new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 30

Constructing interval variables via faceted Rasch measurement and multitask deep learning: a hate speech application

We propose a general method for measuring complex variables on a continuous, interval spectrum by combining supervised deep learning with the Constructing Measures approach to faceted Rasch item response theory (IRT). We decompose the target construct, hate speech in our case, into multiple constituent components that are labeled as ordinal survey items. Those survey responses are transformed via IRT into a debiased, continuous outcome measure. Our method estimates the survey interpretation bias of the human labelers and eliminates that influence on the generated continuous measure. We further estimate the response quality of each labeler using faceted IRT, allowing responses from low-quality labelers to be removed. Our faceted Rasch scaling procedure integrates naturally with a multitask deep learning architecture for automated prediction on new data. The ratings on the theorized components of the target outcome are used as supervised, ordinal variables for the neural networks' internal concept learning. We test the use of an activation function (ordinal softmax) and loss function (ordinal cross-entropy) designed to exploit the structure of ordinal outcome variables. Our multitask architecture leads to a new form of model interpretation because each continuous prediction can be directly explained by the constituent components in the penultimate layer. We demonstrate this new method on a dataset of 50,000 social media comments sourced from YouTube, Twitter, and Reddit and labeled by 11,000 U.S.-based Amazon Mechanical Turk workers to measure a continuous spectrum from hate speech to counterspeech. We evaluate Universal Sentence Encoders, BERT, and RoBERTa as language representation models for the comment text, and compare our predictive accuracy to Google Jigsaw's Perspective API models, showing significant improvement over this standard benchmark.

Automatically Select Emotion for Response via Personality-affected Emotion Transition

To provide consistent emotional interaction with users, dialog systems should be capable to automatically select appropriate emotions for responses like humans. However, most existing works focus on rendering specified emotions in responses or empathetically respond to the emotion of users, yet the individual difference in emotion expression is overlooked. This may lead to inconsistent emotional expressions and disinterest users. To tackle this issue, we propose to equip the dialog system with personality and enable it to automatically select emotions in responses by simulating the emotion transition of humans in conversation. In detail, the emotion of the dialog system is transitioned from its preceding emotion in context. The transition is triggered by the preceding dialog context and affected by the specified personality trait. To achieve this, we first model the emotion transition in the dialog system as the variation between the preceding emotion and the response emotion in the Valence-Arousal-Dominance (VAD) emotion space. Then, we design neural networks to encode the preceding dialog context and the specified personality traits to compose the variation. Finally, the emotion for response is selected from the sum of the preceding emotion and the variation. We construct a dialog dataset with emotion and personality labels and conduct emotion prediction tasks for evaluation. Experimental results validate the effectiveness of the personality-affected emotion transition.

TONE: A 3-Tiered ONtology for Emotion analysis

Emotions have played an important part in many sectors, including psychology, medicine, mental health, computer science, and so on, and categorizing them has proven extremely useful in separating one emotion from another. Emotions can be classified using the following two methods: (1) The supervised method's efficiency is strongly dependent on the size and domain of the data collected. A categorization established using relevant data from one domain may not work well in another. (2) An unsupervised method that uses either domain expertise or a knowledge base of emotion types already exists. Though this second approach provides a suitable and generic categorization of emotions and is cost-effective, the literature doesn't possess a publicly available knowledge base that can be directly applied to any emotion categorization-related task. This pushes us to create a knowledge base that can be used for emotion classification across domains, and ontology is often used for this purpose. In this study, we provide TONE, an emotion-based ontology that effectively creates an emotional hierarchy based on Dr. Gerrod Parrot's group of emotions. In addition to ontology development, we introduce a semi-automated vocabulary construction process to generate a detailed collection of terms for emotions at each tier of the hierarchy. We also demonstrate automated methods for establishing three sorts of dependencies in order to develop linkages between different emotions. Our human and automatic evaluation results show the ontology's quality. Furthermore, we describe three distinct use cases that demonstrate the applicability of our ontology.

Beyond No: Quantifying AI Over-Refusal and Emotional Attachment Boundaries

We present an open-source benchmark and evaluation framework for assessing emotional boundary handling in Large Language Models (LLMs). Using a dataset of 1156 prompts across six languages, we evaluated three leading LLMs (GPT-4o, Claude-3.5 Sonnet, and Mistral-large) on their ability to maintain appropriate emotional boundaries through pattern-matched response analysis. Our framework quantifies responses across seven key patterns: direct refusal, apology, explanation, deflection, acknowledgment, boundary setting, and emotional awareness. Results demonstrate significant variation in boundary-handling approaches, with Claude-3.5 achieving the highest overall score (8.69/10) and producing longer, more nuanced responses (86.51 words on average). We identified a substantial performance gap between English (average score 25.62) and non-English interactions (< 0.22), with English responses showing markedly higher refusal rates (43.20% vs. < 1% for non-English). Pattern analysis revealed model-specific strategies, such as Mistral's preference for deflection (4.2%) and consistently low empathy scores across all models (< 0.06). Limitations include potential oversimplification through pattern matching, lack of contextual understanding in response analysis, and binary classification of complex emotional responses. Future work should explore more nuanced scoring methods, expand language coverage, and investigate cultural variations in emotional boundary expectations. Our benchmark and methodology provide a foundation for systematic evaluation of LLM emotional intelligence and boundary-setting capabilities.

BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Behavioural Change

Recognizing complex emotions linked to ambivalence and hesitancy (A/H) can play a critical role in the personalization and effectiveness of digital behaviour change interventions. These subtle and conflicting emotions are manifested by a discord between multiple modalities, such as facial and vocal expressions, and body language. Although experts can be trained to identify A/H, integrating them into digital interventions is costly and less effective. Automatic learning systems provide a cost-effective alternative that can adapt to individual users, and operate seamlessly within real-time, and resource-limited environments. However, there are currently no datasets available for the design of ML models to recognize A/H. This paper introduces a first Behavioural Ambivalence/Hesitancy (BAH) dataset collected for subject-based multimodal recognition of A/H in videos. It contains videos from 224 participants captured across 9 provinces in Canada, with different age, and ethnicity. Through our web platform, we recruited participants to answer 7 questions, some of which were designed to elicit A/H while recording themselves via webcam with microphone. BAH amounts to 1,118 videos for a total duration of 8.26 hours with 1.5 hours of A/H. Our behavioural team annotated timestamp segments to indicate where A/H occurs, and provide frame- and video-level annotations with the A/H cues. Video transcripts and their timestamps are also included, along with cropped and aligned faces in each frame, and a variety of participants meta-data. We include results baselines for BAH at frame- and video-level recognition in multi-modal setups, in addition to zero-shot prediction, and for personalization using unsupervised domain adaptation. The limited performance of baseline models highlights the challenges of recognizing A/H in real-world videos. The data, code, and pretrained weights are available.

Explainable Multimodal Emotion Reasoning

Multimodal emotion recognition is an active research topic in artificial intelligence. Its primary objective is to integrate multi-modalities (such as acoustic, visual, and lexical clues) to identify human emotional states. Current works generally assume accurate emotion labels for benchmark datasets and focus on developing more effective architectures. But due to the inherent subjectivity of emotions, existing datasets often lack high annotation consistency, resulting in potentially inaccurate labels. Consequently, models built on these datasets may struggle to meet the demands of practical applications. To address this issue, it is crucial to enhance the reliability of emotion annotations. In this paper, we propose a novel task called ``Explainable Multimodal Emotion Reasoning (EMER)''. In contrast to previous works that primarily focus on predicting emotions, EMER takes a step further by providing explanations for these predictions. The prediction is considered correct as long as the reasoning process behind the predicted emotion is plausible. This paper presents our initial efforts on EMER, where we introduce a benchmark dataset, establish baseline models, and define evaluation metrics. Meanwhile, we observe the necessity of integrating multi-faceted capabilities to deal with EMER. Therefore, we propose the first multimodal large language model (LLM) in affective computing, called AffectGPT. We aim to tackle the long-standing challenge of label ambiguity and chart a path toward more reliable techniques. Furthermore, EMER offers an opportunity to evaluate the audio-video-text understanding capabilities of recent multimodal LLM. To facilitate further research, we make the code and data available at: https://github.com/zeroQiaoba/AffectGPT.

Large Language Models Understand and Can be Enhanced by Emotional Stimuli

Emotional intelligence significantly impacts our daily behaviors and interactions. Although Large Language Models (LLMs) are increasingly viewed as a stride toward artificial general intelligence, exhibiting impressive performance in numerous tasks, it is still uncertain if LLMs can genuinely grasp psychological emotional stimuli. Understanding and responding to emotional cues gives humans a distinct advantage in problem-solving. In this paper, we take the first step towards exploring the ability of LLMs to understand emotional stimuli. To this end, we first conduct automatic experiments on 45 tasks using various LLMs, including Flan-T5-Large, Vicuna, Llama 2, BLOOM, ChatGPT, and GPT-4. Our tasks span deterministic and generative applications that represent comprehensive evaluation scenarios. Our automatic experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts (which we call "EmotionPrompt" that combines the original prompt with emotional stimuli), e.g., 8.00% relative performance improvement in Instruction Induction and 115% in BIG-Bench. In addition to those deterministic tasks that can be automatically evaluated using existing metrics, we conducted a human study with 106 participants to assess the quality of generative tasks using both vanilla and emotional prompts. Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks (10.9% average improvement in terms of performance, truthfulness, and responsibility metrics). We provide an in-depth discussion regarding why EmotionPrompt works for LLMs and the factors that may influence its performance. We posit that EmotionPrompt heralds a novel avenue for exploring interdisciplinary knowledge for human-LLMs interaction.

A Labelled Dataset for Sentiment Analysis of Videos on YouTube, TikTok, and Other Sources about the 2024 Outbreak of Measles

The work of this paper presents a dataset that contains the data of 4011 videos about the ongoing outbreak of measles published on 264 websites on the internet between January 1, 2024, and May 31, 2024. The dataset is available at https://dx.doi.org/10.21227/40s8-xf63. These websites primarily include YouTube and TikTok, which account for 48.6% and 15.2% of the videos, respectively. The remainder of the websites include Instagram and Facebook as well as the websites of various global and local news organizations. For each of these videos, the URL of the video, title of the post, description of the post, and the date of publication of the video are presented as separate attributes in the dataset. After developing this dataset, sentiment analysis (using VADER), subjectivity analysis (using TextBlob), and fine-grain sentiment analysis (using DistilRoBERTa-base) of the video titles and video descriptions were performed. This included classifying each video title and video description into (i) one of the sentiment classes i.e. positive, negative, or neutral, (ii) one of the subjectivity classes i.e. highly opinionated, neutral opinionated, or least opinionated, and (iii) one of the fine-grain sentiment classes i.e. fear, surprise, joy, sadness, anger, disgust, or neutral. These results are presented as separate attributes in the dataset for the training and testing of machine learning algorithms for performing sentiment analysis or subjectivity analysis in this field as well as for other applications. Finally, this paper also presents a list of open research questions that may be investigated using this dataset.

Wav2Small: Distilling Wav2Vec2 to 72K parameters for Low-Resource Speech emotion recognition

Speech Emotion Recognition (SER) needs high computational resources to overcome the challenge of substantial annotator disagreement. Today SER is shifting towards dimensional annotations of arousal, dominance, and valence (A/D/V). Universal metrics as the L2 distance prove unsuitable for evaluating A/D/V accuracy due to non converging consensus of annotator opinions. However, Concordance Correlation Coefficient (CCC) arose as an alternative metric for A/D/V where a model's output is evaluated to match a whole dataset's CCC rather than L2 distances of individual audios. Recent studies have shown that Wav2Vec2.0 / WavLM architectures outputing a float value for each A/D/V dimension achieve today's State-of-the-art (SOTA) CCC on A/D/V. The Wav2Vec2.0 / WavLM family has high computational footprint, but training tiny models using human annotations has been unsuccessful. In this paper we use a large Transformer SOTA A/D/V model as Teacher/Annotator to train 5 student models: 4 MobileNets and our proposed Wav2Small, using only the Teacher's A/D/V predictions instead of human annotations. We chose MobileNet-V4 / MobileNet-V3 as students, as MobileNet has been designed for fast execution times. We propose Wav2Small an architecture designed for minimal parameter number and RAM consumption. Wav2Small with an .onnx (quantized) of only 60KB is a potential solution for A/D/V on hearing aids, having only 72K parameters vs 3.12M parameters for MobileNet-V4-Small. The Teacher model we construct sets a new SOTA on the MSP Podcast Test-1 dataset with valence CCC=0.676.

EmoLLMs: A Series of Emotional Large Language Models and Annotation Tools for Comprehensive Affective Analysis

Sentiment analysis and emotion detection are important research topics in natural language processing (NLP) and benefit many downstream tasks. With the widespread application of LLMs, researchers have started exploring the application of LLMs based on instruction-tuning in the field of sentiment analysis. However, these models only focus on single aspects of affective classification tasks (e.g. sentimental polarity or categorical emotions), and overlook the regression tasks (e.g. sentiment strength or emotion intensity), which leads to poor performance in downstream tasks. The main reason is the lack of comprehensive affective instruction tuning datasets and evaluation benchmarks, which cover various affective classification and regression tasks. Moreover, although emotional information is useful for downstream tasks, existing downstream datasets lack high-quality and comprehensive affective annotations. In this paper, we propose EmoLLMs, the first series of open-sourced instruction-following LLMs for comprehensive affective analysis based on fine-tuning various LLMs with instruction data, the first multi-task affective analysis instruction dataset (AAID) with 234K data samples based on various classification and regression tasks to support LLM instruction tuning, and a comprehensive affective evaluation benchmark (AEB) with 14 tasks from various sources and domains to test the generalization ability of LLMs. We propose a series of EmoLLMs by fine-tuning LLMs with AAID to solve various affective instruction tasks. We compare our model with a variety of LLMs on AEB, where our models outperform all other open-sourced LLMs, and surpass ChatGPT and GPT-4 in most tasks, which shows that the series of EmoLLMs achieve the ChatGPT-level and GPT-4-level generalization capabilities on affective analysis tasks, and demonstrates our models can be used as affective annotation tools.

PerSEval: Assessing Personalization in Text Summarizers

Personalized summarization models cater to individuals' subjective understanding of saliency, as represented by their reading history and current topics of attention. Existing personalized text summarizers are primarily evaluated based on accuracy measures such as BLEU, ROUGE, and METEOR. However, a recent study argued that accuracy measures are inadequate for evaluating the degree of personalization of these models and proposed EGISES, the first metric to evaluate personalized text summaries. It was suggested that accuracy is a separate aspect and should be evaluated standalone. In this paper, we challenge the necessity of an accuracy leaderboard, suggesting that relying on accuracy-based aggregated results might lead to misleading conclusions. To support this, we delve deeper into EGISES, demonstrating both theoretically and empirically that it measures the degree of responsiveness, a necessary but not sufficient condition for degree-of-personalization. We subsequently propose PerSEval, a novel measure that satisfies the required sufficiency condition. Based on the benchmarking of ten SOTA summarization models on the PENS dataset, we empirically establish that -- (i) PerSEval is reliable w.r.t human-judgment correlation (Pearson's r = 0.73; Spearman's rho = 0.62; Kendall's tau = 0.42), (ii) PerSEval has high rank-stability, (iii) PerSEval as a rank-measure is not entailed by EGISES-based ranking, and (iv) PerSEval can be a standalone rank-measure without the need of any aggregated ranking.

EmoSet: A Large-scale Visual Emotion Dataset with Rich Attributes

Visual Emotion Analysis (VEA) aims at predicting people's emotional responses to visual stimuli. This is a promising, yet challenging, task in affective computing, which has drawn increasing attention in recent years. Most of the existing work in this area focuses on feature design, while little attention has been paid to dataset construction. In this work, we introduce EmoSet, the first large-scale visual emotion dataset annotated with rich attributes, which is superior to existing datasets in four aspects: scale, annotation richness, diversity, and data balance. EmoSet comprises 3.3 million images in total, with 118,102 of these images carefully labeled by human annotators, making it five times larger than the largest existing dataset. EmoSet includes images from social networks, as well as artistic images, and it is well balanced between different emotion categories. Motivated by psychological studies, in addition to emotion category, each image is also annotated with a set of describable emotion attributes: brightness, colorfulness, scene type, object class, facial expression, and human action, which can help understand visual emotions in a precise and interpretable way. The relevance of these emotion attributes is validated by analyzing the correlations between them and visual emotion, as well as by designing an attribute module to help visual emotion recognition. We believe EmoSet will bring some key insights and encourage further research in visual emotion analysis and understanding. Project page: https://vcc.tech/EmoSet.

Can Large Language Models be Good Emotional Supporter? Mitigating Preference Bias on Emotional Support Conversation

Emotional Support Conversation (ESC) is a task aimed at alleviating individuals' emotional distress through daily conversation. Given its inherent complexity and non-intuitive nature, ESConv dataset incorporates support strategies to facilitate the generation of appropriate responses. Recently, despite the remarkable conversational ability of large language models (LLMs), previous studies have suggested that they often struggle with providing useful emotional support. Hence, this work initially analyzes the results of LLMs on ESConv, revealing challenges in selecting the correct strategy and a notable preference for a specific strategy. Motivated by these, we explore the impact of the inherent preference in LLMs on providing emotional support, and consequently, we observe that exhibiting high preference for specific strategies hinders effective emotional support, aggravating its robustness in predicting the appropriate strategy. Moreover, we conduct a methodological study to offer insights into the necessary approaches for LLMs to serve as proficient emotional supporters. Our findings emphasize that (1) low preference for specific strategies hinders the progress of emotional support, (2) external assistance helps reduce preference bias, and (3) existing LLMs alone cannot become good emotional supporters. These insights suggest promising avenues for future research to enhance the emotional intelligence of LLMs.