. The dataset will be open-sourced upon publication.
SCHEMA: State CHangEs MAtter for Procedure Planning in Instructional Videos
We study the problem of procedure planning in instructional videos, which aims to make a goal-oriented sequence of action steps given partial visual state observations. The motivation of this problem is to learn a structured and plannable state and action space. Recent works succeeded in sequence modeling of steps with only sequence-level annotations accessible during training, which overlooked the roles of states in the procedures. In this work, we point out that State CHangEs MAtter (SCHEMA) for procedure planning in instructional videos. We aim to establish a more structured state space by investigating the causal relations between steps and states in procedures. Specifically, we explicitly represent each step as state changes and track the state changes in procedures. For step representation, we leveraged the commonsense knowledge in large language models (LLMs) to describe the state changes of steps via our designed chain-of-thought prompting. For state change tracking, we align visual state observations with language state descriptions via cross-modal contrastive learning, and explicitly model the intermediate states of the procedure using LLM-generated state descriptions. Experiments on CrossTask, COIN, and NIV benchmark datasets demonstrate that our proposed SCHEMA model achieves state-of-the-art performance and obtains explainable visualizations.
Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks
RLHF has emerged as a predominant approach for aligning artificial intelligence systems with human preferences, demonstrating exceptional and measurable efficacy in instruction following tasks; however, it exhibits insufficient compliance capabilities when confronted with complex multi-instruction tasks. Conventional approaches rely heavily on human annotation or more sophisticated large language models, thereby introducing substantial resource expenditure or potential bias concerns. Meanwhile, alternative synthetic methods that augment standard preference datasets often compromise the model's semantic quality. Our research identifies a critical oversight in existing techniques, which predominantly focus on comparing responses while neglecting valuable latent signals embedded within prompt inputs, and which only focus on preference disparities at the intra-sample level, while neglecting to account for the inter-sample level preference differentials that exist among preference data. To leverage these previously neglected indicators, we propose a novel Multi-level Aware Preference Learning (MAPL) framework, capable of enhancing multi-instruction capabilities. Specifically, for any given response in original preference data pairs, we construct varied prompts with a preference relation under different conditions, in order to learn intra-sample level preference disparities. Furthermore, for any given original preference pair, we synthesize multi-instruction preference pairs to capture preference discrepancies at the inter-sample level. Building on the two datasets constructed above, we consequently devise two sophisticated training objective functions. Subsequently, our framework integrates seamlessly into both Reward Modeling and Direct Preference Optimization paradigms. Through rigorous evaluation across multiple benchmarks, we empirically validate the efficacy of our framework.
Evaluating and Mitigating Discrimination in Language Model Decisions
As language models (LMs) advance, interest is growing in applying them to high-stakes societal decisions, such as determining financing or housing eligibility. However, their potential for discrimination in such contexts raises ethical concerns, motivating the need for better methods to evaluate these risks. We present a method for proactively evaluating the potential discriminatory impact of LMs in a wide range of use cases, including hypothetical use cases where they have not yet been deployed. Specifically, we use an LM to generate a wide array of potential prompts that decision-makers may input into an LM, spanning 70 diverse decision scenarios across society, and systematically vary the demographic information in each prompt. Applying this methodology reveals patterns of both positive and negative discrimination in the Claude 2.0 model in select settings when no interventions are applied. While we do not endorse or permit the use of language models to make automated decisions for the high-risk use cases we study, we demonstrate techniques to significantly decrease both positive and negative discrimination through careful prompt engineering, providing pathways toward safer deployment in use cases where they may be appropriate. Our work enables developers and policymakers to anticipate, measure, and address discrimination as language model capabilities and applications continue to expand. We release our dataset and prompts at https://huggingface.co/datasets/Anthropic/discrim-eval
Visualizing Thought: Conceptual Diagrams Enable Robust Planning in LMMs
Human reasoning relies on constructing and manipulating mental models-simplified internal representations of situations that we use to understand and solve problems. Conceptual diagrams (for example, sketches drawn by humans to aid reasoning) externalize these mental models, abstracting irrelevant details to efficiently capture relational and spatial information. In contrast, Large Language Models (LLMs) and Large Multimodal Models (LMMs) predominantly reason through textual representations, limiting their effectiveness in complex multi-step combinatorial and planning tasks. In this paper, we propose a zero-shot fully automatic framework that enables LMMs to reason through multiple chains of self-generated intermediate conceptual diagrams, significantly enhancing their combinatorial planning capabilities. Our approach does not require any human initialization beyond a natural language description of the task. It integrates both textual and diagrammatic reasoning within an optimized graph-of-thought inference framework, enhanced by beam search and depth-wise backtracking. Evaluated on multiple challenging PDDL planning domains, our method substantially improves GPT-4o's performance (for example, from 35.5% to 90.2% in Blocksworld). On more difficult planning domains with solution depths up to 40, our approach outperforms even the o1-preview reasoning model (for example, over 13% improvement in Parking). These results highlight the value of conceptual diagrams as a complementary reasoning medium in LMMs.
Inferring and Executing Programs for Visual Reasoning
Existing methods for visual reasoning attempt to directly map inputs to outputs using black-box architectures without explicitly modeling the underlying reasoning processes. As a result, these black-box models often learn to exploit biases in the data rather than learning to perform visual reasoning. Inspired by module networks, this paper proposes a model for visual reasoning that consists of a program generator that constructs an explicit representation of the reasoning process to be performed, and an execution engine that executes the resulting program to produce an answer. Both the program generator and the execution engine are implemented by neural networks, and are trained using a combination of backpropagation and REINFORCE. Using the CLEVR benchmark for visual reasoning, we show that our model significantly outperforms strong baselines and generalizes better in a variety of settings.
A Typology for Exploring the Mitigation of Shortcut Behavior
As machine learning models become increasingly larger, trained weakly supervised on large, possibly uncurated data sets, it becomes increasingly important to establish mechanisms for inspecting, interacting, and revising models to mitigate learning shortcuts and guarantee their learned knowledge is aligned with human knowledge. The recently proposed XIL framework was developed for this purpose, and several such methods have been introduced, each with individual motivations and methodological details. In this work, we provide a unification of various XIL methods into a single typology by establishing a common set of basic modules. In doing so, we pave the way for a principled comparison of existing, but, importantly, also future XIL approaches. In addition, we discuss existing and introduce novel measures and benchmarks for evaluating the overall abilities of a XIL method. Given this extensive toolbox, including our typology, measures, and benchmarks, we finally compare several recent XIL methods methodologically and quantitatively. In our evaluations, all methods prove to revise a model successfully. However, we found remarkable differences in individual benchmark tasks, revealing valuable application-relevant aspects for integrating these benchmarks in developing future methods.
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine learning based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Multi-Domain Explainability of Preferences
Preference mechanisms, such as human preference, LLM-as-a-Judge (LaaJ), and reward models, are central to aligning and evaluating large language models (LLMs). Yet, the underlying concepts that drive these preferences remain poorly understood. In this work, we propose a fully automated method for generating local and global concept-based explanations of preferences across multiple domains. Our method utilizes an LLM to identify concepts that distinguish between chosen and rejected responses, and to represent them with concept-based vectors. To model the relationships between concepts and preferences, we propose a white-box Hierarchical Multi-Domain Regression model that captures both domain-general and domain-specific effects. To evaluate our method, we curate a dataset spanning eight challenging and diverse domains and explain twelve mechanisms. Our method achieves strong preference prediction performance, outperforming baselines while also being explainable. Additionally, we assess explanations in two application-driven settings. First, guiding LLM outputs with concepts from LaaJ explanations yields responses that those judges consistently prefer. Second, prompting LaaJs with concepts explaining humans improves their preference predictions. Together, our work establishes a new paradigm for explainability in the era of LLMs.
Complexity in Complexity: Understanding Visual Complexity Through Structure, Color, and Surprise
Understanding how humans perceive visual complexity is a key area of study in visual cognition. Previous approaches to modeling visual complexity assessments have often resulted in intricate, difficult-to-interpret algorithms that employ numerous features or sophisticated deep learning architectures. While these complex models achieve high performance on specific datasets, they often sacrifice interpretability, making it challenging to understand the factors driving human perception of complexity. Recently (Shen, et al. 2024) proposed an interpretable segmentation-based model that accurately predicted complexity across various datasets, supporting the idea that complexity can be explained simply. In this work, we investigate the failure of their model to capture structural, color and surprisal contributions to complexity. To this end, we propose Multi-Scale Sobel Gradient (MSG) which measures spatial intensity variations, Multi-Scale Unique Color (MUC) which quantifies colorfulness across multiple scales, and surprise scores generated using a Large Language Model. We test our features on existing benchmarks and a novel dataset (Surprising Visual Genome) containing surprising images from Visual Genome. Our experiments demonstrate that modeling complexity accurately is not as simple as previously thought, requiring additional perceptual and semantic factors to address dataset biases. Our model improves predictive performance while maintaining interpretability, offering deeper insights into how visual complexity is perceived and assessed. Our code, analysis and data are available at https://github.com/Complexity-Project/Complexity-in-Complexity.
On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving
The pursuit of autonomous driving technology hinges on the sophisticated integration of perception, decision-making, and control systems. Traditional approaches, both data-driven and rule-based, have been hindered by their inability to grasp the nuance of complex driving environments and the intentions of other road users. This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving. The advent of Visual Language Models (VLM) represents a novel frontier in realizing fully autonomous vehicle driving. This report provides an exhaustive evaluation of the latest state-of-the-art VLM, \modelnamefull, and its application in autonomous driving scenarios. We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver. Our comprehensive tests span from basic scene recognition to complex causal reasoning and real-time decision-making under varying conditions. Our findings reveal that \modelname demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems. It showcases the potential to handle out-of-distribution scenarios, recognize intentions, and make informed decisions in real driving contexts. However, challenges remain, particularly in direction discernment, traffic light recognition, vision grounding, and spatial reasoning tasks. These limitations underscore the need for further research and development. Project is now available on GitHub for interested parties to access and utilize: https://github.com/PJLab-ADG/GPT4V-AD-Exploration
Categorical semiotics: Foundations for Knowledge Integration
The integration of knowledge extracted from diverse models, whether described by domain experts or generated by machine learning algorithms, has historically been challenged by the absence of a suitable framework for specifying and integrating structures, learning processes, data transformations, and data models or rules. In this work, we extend algebraic specification methods to address these challenges within such a framework. In our work, we tackle the challenging task of developing a comprehensive framework for defining and analyzing deep learning architectures. We believe that previous efforts have fallen short by failing to establish a clear connection between the constraints a model must adhere to and its actual implementation. Our methodology employs graphical structures that resemble Ehresmann's sketches, interpreted within a universe of fuzzy sets. This approach offers a unified theory that elegantly encompasses both deterministic and non-deterministic neural network designs. Furthermore, we highlight how this theory naturally incorporates fundamental concepts from computer science and automata theory. Our extended algebraic specification framework, grounded in graphical structures akin to Ehresmann's sketches, offers a promising solution for integrating knowledge across disparate models and domains. By bridging the gap between domain-specific expertise and machine-generated insights, we pave the way for more comprehensive, collaborative, and effective approaches to knowledge integration and modeling.
Towards Reliable Evaluation of Behavior Steering Interventions in LLMs
Representation engineering methods have recently shown promise for enabling efficient steering of model behavior. However, evaluation pipelines for these methods have primarily relied on subjective demonstrations, instead of quantitative, objective metrics. We aim to take a step towards addressing this issue by advocating for four properties missing from current evaluations: (i) contexts sufficiently similar to downstream tasks should be used for assessing intervention quality; (ii) model likelihoods should be accounted for; (iii) evaluations should allow for standardized comparisons across different target behaviors; and (iv) baseline comparisons should be offered. We introduce an evaluation pipeline grounded in these criteria, offering both a quantitative and visual analysis of how effectively a given method works. We use this pipeline to evaluate two representation engineering methods on how effectively they can steer behaviors such as truthfulness and corrigibility, finding that some interventions are less effective than previously reported.
Leveraging Multimodal LLM for Inspirational User Interface Search
Inspirational search, the process of exploring designs to inform and inspire new creative work, is pivotal in mobile user interface (UI) design. However, exploring the vast space of UI references remains a challenge. Existing AI-based UI search methods often miss crucial semantics like target users or the mood of apps. Additionally, these models typically require metadata like view hierarchies, limiting their practical use. We used a multimodal large language model (MLLM) to extract and interpret semantics from mobile UI images. We identified key UI semantics through a formative study and developed a semantic-based UI search system. Through computational and human evaluations, we demonstrate that our approach significantly outperforms existing UI retrieval methods, offering UI designers a more enriched and contextually relevant search experience. We enhance the understanding of mobile UI design semantics and highlight MLLMs' potential in inspirational search, providing a rich dataset of UI semantics for future studies.
Diffusion Models as Data Mining Tools
This paper demonstrates how to use generative models trained for image synthesis as tools for visual data mining. Our insight is that since contemporary generative models learn an accurate representation of their training data, we can use them to summarize the data by mining for visual patterns. Concretely, we show that after finetuning conditional diffusion models to synthesize images from a specific dataset, we can use these models to define a typicality measure on that dataset. This measure assesses how typical visual elements are for different data labels, such as geographic location, time stamps, semantic labels, or even the presence of a disease. This analysis-by-synthesis approach to data mining has two key advantages. First, it scales much better than traditional correspondence-based approaches since it does not require explicitly comparing all pairs of visual elements. Second, while most previous works on visual data mining focus on a single dataset, our approach works on diverse datasets in terms of content and scale, including a historical car dataset, a historical face dataset, a large worldwide street-view dataset, and an even larger scene dataset. Furthermore, our approach allows for translating visual elements across class labels and analyzing consistent changes.
Graph Prompt Learning: A Comprehensive Survey and Beyond
Artificial General Intelligence (AGI) has revolutionized numerous fields, yet its integration with graph data, a cornerstone in our interconnected world, remains nascent. This paper presents a pioneering survey on the emerging domain of graph prompts in AGI, addressing key challenges and opportunities in harnessing graph data for AGI applications. Despite substantial advancements in AGI across natural language processing and computer vision, the application to graph data is relatively underexplored. This survey critically evaluates the current landscape of AGI in handling graph data, highlighting the distinct challenges in cross-modality, cross-domain, and cross-task applications specific to graphs. Our work is the first to propose a unified framework for understanding graph prompt learning, offering clarity on prompt tokens, token structures, and insertion patterns in the graph domain. We delve into the intrinsic properties of graph prompts, exploring their flexibility, expressiveness, and interplay with existing graph models. A comprehensive taxonomy categorizes over 100 works in this field, aligning them with pre-training tasks across node-level, edge-level, and graph-level objectives. Additionally, we present, ProG, a Python library, and an accompanying website, to support and advance research in graph prompting. The survey culminates in a discussion of current challenges and future directions, offering a roadmap for research in graph prompting within AGI. Through this comprehensive analysis, we aim to catalyze further exploration and practical applications of AGI in graph data, underlining its potential to reshape AGI fields and beyond. ProG and the website can be accessed by https://github.com/WxxShirley/Awesome-Graph-Prompt, and https://github.com/sheldonresearch/ProG, respectively.
Generative Social Choice
The mathematical study of voting, social choice theory, has traditionally only been applicable to choices among a few predetermined alternatives, but not to open-ended decisions such as collectively selecting a textual statement. We introduce generative social choice, a design methodology for open-ended democratic processes that combines the rigor of social choice theory with the capability of large language models to generate text and extrapolate preferences. Our framework divides the design of AI-augmented democratic processes into two components: first, proving that the process satisfies representation guarantees when given access to oracle queries; second, empirically validating that these queries can be approximately implemented using a large language model. We apply this framework to the problem of summarizing free-form opinions into a proportionally representative slate of opinion statements; specifically, we develop a democratic process with representation guarantees and use this process to portray the opinions of participants in a survey about abortion policy. In a trial with 100 representative US residents, we find that 84 out of 100 participants feel "excellently" or "exceptionally" represented by the slate of five statements we extracted.
Rather a Nurse than a Physician -- Contrastive Explanations under Investigation
Contrastive explanations, where one decision is explained in contrast to another, are supposed to be closer to how humans explain a decision than non-contrastive explanations, where the decision is not necessarily referenced to an alternative. This claim has never been empirically validated. We analyze four English text-classification datasets (SST2, DynaSent, BIOS and DBpedia-Animals). We fine-tune and extract explanations from three different models (RoBERTa, GTP-2, and T5), each in three different sizes and apply three post-hoc explainability methods (LRP, GradientxInput, GradNorm). We furthermore collect and release human rationale annotations for a subset of 100 samples from the BIOS dataset for contrastive and non-contrastive settings. A cross-comparison between model-based rationales and human annotations, both in contrastive and non-contrastive settings, yields a high agreement between the two settings for models as well as for humans. Moreover, model-based explanations computed in both settings align equally well with human rationales. Thus, we empirically find that humans do not necessarily explain in a contrastive manner.9 pages, long paper at ACL 2022 proceedings.
What Matters in Hierarchical Search for Combinatorial Reasoning Problems?
Efficiently tackling combinatorial reasoning problems, particularly the notorious NP-hard tasks, remains a significant challenge for AI research. Recent efforts have sought to enhance planning by incorporating hierarchical high-level search strategies, known as subgoal methods. While promising, their performance against traditional low-level planners is inconsistent, raising questions about their application contexts. In this study, we conduct an in-depth exploration of subgoal-planning methods for combinatorial reasoning. We identify the attributes pivotal for leveraging the advantages of high-level search: hard-to-learn value functions, complex action spaces, presence of dead ends in the environment, or using data collected from diverse experts. We propose a consistent evaluation methodology to achieve meaningful comparisons between methods and reevaluate the state-of-the-art algorithms.
Data-Centric Human Preference Optimization with Rationales
Reinforcement learning from human feedback plays a crucial role in aligning language models towards human preferences, traditionally represented through comparisons between pairs or sets of responses within a given context. While many studies have enhanced algorithmic techniques to optimize learning from such data, this work shifts focus to improving preference learning through a data-centric approach. Specifically, we propose enriching existing preference datasets with machine-generated rationales that explain the reasons behind choices. We develop a simple and principled framework to augment current preference learning methods with rationale information. Our comprehensive analysis highlights how rationales enhance learning efficiency. Extensive experiments reveal that rationale-enriched preference learning offers multiple advantages: it improves data efficiency, accelerates convergence to higher-performing models, and reduces verbosity bias and hallucination. Furthermore, this framework is versatile enough to integrate with various preference optimization algorithms. Overall, our findings highlight the potential of re-imagining data design for preference learning, demonstrating that even freely available machine-generated rationales can significantly boost performance across multiple dimensions. The code repository is available at https: //github.com/reds-lab/preference-learning-with-rationales
Unsupervised Expressive Rules Provide Explainability and Assist Human Experts Grasping New Domains
Approaching new data can be quite deterrent; you do not know how your categories of interest are realized in it, commonly, there is no labeled data at hand, and the performance of domain adaptation methods is unsatisfactory. Aiming to assist domain experts in their first steps into a new task over a new corpus, we present an unsupervised approach to reveal complex rules which cluster the unexplored corpus by its prominent categories (or facets). These rules are human-readable, thus providing an important ingredient which has become in short supply lately - explainability. Each rule provides an explanation for the commonality of all the texts it clusters together. We present an extensive evaluation of the usefulness of these rules in identifying target categories, as well as a user study which assesses their interpretability.
Is A Picture Worth A Thousand Words? Delving Into Spatial Reasoning for Vision Language Models
Large language models (LLMs) and vision-language models (VLMs) have demonstrated remarkable performance across a wide range of tasks and domains. Despite this promise, spatial understanding and reasoning -- a fundamental component of human cognition -- remains under-explored. We develop novel benchmarks that cover diverse aspects of spatial reasoning such as relationship understanding, navigation, and counting. We conduct a comprehensive evaluation of competitive language and vision-language models. Our findings reveal several counter-intuitive insights that have been overlooked in the literature: (1) Spatial reasoning poses significant challenges where competitive models can fall behind random guessing; (2) Despite additional visual input, VLMs often under-perform compared to their LLM counterparts; (3) When both textual and visual information is available, multi-modal language models become less reliant on visual information if sufficient textual clues are provided. Additionally, we demonstrate that leveraging redundancy between vision and text can significantly enhance model performance. We hope our study will inform the development of multimodal models to improve spatial intelligence and further close the gap with human intelligence.
Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts
Fine-tuning continuous prompts for target tasks has recently emerged as a compact alternative to full model fine-tuning. Motivated by these promising results, we investigate the feasibility of extracting a discrete (textual) interpretation of continuous prompts that is faithful to the problem they solve. In practice, we observe a "wayward" behavior between the task solved by continuous prompts and their nearest neighbor discrete projections: We can find continuous prompts that solve a task while being projected to an arbitrary text (e.g., definition of a different or even a contradictory task), while being within a very small (2%) margin of the best continuous prompt of the same size for the task. We provide intuitions behind this odd and surprising behavior, as well as extensive empirical analyses quantifying the effect of various parameters. For instance, for larger model sizes we observe higher waywardness, i.e, we can find prompts that more closely map to any arbitrary text with a smaller drop in accuracy. These findings have important implications relating to the difficulty of faithfully interpreting continuous prompts and their generalization across models and tasks, providing guidance for future progress in prompting language models.
CLAMS: A Cluster Ambiguity Measure for Estimating Perceptual Variability in Visual Clustering
Visual clustering is a common perceptual task in scatterplots that supports diverse analytics tasks (e.g., cluster identification). However, even with the same scatterplot, the ways of perceiving clusters (i.e., conducting visual clustering) can differ due to the differences among individuals and ambiguous cluster boundaries. Although such perceptual variability casts doubt on the reliability of data analysis based on visual clustering, we lack a systematic way to efficiently assess this variability. In this research, we study perceptual variability in conducting visual clustering, which we call Cluster Ambiguity. To this end, we introduce CLAMS, a data-driven visual quality measure for automatically predicting cluster ambiguity in monochrome scatterplots. We first conduct a qualitative study to identify key factors that affect the visual separation of clusters (e.g., proximity or size difference between clusters). Based on study findings, we deploy a regression module that estimates the human-judged separability of two clusters. Then, CLAMS predicts cluster ambiguity by analyzing the aggregated results of all pairwise separability between clusters that are generated by the module. CLAMS outperforms widely-used clustering techniques in predicting ground truth cluster ambiguity. Meanwhile, CLAMS exhibits performance on par with human annotators. We conclude our work by presenting two applications for optimizing and benchmarking data mining techniques using CLAMS. The interactive demo of CLAMS is available at clusterambiguity.dev.
A Language Model's Guide Through Latent Space
Concept guidance has emerged as a cheap and simple way to control the behavior of language models by probing their hidden representations for concept vectors and using them to perturb activations at inference time. While the focus of previous work has largely been on truthfulness, in this paper we extend this framework to a richer set of concepts such as appropriateness, humor, creativity and quality, and explore to what degree current detection and guidance strategies work in these challenging settings. To facilitate evaluation, we develop a novel metric for concept guidance that takes into account both the success of concept elicitation as well as the potential degradation in fluency of the guided model. Our extensive experiments reveal that while some concepts such as truthfulness more easily allow for guidance with current techniques, novel concepts such as appropriateness or humor either remain difficult to elicit, need extensive tuning to work, or even experience confusion. Moreover, we find that probes with optimal detection accuracies do not necessarily make for the optimal guides, contradicting previous observations for truthfulness. Our work warrants a deeper investigation into the interplay between detectability, guidability, and the nature of the concept, and we hope that our rich experimental test-bed for guidance research inspires stronger follow-up approaches.
Is Conditional Generative Modeling all you need for Decision-Making?
Recent improvements in conditional generative modeling have made it possible to generate high-quality images from language descriptions alone. We investigate whether these methods can directly address the problem of sequential decision-making. We view decision-making not through the lens of reinforcement learning (RL), but rather through conditional generative modeling. To our surprise, we find that our formulation leads to policies that can outperform existing offline RL approaches across standard benchmarks. By modeling a policy as a return-conditional diffusion model, we illustrate how we may circumvent the need for dynamic programming and subsequently eliminate many of the complexities that come with traditional offline RL. We further demonstrate the advantages of modeling policies as conditional diffusion models by considering two other conditioning variables: constraints and skills. Conditioning on a single constraint or skill during training leads to behaviors at test-time that can satisfy several constraints together or demonstrate a composition of skills. Our results illustrate that conditional generative modeling is a powerful tool for decision-making.
Paragraph-level Rationale Extraction through Regularization: A case study on European Court of Human Rights Cases
Interpretability or explainability is an emerging research field in NLP. From a user-centric point of view, the goal is to build models that provide proper justification for their decisions, similar to those of humans, by requiring the models to satisfy additional constraints. To this end, we introduce a new application on legal text where, contrary to mainstream literature targeting word-level rationales, we conceive rationales as selected paragraphs in multi-paragraph structured court cases. We also release a new dataset comprising European Court of Human Rights cases, including annotations for paragraph-level rationales. We use this dataset to study the effect of already proposed rationale constraints, i.e., sparsity, continuity, and comprehensiveness, formulated as regularizers. Our findings indicate that some of these constraints are not beneficial in paragraph-level rationale extraction, while others need re-formulation to better handle the multi-label nature of the task we consider. We also introduce a new constraint, singularity, which further improves the quality of rationales, even compared with noisy rationale supervision. Experimental results indicate that the newly introduced task is very challenging and there is a large scope for further research.
Look Before You Leap: A GUI-Critic-R1 Model for Pre-Operative Error Diagnosis in GUI Automation
In recent years, Multimodal Large Language Models (MLLMs) have been extensively utilized for multimodal reasoning tasks, including Graphical User Interface (GUI) automation. Unlike general offline multimodal tasks, GUI automation is executed in online interactive environments, necessitating step-by-step decision-making based on real-time status of the environment. This task has a lower tolerance for decision-making errors at each step, as any mistakes may cumulatively disrupt the process and potentially lead to irreversible outcomes like deletions or payments. To address these issues, we introduce a pre-operative critic mechanism that provides effective feedback prior to the actual execution, by reasoning about the potential outcome and correctness of actions. Specifically, we propose a Suggestion-aware Gradient Relative Policy Optimization (S-GRPO) strategy to construct our pre-operative critic model GUI-Critic-R1, incorporating a novel suggestion reward to enhance the reliability of the model's feedback. Furthermore, we develop a reasoning-bootstrapping based data collection pipeline to create a GUI-Critic-Train and a GUI-Critic-Test, filling existing gaps in GUI critic data. Static experiments on the GUI-Critic-Test across both mobile and web domains reveal that our GUI-Critic-R1 offers significant advantages in critic accuracy compared to current MLLMs. Dynamic evaluation on GUI automation benchmark further highlights the effectiveness and superiority of our model, as evidenced by improved success rates and operational efficiency.
Can LLMs Fix Issues with Reasoning Models? Towards More Likely Models for AI Planning
This is the first work to look at the application of large language models (LLMs) for the purpose of model space edits in automated planning tasks. To set the stage for this union, we explore two different flavors of model space problems that have been studied in the AI planning literature and explore the effect of an LLM on those tasks. We empirically demonstrate how the performance of an LLM contrasts with combinatorial search (CS) -- an approach that has been traditionally used to solve model space tasks in planning, both with the LLM in the role of a standalone model space reasoner as well as in the role of a statistical signal in concert with the CS approach as part of a two-stage process. Our experiments show promising results suggesting further forays of LLMs into the exciting world of model space reasoning for planning tasks in the future.
Towards Automatic Translation of Machine Learning Visual Insights to Analytical Assertions
We present our vision for developing an automated tool capable of translating visual properties observed in Machine Learning (ML) visualisations into Python assertions. The tool aims to streamline the process of manually verifying these visualisations in the ML development cycle, which is critical as real-world data and assumptions often change post-deployment. In a prior study, we mined 54,070 Jupyter notebooks from Github and created a catalogue of 269 semantically related visualisation-assertion (VA) pairs. Building on this catalogue, we propose to build a taxonomy that organises the VA pairs based on ML verification tasks. The input feature space comprises of a rich source of information mined from the Jupyter notebooks -- visualisations, Python source code, and associated markdown text. The effectiveness of various AI models, including traditional NLP4Code models and modern Large Language Models, will be compared using established machine translation metrics and evaluated through a qualitative study with human participants. The paper also plans to address the challenge of extending the existing VA pair dataset with additional pairs from Kaggle and to compare the tool's effectiveness with commercial generative AI models like ChatGPT. This research not only contributes to the field of ML system validation but also explores novel ways to leverage AI for automating and enhancing software engineering practices in ML.
LegalVis: Exploring and Inferring Precedent Citations in Legal Documents
To reduce the number of pending cases and conflicting rulings in the Brazilian Judiciary, the National Congress amended the Constitution, allowing the Brazilian Supreme Court (STF) to create binding precedents (BPs), i.e., a set of understandings that both Executive and lower Judiciary branches must follow. The STF's justices frequently cite the 58 existing BPs in their decisions, and it is of primary relevance that judicial experts could identify and analyze such citations. To assist in this problem, we propose LegalVis, a web-based visual analytics system designed to support the analysis of legal documents that cite or could potentially cite a BP. We model the problem of identifying potential citations (i.e., non-explicit) as a classification problem. However, a simple score is not enough to explain the results; that is why we use an interpretability machine learning method to explain the reason behind each identified citation. For a compelling visual exploration of documents and BPs, LegalVis comprises three interactive visual components: the first presents an overview of the data showing temporal patterns, the second allows filtering and grouping relevant documents by topic, and the last one shows a document's text aiming to interpret the model's output by pointing out which paragraphs are likely to mention the BP, even if not explicitly specified. We evaluated our identification model and obtained an accuracy of 96%; we also made a quantitative and qualitative analysis of the results. The usefulness and effectiveness of LegalVis were evaluated through two usage scenarios and feedback from six domain experts.