Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Dataset Perspective on Offline Reinforcement Learning
The application of Reinforcement Learning (RL) in real world environments can be expensive or risky due to sub-optimal policies during training. In Offline RL, this problem is avoided since interactions with an environment are prohibited. Policies are learned from a given dataset, which solely determines their performance. Despite this fact, how dataset characteristics influence Offline RL algorithms is still hardly investigated. The dataset characteristics are determined by the behavioral policy that samples this dataset. Therefore, we define characteristics of behavioral policies as exploratory for yielding high expected information in their interaction with the Markov Decision Process (MDP) and as exploitative for having high expected return. We implement two corresponding empirical measures for the datasets sampled by the behavioral policy in deterministic MDPs. The first empirical measure SACo is defined by the normalized unique state-action pairs and captures exploration. The second empirical measure TQ is defined by the normalized average trajectory return and captures exploitation. Empirical evaluations show the effectiveness of TQ and SACo. In large-scale experiments using our proposed measures, we show that the unconstrained off-policy Deep Q-Network family requires datasets with high SACo to find a good policy. Furthermore, experiments show that policy constraint algorithms perform well on datasets with high TQ and SACo. Finally, the experiments show, that purely dataset-constrained Behavioral Cloning performs competitively to the best Offline RL algorithms for datasets with high TQ.
D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning
Offline reinforcement learning algorithms hold the promise of enabling data-driven RL methods that do not require costly or dangerous real-world exploration and benefit from large pre-collected datasets. This in turn can facilitate real-world applications, as well as a more standardized approach to RL research. Furthermore, offline RL methods can provide effective initializations for online finetuning to overcome challenges with exploration. However, evaluating progress on offline RL algorithms requires effective and challenging benchmarks that capture properties of real-world tasks, provide a range of task difficulties, and cover a range of challenges both in terms of the parameters of the domain (e.g., length of the horizon, sparsity of rewards) and the parameters of the data (e.g., narrow demonstration data or broad exploratory data). While considerable progress in offline RL in recent years has been enabled by simpler benchmark tasks, the most widely used datasets are increasingly saturating in performance and may fail to reflect properties of realistic tasks. We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments, based on models of real-world robotic systems, and comprising a variety of data sources, including scripted data, play-style data collected by human teleoperators, and other data sources. Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation, with some of the tasks specifically designed to require both pre-training and fine-tuning. We hope that our proposed benchmark will facilitate further progress on both offline RL and fine-tuning algorithms. Website with code, examples, tasks, and data is available at https://sites.google.com/view/d5rl/
NeoRL: A Near Real-World Benchmark for Offline Reinforcement Learning
Offline reinforcement learning (RL) aims at learning a good policy from a batch of collected data, without extra interactions with the environment during training. However, current offline RL benchmarks commonly have a large reality gap, because they involve large datasets collected by highly exploratory policies, and the trained policy is directly evaluated in the environment. In real-world situations, running a highly exploratory policy is prohibited to ensure system safety, the data is commonly very limited, and a trained policy should be well validated before deployment. In this paper, we present a near real-world offline RL benchmark, named NeoRL, which contains datasets from various domains with controlled sizes, and extra test datasets for policy validation. We evaluate existing offline RL algorithms on NeoRL and argue that the performance of a policy should also be compared with the deterministic version of the behavior policy, instead of the dataset reward. The empirical results demonstrate that the tested offline RL algorithms become less competitive to the deterministic policy on many datasets, and the offline policy evaluation hardly helps. The NeoRL suit can be found at http://polixir.ai/research/neorl. We hope this work will shed some light on future research and draw more attention when deploying RL in real-world systems.
Reinforcement Learning in Low-Rank MDPs with Density Features
MDPs with low-rank transitions -- that is, the transition matrix can be factored into the product of two matrices, left and right -- is a highly representative structure that enables tractable learning. The left matrix enables expressive function approximation for value-based learning and has been studied extensively. In this work, we instead investigate sample-efficient learning with density features, i.e., the right matrix, which induce powerful models for state-occupancy distributions. This setting not only sheds light on leveraging unsupervised learning in RL, but also enables plug-in solutions for convex RL. In the offline setting, we propose an algorithm for off-policy estimation of occupancies that can handle non-exploratory data. Using this as a subroutine, we further devise an online algorithm that constructs exploratory data distributions in a level-by-level manner. As a central technical challenge, the additive error of occupancy estimation is incompatible with the multiplicative definition of data coverage. In the absence of strong assumptions like reachability, this incompatibility easily leads to exponential error blow-up, which we overcome via novel technical tools. Our results also readily extend to the representation learning setting, when the density features are unknown and must be learned from an exponentially large candidate set.
Harnessing Density Ratios for Online Reinforcement Learning
The theories of offline and online reinforcement learning, despite having evolved in parallel, have begun to show signs of the possibility for a unification, with algorithms and analysis techniques for one setting often having natural counterparts in the other. However, the notion of density ratio modeling, an emerging paradigm in offline RL, has been largely absent from online RL, perhaps for good reason: the very existence and boundedness of density ratios relies on access to an exploratory dataset with good coverage, but the core challenge in online RL is to collect such a dataset without having one to start. In this work we show -- perhaps surprisingly -- that density ratio-based algorithms have online counterparts. Assuming only the existence of an exploratory distribution with good coverage, a structural condition known as coverability (Xie et al., 2023), we give a new algorithm (GLOW) that uses density ratio realizability and value function realizability to perform sample-efficient online exploration. GLOW addresses unbounded density ratios via careful use of truncation, and combines this with optimism to guide exploration. GLOW is computationally inefficient; we complement it with a more efficient counterpart, HyGLOW, for the Hybrid RL setting (Song et al., 2022) wherein online RL is augmented with additional offline data. HyGLOW is derived as a special case of a more general meta-algorithm that provides a provable black-box reduction from hybrid RL to offline RL, which may be of independent interest.
Efficient Online Reinforcement Learning with Offline Data
Sample efficiency and exploration remain major challenges in online reinforcement learning (RL). A powerful approach that can be applied to address these issues is the inclusion of offline data, such as prior trajectories from a human expert or a sub-optimal exploration policy. Previous methods have relied on extensive modifications and additional complexity to ensure the effective use of this data. Instead, we ask: can we simply apply existing off-policy methods to leverage offline data when learning online? In this work, we demonstrate that the answer is yes; however, a set of minimal but important changes to existing off-policy RL algorithms are required to achieve reliable performance. We extensively ablate these design choices, demonstrating the key factors that most affect performance, and arrive at a set of recommendations that practitioners can readily apply, whether their data comprise a small number of expert demonstrations or large volumes of sub-optimal trajectories. We see that correct application of these simple recommendations can provide a 2.5times improvement over existing approaches across a diverse set of competitive benchmarks, with no additional computational overhead. We have released our code at https://github.com/ikostrikov/rlpd.
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
In this tutorial article, we aim to provide the reader with the conceptual tools needed to get started on research on offline reinforcement learning algorithms: reinforcement learning algorithms that utilize previously collected data, without additional online data collection. Offline reinforcement learning algorithms hold tremendous promise for making it possible to turn large datasets into powerful decision making engines. Effective offline reinforcement learning methods would be able to extract policies with the maximum possible utility out of the available data, thereby allowing automation of a wide range of decision-making domains, from healthcare and education to robotics. However, the limitations of current algorithms make this difficult. We will aim to provide the reader with an understanding of these challenges, particularly in the context of modern deep reinforcement learning methods, and describe some potential solutions that have been explored in recent work to mitigate these challenges, along with recent applications, and a discussion of perspectives on open problems in the field.
Accelerating exploration and representation learning with offline pre-training
Sequential decision-making agents struggle with long horizon tasks, since solving them requires multi-step reasoning. Most reinforcement learning (RL) algorithms address this challenge by improved credit assignment, introducing memory capability, altering the agent's intrinsic motivation (i.e. exploration) or its worldview (i.e. knowledge representation). Many of these components could be learned from offline data. In this work, we follow the hypothesis that exploration and representation learning can be improved by separately learning two different models from a single offline dataset. We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward separately from a single collection of human demonstrations can significantly improve the sample efficiency on the challenging NetHack benchmark. We also ablate various components of our experimental setting and highlight crucial insights.
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
Existing theoretical studies on offline reinforcement learning (RL) mostly consider a dataset sampled directly from the target task. In practice, however, data often come from several heterogeneous but related sources. Motivated by this gap, this work aims at rigorously understanding offline RL with multiple datasets that are collected from randomly perturbed versions of the target task instead of from itself. An information-theoretic lower bound is derived, which reveals a necessary requirement on the number of involved sources in addition to that on the number of data samples. Then, a novel HetPEVI algorithm is proposed, which simultaneously considers the sample uncertainties from a finite number of data samples per data source and the source uncertainties due to a finite number of available data sources. Theoretical analyses demonstrate that HetPEVI can solve the target task as long as the data sources collectively provide a good data coverage. Moreover, HetPEVI is demonstrated to be optimal up to a polynomial factor of the horizon length. Finally, the study is extended to offline Markov games and offline robust RL, which demonstrates the generality of the proposed designs and theoretical analyses.
Wikidata-lite for Knowledge Extraction and Exploration
Wikidata is the largest collaborative general knowledge graph supported by a worldwide community. It includes many helpful topics for knowledge exploration and data science applications. However, due to the enormous size of Wikidata, it is challenging to retrieve a large amount of data with millions of results, make complex queries requiring large aggregation operations, or access too many statement references. This paper introduces our preliminary works on Wikidata-lite, a toolkit to build a database offline for knowledge extraction and exploration, e.g., retrieving item information, statements, provenances, or searching entities by their keywords and attributes. Wikidata-lite has high performance and memory efficiency, much faster than the official Wikidata SPARQL endpoint for big queries. The Wikidata-lite repository is available at https://github.com/phucty/wikidb.
Semi-pessimistic Reinforcement Learning
Offline reinforcement learning (RL) aims to learn an optimal policy from pre-collected data. However, it faces challenges of distributional shift, where the learned policy may encounter unseen scenarios not covered in the offline data. Additionally, numerous applications suffer from a scarcity of labeled reward data. Relying on labeled data alone often leads to a narrow state-action distribution, further amplifying the distributional shift, and resulting in suboptimal policy learning. To address these issues, we first recognize that the volume of unlabeled data is typically substantially larger than that of labeled data. We then propose a semi-pessimistic RL method to effectively leverage abundant unlabeled data. Our approach offers several advantages. It considerably simplifies the learning process, as it seeks a lower bound of the reward function, rather than that of the Q-function or state transition function. It is highly flexible, and can be integrated with a range of model-free and model-based RL algorithms. It enjoys the guaranteed improvement when utilizing vast unlabeled data, but requires much less restrictive conditions. We compare our method with a number of alternative solutions, both analytically and numerically, and demonstrate its clear competitiveness. We further illustrate with an application to adaptive deep brain stimulation for Parkinson's disease.
D4RL: Datasets for Deep Data-Driven Reinforcement Learning
The offline reinforcement learning (RL) setting (also known as full batch RL), where a policy is learned from a static dataset, is compelling as progress enables RL methods to take advantage of large, previously-collected datasets, much like how the rise of large datasets has fueled results in supervised learning. However, existing online RL benchmarks are not tailored towards the offline setting and existing offline RL benchmarks are restricted to data generated by partially-trained agents, making progress in offline RL difficult to measure. In this work, we introduce benchmarks specifically designed for the offline setting, guided by key properties of datasets relevant to real-world applications of offline RL. With a focus on dataset collection, examples of such properties include: datasets generated via hand-designed controllers and human demonstrators, multitask datasets where an agent performs different tasks in the same environment, and datasets collected with mixtures of policies. By moving beyond simple benchmark tasks and data collected by partially-trained RL agents, we reveal important and unappreciated deficiencies of existing algorithms. To facilitate research, we have released our benchmark tasks and datasets with a comprehensive evaluation of existing algorithms, an evaluation protocol, and open-source examples. This serves as a common starting point for the community to identify shortcomings in existing offline RL methods and a collaborative route for progress in this emerging area.
NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios
Offline reinforcement learning (RL) aims to learn from historical data without requiring (costly) access to the environment. To facilitate offline RL research, we previously introduced NeoRL, which highlighted that datasets from real-world tasks are often conservative and limited. With years of experience applying offline RL to various domains, we have identified additional real-world challenges. These include extremely conservative data distributions produced by deployed control systems, delayed action effects caused by high-latency transitions, external factors arising from the uncontrollable variance of transitions, and global safety constraints that are difficult to evaluate during the decision-making process. These challenges are underrepresented in previous benchmarks but frequently occur in real-world tasks. To address this, we constructed the extended Near Real-World Offline RL Benchmark (NeoRL-2), which consists of 7 datasets from 7 simulated tasks along with their corresponding evaluation simulators. Benchmarking results from state-of-the-art offline RL approaches demonstrate that current methods often struggle to outperform the data-collection behavior policy, highlighting the need for more effective methods. We hope NeoRL-2 will accelerate the development of reinforcement learning algorithms for real-world applications. The benchmark project page is available at https://github.com/polixir/NeoRL2.
Leveraging Offline Data in Online Reinforcement Learning
Two central paradigms have emerged in the reinforcement learning (RL) community: online RL and offline RL. In the online RL setting, the agent has no prior knowledge of the environment, and must interact with it in order to find an epsilon-optimal policy. In the offline RL setting, the learner instead has access to a fixed dataset to learn from, but is unable to otherwise interact with the environment, and must obtain the best policy it can from this offline data. Practical scenarios often motivate an intermediate setting: if we have some set of offline data and, in addition, may also interact with the environment, how can we best use the offline data to minimize the number of online interactions necessary to learn an epsilon-optimal policy? In this work, we consider this setting, which we call the FineTuneRL setting, for MDPs with linear structure. We characterize the necessary number of online samples needed in this setting given access to some offline dataset, and develop an algorithm, FTPedel, which is provably optimal. We show through an explicit example that combining offline data with online interactions can lead to a provable improvement over either purely offline or purely online RL. Finally, our results illustrate the distinction between verifiable learning, the typical setting considered in online RL, and unverifiable learning, the setting often considered in offline RL, and show that there is a formal separation between these regimes.
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning
Offline multi-agent reinforcement learning (MARL) is an exciting direction of research that uses static datasets to find optimal control policies for multi-agent systems. Though the field is by definition data-driven, efforts have thus far neglected data in their drive to achieve state-of-the-art results. We first substantiate this claim by surveying the literature, showing how the majority of works generate their own datasets without consistent methodology and provide sparse information about the characteristics of these datasets. We then show why neglecting the nature of the data is problematic, through salient examples of how tightly algorithmic performance is coupled to the dataset used, necessitating a common foundation for experiments in the field. In response, we take a big step towards improving data usage and data awareness in offline MARL, with three key contributions: (1) a clear guideline for generating novel datasets; (2) a standardisation of over 80 existing datasets, hosted in a publicly available repository, using a consistent storage format and easy-to-use API; and (3) a suite of analysis tools that allow us to understand these datasets better, aiding further development.
Improving and Benchmarking Offline Reinforcement Learning Algorithms
Recently, Offline Reinforcement Learning (RL) has achieved remarkable progress with the emergence of various algorithms and datasets. However, these methods usually focus on algorithmic advancements, ignoring that many low-level implementation choices considerably influence or even drive the final performance. As a result, it becomes hard to attribute the progress in Offline RL as these choices are not sufficiently discussed and aligned in the literature. In addition, papers focusing on a dataset (e.g., D4RL) often ignore algorithms proposed on another dataset (e.g., RL Unplugged), causing isolation among the algorithms, which might slow down the overall progress. Therefore, this work aims to bridge the gaps caused by low-level choices and datasets. To this end, we empirically investigate 20 implementation choices using three representative algorithms (i.e., CQL, CRR, and IQL) and present a guidebook for choosing implementations. Following the guidebook, we find two variants CRR+ and CQL+ , achieving new state-of-the-art on D4RL. Moreover, we benchmark eight popular offline RL algorithms across datasets under unified training and evaluation framework. The findings are inspiring: the success of a learning paradigm severely depends on the data distribution, and some previous conclusions are biased by the dataset used. Our code is available at https://github.com/sail-sg/offbench.
Optimal Transport for Offline Imitation Learning
With the advent of large datasets, offline reinforcement learning (RL) is a promising framework for learning good decision-making policies without the need to interact with the real environment. However, offline RL requires the dataset to be reward-annotated, which presents practical challenges when reward engineering is difficult or when obtaining reward annotations is labor-intensive. In this paper, we introduce Optimal Transport Reward labeling (OTR), an algorithm that assigns rewards to offline trajectories, with a few high-quality demonstrations. OTR's key idea is to use optimal transport to compute an optimal alignment between an unlabeled trajectory in the dataset and an expert demonstration to obtain a similarity measure that can be interpreted as a reward, which can then be used by an offline RL algorithm to learn the policy. OTR is easy to implement and computationally efficient. On D4RL benchmarks, we show that OTR with a single demonstration can consistently match the performance of offline RL with ground-truth rewards.
Event-driven Real-time Retrieval in Web Search
Information retrieval in real-time search presents unique challenges distinct from those encountered in classical web search. These challenges are particularly pronounced due to the rapid change of user search intent, which is influenced by the occurrence and evolution of breaking news events, such as earthquakes, elections, and wars. Previous dense retrieval methods, which primarily focused on static semantic representation, lack the capacity to capture immediate search intent, leading to inferior performance in retrieving the most recent event-related documents in time-sensitive scenarios. To address this issue, this paper expands the query with event information that represents real-time search intent. The Event information is then integrated with the query through a cross-attention mechanism, resulting in a time-context query representation. We further enhance the model's capacity for event representation through multi-task training. Since publicly available datasets such as MS-MARCO do not contain any event information on the query side and have few time-sensitive queries, we design an automatic data collection and annotation pipeline to address this issue, which includes ModelZoo-based Coarse Annotation and LLM-driven Fine Annotation processes. In addition, we share the training tricks such as two-stage training and hard negative sampling. Finally, we conduct a set of offline experiments on a million-scale production dataset to evaluate our approach and deploy an A/B testing in a real online system to verify the performance. Extensive experimental results demonstrate that our proposed approach significantly outperforms existing state-of-the-art baseline methods.
PASTA: Pessimistic Assortment Optimization
We consider a class of assortment optimization problems in an offline data-driven setting. A firm does not know the underlying customer choice model but has access to an offline dataset consisting of the historically offered assortment set, customer choice, and revenue. The objective is to use the offline dataset to find an optimal assortment. Due to the combinatorial nature of assortment optimization, the problem of insufficient data coverage is likely to occur in the offline dataset. Therefore, designing a provably efficient offline learning algorithm becomes a significant challenge. To this end, we propose an algorithm referred to as Pessimistic ASsortment opTimizAtion (PASTA for short) designed based on the principle of pessimism, that can correctly identify the optimal assortment by only requiring the offline data to cover the optimal assortment under general settings. In particular, we establish a regret bound for the offline assortment optimization problem under the celebrated multinomial logit model. We also propose an efficient computational procedure to solve our pessimistic assortment optimization problem. Numerical studies demonstrate the superiority of the proposed method over the existing baseline method.
A Benchmark Environment for Offline Reinforcement Learning in Racing Games
Offline Reinforcement Learning (ORL) is a promising approach to reduce the high sample complexity of traditional Reinforcement Learning (RL) by eliminating the need for continuous environmental interactions. ORL exploits a dataset of pre-collected transitions and thus expands the range of application of RL to tasks in which the excessive environment queries increase training time and decrease efficiency, such as in modern AAA games. This paper introduces OfflineMania a novel environment for ORL research. It is inspired by the iconic TrackMania series and developed using the Unity 3D game engine. The environment simulates a single-agent racing game in which the objective is to complete the track through optimal navigation. We provide a variety of datasets to assess ORL performance. These datasets, created from policies of varying ability and in different sizes, aim to offer a challenging testbed for algorithm development and evaluation. We further establish a set of baselines for a range of Online RL, ORL, and hybrid Offline to Online RL approaches using our environment.
QueryExplorer: An Interactive Query Generation Assistant for Search and Exploration
Formulating effective search queries remains a challenging task, particularly when users lack expertise in a specific domain or are not proficient in the language of the content. Providing example documents of interest might be easier for a user. However, such query-by-example scenarios are prone to concept drift, and the retrieval effectiveness is highly sensitive to the query generation method, without a clear way to incorporate user feedback. To enable exploration and to support Human-In-The-Loop experiments we propose QueryExplorer -- an interactive query generation, reformulation, and retrieval interface with support for HuggingFace generation models and PyTerrier's retrieval pipelines and datasets, and extensive logging of human feedback. To allow users to create and modify effective queries, our demo supports complementary approaches of using LLMs interactively, assisting the user with edits and feedback at multiple stages of the query formulation process. With support for recording fine-grained interactions and user annotations, QueryExplorer can serve as a valuable experimental and research platform for annotation, qualitative evaluation, and conducting Human-in-the-Loop (HITL) experiments for complex search tasks where users struggle to formulate queries.
MOORL: A Framework for Integrating Offline-Online Reinforcement Learning
Sample efficiency and exploration remain critical challenges in Deep Reinforcement Learning (DRL), particularly in complex domains. Offline RL, which enables agents to learn optimal policies from static, pre-collected datasets, has emerged as a promising alternative. However, offline RL is constrained by issues such as out-of-distribution (OOD) actions that limit policy performance and generalization. To overcome these limitations, we propose Meta Offline-Online Reinforcement Learning (MOORL), a hybrid framework that unifies offline and online RL for efficient and scalable learning. While previous hybrid methods rely on extensive design components and added computational complexity to utilize offline data effectively, MOORL introduces a meta-policy that seamlessly adapts across offline and online trajectories. This enables the agent to leverage offline data for robust initialization while utilizing online interactions to drive efficient exploration. Our theoretical analysis demonstrates that the hybrid approach enhances exploration by effectively combining the complementary strengths of offline and online data. Furthermore, we demonstrate that MOORL learns a stable Q-function without added complexity. Extensive experiments on 28 tasks from the D4RL and V-D4RL benchmarks validate its effectiveness, showing consistent improvements over state-of-the-art offline and hybrid RL baselines. With minimal computational overhead, MOORL achieves strong performance, underscoring its potential for practical applications in real-world scenarios.
A Simple Unified Uncertainty-Guided Framework for Offline-to-Online Reinforcement Learning
Offline reinforcement learning (RL) provides a promising solution to learning an agent fully relying on a data-driven paradigm. However, constrained by the limited quality of the offline dataset, its performance is often sub-optimal. Therefore, it is desired to further finetune the agent via extra online interactions before deployment. Unfortunately, offline-to-online RL can be challenging due to two main challenges: constrained exploratory behavior and state-action distribution shift. To this end, we propose a Simple Unified uNcertainty-Guided (SUNG) framework, which naturally unifies the solution to both challenges with the tool of uncertainty. Specifically, SUNG quantifies uncertainty via a VAE-based state-action visitation density estimator. To facilitate efficient exploration, SUNG presents a practical optimistic exploration strategy to select informative actions with both high value and high uncertainty. Moreover, SUNG develops an adaptive exploitation method by applying conservative offline RL objectives to high-uncertainty samples and standard online RL objectives to low-uncertainty samples to smoothly bridge offline and online stages. SUNG achieves state-of-the-art online finetuning performance when combined with different offline RL methods, across various environments and datasets in D4RL benchmark.
When should we prefer Decision Transformers for Offline Reinforcement Learning?
Offline reinforcement learning (RL) allows agents to learn effective, return-maximizing policies from a static dataset. Three popular algorithms for offline RL are Conservative Q-Learning (CQL), Behavior Cloning (BC), and Decision Transformer (DT), from the class of Q-Learning, Imitation Learning, and Sequence Modeling respectively. A key open question is: which algorithm is preferred under what conditions? We study this question empirically by exploring the performance of these algorithms across the commonly used D4RL and Robomimic benchmarks. We design targeted experiments to understand their behavior concerning data suboptimality, task complexity, and stochasticity. Our key findings are: (1) DT requires more data than CQL to learn competitive policies but is more robust; (2) DT is a substantially better choice than both CQL and BC in sparse-reward and low-quality data settings; (3) DT and BC are preferable as task horizon increases, or when data is obtained from human demonstrators; and (4) CQL excels in situations characterized by the combination of high stochasticity and low data quality. We also investigate architectural choices and scaling trends for DT on Atari and D4RL and make design/scaling recommendations. We find that scaling the amount of data for DT by 5x gives a 2.5x average score improvement on Atari.
SEABO: A Simple Search-Based Method for Offline Imitation Learning
Offline reinforcement learning (RL) has attracted much attention due to its ability in learning from static offline datasets and eliminating the need of interacting with the environment. Nevertheless, the success of offline RL relies heavily on the offline transitions annotated with reward labels. In practice, we often need to hand-craft the reward function, which is sometimes difficult, labor-intensive, or inefficient. To tackle this challenge, we set our focus on the offline imitation learning (IL) setting, and aim at getting a reward function based on the expert data and unlabeled data. To that end, we propose a simple yet effective search-based offline IL method, tagged SEABO. SEABO allocates a larger reward to the transition that is close to its closest neighbor in the expert demonstration, and a smaller reward otherwise, all in an unsupervised learning manner. Experimental results on a variety of D4RL datasets indicate that SEABO can achieve competitive performance to offline RL algorithms with ground-truth rewards, given only a single expert trajectory, and can outperform prior reward learning and offline IL methods across many tasks. Moreover, we demonstrate that SEABO also works well if the expert demonstrations contain only observations. Our code is publicly available at https://github.com/dmksjfl/SEABO.
Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data
The modern paradigm in machine learning involves pre-training on diverse data, followed by task-specific fine-tuning. In reinforcement learning (RL), this translates to learning via offline RL on a diverse historical dataset, followed by rapid online RL fine-tuning using interaction data. Most RL fine-tuning methods require continued training on offline data for stability and performance. However, this is undesirable because training on diverse offline data is slow and expensive for large datasets, and in principle, also limit the performance improvement possible because of constraints or pessimism on offline data. In this paper, we show that retaining offline data is unnecessary as long as we use a properly-designed online RL approach for fine-tuning offline RL initializations. To build this approach, we start by analyzing the role of retaining offline data in online fine-tuning. We find that continued training on offline data is mostly useful for preventing a sudden divergence in the value function at the onset of fine-tuning, caused by a distribution mismatch between the offline data and online rollouts. This divergence typically results in unlearning and forgetting the benefits of offline pre-training. Our approach, Warm-start RL (WSRL), mitigates the catastrophic forgetting of pre-trained initializations using a very simple idea. WSRL employs a warmup phase that seeds the online RL run with a very small number of rollouts from the pre-trained policy to do fast online RL. The data collected during warmup helps ``recalibrate'' the offline Q-function to the online distribution, allowing us to completely discard offline data without destabilizing the online RL fine-tuning. We show that WSRL is able to fine-tune without retaining any offline data, and is able to learn faster and attains higher performance than existing algorithms irrespective of whether they retain offline data or not.
The Generalization Gap in Offline Reinforcement Learning
Despite recent progress in offline learning, these methods are still trained and tested on the same environment. In this paper, we compare the generalization abilities of widely used online and offline learning methods such as online reinforcement learning (RL), offline RL, sequence modeling, and behavioral cloning. Our experiments show that offline learning algorithms perform worse on new environments than online learning ones. We also introduce the first benchmark for evaluating generalization in offline learning, collecting datasets of varying sizes and skill-levels from Procgen (2D video games) and WebShop (e-commerce websites). The datasets contain trajectories for a limited number of game levels or natural language instructions and at test time, the agent has to generalize to new levels or instructions. Our experiments reveal that existing offline learning algorithms struggle to match the performance of online RL on both train and test environments. Behavioral cloning is a strong baseline, outperforming state-of-the-art offline RL and sequence modeling approaches when trained on data from multiple environments and tested on new ones. Finally, we find that increasing the diversity of the data, rather than its size, improves performance on new environments for all offline learning algorithms. Our study demonstrates the limited generalization of current offline learning algorithms highlighting the need for more research in this area.
PlayMyData: a curated dataset of multi-platform video games
Being predominant in digital entertainment for decades, video games have been recognized as valuable software artifacts by the software engineering (SE) community just recently. Such an acknowledgment has unveiled several research opportunities, spanning from empirical studies to the application of AI techniques for classification tasks. In this respect, several curated game datasets have been disclosed for research purposes even though the collected data are insufficient to support the application of advanced models or to enable interdisciplinary studies. Moreover, the majority of those are limited to PC games, thus excluding notorious gaming platforms, e.g., PlayStation, Xbox, and Nintendo. In this paper, we propose PlayMyData, a curated dataset composed of 99,864 multi-platform games gathered by IGDB website. By exploiting a dedicated API, we collect relevant metadata for each game, e.g., description, genre, rating, gameplay video URLs, and screenshots. Furthermore, we enrich PlayMyData with the timing needed to complete each game by mining the HLTB website. To the best of our knowledge, this is the most comprehensive dataset in the domain that can be used to support different automated tasks in SE. More importantly, PlayMyData can be used to foster cross-domain investigations built on top of the provided multimedia data.
Medical Dead-ends and Learning to Identify High-risk States and Treatments
Machine learning has successfully framed many sequential decision making problems as either supervised prediction, or optimal decision-making policy identification via reinforcement learning. In data-constrained offline settings, both approaches may fail as they assume fully optimal behavior or rely on exploring alternatives that may not exist. We introduce an inherently different approach that identifies possible "dead-ends" of a state space. We focus on the condition of patients in the intensive care unit, where a "medical dead-end" indicates that a patient will expire, regardless of all potential future treatment sequences. We postulate "treatment security" as avoiding treatments with probability proportional to their chance of leading to dead-ends, present a formal proof, and frame discovery as an RL problem. We then train three independent deep neural models for automated state construction, dead-end discovery and confirmation. Our empirical results discover that dead-ends exist in real clinical data among septic patients, and further reveal gaps between secure treatments and those that were administered.
Towards Robust Offline Reinforcement Learning under Diverse Data Corruption
Offline reinforcement learning (RL) presents a promising approach for learning reinforced policies from offline datasets without the need for costly or unsafe interactions with the environment. However, datasets collected by humans in real-world environments are often noisy and may even be maliciously corrupted, which can significantly degrade the performance of offline RL. In this work, we first investigate the performance of current offline RL algorithms under comprehensive data corruption, including states, actions, rewards, and dynamics. Our extensive experiments reveal that implicit Q-learning (IQL) demonstrates remarkable resilience to data corruption among various offline RL algorithms. Furthermore, we conduct both empirical and theoretical analyses to understand IQL's robust performance, identifying its supervised policy learning scheme as the key factor. Despite its relative robustness, IQL still suffers from heavy-tail targets of Q functions under dynamics corruption. To tackle this challenge, we draw inspiration from robust statistics to employ the Huber loss to handle the heavy-tailedness and utilize quantile estimators to balance penalization for corrupted data and learning stability. By incorporating these simple yet effective modifications into IQL, we propose a more robust offline RL approach named Robust IQL (RIQL). Extensive experiments demonstrate that RIQL exhibits highly robust performance when subjected to diverse data corruption scenarios.
Semi-Offline Reinforcement Learning for Optimized Text Generation
In reinforcement learning (RL), there are two major settings for interacting with the environment: online and offline. Online methods explore the environment at significant time cost, and offline methods efficiently obtain reward signals by sacrificing exploration capability. We propose semi-offline RL, a novel paradigm that smoothly transits from offline to online settings, balances exploration capability and training cost, and provides a theoretical foundation for comparing different RL settings. Based on the semi-offline formulation, we present the RL setting that is optimal in terms of optimization cost, asymptotic error, and overfitting error bound. Extensive experiments show that our semi-offline approach is efficient and yields comparable or often better performance compared with state-of-the-art methods.
Guided Data Augmentation for Offline Reinforcement Learning and Imitation Learning
In offline reinforcement learning (RL), an RL agent learns to solve a task using only a fixed dataset of previously collected data. While offline RL has been successful in learning real-world robot control policies, it typically requires large amounts of expert-quality data to learn effective policies that generalize to out-of-distribution states. Unfortunately, such data is often difficult and expensive to acquire in real-world tasks. Several recent works have leveraged data augmentation (DA) to inexpensively generate additional data, but most DA works apply augmentations in a random fashion and ultimately produce highly suboptimal augmented experience. In this work, we propose Guided Data Augmentation (GuDA), a human-guided DA framework that generates expert-quality augmented data. The key insight behind GuDA is that while it may be difficult to demonstrate the sequence of actions required to produce expert data, a user can often easily characterize when an augmented trajectory segment represents progress toward task completion. Thus, a user can restrict the space of possible augmentations to automatically reject suboptimal augmented data. To extract a policy from GuDA, we use off-the-shelf offline reinforcement learning and behavior cloning algorithms. We evaluate GuDA on a physical robot soccer task as well as simulated D4RL navigation tasks, a simulated autonomous driving task, and a simulated soccer task. Empirically, GuDA enables learning given a small initial dataset of potentially suboptimal experience and outperforms a random DA strategy as well as a model-based DA strategy.
Hundreds Guide Millions: Adaptive Offline Reinforcement Learning with Expert Guidance
Offline reinforcement learning (RL) optimizes the policy on a previously collected dataset without any interactions with the environment, yet usually suffers from the distributional shift problem. To mitigate this issue, a typical solution is to impose a policy constraint on a policy improvement objective. However, existing methods generally adopt a ``one-size-fits-all'' practice, i.e., keeping only a single improvement-constraint balance for all the samples in a mini-batch or even the entire offline dataset. In this work, we argue that different samples should be treated with different policy constraint intensities. Based on this idea, a novel plug-in approach named Guided Offline RL (GORL) is proposed. GORL employs a guiding network, along with only a few expert demonstrations, to adaptively determine the relative importance of the policy improvement and policy constraint for every sample. We theoretically prove that the guidance provided by our method is rational and near-optimal. Extensive experiments on various environments suggest that GORL can be easily installed on most offline RL algorithms with statistically significant performance improvements.
Synthetic Experience Replay
A key theme in the past decade has been that when large neural networks and large datasets combine they can produce remarkable results. In deep reinforcement learning (RL), this paradigm is commonly made possible through experience replay, whereby a dataset of past experiences is used to train a policy or value function. However, unlike in supervised or self-supervised learning, an RL agent has to collect its own data, which is often limited. Thus, it is challenging to reap the benefits of deep learning, and even small neural networks can overfit at the start of training. In this work, we leverage the tremendous recent progress in generative modeling and propose Synthetic Experience Replay (SynthER), a diffusion-based approach to flexibly upsample an agent's collected experience. We show that SynthER is an effective method for training RL agents across offline and online settings, in both proprioceptive and pixel-based environments. In offline settings, we observe drastic improvements when upsampling small offline datasets and see that additional synthetic data also allows us to effectively train larger networks. Furthermore, SynthER enables online agents to train with a much higher update-to-data ratio than before, leading to a significant increase in sample efficiency, without any algorithmic changes. We believe that synthetic training data could open the door to realizing the full potential of deep learning for replay-based RL algorithms from limited data. Finally, we open-source our code at https://github.com/conglu1997/SynthER.
Revisiting Design Choices in Offline Model-Based Reinforcement Learning
Offline reinforcement learning enables agents to leverage large pre-collected datasets of environment transitions to learn control policies, circumventing the need for potentially expensive or unsafe online data collection. Significant progress has been made recently in offline model-based reinforcement learning, approaches which leverage a learned dynamics model. This typically involves constructing a probabilistic model, and using the model uncertainty to penalize rewards where there is insufficient data, solving for a pessimistic MDP that lower bounds the true MDP. Existing methods, however, exhibit a breakdown between theory and practice, whereby pessimistic return ought to be bounded by the total variation distance of the model from the true dynamics, but is instead implemented through a penalty based on estimated model uncertainty. This has spawned a variety of uncertainty heuristics, with little to no comparison between differing approaches. In this paper, we compare these heuristics, and design novel protocols to investigate their interaction with other hyperparameters, such as the number of models, or imaginary rollout horizon. Using these insights, we show that selecting these key hyperparameters using Bayesian Optimization produces superior configurations that are vastly different to those currently used in existing hand-tuned state-of-the-art methods, and result in drastically stronger performance.
Best Practices and Lessons Learned on Synthetic Data for Language Models
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Safe Reinforcement Learning with Minimal Supervision
Reinforcement learning (RL) in the real world necessitates the development of procedures that enable agents to explore without causing harm to themselves or others. The most successful solutions to the problem of safe RL leverage offline data to learn a safe-set, enabling safe online exploration. However, this approach to safe-learning is often constrained by the demonstrations that are available for learning. In this paper we investigate the influence of the quantity and quality of data used to train the initial safe learning problem offline on the ability to learn safe-RL policies online. Specifically, we focus on tasks with spatially extended goal states where we have few or no demonstrations available. Classically this problem is addressed either by using hand-designed controllers to generate data or by collecting user-generated demonstrations. However, these methods are often expensive and do not scale to more complex tasks and environments. To address this limitation we propose an unsupervised RL-based offline data collection procedure, to learn complex and scalable policies without the need for hand-designed controllers or user demonstrations. Our research demonstrates the significance of providing sufficient demonstrations for agents to learn optimal safe-RL policies online, and as a result, we propose optimistic forgetting, a novel online safe-RL approach that is practical for scenarios with limited data. Further, our unsupervised data collection approach highlights the need to balance diversity and optimality for safe online exploration.
Unified Vision-Language Representation Modeling for E-Commerce Same-Style Products Retrieval
Same-style products retrieval plays an important role in e-commerce platforms, aiming to identify the same products which may have different text descriptions or images. It can be used for similar products retrieval from different suppliers or duplicate products detection of one supplier. Common methods use the image as the detected object, but they only consider the visual features and overlook the attribute information contained in the textual descriptions, and perform weakly for products in image less important industries like machinery, hardware tools and electronic component, even if an additional text matching module is added. In this paper, we propose a unified vision-language modeling method for e-commerce same-style products retrieval, which is designed to represent one product with its textual descriptions and visual contents. It contains one sampling skill to collect positive pairs from user click log with category and relevance constrained, and a novel contrastive loss unit to model the image, text, and image+text representations into one joint embedding space. It is capable of cross-modal product-to-product retrieval, as well as style transfer and user-interactive search. Offline evaluations on annotated data demonstrate its superior retrieval performance, and online testings show it can attract more clicks and conversions. Moreover, this model has already been deployed online for similar products retrieval in alibaba.com, the largest B2B e-commerce platform in the world.
Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism
Offline (or batch) reinforcement learning (RL) algorithms seek to learn an optimal policy from a fixed dataset without active data collection. Based on the composition of the offline dataset, two main categories of methods are used: imitation learning which is suitable for expert datasets and vanilla offline RL which often requires uniform coverage datasets. From a practical standpoint, datasets often deviate from these two extremes and the exact data composition is usually unknown a priori. To bridge this gap, we present a new offline RL framework that smoothly interpolates between the two extremes of data composition, hence unifying imitation learning and vanilla offline RL. The new framework is centered around a weak version of the concentrability coefficient that measures the deviation from the behavior policy to the expert policy alone. Under this new framework, we further investigate the question on algorithm design: can one develop an algorithm that achieves a minimax optimal rate and also adapts to unknown data composition? To address this question, we consider a lower confidence bound (LCB) algorithm developed based on pessimism in the face of uncertainty in offline RL. We study finite-sample properties of LCB as well as information-theoretic limits in multi-armed bandits, contextual bandits, and Markov decision processes (MDPs). Our analysis reveals surprising facts about optimality rates. In particular, in all three settings, LCB achieves a faster rate of 1/N for nearly-expert datasets compared to the usual rate of 1/N in offline RL, where N is the number of samples in the batch dataset. In the case of contextual bandits with at least two contexts, we prove that LCB is adaptively optimal for the entire data composition range, achieving a smooth transition from imitation learning to offline RL. We further show that LCB is almost adaptively optimal in MDPs.
Learning from Sparse Offline Datasets via Conservative Density Estimation
Offline reinforcement learning (RL) offers a promising direction for learning policies from pre-collected datasets without requiring further interactions with the environment. However, existing methods struggle to handle out-of-distribution (OOD) extrapolation errors, especially in sparse reward or scarce data settings. In this paper, we propose a novel training algorithm called Conservative Density Estimation (CDE), which addresses this challenge by explicitly imposing constraints on the state-action occupancy stationary distribution. CDE overcomes the limitations of existing approaches, such as the stationary distribution correction method, by addressing the support mismatch issue in marginal importance sampling. Our method achieves state-of-the-art performance on the D4RL benchmark. Notably, CDE consistently outperforms baselines in challenging tasks with sparse rewards or insufficient data, demonstrating the advantages of our approach in addressing the extrapolation error problem in offline RL.
Finetuning Offline World Models in the Real World
Reinforcement Learning (RL) is notoriously data-inefficient, which makes training on a real robot difficult. While model-based RL algorithms (world models) improve data-efficiency to some extent, they still require hours or days of interaction to learn skills. Recently, offline RL has been proposed as a framework for training RL policies on pre-existing datasets without any online interaction. However, constraining an algorithm to a fixed dataset induces a state-action distribution shift between training and inference, and limits its applicability to new tasks. In this work, we seek to get the best of both worlds: we consider the problem of pretraining a world model with offline data collected on a real robot, and then finetuning the model on online data collected by planning with the learned model. To mitigate extrapolation errors during online interaction, we propose to regularize the planner at test-time by balancing estimated returns and (epistemic) model uncertainty. We evaluate our method on a variety of visuo-motor control tasks in simulation and on a real robot, and find that our method enables few-shot finetuning to seen and unseen tasks even when offline data is limited. Videos, code, and data are available at https://yunhaifeng.com/FOWM .
Offline RL with Observation Histories: Analyzing and Improving Sample Complexity
Offline reinforcement learning (RL) can in principle synthesize more optimal behavior from a dataset consisting only of suboptimal trials. One way that this can happen is by "stitching" together the best parts of otherwise suboptimal trajectories that overlap on similar states, to create new behaviors where each individual state is in-distribution, but the overall returns are higher. However, in many interesting and complex applications, such as autonomous navigation and dialogue systems, the state is partially observed. Even worse, the state representation is unknown or not easy to define. In such cases, policies and value functions are often conditioned on observation histories instead of states. In these cases, it is not clear if the same kind of "stitching" is feasible at the level of observation histories, since two different trajectories would always have different histories, and thus "similar states" that might lead to effective stitching cannot be leveraged. Theoretically, we show that standard offline RL algorithms conditioned on observation histories suffer from poor sample complexity, in accordance with the above intuition. We then identify sufficient conditions under which offline RL can still be efficient -- intuitively, it needs to learn a compact representation of history comprising only features relevant for action selection. We introduce a bisimulation loss that captures the extent to which this happens, and propose that offline RL can explicitly optimize this loss to aid worst-case sample complexity. Empirically, we show that across a variety of tasks either our proposed loss improves performance, or the value of this loss is already minimized as a consequence of standard offline RL, indicating that it correlates well with good performance.
Real-Time Community Detection in Large Social Networks on a Laptop
For a broad range of research, governmental and commercial applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As social media data sets are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present a single-machine real-time system for large-scale graph processing that allows analysts to interactively explore graph structures. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates user similarities while being robust to noise and queryable in real-time. We achieve single machine real-time performance by compressing the neighbourhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e. communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetise their data, helping them to continue to provide free services that are valued by billions of people globally.
Offline Reinforcement Learning from Datasets with Structured Non-Stationarity
Current Reinforcement Learning (RL) is often limited by the large amount of data needed to learn a successful policy. Offline RL aims to solve this issue by using transitions collected by a different behavior policy. We address a novel Offline RL problem setting in which, while collecting the dataset, the transition and reward functions gradually change between episodes but stay constant within each episode. We propose a method based on Contrastive Predictive Coding that identifies this non-stationarity in the offline dataset, accounts for it when training a policy, and predicts it during evaluation. We analyze our proposed method and show that it performs well in simple continuous control tasks and challenging, high-dimensional locomotion tasks. We show that our method often achieves the oracle performance and performs better than baselines.
Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study on Telematics Data with ChatGPT
This research delves into the construction and utilization of synthetic datasets, specifically within the telematics sphere, leveraging OpenAI's powerful language model, ChatGPT. Synthetic datasets present an effective solution to challenges pertaining to data privacy, scarcity, and control over variables - characteristics that make them particularly valuable for research pursuits. The utility of these datasets, however, largely depends on their quality, measured through the lenses of diversity, relevance, and coherence. To illustrate this data creation process, a hands-on case study is conducted, focusing on the generation of a synthetic telematics dataset. The experiment involved an iterative guidance of ChatGPT, progressively refining prompts and culminating in the creation of a comprehensive dataset for a hypothetical urban planning scenario in Columbus, Ohio. Upon generation, the synthetic dataset was subjected to an evaluation, focusing on the previously identified quality parameters and employing descriptive statistics and visualization techniques for a thorough analysis. Despite synthetic datasets not serving as perfect replacements for actual world data, their potential in specific use-cases, when executed with precision, is significant. This research underscores the potential of AI models like ChatGPT in enhancing data availability for complex sectors like telematics, thus paving the way for a myriad of new research opportunities.
Sampling Is All You Need on Modeling Long-Term User Behaviors for CTR Prediction
Rich user behavior data has been proven to be of great value for Click-Through Rate (CTR) prediction applications, especially in industrial recommender, search, or advertising systems. However, it's non-trivial for real-world systems to make full use of long-term user behaviors due to the strict requirements of online serving time. Most previous works adopt the retrieval-based strategy, where a small number of user behaviors are retrieved first for subsequent attention. However, the retrieval-based methods are sub-optimal and would cause more or less information losses, and it's difficult to balance the effectiveness and efficiency of the retrieval algorithm. In this paper, we propose SDIM (Sampling-based Deep Interest Modeling), a simple yet effective sampling-based end-to-end approach for modeling long-term user behaviors. We sample from multiple hash functions to generate hash signatures of the candidate item and each item in the user behavior sequence, and obtain the user interest by directly gathering behavior items associated with the candidate item with the same hash signature. We show theoretically and experimentally that the proposed method performs on par with standard attention-based models on modeling long-term user behaviors, while being sizable times faster. We also introduce the deployment of SDIM in our system. Specifically, we decouple the behavior sequence hashing, which is the most time-consuming part, from the CTR model by designing a separate module named BSE (behavior Sequence Encoding). BSE is latency-free for the CTR server, enabling us to model extremely long user behaviors. Both offline and online experiments are conducted to demonstrate the effectiveness of SDIM. SDIM now has been deployed online in the search system of Meituan APP.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
Beyond Reward: Offline Preference-guided Policy Optimization
This study focuses on the topic of offline preference-based reinforcement learning (PbRL), a variant of conventional reinforcement learning that dispenses with the need for online interaction or specification of reward functions. Instead, the agent is provided with fixed offline trajectories and human preferences between pairs of trajectories to extract the dynamics and task information, respectively. Since the dynamics and task information are orthogonal, a naive approach would involve using preference-based reward learning followed by an off-the-shelf offline RL algorithm. However, this requires the separate learning of a scalar reward function, which is assumed to be an information bottleneck of the learning process. To address this issue, we propose the offline preference-guided policy optimization (OPPO) paradigm, which models offline trajectories and preferences in a one-step process, eliminating the need for separately learning a reward function. OPPO achieves this by introducing an offline hindsight information matching objective for optimizing a contextual policy and a preference modeling objective for finding the optimal context. OPPO further integrates a well-performing decision policy by optimizing the two objectives iteratively. Our empirical results demonstrate that OPPO effectively models offline preferences and outperforms prior competing baselines, including offline RL algorithms performed over either true or pseudo reward function specifications. Our code is available on the project website: https://sites.google.com/view/oppo-icml-2023 .
Decomposing Complex Queries for Tip-of-the-tongue Retrieval
When re-finding items, users who forget or are uncertain about identifying details often rely on creative strategies for expressing their information needs -- complex queries that describe content elements (e.g., book characters or events), information beyond the document text (e.g., descriptions of book covers), or personal context (e.g., when they read a book). This retrieval setting, called tip of the tongue (TOT), is especially challenging for models heavily reliant on lexical and semantic overlap between query and document text. In this work, we introduce a simple yet effective framework for handling such complex queries by decomposing the query into individual clues, routing those as sub-queries to specialized retrievers, and ensembling the results. This approach allows us to take advantage of off-the-shelf retrievers (e.g., CLIP for retrieving images of book covers) or incorporate retriever-specific logic (e.g., date constraints). We show that our framework incorportating query decompositions into retrievers can improve gold book recall up to 7% relative again for Recall@5 on a new collection of 14,441 real-world query-book pairs from an online community for resolving TOT inquiries.
Urban Mobility Assessment Using LLMs
Understanding urban mobility patterns and analyzing how people move around cities helps improve the overall quality of life and supports the development of more livable, efficient, and sustainable urban areas. A challenging aspect of this work is the collection of mobility data by means of user tracking or travel surveys, given the associated privacy concerns, noncompliance, and high cost. This work proposes an innovative AI-based approach for synthesizing travel surveys by prompting large language models (LLMs), aiming to leverage their vast amount of relevant background knowledge and text generation capabilities. Our study evaluates the effectiveness of this approach across various U.S. metropolitan areas by comparing the results against existing survey data at different granularity levels. These levels include (i) pattern level, which compares aggregated metrics like the average number of locations traveled and travel time, (ii) trip level, which focuses on comparing trips as whole units using transition probabilities, and (iii) activity chain level, which examines the sequence of locations visited by individuals. Our work covers several proprietary and open-source LLMs, revealing that open-source base models like Llama-2, when fine-tuned on even a limited amount of actual data, can generate synthetic data that closely mimics the actual travel survey data, and as such provides an argument for using such data in mobility studies.
Data Collection of Real-Life Knowledge Work in Context: The RLKWiC Dataset
Over the years, various approaches have been employed to enhance the productivity of knowledge workers, from addressing psychological well-being to the development of personal knowledge assistants. A significant challenge in this research area has been the absence of a comprehensive, publicly accessible dataset that mirrors real-world knowledge work. Although a handful of datasets exist, many are restricted in access or lack vital information dimensions, complicating meaningful comparison and benchmarking in the domain. This paper presents RLKWiC, a novel dataset of Real-Life Knowledge Work in Context, derived from monitoring the computer interactions of eight participants over a span of two months. As the first publicly available dataset offering a wealth of essential information dimensions (such as explicated contexts, textual contents, and semantics), RLKWiC seeks to address the research gap in the personal information management domain, providing valuable insights for modeling user behavior.
Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature
The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach's effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC. Our code, prompts, and benchmarks are made publicly available.
Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories
Natural agents can effectively learn from multiple data sources that differ in size, quality, and types of measurements. We study this heterogeneity in the context of offline reinforcement learning (RL) by introducing a new, practically motivated semi-supervised setting. Here, an agent has access to two sets of trajectories: labelled trajectories containing state, action and reward triplets at every timestep, along with unlabelled trajectories that contain only state and reward information. For this setting, we develop and study a simple meta-algorithmic pipeline that learns an inverse dynamics model on the labelled data to obtain proxy-labels for the unlabelled data, followed by the use of any offline RL algorithm on the true and proxy-labelled trajectories. Empirically, we find this simple pipeline to be highly successful -- on several D4RL benchmarks~fu2020d4rl, certain offline RL algorithms can match the performance of variants trained on a fully labelled dataset even when we label only 10\% of trajectories which are highly suboptimal. To strengthen our understanding, we perform a large-scale controlled empirical study investigating the interplay of data-centric properties of the labelled and unlabelled datasets, with algorithmic design choices (e.g., choice of inverse dynamics, offline RL algorithm) to identify general trends and best practices for training RL agents on semi-supervised offline datasets.
Offline Reinforcement Learning with Imputed Rewards
Offline Reinforcement Learning (ORL) offers a robust solution to training agents in applications where interactions with the environment must be strictly limited due to cost, safety, or lack of accurate simulation environments. Despite its potential to facilitate deployment of artificial agents in the real world, Offline Reinforcement Learning typically requires very many demonstrations annotated with ground-truth rewards. Consequently, state-of-the-art ORL algorithms can be difficult or impossible to apply in data-scarce scenarios. In this paper we propose a simple but effective Reward Model that can estimate the reward signal from a very limited sample of environment transitions annotated with rewards. Once the reward signal is modeled, we use the Reward Model to impute rewards for a large sample of reward-free transitions, thus enabling the application of ORL techniques. We demonstrate the potential of our approach on several D4RL continuous locomotion tasks. Our results show that, using only 1\% of reward-labeled transitions from the original datasets, our learned reward model is able to impute rewards for the remaining 99\% of the transitions, from which performant agents can be learned using Offline Reinforcement Learning.
Improving Offline-to-Online Reinforcement Learning with Q-Ensembles
Offline reinforcement learning (RL) is a learning paradigm where an agent learns from a fixed dataset of experience. However, learning solely from a static dataset can limit the performance due to the lack of exploration. To overcome it, offline-to-online RL combines offline pre-training with online fine-tuning, which enables the agent to further refine its policy by interacting with the environment in real-time. Despite its benefits, existing offline-to-online RL methods suffer from performance degradation and slow improvement during the online phase. To tackle these challenges, we propose a novel framework called Ensemble-based Offline-to-Online (E2O) RL. By increasing the number of Q-networks, we seamlessly bridge offline pre-training and online fine-tuning without degrading performance. Moreover, to expedite online performance enhancement, we appropriately loosen the pessimism of Q-value estimation and incorporate ensemble-based exploration mechanisms into our framework. Experimental results demonstrate that E2O can substantially improve the training stability, learning efficiency, and final performance of existing offline RL methods during online fine-tuning on a range of locomotion and navigation tasks, significantly outperforming existing offline-to-online RL methods.
A Survey on Data Selection for Language Models
A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the amount of training required. Data selection methods aim to determine which candidate data points to include in the training dataset and how to appropriately sample from the selected data points. The promise of improved data selection methods has caused the volume of research in the area to rapidly expand. However, because deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive, few organizations have the resources for extensive data selection research. Consequently, knowledge of effective data selection practices has become concentrated within a few organizations, many of which do not openly share their findings and methodologies. To narrow this gap in knowledge, we present a comprehensive review of existing literature on data selection methods and related research areas, providing a taxonomy of existing approaches. By describing the current landscape of research, this work aims to accelerate progress in data selection by establishing an entry point for new and established researchers. Additionally, throughout this review we draw attention to noticeable holes in the literature and conclude the paper by proposing promising avenues for future research.
G-Rank: Unsupervised Continuous Learn-to-Rank for Edge Devices in a P2P Network
Ranking algorithms in traditional search engines are powered by enormous training data sets that are meticulously engineered and curated by a centralized entity. Decentralized peer-to-peer (p2p) networks such as torrenting applications and Web3 protocols deliberately eschew centralized databases and computational architectures when designing services and features. As such, robust search-and-rank algorithms designed for such domains must be engineered specifically for decentralized networks, and must be lightweight enough to operate on consumer-grade personal devices such as a smartphone or laptop computer. We introduce G-Rank, an unsupervised ranking algorithm designed exclusively for decentralized networks. We demonstrate that accurate, relevant ranking results can be achieved in fully decentralized networks without any centralized data aggregation, feature engineering, or model training. Furthermore, we show that such results are obtainable with minimal data preprocessing and computational overhead, and can still return highly relevant results even when a user's device is disconnected from the network. G-Rank is highly modular in design, is not limited to categorical data, and can be implemented in a variety of domains with minimal modification. The results herein show that unsupervised ranking models designed for decentralized p2p networks are not only viable, but worthy of further research.
PowerWalk: Scalable Personalized PageRank via Random Walks with Vertex-Centric Decomposition
Most methods for Personalized PageRank (PPR) precompute and store all accurate PPR vectors, and at query time, return the ones of interest directly. However, the storage and computation of all accurate PPR vectors can be prohibitive for large graphs, especially in caching them in memory for real-time online querying. In this paper, we propose a distributed framework that strikes a better balance between offline indexing and online querying. The offline indexing attains a fingerprint of the PPR vector of each vertex by performing billions of "short" random walks in parallel across a cluster of machines. We prove that our indexing method has an exponential convergence, achieving the same precision with previous methods using a much smaller number of random walks. At query time, the new PPR vector is composed by a linear combination of related fingerprints, in a highly efficient vertex-centric decomposition manner. Interestingly, the resulting PPR vector is much more accurate than its offline counterpart because it actually uses more random walks in its estimation. More importantly, we show that such decomposition for a batch of queries can be very efficiently processed using a shared decomposition. Our implementation, PowerWalk, takes advantage of advanced distributed graph engines and it outperforms the state-of-the-art algorithms by orders of magnitude. Particularly, it responses to tens of thousands of queries on graphs with billions of edges in just a few seconds.
The Music Streaming Sessions Dataset
At the core of many important machine learning problems faced by online streaming services is a need to model how users interact with the content they are served. Unfortunately, there are no public datasets currently available that enable researchers to explore this topic. In order to spur that research, we release the Music Streaming Sessions Dataset (MSSD), which consists of 160 million listening sessions and associated user actions. Furthermore, we provide audio features and metadata for the approximately 3.7 million unique tracks referred to in the logs. This is the largest collection of such track metadata currently available to the public. This dataset enables research on important problems including how to model user listening and interaction behaviour in streaming, as well as Music Information Retrieval (MIR), and session-based sequential recommendations. Additionally, a subset of sessions were collected using a uniformly random recommendation setting, enabling their use for counterfactual evaluation of such sequential recommendations. Finally, we provide an analysis of user behavior and suggest further research problems which can be addressed using the dataset.
Can this Model Also Recognize Dogs? Zero-Shot Model Search from Weights
With the increasing numbers of publicly available models, there are probably pretrained, online models for most tasks users require. However, current model search methods are rudimentary, essentially a text-based search in the documentation, thus users cannot find the relevant models. This paper presents ProbeLog, a method for retrieving classification models that can recognize a target concept, such as "Dog", without access to model metadata or training data. Differently from previous probing methods, ProbeLog computes a descriptor for each output dimension (logit) of each model, by observing its responses on a fixed set of inputs (probes). Our method supports both logit-based retrieval ("find more logits like this") and zero-shot, text-based retrieval ("find all logits corresponding to dogs"). As probing-based representations require multiple costly feedforward passes through the model, we develop a method, based on collaborative filtering, that reduces the cost of encoding repositories by 3x. We demonstrate that ProbeLog achieves high retrieval accuracy, both in real-world and fine-grained search tasks and is scalable to full-size repositories.
Robust Task Representations for Offline Meta-Reinforcement Learning via Contrastive Learning
We study offline meta-reinforcement learning, a practical reinforcement learning paradigm that learns from offline data to adapt to new tasks. The distribution of offline data is determined jointly by the behavior policy and the task. Existing offline meta-reinforcement learning algorithms cannot distinguish these factors, making task representations unstable to the change of behavior policies. To address this problem, we propose a contrastive learning framework for task representations that are robust to the distribution mismatch of behavior policies in training and test. We design a bi-level encoder structure, use mutual information maximization to formalize task representation learning, derive a contrastive learning objective, and introduce several approaches to approximate the true distribution of negative pairs. Experiments on a variety of offline meta-reinforcement learning benchmarks demonstrate the advantages of our method over prior methods, especially on the generalization to out-of-distribution behavior policies. The code is available at https://github.com/PKU-AI-Edge/CORRO.
Generative models for wearables data
Data scarcity is a common obstacle in medical research due to the high costs associated with data collection and the complexity of gaining access to and utilizing data. Synthesizing health data may provide an efficient and cost-effective solution to this shortage, enabling researchers to explore distributions and populations that are not represented in existing observations or difficult to access due to privacy considerations. To that end, we have developed a multi-task self-attention model that produces realistic wearable activity data. We examine the characteristics of the generated data and quantify its similarity to genuine samples with both quantitative and qualitative approaches.
Leveraging Demonstrations to Improve Online Learning: Quality Matters
We investigate the extent to which offline demonstration data can improve online learning. It is natural to expect some improvement, but the question is how, and by how much? We show that the degree of improvement must depend on the quality of the demonstration data. To generate portable insights, we focus on Thompson sampling (TS) applied to a multi-armed bandit as a prototypical online learning algorithm and model. The demonstration data is generated by an expert with a given competence level, a notion we introduce. We propose an informed TS algorithm that utilizes the demonstration data in a coherent way through Bayes' rule and derive a prior-dependent Bayesian regret bound. This offers insight into how pretraining can greatly improve online performance and how the degree of improvement increases with the expert's competence level. We also develop a practical, approximate informed TS algorithm through Bayesian bootstrapping and show substantial empirical regret reduction through experiments.
ConceptCarve: Dynamic Realization of Evidence
Finding evidence for human opinion and behavior at scale is a challenging task, often requiring an understanding of sophisticated thought patterns among vast online communities found on social media. For example, studying how gun ownership is related to the perception of Freedom, requires a retrieval system that can operate at scale over social media posts, while dealing with two key challenges: (1) identifying abstract concept instances, (2) which can be instantiated differently across different communities. To address these, we introduce ConceptCarve, an evidence retrieval framework that utilizes traditional retrievers and LLMs to dynamically characterize the search space during retrieval. Our experiments show that ConceptCarve surpasses traditional retrieval systems in finding evidence within a social media community. It also produces an interpretable representation of the evidence for that community, which we use to qualitatively analyze complex thought patterns that manifest differently across the communities.
Semantic Trails of City Explorations: How Do We Live a City
The knowledge of city exploration trails of people is in short supply because of the complexity in defining meaningful trails representative of individual behaviours and in the access to actionable data. Existing datasets have only recorded isolated check-ins of activities featured by opaque venue types. In this paper, we fill the gaps in defining what is a semantic trail of city exploration and how it can be generated by integrating different data sources. Furthermore, we publicly release two datasets holding millions of semantic trails each and we discuss their most salient characteristics. We finally present an application using these datasets to build a recommender system meant to guide tourists while exploring a city.
Patience is all you need! An agentic system for performing scientific literature review
Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation.
DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions
Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public.
Offline Experience Replay for Continual Offline Reinforcement Learning
The capability of continuously learning new skills via a sequence of pre-collected offline datasets is desired for an agent. However, consecutively learning a sequence of offline tasks likely leads to the catastrophic forgetting issue under resource-limited scenarios. In this paper, we formulate a new setting, continual offline reinforcement learning (CORL), where an agent learns a sequence of offline reinforcement learning tasks and pursues good performance on all learned tasks with a small replay buffer without exploring any of the environments of all the sequential tasks. For consistently learning on all sequential tasks, an agent requires acquiring new knowledge and meanwhile preserving old knowledge in an offline manner. To this end, we introduced continual learning algorithms and experimentally found experience replay (ER) to be the most suitable algorithm for the CORL problem. However, we observe that introducing ER into CORL encounters a new distribution shift problem: the mismatch between the experiences in the replay buffer and trajectories from the learned policy. To address such an issue, we propose a new model-based experience selection (MBES) scheme to build the replay buffer, where a transition model is learned to approximate the state distribution. This model is used to bridge the distribution bias between the replay buffer and the learned model by filtering the data from offline data that most closely resembles the learned model for storage. Moreover, in order to enhance the ability on learning new tasks, we retrofit the experience replay method with a new dual behavior cloning (DBC) architecture to avoid the disturbance of behavior-cloning loss on the Q-learning process. In general, we call our algorithm offline experience replay (OER). Extensive experiments demonstrate that our OER method outperforms SOTA baselines in widely-used Mujoco environments.
Reinforced Approximate Exploratory Data Analysis
Exploratory data analytics (EDA) is a sequential decision making process where analysts choose subsequent queries that might lead to some interesting insights based on the previous queries and corresponding results. Data processing systems often execute the queries on samples to produce results with low latency. Different downsampling strategy preserves different statistics of the data and have different magnitude of latency reductions. The optimum choice of sampling strategy often depends on the particular context of the analysis flow and the hidden intent of the analyst. In this paper, we are the first to consider the impact of sampling in interactive data exploration settings as they introduce approximation errors. We propose a Deep Reinforcement Learning (DRL) based framework which can optimize the sample selection in order to keep the analysis and insight generation flow intact. Evaluations with 3 real datasets show that our technique can preserve the original insight generation flow while improving the interaction latency, compared to baseline methods.
WanJuan-CC: A Safe and High-Quality Open-sourced English Webtext Dataset
This paper presents WanJuan-CC, a safe and high-quality open-sourced English webtext dataset derived from Common Crawl data. The study addresses the challenges of constructing large-scale pre-training datasets for language models, which require vast amounts of high-quality data. A comprehensive process was designed to handle Common Crawl data, including extraction, heuristic rule filtering, fuzzy deduplication, content safety filtering, and data quality filtering. From approximately 68 billion original English documents, we obtained 2.22T Tokens of safe data and selected 1.0T Tokens of high-quality data as part of WanJuan-CC. We have open-sourced 300B Tokens from this dataset. The paper also provides statistical information related to data quality, enabling users to select appropriate data according to their needs. To evaluate the quality and utility of the dataset, we trained 1B-parameter and 3B-parameter models using WanJuan-CC and another dataset, RefinedWeb. Results show that WanJuan-CC performs better on validation datasets and downstream tasks.
Using Offline Data to Speed-up Reinforcement Learning in Procedurally Generated Environments
One of the key challenges of Reinforcement Learning (RL) is the ability of agents to generalise their learned policy to unseen settings. Moreover, training RL agents requires large numbers of interactions with the environment. Motivated by the recent success of Offline RL and Imitation Learning (IL), we conduct a study to investigate whether agents can leverage offline data in the form of trajectories to improve the sample-efficiency in procedurally generated environments. We consider two settings of using IL from offline data for RL: (1) pre-training a policy before online RL training and (2) concurrently training a policy with online RL and IL from offline data. We analyse the impact of the quality (optimality of trajectories) and diversity (number of trajectories and covered level) of available offline trajectories on the effectiveness of both approaches. Across four well-known sparse reward tasks in the MiniGrid environment, we find that using IL for pre-training and concurrently during online RL training both consistently improve the sample-efficiency while converging to optimal policies. Furthermore, we show that pre-training a policy from as few as two trajectories can make the difference between learning an optimal policy at the end of online training and not learning at all. Our findings motivate the widespread adoption of IL for pre-training and concurrent IL in procedurally generated environments whenever offline trajectories are available or can be generated.
Spacerini: Plug-and-play Search Engines with Pyserini and Hugging Face
We present Spacerini, a modular framework for seamless building and deployment of interactive search applications, designed to facilitate the qualitative analysis of large scale research datasets. Spacerini integrates features from both the Pyserini toolkit and the Hugging Face ecosystem to ease the indexing text collections and deploy them as search engines for ad-hoc exploration and to make the retrieval of relevant data points quick and efficient. The user-friendly interface enables searching through massive datasets in a no-code fashion, making Spacerini broadly accessible to anyone looking to qualitatively audit their text collections. This is useful both to IR~researchers aiming to demonstrate the capabilities of their indexes in a simple and interactive way, and to NLP~researchers looking to better understand and audit the failure modes of large language models. The framework is open source and available on GitHub: https://github.com/castorini/hf-spacerini, and includes utilities to load, pre-process, index, and deploy local and web search applications. A portfolio of applications created with Spacerini for a multitude of use cases can be found by visiting https://hf.co/spacerini.
Solving Data Quality Problems with Desbordante: a Demo
Data profiling is an essential process in modern data-driven industries. One of its critical components is the discovery and validation of complex statistics, including functional dependencies, data constraints, association rules, and others. However, most existing data profiling systems that focus on complex statistics do not provide proper integration with the tools used by contemporary data scientists. This creates a significant barrier to the adoption of these tools in the industry. Moreover, existing systems were not created with industrial-grade workloads in mind. Finally, they do not aim to provide descriptive explanations, i.e. why a given pattern is not found. It is a significant issue as it is essential to understand the underlying reasons for a specific pattern's absence to make informed decisions based on the data. Because of that, these patterns are effectively rest in thin air: their application scope is rather limited, they are rarely used by the broader public. At the same time, as we are going to demonstrate in this presentation, complex statistics can be efficiently used to solve many classic data quality problems. Desbordante is an open-source data profiler that aims to close this gap. It is built with emphasis on industrial application: it is efficient, scalable, resilient to crashes, and provides explanations. Furthermore, it provides seamless Python integration by offloading various costly operations to the C++ core, not only mining. In this demonstration, we show several scenarios that allow end users to solve different data quality problems. Namely, we showcase typo detection, data deduplication, and data anomaly detection scenarios.
unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network
Large-scale data sets on scholarly publications are the basis for a variety of bibliometric analyses and natural language processing (NLP) applications. Especially data sets derived from publication's full-text have recently gained attention. While several such data sets already exist, we see key shortcomings in terms of their domain and time coverage, citation network completeness, and representation of full-text content. To address these points, we propose a new version of the data set unarXive. We base our data processing pipeline and output format on two existing data sets, and improve on each of them. Our resulting data set comprises 1.9 M publications spanning multiple disciplines and 32 years. It furthermore has a more complete citation network than its predecessors and retains a richer representation of document structure as well as non-textual publication content such as mathematical notation. In addition to the data set, we provide ready-to-use training/test data for citation recommendation and IMRaD classification. All data and source code is publicly available at https://github.com/IllDepence/unarXive.
Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks
Retrieval-augmented Generation (RAG) has primarily been studied in limited settings, such as factoid question answering; more challenging, reasoning-intensive benchmarks have seen limited success from minimal RAG. In this work, we challenge this prevailing view on established, reasoning-intensive benchmarks: MMLU, MMLU Pro, AGI Eval, GPQA, and MATH. We identify a key missing component in prior work: a usable, web-scale datastore aligned with the breadth of pretraining data. To this end, we introduce CompactDS: a diverse, high-quality, web-scale datastore that achieves high retrieval accuracy and subsecond latency on a single-node. The key insights are (1) most web content can be filtered out without sacrificing coverage, and a compact, high-quality subset is sufficient; and (2) combining in-memory approximate nearest neighbor (ANN) retrieval and on-disk exact search balances speed and recall. Using CompactDS, we show that a minimal RAG pipeline achieves consistent accuracy improvements across all benchmarks and model sizes (8B--70B), with relative gains of 10% on MMLU, 33% on MMLU Pro, 14% on GPQA, and 19% on MATH. No single data source suffices alone, highlighting the importance of diversity of sources (web crawls, curated math, academic papers, textbooks). Finally, we show that our carefully designed in-house datastore matches or outperforms web search engines such as Google Search, as well as recently proposed, complex agent-based RAG systems--all while maintaining simplicity, reproducibility, and self-containment. We release CompactDS and our retrieval pipeline, supporting future research exploring retrieval-based AI systems.
Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of k-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data.
MS MARCO Web Search: a Large-scale Information-rich Web Dataset with Millions of Real Click Labels
Recent breakthroughs in large models have highlighted the critical significance of data scale, labels and modals. In this paper, we introduce MS MARCO Web Search, the first large-scale information-rich web dataset, featuring millions of real clicked query-document labels. This dataset closely mimics real-world web document and query distribution, provides rich information for various kinds of downstream tasks and encourages research in various areas, such as generic end-to-end neural indexer models, generic embedding models, and next generation information access system with large language models. MS MARCO Web Search offers a retrieval benchmark with three web retrieval challenge tasks that demand innovations in both machine learning and information retrieval system research domains. As the first dataset that meets large, real and rich data requirements, MS MARCO Web Search paves the way for future advancements in AI and system research. MS MARCO Web Search dataset is available at: https://github.com/microsoft/MS-MARCO-Web-Search.
HAGRID: A Human-LLM Collaborative Dataset for Generative Information-Seeking with Attribution
The rise of large language models (LLMs) had a transformative impact on search, ushering in a new era of search engines that are capable of generating search results in natural language text, imbued with citations for supporting sources. Building generative information-seeking models demands openly accessible datasets, which currently remain lacking. In this paper, we introduce a new dataset, HAGRID (Human-in-the-loop Attributable Generative Retrieval for Information-seeking Dataset) for building end-to-end generative information-seeking models that are capable of retrieving candidate quotes and generating attributed explanations. Unlike recent efforts that focus on human evaluation of black-box proprietary search engines, we built our dataset atop the English subset of MIRACL, a publicly available information retrieval dataset. HAGRID is constructed based on human and LLM collaboration. We first automatically collect attributed explanations that follow an in-context citation style using an LLM, i.e. GPT-3.5. Next, we ask human annotators to evaluate the LLM explanations based on two criteria: informativeness and attributability. HAGRID serves as a catalyst for the development of information-seeking models with better attribution capabilities.
Applying Text Mining to Protest Stories as Voice against Media Censorship
Data driven activism attempts to collect, analyze and visualize data to foster social change. However, during media censorship it is often impossible to collect such data. Here we demonstrate that data from personal stories can also help us to gain insights about protests and activism which can work as a voice for the activists. We analyze protest story data by extracting location network from the stories and perform emotion mining to get insight about the protest.
All You Need is Ratings: A Clustering Approach to Synthetic Rating Datasets Generation
The public availability of collections containing user preferences is of vital importance for performing offline evaluations in the field of recommender systems. However, the number of rating datasets is limited because of the costs required for their creation and the fear of violating the privacy of the users by sharing them. For this reason, numerous research attempts investigated the creation of synthetic collections of ratings using generative approaches. Nevertheless, these datasets are usually not reliable enough for conducting an evaluation campaign. In this paper, we propose a method for creating synthetic datasets with a configurable number of users that mimic the characteristics of already existing ones. We empirically validated the proposed approach by exploiting the synthetic datasets for evaluating different recommenders and by comparing the results with the ones obtained using real datasets.
Revisiting Table Detection Datasets for Visually Rich Documents
Table Detection has become a fundamental task for visually rich document understanding with the surging number of electronic documents. However, popular public datasets widely used in related studies have inherent limitations, including noisy and inconsistent samples, limited training samples, and limited data sources. These limitations make these datasets unreliable to evaluate the model performance and cannot reflect the actual capacity of models. Therefore, this study revisits some open datasets with high-quality annotations, identifies and cleans the noise, and aligns the annotation definitions of these datasets to merge a larger dataset, termed Open-Tables. Moreover, to enrich the data sources, we propose a new ICT-TD dataset using the PDF files of Information and Communication Technologies (ICT) commodities, a different domain containing unique samples that hardly appear in open datasets. To ensure the label quality of the dataset, we annotated the dataset manually following the guidance of a domain expert. The proposed dataset is challenging and can be a sample of actual cases in the business context. We built strong baselines using various state-of-the-art object detection models. Our experimental results show that the domain differences among existing open datasets are minor despite having different data sources. Our proposed Open-Tables and ICT-TD can provide a more reliable evaluation for models because of their high quality and consistent annotations. Besides, they are more suitable for cross-domain settings. Our experimental results show that in the cross-domain setting, benchmark models trained with cleaned Open-Tables dataset can achieve 0.6\%-2.6\% higher weighted average F1 than the corresponding ones trained with the noisy version of Open-Tables, demonstrating the reliability of the proposed datasets. The datasets are public available.
MIR: Methodology Inspiration Retrieval for Scientific Research Problems
There has been a surge of interest in harnessing the reasoning capabilities of Large Language Models (LLMs) to accelerate scientific discovery. While existing approaches rely on grounding the discovery process within the relevant literature, effectiveness varies significantly with the quality and nature of the retrieved literature. We address the challenge of retrieving prior work whose concepts can inspire solutions for a given research problem, a task we define as Methodology Inspiration Retrieval (MIR). We construct a novel dataset tailored for training and evaluating retrievers on MIR, and establish baselines. To address MIR, we build the Methodology Adjacency Graph (MAG); capturing methodological lineage through citation relationships. We leverage MAG to embed an "intuitive prior" into dense retrievers for identifying patterns of methodological inspiration beyond superficial semantic similarity. This achieves significant gains of +5.4 in Recall@3 and +7.8 in Mean Average Precision (mAP) over strong baselines. Further, we adapt LLM-based re-ranking strategies to MIR, yielding additional improvements of +4.5 in Recall@3 and +4.8 in mAP. Through extensive ablation studies and qualitative analyses, we exhibit the promise of MIR in enhancing automated scientific discovery and outline avenues for advancing inspiration-driven retrieval.
MiCRO: Multi-interest Candidate Retrieval Online
Providing personalized recommendations in an environment where items exhibit ephemerality and temporal relevancy (e.g. in social media) presents a few unique challenges: (1) inductively understanding ephemeral appeal for items in a setting where new items are created frequently, (2) adapting to trends within engagement patterns where items may undergo temporal shifts in relevance, (3) accurately modeling user preferences over this item space where users may express multiple interests. In this work we introduce MiCRO, a generative statistical framework that models multi-interest user preferences and temporal multi-interest item representations. Our framework is specifically formulated to adapt to both new items and temporal patterns of engagement. MiCRO demonstrates strong empirical performance on candidate retrieval experiments performed on two large scale user-item datasets: (1) an open-source temporal dataset of (User, User) follow interactions and (2) a temporal dataset of (User, Tweet) favorite interactions which we will open-source as an additional contribution to the community.
Reasoning with Latent Diffusion in Offline Reinforcement Learning
Offline reinforcement learning (RL) holds promise as a means to learn high-reward policies from a static dataset, without the need for further environment interactions. However, a key challenge in offline RL lies in effectively stitching portions of suboptimal trajectories from the static dataset while avoiding extrapolation errors arising due to a lack of support in the dataset. Existing approaches use conservative methods that are tricky to tune and struggle with multi-modal data (as we show) or rely on noisy Monte Carlo return-to-go samples for reward conditioning. In this work, we propose a novel approach that leverages the expressiveness of latent diffusion to model in-support trajectory sequences as compressed latent skills. This facilitates learning a Q-function while avoiding extrapolation error via batch-constraining. The latent space is also expressive and gracefully copes with multi-modal data. We show that the learned temporally-abstract latent space encodes richer task-specific information for offline RL tasks as compared to raw state-actions. This improves credit assignment and facilitates faster reward propagation during Q-learning. Our method demonstrates state-of-the-art performance on the D4RL benchmarks, particularly excelling in long-horizon, sparse-reward tasks.
A Reliable Knowledge Processing Framework for Combustion Science using Foundation Models
This research explores the integration of large language models (LLMs) into scientific data assimilation, focusing on combustion science as a case study. Leveraging foundational models integrated with Retrieval-Augmented Generation (RAG) framework, the study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature. The multifaceted nature of combustion research emphasizes the critical role of knowledge processing in navigating and extracting valuable information from a vast and diverse pool of sources. The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy. It incorporates prompt engineering and offline open-source LLMs, offering user autonomy in selecting base models. The study provides a thorough examination of text segmentation strategies, conducts comparative studies between LLMs, and explores various optimized prompts to demonstrate the effectiveness of the framework. By incorporating an external database, the framework outperforms a conventional LLM in generating accurate responses and constructing robust arguments. Additionally, the study delves into the investigation of optimized prompt templates for the purpose of efficient extraction of scientific literature. The research addresses concerns related to hallucinations and false research articles by introducing a custom workflow developed with a detection algorithm to filter out inaccuracies. Despite identified areas for improvement, the framework consistently delivers accurate domain-specific responses with minimal human oversight. The prompt-agnostic approach introduced holds promise for future deliberations. The study underscores the significance of integrating LLMs and knowledge processing techniques in scientific research, providing a foundation for advancements in data assimilation and utilization.
Towards Trustworthy Reranking: A Simple yet Effective Abstention Mechanism
Neural Information Retrieval (NIR) has significantly improved upon heuristic-based IR systems. Yet, failures remain frequent, the models used often being unable to retrieve documents relevant to the user's query. We address this challenge by proposing a lightweight abstention mechanism tailored for real-world constraints, with particular emphasis placed on the reranking phase. We introduce a protocol for evaluating abstention strategies in a black-box scenario, demonstrating their efficacy, and propose a simple yet effective data-driven mechanism. We provide open-source code for experiment replication and abstention implementation, fostering wider adoption and application in diverse contexts.
Shopping Queries Dataset: A Large-Scale ESCI Benchmark for Improving Product Search
Improving the quality of search results can significantly enhance users experience and engagement with search engines. In spite of several recent advancements in the fields of machine learning and data mining, correctly classifying items for a particular user search query has been a long-standing challenge, which still has a large room for improvement. This paper introduces the "Shopping Queries Dataset", a large dataset of difficult Amazon search queries and results, publicly released with the aim of fostering research in improving the quality of search results. The dataset contains around 130 thousand unique queries and 2.6 million manually labeled (query,product) relevance judgements. The dataset is multilingual with queries in English, Japanese, and Spanish. The Shopping Queries Dataset is being used in one of the KDDCup'22 challenges. In this paper, we describe the dataset and present three evaluation tasks along with baseline results: (i) ranking the results list, (ii) classifying product results into relevance categories, and (iii) identifying substitute products for a given query. We anticipate that this data will become the gold standard for future research in the topic of product search.
Speak, Memory: An Archaeology of Books Known to ChatGPT/GPT-4
In this work, we carry out a data archaeology to infer books that are known to ChatGPT and GPT-4 using a name cloze membership inference query. We find that OpenAI models have memorized a wide collection of copyrighted materials, and that the degree of memorization is tied to the frequency with which passages of those books appear on the web. The ability of these models to memorize an unknown set of books complicates assessments of measurement validity for cultural analytics by contaminating test data; we show that models perform much better on memorized books than on non-memorized books for downstream tasks. We argue that this supports a case for open models whose training data is known.
Knowledge Graph Induction enabling Recommending and Trend Analysis: A Corporate Research Community Use Case
A research division plays an important role of driving innovation in an organization. Drawing insights, following trends, keeping abreast of new research, and formulating strategies are increasingly becoming more challenging for both researchers and executives as the amount of information grows in both velocity and volume. In this paper we present a use case of how a corporate research community, IBM Research, utilizes Semantic Web technologies to induce a unified Knowledge Graph from both structured and textual data obtained by integrating various applications used by the community related to research projects, academic papers, datasets, achievements and recognition. In order to make the Knowledge Graph more accessible to application developers, we identified a set of common patterns for exploiting the induced knowledge and exposed them as APIs. Those patterns were born out of user research which identified the most valuable use cases or user pain points to be alleviated. We outline two distinct scenarios: recommendation and analytics for business use. We will discuss these scenarios in detail and provide an empirical evaluation on entity recommendation specifically. The methodology used and the lessons learned from this work can be applied to other organizations facing similar challenges.
Sample Efficient Reward Augmentation in offline-to-online Reinforcement Learning
Offline-to-online RL can make full use of pre-collected offline datasets to initialize policies, resulting in higher sample efficiency and better performance compared to only using online algorithms alone for policy training. However, direct fine-tuning of the pre-trained policy tends to result in sub-optimal performance. A primary reason is that conservative offline RL methods diminish the agent's capability of exploration, thereby impacting online fine-tuning performance. To encourage agent's exploration during online fine-tuning and enhance the overall online fine-tuning performance, we propose a generalized reward augmentation method called Sample Efficient Reward Augmentation (SERA). Specifically, SERA encourages agent to explore by computing Q conditioned entropy as intrinsic reward. The advantage of SERA is that it can extensively utilize offline pre-trained Q to encourage agent uniformly coverage of state space while considering the imbalance between the distributions of high-value and low-value states. Additionally, SERA can be effortlessly plugged into various RL algorithms to improve online fine-tuning and ensure sustained asymptotic improvement. Moreover, extensive experimental results demonstrate that when conducting offline-to-online problems, SERA consistently and effectively enhances the performance of various offline algorithms.
Will we run out of data? An analysis of the limits of scaling datasets in Machine Learning
We analyze the growth of dataset sizes used in machine learning for natural language processing and computer vision, and extrapolate these using two methods; using the historical growth rate and estimating the compute-optimal dataset size for future predicted compute budgets. We investigate the growth in data usage by estimating the total stock of unlabeled data available on the internet over the coming decades. Our analysis indicates that the stock of high-quality language data will be exhausted soon; likely before 2026. By contrast, the stock of low-quality language data and image data will be exhausted only much later; between 2030 and 2050 (for low-quality language) and between 2030 and 2060 (for images). Our work suggests that the current trend of ever-growing ML models that rely on enormous datasets might slow down if data efficiency is not drastically improved or new sources of data become available.
MuLMS: A Multi-Layer Annotated Text Corpus for Information Extraction in the Materials Science Domain
Keeping track of all relevant recent publications and experimental results for a research area is a challenging task. Prior work has demonstrated the efficacy of information extraction models in various scientific areas. Recently, several datasets have been released for the yet understudied materials science domain. However, these datasets focus on sub-problems such as parsing synthesis procedures or on sub-domains, e.g., solid oxide fuel cells. In this resource paper, we present MuLMS, a new dataset of 50 open-access articles, spanning seven sub-domains of materials science. The corpus has been annotated by domain experts with several layers ranging from named entities over relations to frame structures. We present competitive neural models for all tasks and demonstrate that multi-task training with existing related resources leads to benefits.
From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
Leveraging Large Language Models to Democratize Access to Costly Financial Datasets for Academic Research
Unequal access to costly datasets essential for empirical research has long hindered researchers from disadvantaged institutions, limiting their ability to contribute to their fields and advance their careers. Recent breakthroughs in Large Language Models (LLMs) have the potential to democratize data access by automating data collection from unstructured sources. We develop and evaluate a novel methodology using GPT-4o-mini within a Retrieval-Augmented Generation (RAG) framework to collect data from corporate disclosures. Our approach achieves human-level accuracy in collecting CEO pay ratios from approximately 10,000 proxy statements and Critical Audit Matters (CAMs) from more than 12,000 10-K filings, with LLM processing times of 9 and 40 minutes respectively, each at a cost under $10. This stands in stark contrast to the hundreds of hours needed for manual collection or the thousands of dollars required for commercial database subscriptions. To foster a more inclusive research community by empowering researchers with limited resources to explore new avenues of inquiry, we share our methodology and the resulting datasets.
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
Modern machine learning research relies on relatively few carefully curated datasets. Even in these datasets, and typically in `untidy' or raw data, practitioners are faced with significant issues of data quality and diversity which can be prohibitively labor intensive to address. Existing methods for dealing with these challenges tend to make strong assumptions about the particular issues at play, and often require a priori knowledge or metadata such as domain labels. Our work is orthogonal to these methods: we instead focus on providing a unified and efficient framework for Metadata Archaeology -- uncovering and inferring metadata of examples in a dataset. We curate different subsets of data that might exist in a dataset (e.g. mislabeled, atypical, or out-of-distribution examples) using simple transformations, and leverage differences in learning dynamics between these probe suites to infer metadata of interest. Our method is on par with far more sophisticated mitigation methods across different tasks: identifying and correcting mislabeled examples, classifying minority-group samples, prioritizing points relevant for training and enabling scalable human auditing of relevant examples.
Pessimistic Nonlinear Least-Squares Value Iteration for Offline Reinforcement Learning
Offline reinforcement learning (RL), where the agent aims to learn the optimal policy based on the data collected by a behavior policy, has attracted increasing attention in recent years. While offline RL with linear function approximation has been extensively studied with optimal results achieved under certain assumptions, many works shift their interest to offline RL with non-linear function approximation. However, limited works on offline RL with non-linear function approximation have instance-dependent regret guarantees. In this paper, we propose an oracle-efficient algorithm, dubbed Pessimistic Nonlinear Least-Square Value Iteration (PNLSVI), for offline RL with non-linear function approximation. Our algorithmic design comprises three innovative components: (1) a variance-based weighted regression scheme that can be applied to a wide range of function classes, (2) a subroutine for variance estimation, and (3) a planning phase that utilizes a pessimistic value iteration approach. Our algorithm enjoys a regret bound that has a tight dependency on the function class complexity and achieves minimax optimal instance-dependent regret when specialized to linear function approximation. Our work extends the previous instance-dependent results within simpler function classes, such as linear and differentiable function to a more general framework.
Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sampling
We consider the problem of recommending relevant content to users of an internet platform in the form of lists of items, called slates. We introduce a variational Bayesian Recurrent Neural Net recommender system that acts on time series of interactions between the internet platform and the user, and which scales to real world industrial situations. The recommender system is tested both online on real users, and on an offline dataset collected from a Norwegian web-based marketplace, FINN.no, that is made public for research. This is one of the first publicly available datasets which includes all the slates that are presented to users as well as which items (if any) in the slates were clicked on. Such a data set allows us to move beyond the common assumption that implicitly assumes that users are considering all possible items at each interaction. Instead we build our likelihood using the items that are actually in the slate, and evaluate the strengths and weaknesses of both approaches theoretically and in experiments. We also introduce a hierarchical prior for the item parameters based on group memberships. Both item parameters and user preferences are learned probabilistically. Furthermore, we combine our model with bandit strategies to ensure learning, and introduce `in-slate Thompson Sampling' which makes use of the slates to maximise explorative opportunities. We show experimentally that explorative recommender strategies perform on par or above their greedy counterparts. Even without making use of exploration to learn more effectively, click rates increase simply because of improved diversity in the recommended slates.
Some Like It Small: Czech Semantic Embedding Models for Industry Applications
This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance.
High-Throughput Vector Similarity Search in Knowledge Graphs
There is an increasing adoption of machine learning for encoding data into vectors to serve online recommendation and search use cases. As a result, recent data management systems propose augmenting query processing with online vector similarity search. In this work, we explore vector similarity search in the context of Knowledge Graphs (KGs). Motivated by the tasks of finding related KG queries and entities for past KG query workloads, we focus on hybrid vector similarity search (hybrid queries for short) where part of the query corresponds to vector similarity search and part of the query corresponds to predicates over relational attributes associated with the underlying data vectors. For example, given past KG queries for a song entity, we want to construct new queries for new song entities whose vector representations are close to the vector representation of the entity in the past KG query. But entities in a KG also have non-vector attributes such as a song associated with an artist, a genre, and a release date. Therefore, suggested entities must also satisfy query predicates over non-vector attributes beyond a vector-based similarity predicate. While these tasks are central to KGs, our contributions are generally applicable to hybrid queries. In contrast to prior works that optimize online queries, we focus on enabling efficient batch processing of past hybrid query workloads. We present our system, HQI, for high-throughput batch processing of hybrid queries. We introduce a workload-aware vector data partitioning scheme to tailor the vector index layout to the given workload and describe a multi-query optimization technique to reduce the overhead of vector similarity computations. We evaluate our methods on industrial workloads and demonstrate that HQI yields a 31x improvement in throughput for finding related KG queries compared to existing hybrid query processing approaches.
Qilin: A Multimodal Information Retrieval Dataset with APP-level User Sessions
User-generated content (UGC) communities, especially those featuring multimodal content, improve user experiences by integrating visual and textual information into results (or items). The challenge of improving user experiences in complex systems with search and recommendation (S\&R) services has drawn significant attention from both academia and industry these years. However, the lack of high-quality datasets has limited the research progress on multimodal S\&R. To address the growing need for developing better S\&R services, we present a novel multimodal information retrieval dataset in this paper, namely Qilin. The dataset is collected from Xiaohongshu, a popular social platform with over 300 million monthly active users and an average search penetration rate of over 70\%. In contrast to existing datasets, Qilin offers a comprehensive collection of user sessions with heterogeneous results like image-text notes, video notes, commercial notes, and direct answers, facilitating the development of advanced multimodal neural retrieval models across diverse task settings. To better model user satisfaction and support the analysis of heterogeneous user behaviors, we also collect extensive APP-level contextual signals and genuine user feedback. Notably, Qilin contains user-favored answers and their referred results for search requests triggering the Deep Query Answering (DQA) module. This allows not only the training \& evaluation of a Retrieval-augmented Generation (RAG) pipeline, but also the exploration of how such a module would affect users' search behavior. Through comprehensive analysis and experiments, we provide interesting findings and insights for further improving S\&R systems. We hope that Qilin will significantly contribute to the advancement of multimodal content platforms with S\&R services in the future.
Understanding Scanned Receipts
Tasking machines with understanding receipts can have important applications such as enabling detailed analytics on purchases, enforcing expense policies, and inferring patterns of purchase behavior on large collections of receipts. In this paper, we focus on the task of Named Entity Linking (NEL) of scanned receipt line items; specifically, the task entails associating shorthand text from OCR'd receipts with a knowledge base (KB) of grocery products. For example, the scanned item "STO BABY SPINACH" should be linked to the catalog item labeled "Simple Truth Organic Baby Spinach". Experiments that employ a variety of Information Retrieval techniques in combination with statistical phrase detection shows promise for effective understanding of scanned receipt data.
Adaptive Two-Phase Finetuning LLMs for Japanese Legal Text Retrieval
Text Retrieval (TR) involves finding and retrieving text-based content relevant to a user's query from a large repository, with applications in real-world scenarios such as legal document retrieval. While most existing studies focus on English, limited work addresses Japanese contexts. In this paper, we introduce a new dataset specifically designed for Japanese legal contexts and propose a novel two-phase pipeline tailored to this domain. In the first phase, the model learns a broad understanding of global contexts, enhancing its generalization and adaptability to diverse queries. In the second phase, the model is fine-tuned to address complex queries specific to legal scenarios. Extensive experiments are conducted to demonstrate the superior performance of our method, which outperforms existing baselines. Furthermore, our pipeline proves effective in English contexts, surpassing comparable baselines on the MS MARCO dataset. We have made our code publicly available on GitHub, and the model checkpoints are accessible via HuggingFace.
GPT-Calls: Enhancing Call Segmentation and Tagging by Generating Synthetic Conversations via Large Language Models
Transcriptions of phone calls are of significant value across diverse fields, such as sales, customer service, healthcare, and law enforcement. Nevertheless, the analysis of these recorded conversations can be an arduous and time-intensive process, especially when dealing with extended or multifaceted dialogues. In this work, we propose a novel method, GPT-distilled Calls Segmentation and Tagging (GPT-Calls), for efficient and accurate call segmentation and topic extraction. GPT-Calls is composed of offline and online phases. The offline phase is applied once to a given list of topics and involves generating a distribution of synthetic sentences for each topic using a GPT model and extracting anchor vectors. The online phase is applied to every call separately and scores the similarity between the transcripted conversation and the topic anchors found in the offline phase. Then, time domain analysis is applied to the similarity scores to group utterances into segments and tag them with topics. The proposed paradigm provides an accurate and efficient method for call segmentation and topic extraction that does not require labeled data, thus making it a versatile approach applicable to various domains. Our algorithm operates in production under Dynamics 365 Sales Conversation Intelligence, and our research is based on real sales conversations gathered from various Dynamics 365 Sales tenants.
Online Learning for Recommendations at Grubhub
We propose a method to easily modify existing offline Recommender Systems to run online using Transfer Learning. Online Learning for Recommender Systems has two main advantages: quality and scale. Like many Machine Learning algorithms in production if not regularly retrained will suffer from Concept Drift. A policy that is updated frequently online can adapt to drift faster than a batch system. This is especially true for user-interaction systems like recommenders where the underlying distribution can shift drastically to follow user behaviour. As a platform grows rapidly like Grubhub, the cost of running batch training jobs becomes material. A shift from stateless batch learning offline to stateful incremental learning online can recover, for example, at Grubhub, up to a 45x cost savings and a +20% metrics increase. There are a few challenges to overcome with the transition to online stateful learning, namely convergence, non-stationary embeddings and off-policy evaluation, which we explore from our experiences running this system in production.
STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases
Answering real-world user queries, such as product search, often requires accurate retrieval of information from semi-structured knowledge bases or databases that involve blend of unstructured (e.g., textual descriptions of products) and structured (e.g., entity relations of products) information. However, previous works have mostly studied textual and relational retrieval tasks as separate topics. To address the gap, we develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Relational Knowledge Bases. We design a novel pipeline to synthesize natural and realistic user queries that integrate diverse relational information and complex textual properties, as well as their ground-truth answers. Moreover, we rigorously conduct human evaluation to validate the quality of our benchmark, which covers a variety of practical applications, including product recommendations, academic paper searches, and precision medicine inquiries. Our benchmark serves as a comprehensive testbed for evaluating the performance of retrieval systems, with an emphasis on retrieval approaches driven by large language models (LLMs). Our experiments suggest that the STARK datasets present significant challenges to the current retrieval and LLM systems, indicating the demand for building more capable retrieval systems that can handle both textual and relational aspects.
Efficient Diffusion Policies for Offline Reinforcement Learning
Offline reinforcement learning (RL) aims to learn optimal policies from offline datasets, where the parameterization of policies is crucial but often overlooked. Recently, Diffsuion-QL significantly boosts the performance of offline RL by representing a policy with a diffusion model, whose success relies on a parametrized Markov Chain with hundreds of steps for sampling. However, Diffusion-QL suffers from two critical limitations. 1) It is computationally inefficient to forward and backward through the whole Markov chain during training. 2) It is incompatible with maximum likelihood-based RL algorithms (e.g., policy gradient methods) as the likelihood of diffusion models is intractable. Therefore, we propose efficient diffusion policy (EDP) to overcome these two challenges. EDP approximately constructs actions from corrupted ones at training to avoid running the sampling chain. We conduct extensive experiments on the D4RL benchmark. The results show that EDP can reduce the diffusion policy training time from 5 days to 5 hours on gym-locomotion tasks. Moreover, we show that EDP is compatible with various offline RL algorithms (TD3, CRR, and IQL) and achieves new state-of-the-art on D4RL by large margins over previous methods. Our code is available at https://github.com/sail-sg/edp.
Researchy Questions: A Dataset of Multi-Perspective, Decompositional Questions for LLM Web Agents
Existing question answering (QA) datasets are no longer challenging to most powerful Large Language Models (LLMs). Traditional QA benchmarks like TriviaQA, NaturalQuestions, ELI5 and HotpotQA mainly study ``known unknowns'' with clear indications of both what information is missing, and how to find it to answer the question. Hence, good performance on these benchmarks provides a false sense of security. A yet unmet need of the NLP community is a bank of non-factoid, multi-perspective questions involving a great deal of unclear information needs, i.e. ``unknown uknowns''. We claim we can find such questions in search engine logs, which is surprising because most question-intent queries are indeed factoid. We present Researchy Questions, a dataset of search engine queries tediously filtered to be non-factoid, ``decompositional'' and multi-perspective. We show that users spend a lot of ``effort'' on these questions in terms of signals like clicks and session length, and that they are also challenging for GPT-4. We also show that ``slow thinking'' answering techniques, like decomposition into sub-questions shows benefit over answering directly. We release sim 100k Researchy Questions, along with the Clueweb22 URLs that were clicked.
S2ORC: The Semantic Scholar Open Research Corpus
We introduce S2ORC, a large corpus of 81.1M English-language academic papers spanning many academic disciplines. The corpus consists of rich metadata, paper abstracts, resolved bibliographic references, as well as structured full text for 8.1M open access papers. Full text is annotated with automatically-detected inline mentions of citations, figures, and tables, each linked to their corresponding paper objects. In S2ORC, we aggregate papers from hundreds of academic publishers and digital archives into a unified source, and create the largest publicly-available collection of machine-readable academic text to date. We hope this resource will facilitate research and development of tools and tasks for text mining over academic text.
Open-Domain Question Answering with Pre-Constructed Question Spaces
Open-domain question answering aims at solving the task of locating the answers to user-generated questions in massive collections of documents. There are two families of solutions available: retriever-readers, and knowledge-graph-based approaches. A retriever-reader usually first uses information retrieval methods like TF-IDF to locate some documents or paragraphs that are likely to be relevant to the question, and then feeds the retrieved text to a neural network reader to extract the answer. Alternatively, knowledge graphs can be constructed from the corpus and be queried against to answer user questions. We propose a novel algorithm with a reader-retriever structure that differs from both families. Our reader-retriever first uses an offline reader to read the corpus and generate collections of all answerable questions associated with their answers, and then uses an online retriever to respond to user queries by searching the pre-constructed question spaces for answers that are most likely to be asked in the given way. We further combine retriever-reader and reader-retriever results into one single answer by examining the consistency between the two components. We claim that our algorithm solves some bottlenecks in existing work, and demonstrate that it achieves superior accuracy on real-world datasets.
OutRank: Speeding up AutoML-based Model Search for Large Sparse Data sets with Cardinality-aware Feature Ranking
The design of modern recommender systems relies on understanding which parts of the feature space are relevant for solving a given recommendation task. However, real-world data sets in this domain are often characterized by their large size, sparsity, and noise, making it challenging to identify meaningful signals. Feature ranking represents an efficient branch of algorithms that can help address these challenges by identifying the most informative features and facilitating the automated search for more compact and better-performing models (AutoML). We introduce OutRank, a system for versatile feature ranking and data quality-related anomaly detection. OutRank was built with categorical data in mind, utilizing a variant of mutual information that is normalized with regard to the noise produced by features of the same cardinality. We further extend the similarity measure by incorporating information on feature similarity and combined relevance. The proposed approach's feasibility is demonstrated by speeding up the state-of-the-art AutoML system on a synthetic data set with no performance loss. Furthermore, we considered a real-life click-through-rate prediction data set where it outperformed strong baselines such as random forest-based approaches. The proposed approach enables exploration of up to 300% larger feature spaces compared to AutoML-only approaches, enabling faster search for better models on off-the-shelf hardware.
Large Language Models Struggle to Describe the Haystack without Human Help: Human-in-the-loop Evaluation of LLMs
A common use of NLP is to facilitate the understanding of large document collections, with a shift from using traditional topic models to Large Language Models. Yet the effectiveness of using LLM for large corpus understanding in real-world applications remains under-explored. This study measures the knowledge users acquire with unsupervised, supervised LLM-based exploratory approaches or traditional topic models on two datasets. While LLM-based methods generate more human-readable topics and show higher average win probabilities than traditional models for data exploration, they produce overly generic topics for domain-specific datasets that do not easily allow users to learn much about the documents. Adding human supervision to the LLM generation process improves data exploration by mitigating hallucination and over-genericity but requires greater human effort. In contrast, traditional. models like Latent Dirichlet Allocation (LDA) remain effective for exploration but are less user-friendly. We show that LLMs struggle to describe the haystack of large corpora without human help, particularly domain-specific data, and face scaling and hallucination limitations due to context length constraints. Dataset available at https://huggingface. co/datasets/zli12321/Bills.
Answering Complex Open-Domain Questions with Multi-Hop Dense Retrieval
We propose a simple and efficient multi-hop dense retrieval approach for answering complex open-domain questions, which achieves state-of-the-art performance on two multi-hop datasets, HotpotQA and multi-evidence FEVER. Contrary to previous work, our method does not require access to any corpus-specific information, such as inter-document hyperlinks or human-annotated entity markers, and can be applied to any unstructured text corpus. Our system also yields a much better efficiency-accuracy trade-off, matching the best published accuracy on HotpotQA while being 10 times faster at inference time.
AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning
StarCraft II is one of the most challenging simulated reinforcement learning environments; it is partially observable, stochastic, multi-agent, and mastering StarCraft II requires strategic planning over long time horizons with real-time low-level execution. It also has an active professional competitive scene. StarCraft II is uniquely suited for advancing offline RL algorithms, both because of its challenging nature and because Blizzard has released a massive dataset of millions of StarCraft II games played by human players. This paper leverages that and establishes a benchmark, called AlphaStar Unplugged, introducing unprecedented challenges for offline reinforcement learning. We define a dataset (a subset of Blizzard's release), tools standardizing an API for machine learning methods, and an evaluation protocol. We also present baseline agents, including behavior cloning, offline variants of actor-critic and MuZero. We improve the state of the art of agents using only offline data, and we achieve 90% win rate against previously published AlphaStar behavior cloning agent.
Query of CC: Unearthing Large Scale Domain-Specific Knowledge from Public Corpora
Large language models have demonstrated remarkable potential in various tasks, however, there remains a significant scarcity of open-source models and data for specific domains. Previous works have primarily focused on manually specifying resources and collecting high-quality data on specific domains, which significantly consume time and effort. To address this limitation, we propose an efficient data collection method~Query of CC based on large language models. This method bootstraps seed information through a large language model and retrieves related data from public corpora. It not only collects knowledge-related data for specific domains but unearths the data with potential reasoning procedures. Through the application of this method, we have curated a high-quality dataset called~Knowledge Pile, encompassing four major domains, including stem and humanities sciences, among others. Experimental results demonstrate that~Knowledge Pile significantly improves the performance of large language models in mathematical and knowledge-related reasoning ability tests. To facilitate academic sharing, we open-source our dataset and code, providing valuable support to the academic community.
CSDR-BERT: a pre-trained scientific dataset match model for Chinese Scientific Dataset Retrieval
As the number of open and shared scientific datasets on the Internet increases under the open science movement, efficiently retrieving these datasets is a crucial task in information retrieval (IR) research. In recent years, the development of large models, particularly the pre-training and fine-tuning paradigm, which involves pre-training on large models and fine-tuning on downstream tasks, has provided new solutions for IR match tasks. In this study, we use the original BERT token in the embedding layer, improve the Sentence-BERT model structure in the model layer by introducing the SimCSE and K-Nearest Neighbors method, and use the cosent loss function in the optimization phase to optimize the target output. Our experimental results show that our model outperforms other competing models on both public and self-built datasets through comparative experiments and ablation implementations. This study explores and validates the feasibility and efficiency of pre-training techniques for semantic retrieval of Chinese scientific datasets.
AboutMe: Using Self-Descriptions in Webpages to Document the Effects of English Pretraining Data Filters
Large language models' (LLMs) abilities are drawn from their pretraining data, and model development begins with data curation. However, decisions around what data is retained or removed during this initial stage is under-scrutinized. In our work, we ground web text, which is a popular pretraining data source, to its social and geographic contexts. We create a new dataset of 10.3 million self-descriptions of website creators, and extract information about who they are and where they are from: their topical interests, social roles, and geographic affiliations. Then, we conduct the first study investigating how ten "quality" and English language identification (langID) filters affect webpages that vary along these social dimensions. Our experiments illuminate a range of implicit preferences in data curation: we show that some quality classifiers act like topical domain filters, and langID can overlook English content from some regions of the world. Overall, we hope that our work will encourage a new line of research on pretraining data curation practices and its social implications.
Replay across Experiments: A Natural Extension of Off-Policy RL
Replaying data is a principal mechanism underlying the stability and data efficiency of off-policy reinforcement learning (RL). We present an effective yet simple framework to extend the use of replays across multiple experiments, minimally adapting the RL workflow for sizeable improvements in controller performance and research iteration times. At its core, Replay Across Experiments (RaE) involves reusing experience from previous experiments to improve exploration and bootstrap learning while reducing required changes to a minimum in comparison to prior work. We empirically show benefits across a number of RL algorithms and challenging control domains spanning both locomotion and manipulation, including hard exploration tasks from egocentric vision. Through comprehensive ablations, we demonstrate robustness to the quality and amount of data available and various hyperparameter choices. Finally, we discuss how our approach can be applied more broadly across research life cycles and can increase resilience by reloading data across random seeds or hyperparameter variations.
Imagine All The Relevance: Scenario-Profiled Indexing with Knowledge Expansion for Dense Retrieval
Existing dense retrieval models struggle with reasoning-intensive retrieval task as they fail to capture implicit relevance that requires reasoning beyond surface-level semantic information. To address these challenges, we propose Scenario-Profiled Indexing with Knowledge Expansion (SPIKE), a dense retrieval framework that explicitly indexes implicit relevance by decomposing documents into scenario-based retrieval units. SPIKE organizes documents into scenario, which encapsulates the reasoning process necessary to uncover implicit relationships between hypothetical information needs and document content. SPIKE constructs a scenario-augmented dataset using a powerful teacher large language model (LLM), then distills these reasoning capabilities into a smaller, efficient scenario generator. During inference, SPIKE incorporates scenario-level relevance alongside document-level relevance, enabling reasoning-aware retrieval. Extensive experiments demonstrate that SPIKE consistently enhances retrieval performance across various query types and dense retrievers. It also enhances the retrieval experience for users through scenario and offers valuable contextual information for LLMs in retrieval-augmented generation (RAG).
Hitchhiking Rides Dataset: Two decades of crowd-sourced records on stochastic traveling
Hitchhiking, a spontaneous and decentralized mode of travel, has long eluded systematic study due to its informal nature. This paper presents and analyzes the largest known structured dataset of hitchhiking rides, comprising over 63,000 entries collected over nearly two decades through platforms associated with hitchwiki.org and lately on hitchmap.com. By leveraging crowd-sourced contributions, the dataset captures key spatiotemporal and strategic aspects of hitchhiking. This work documents the dataset's origins, evolution, and community-driven maintenance, highlighting its Europe-centric distribution, seasonal patterns, and reliance on a small number of highly active contributors. Through exploratory analyses, I examine waiting times, user behavior, and comment metadata, shedding light on the lived realities of hitchhikers. While the dataset has inherent biases and limitations - such as demographic skew and unverifiable entries it offers a rare and valuable window into an alternative form of mobility. I conclude by outlining future directions for enriching the dataset and advancing research on hitchhiking as both a transportation practice and cultural phenomenon.
The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning
Offline reinforcement learning aims to train agents from pre-collected datasets. However, this comes with the added challenge of estimating the value of behaviors not covered in the dataset. Model-based methods offer a potential solution by training an approximate dynamics model, which then allows collection of additional synthetic data via rollouts in this model. The prevailing theory treats this approach as online RL in an approximate dynamics model, and any remaining performance gap is therefore understood as being due to dynamics model errors. In this paper, we analyze this assumption and investigate how popular algorithms perform as the learned dynamics model is improved. In contrast to both intuition and theory, if the learned dynamics model is replaced by the true error-free dynamics, existing model-based methods completely fail. This reveals a key oversight: The theoretical foundations assume sampling of full horizon rollouts in the learned dynamics model; however, in practice, the number of model-rollout steps is aggressively reduced to prevent accumulating errors. We show that this truncation of rollouts results in a set of edge-of-reach states at which we are effectively ``bootstrapping from the void.'' This triggers pathological value overestimation and complete performance collapse. We term this the edge-of-reach problem. Based on this new insight, we fill important gaps in existing theory, and reveal how prior model-based methods are primarily addressing the edge-of-reach problem, rather than model-inaccuracy as claimed. Finally, we propose Reach-Aware Value Learning (RAVL), a simple and robust method that directly addresses the edge-of-reach problem and hence - unlike existing methods - does not fail as the dynamics model is improved. Code open-sourced at: github.com/anyasims/edge-of-reach.
Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration
Unsupervised pretraining has been transformative in many supervised domains. However, applying such ideas to reinforcement learning (RL) presents a unique challenge in that fine-tuning does not involve mimicking task-specific data, but rather exploring and locating the solution through iterative self-improvement. In this work, we study how unlabeled prior trajectory data can be leveraged to learn efficient exploration strategies. While prior data can be used to pretrain a set of low-level skills, or as additional off-policy data for online RL, it has been unclear how to combine these ideas effectively for online exploration. Our method SUPE (Skills from Unlabeled Prior data for Exploration) demonstrates that a careful combination of these ideas compounds their benefits. Our method first extracts low-level skills using a variational autoencoder (VAE), and then pseudo-relabels unlabeled trajectories using an optimistic reward model, transforming prior data into high-level, task-relevant examples. Finally, SUPE uses these transformed examples as additional off-policy data for online RL to learn a high-level policy that composes pretrained low-level skills to explore efficiently. We empirically show that SUPE reliably outperforms prior strategies, successfully solving a suite of long-horizon, sparse-reward tasks. Code: https://github.com/rail-berkeley/supe.
Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus
Large language models have led to remarkable progress on many NLP tasks, and researchers are turning to ever-larger text corpora to train them. Some of the largest corpora available are made by scraping significant portions of the internet, and are frequently introduced with only minimal documentation. In this work we provide some of the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin by investigating where the data came from, and find a significant amount of text from unexpected sources like patents and US military websites. Then we explore the content of the text itself, and find machine-generated text (e.g., from machine translation systems) and evaluation examples from other benchmark NLP datasets. To understand the impact of the filters applied to create this dataset, we evaluate the text that was removed, and show that blocklist filtering disproportionately removes text from and about minority individuals. Finally, we conclude with some recommendations for how to created and document web-scale datasets from a scrape of the internet.
Explorer: Scaling Exploration-driven Web Trajectory Synthesis for Multimodal Web Agents
Recent success in large multimodal models (LMMs) has sparked promising applications of agents capable of autonomously completing complex web tasks. While open-source LMM agents have made significant advances in offline evaluation benchmarks, their performance still falls substantially short of human-level capabilities in more realistic online settings. A key bottleneck is the lack of diverse and large-scale trajectory-level datasets across various domains, which are expensive to collect. In this paper, we address this challenge by developing a scalable recipe to synthesize the largest and most diverse trajectory-level dataset to date, containing over 94K successful multimodal web trajectories, spanning 49K unique URLs, 720K screenshots, and 33M web elements. In particular, we leverage extensive web exploration and refinement to obtain diverse task intents. The average cost is 28 cents per successful trajectory, making it affordable to a wide range of users in the community. Leveraging this dataset, we train Explorer, a multimodal web agent, and demonstrate strong performance on both offline and online web agent benchmarks such as Mind2Web-Live, Multimodal-Mind2Web, and MiniWob++. Additionally, our experiments highlight data scaling as a key driver for improving web agent capabilities. We hope this study makes state-of-the-art LMM-based agent research at a larger scale more accessible.
Decay No More: A Persistent Twitter Dataset for Learning Social Meaning
With the proliferation of social media, many studies resort to social media to construct datasets for developing social meaning understanding systems. For the popular case of Twitter, most researchers distribute tweet IDs without the actual text contents due to the data distribution policy of the platform. One issue is that the posts become increasingly inaccessible over time, which leads to unfair comparisons and a temporal bias in social media research. To alleviate this challenge of data decay, we leverage a paraphrase model to propose a new persistent English Twitter dataset for social meaning (PTSM). PTSM consists of 17 social meaning datasets in 10 categories of tasks. We experiment with two SOTA pre-trained language models and show that our PTSM can substitute the actual tweets with paraphrases with marginal performance loss.
WCLD: Curated Large Dataset of Criminal Cases from Wisconsin Circuit Courts
Machine learning based decision-support tools in criminal justice systems are subjects of intense discussions and academic research. There are important open questions about the utility and fairness of such tools. Academic researchers often rely on a few small datasets that are not sufficient to empirically study various real-world aspects of these questions. In this paper, we contribute WCLD, a curated large dataset of 1.5 million criminal cases from circuit courts in the U.S. state of Wisconsin. We used reliable public data from 1970 to 2020 to curate attributes like prior criminal counts and recidivism outcomes. The dataset contains large number of samples from five racial groups, in addition to information like sex and age (at judgment and first offense). Other attributes in this dataset include neighborhood characteristics obtained from census data, detailed types of offense, charge severity, case decisions, sentence lengths, year of filing etc. We also provide pseudo-identifiers for judge, county and zipcode. The dataset will not only enable researchers to more rigorously study algorithmic fairness in the context of criminal justice, but also relate algorithmic challenges with various systemic issues. We also discuss in detail the process of constructing the dataset and provide a datasheet. The WCLD dataset is available at https://clezdata.github.io/wcld/.
Lessons from Archives: Strategies for Collecting Sociocultural Data in Machine Learning
A growing body of work shows that many problems in fairness, accountability, transparency, and ethics in machine learning systems are rooted in decisions surrounding the data collection and annotation process. In spite of its fundamental nature however, data collection remains an overlooked part of the machine learning (ML) pipeline. In this paper, we argue that a new specialization should be formed within ML that is focused on methodologies for data collection and annotation: efforts that require institutional frameworks and procedures. Specifically for sociocultural data, parallels can be drawn from archives and libraries. Archives are the longest standing communal effort to gather human information and archive scholars have already developed the language and procedures to address and discuss many challenges pertaining to data collection such as consent, power, inclusivity, transparency, and ethics & privacy. We discuss these five key approaches in document collection practices in archives that can inform data collection in sociocultural ML. By showing data collection practices from another field, we encourage ML research to be more cognizant and systematic in data collection and draw from interdisciplinary expertise.
pi2vec: Policy Representations with Successor Features
This paper describes pi2vec, a method for representing behaviors of black box policies as feature vectors. The policy representations capture how the statistics of foundation model features change in response to the policy behavior in a task agnostic way, and can be trained from offline data, allowing them to be used in offline policy selection. This work provides a key piece of a recipe for fusing together three modern lines of research: Offline policy evaluation as a counterpart to offline RL, foundation models as generic and powerful state representations, and efficient policy selection in resource constrained environments.
D3: A Massive Dataset of Scholarly Metadata for Analyzing the State of Computer Science Research
DBLP is the largest open-access repository of scientific articles on computer science and provides metadata associated with publications, authors, and venues. We retrieved more than 6 million publications from DBLP and extracted pertinent metadata (e.g., abstracts, author affiliations, citations) from the publication texts to create the DBLP Discovery Dataset (D3). D3 can be used to identify trends in research activity, productivity, focus, bias, accessibility, and impact of computer science research. We present an initial analysis focused on the volume of computer science research (e.g., number of papers, authors, research activity), trends in topics of interest, and citation patterns. Our findings show that computer science is a growing research field (approx. 15% annually), with an active and collaborative researcher community. While papers in recent years present more bibliographical entries in comparison to previous decades, the average number of citations has been declining. Investigating papers' abstracts reveals that recent topic trends are clearly reflected in D3. Finally, we list further applications of D3 and pose supplemental research questions. The D3 dataset, our findings, and source code are publicly available for research purposes.
Train Offline, Test Online: A Real Robot Learning Benchmark
Three challenges limit the progress of robot learning research: robots are expensive (few labs can participate), everyone uses different robots (findings do not generalize across labs), and we lack internet-scale robotics data. We take on these challenges via a new benchmark: Train Offline, Test Online (TOTO). TOTO provides remote users with access to shared robotic hardware for evaluating methods on common tasks and an open-source dataset of these tasks for offline training. Its manipulation task suite requires challenging generalization to unseen objects, positions, and lighting. We present initial results on TOTO comparing five pretrained visual representations and four offline policy learning baselines, remotely contributed by five institutions. The real promise of TOTO, however, lies in the future: we release the benchmark for additional submissions from any user, enabling easy, direct comparison to several methods without the need to obtain hardware or collect data.
Large Language Models for Automated Open-domain Scientific Hypotheses Discovery
Hypothetical induction is recognized as the main reasoning type when scientists make observations about the world and try to propose hypotheses to explain those observations. Past research on hypothetical induction is under a constrained setting: (1) the observation annotations in the dataset are carefully manually handpicked sentences (resulting in a close-domain setting); and (2) the ground truth hypotheses are mostly commonsense knowledge, making the task less challenging. In this work, we tackle these problems by proposing the first dataset for social science academic hypotheses discovery, with the final goal to create systems that automatically generate valid, novel, and helpful scientific hypotheses, given only a pile of raw web corpus. Unlike previous settings, the new dataset requires (1) using open-domain data (raw web corpus) as observations; and (2) proposing hypotheses even new to humanity. A multi-module framework is developed for the task, including three different feedback mechanisms to boost performance, which exhibits superior performance in terms of both GPT-4 based and expert-based evaluation. To the best of our knowledge, this is the first work showing that LLMs are able to generate novel (''not existing in literature'') and valid (''reflecting reality'') scientific hypotheses.
OmniCorpus: A Unified Multimodal Corpus of 10 Billion-Level Images Interleaved with Text
Image-text interleaved data, consisting of multiple images and texts arranged in a natural document format, aligns with the presentation paradigm of internet data and closely resembles human reading habits. Recent studies have shown that such data aids multimodal in-context learning and maintains the capabilities of large language models during multimodal fine-tuning. However, the limited scale and diversity of current image-text interleaved data restrict the development of multimodal large language models. In this paper, we introduce OmniCorpus, a 10 billion-scale image-text interleaved dataset. Using an efficient data engine, we filter and extract large-scale high-quality documents, which contain 8.6 billion images and 1,696 billion text tokens. Compared to counterparts (e.g., MMC4, OBELICS), our dataset 1) has 15 times larger scales while maintaining good data quality; 2) features more diverse sources, including both English and non-English websites as well as video-centric websites; 3) is more flexible, easily degradable from an image-text interleaved format to pure text corpus and image-text pairs. Through comprehensive analysis and experiments, we validate the quality, usability, and effectiveness of the proposed dataset. We hope this could provide a solid data foundation for future multimodal model research. Code and data are released at https://github.com/OpenGVLab/OmniCorpus.
IFIR: A Comprehensive Benchmark for Evaluating Instruction-Following in Expert-Domain Information Retrieval
We introduce IFIR, the first comprehensive benchmark designed to evaluate instruction-following information retrieval (IR) in expert domains. IFIR includes 2,426 high-quality examples and covers eight subsets across four specialized domains: finance, law, healthcare, and science literature. Each subset addresses one or more domain-specific retrieval tasks, replicating real-world scenarios where customized instructions are critical. IFIR enables a detailed analysis of instruction-following retrieval capabilities by incorporating instructions at different levels of complexity. We also propose a novel LLM-based evaluation method to provide a more precise and reliable assessment of model performance in following instructions. Through extensive experiments on 15 frontier retrieval models, including those based on LLMs, our results reveal that current models face significant challenges in effectively following complex, domain-specific instructions. We further provide in-depth analyses to highlight these limitations, offering valuable insights to guide future advancements in retriever development.
ScholarSearch: Benchmarking Scholar Searching Ability of LLMs
Large Language Models (LLMs)' search capabilities have garnered significant attention. Existing benchmarks, such as OpenAI's BrowseComp, primarily focus on general search scenarios and fail to adequately address the specific demands of academic search. These demands include deeper literature tracing and organization, professional support for academic databases, the ability to navigate long-tail academic knowledge, and ensuring academic rigor. Here, we proposed ScholarSearch, the first dataset specifically designed to evaluate the complex information retrieval capabilities of Large Language Models (LLMs) in academic research. ScholarSearch possesses the following key characteristics: Academic Practicality, where question content closely mirrors real academic learning and research environments, avoiding deliberately misleading models; High Difficulty, with answers that are challenging for single models (e.g., Grok DeepSearch or Gemini Deep Research) to provide directly, often requiring at least three deep searches to derive; Concise Evaluation, where limiting conditions ensure answers are as unique as possible, accompanied by clear sources and brief solution explanations, greatly facilitating subsequent audit and verification, surpassing the current lack of analyzed search datasets both domestically and internationally; and Broad Coverage, as the dataset spans at least 15 different academic disciplines. Through ScholarSearch, we expect to more precisely measure and promote the performance improvement of LLMs in complex academic information retrieval tasks. The data is available at: https://huggingface.co/datasets/PKU-DS-LAB/ScholarSearch
Harnessing Mixed Offline Reinforcement Learning Datasets via Trajectory Weighting
Most offline reinforcement learning (RL) algorithms return a target policy maximizing a trade-off between (1) the expected performance gain over the behavior policy that collected the dataset, and (2) the risk stemming from the out-of-distribution-ness of the induced state-action occupancy. It follows that the performance of the target policy is strongly related to the performance of the behavior policy and, thus, the trajectory return distribution of the dataset. We show that in mixed datasets consisting of mostly low-return trajectories and minor high-return trajectories, state-of-the-art offline RL algorithms are overly restrained by low-return trajectories and fail to exploit high-performing trajectories to the fullest. To overcome this issue, we show that, in deterministic MDPs with stochastic initial states, the dataset sampling can be re-weighted to induce an artificial dataset whose behavior policy has a higher return. This re-weighted sampling strategy may be combined with any offline RL algorithm. We further analyze that the opportunity for performance improvement over the behavior policy correlates with the positive-sided variance of the returns of the trajectories in the dataset. We empirically show that while CQL, IQL, and TD3+BC achieve only a part of this potential policy improvement, these same algorithms combined with our reweighted sampling strategy fully exploit the dataset. Furthermore, we empirically demonstrate that, despite its theoretical limitation, the approach may still be efficient in stochastic environments. The code is available at https://github.com/Improbable-AI/harness-offline-rl.
Go-Browse: Training Web Agents with Structured Exploration
One of the fundamental problems in digital agents is their lack of understanding of their environment. For instance, a web browsing agent may get lost in unfamiliar websites, uncertain what pages must be visited to achieve its goals. To address this, we propose Go-Browse, a method for automatically collecting diverse and realistic web agent data at scale through structured exploration of web environments. Go-Browse achieves efficient exploration by framing data collection as a graph search, enabling reuse of information across exploration episodes. We instantiate our method on the WebArena benchmark, collecting a dataset of 10K successful task-solving trajectories and 40K interaction steps across 100 URLs. Fine-tuning a 7B parameter language model on this dataset achieves a success rate of 21.7% on the WebArena benchmark, beating GPT-4o mini by 2.4% and exceeding current state-of-the-art results for sub-10B parameter models by 2.9%.
Peregrine: A Pattern-Aware Graph Mining System
Graph mining workloads aim to extract structural properties of a graph by exploring its subgraph structures. General purpose graph mining systems provide a generic runtime to explore subgraph structures of interest with the help of user-defined functions that guide the overall exploration process. However, the state-of-the-art graph mining systems remain largely oblivious to the shape (or pattern) of the subgraphs that they mine. This causes them to: (a) explore unnecessary subgraphs; (b) perform expensive computations on the explored subgraphs; and, (c) hold intermediate partial subgraphs in memory; all of which affect their overall performance. Furthermore, their programming models are often tied to their underlying exploration strategies, which makes it difficult for domain users to express complex mining tasks. In this paper, we develop Peregrine, a pattern-aware graph mining system that directly explores the subgraphs of interest while avoiding exploration of unnecessary subgraphs, and simultaneously bypassing expensive computations throughout the mining process. We design a pattern-based programming model that treats "graph patterns" as first class constructs and enables Peregrine to extract the semantics of patterns, which it uses to guide its exploration. Our evaluation shows that Peregrine outperforms state-of-the-art distributed and single machine graph mining systems, and scales to complex mining tasks on larger graphs, while retaining simplicity and expressivity with its "pattern-first" programming approach.
SpiritRAG: A Q&A System for Religion and Spirituality in the United Nations Archive
Religion and spirituality (R/S) are complex and highly domain-dependent concepts which have long confounded researchers and policymakers. Due to their context-specificity, R/S are difficult to operationalize in conventional archival search strategies, particularly when datasets are very large, poorly accessible, and marked by information noise. As a result, considerable time investments and specialist knowledge is often needed to extract actionable insights related to R/S from general archival sources, increasing reliance on published literature and manual desk reviews. To address this challenge, we present SpiritRAG, an interactive Question Answering (Q&A) system based on Retrieval-Augmented Generation (RAG). Built using 7,500 United Nations (UN) resolution documents related to R/S in the domains of health and education, SpiritRAG allows researchers and policymakers to conduct complex, context-sensitive database searches of very large datasets using an easily accessible, chat-based web interface. SpiritRAG is lightweight to deploy and leverages both UN documents and user provided documents as source material. A pilot test and evaluation with domain experts on 100 manually composed questions demonstrates the practical value and usefulness of SpiritRAG.
Relevance Filtering for Embedding-based Retrieval
In embedding-based retrieval, Approximate Nearest Neighbor (ANN) search enables efficient retrieval of similar items from large-scale datasets. While maximizing recall of relevant items is usually the goal of retrieval systems, a low precision may lead to a poor search experience. Unlike lexical retrieval, which inherently limits the size of the retrieved set through keyword matching, dense retrieval via ANN search has no natural cutoff. Moreover, the cosine similarity scores of embedding vectors are often optimized via contrastive or ranking losses, which make them difficult to interpret. Consequently, relying on top-K or cosine-similarity cutoff is often insufficient to filter out irrelevant results effectively. This issue is prominent in product search, where the number of relevant products is often small. This paper introduces a novel relevance filtering component (called "Cosine Adapter") for embedding-based retrieval to address this challenge. Our approach maps raw cosine similarity scores to interpretable scores using a query-dependent mapping function. We then apply a global threshold on the mapped scores to filter out irrelevant results. We are able to significantly increase the precision of the retrieved set, at the expense of a small loss of recall. The effectiveness of our approach is demonstrated through experiments on both public MS MARCO dataset and internal Walmart product search data. Furthermore, online A/B testing on the Walmart site validates the practical value of our approach in real-world e-commerce settings.
AWESOME: GPU Memory-constrained Long Document Summarization using Memory Mechanism and Global Salient Content
Long document summarization systems are critical for domains with lengthy and jargonladen text, yet they present significant challenges to researchers and developers with limited computing resources. Existing solutions mainly focus on efficient attentions or divide-and-conquer strategies. The former reduces theoretical time complexity, but is still memory-heavy. The latter methods sacrifice global context, leading to uninformative and incoherent summaries. This work aims to leverage the memory-efficient nature of divide-and-conquer methods while preserving global context. Concretely, our framework AWESOME uses two novel mechanisms: (1) External memory mechanisms track previously encoded document segments and their corresponding summaries, to enhance global document understanding and summary coherence. (2) Global salient content is further identified beforehand to augment each document segment to support its summarization. Extensive experiments on diverse genres of text, including government reports, transcripts, scientific papers, and novels, show that AWESOME produces summaries with improved informativeness, faithfulness, and coherence than competitive baselines on longer documents, while having a similar or smaller GPU memory footprint.
Action-Quantized Offline Reinforcement Learning for Robotic Skill Learning
The offline reinforcement learning (RL) paradigm provides a general recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data. While policy constraints, conservatism, and other methods for mitigating distributional shifts have made offline reinforcement learning more effective, the continuous action setting often necessitates various approximations for applying these techniques. Many of these challenges are greatly alleviated in discrete action settings, where offline RL constraints and regularizers can often be computed more precisely or even exactly. In this paper, we propose an adaptive scheme for action quantization. We use a VQ-VAE to learn state-conditioned action quantization, avoiding the exponential blowup that comes with na\"ive discretization of the action space. We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme. We further validate our approach on a set of challenging long-horizon complex robotic manipulation tasks in the Robomimic environment, where our discretized offline RL algorithms are able to improve upon their continuous counterparts by 2-3x. Our project page is at https://saqrl.github.io/
Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning
Most successful information extraction systems operate with access to a large collection of documents. In this work, we explore the task of acquiring and incorporating external evidence to improve extraction accuracy in domains where the amount of training data is scarce. This process entails issuing search queries, extraction from new sources and reconciliation of extracted values, which are repeated until sufficient evidence is collected. We approach the problem using a reinforcement learning framework where our model learns to select optimal actions based on contextual information. We employ a deep Q-network, trained to optimize a reward function that reflects extraction accuracy while penalizing extra effort. Our experiments on two databases -- of shooting incidents, and food adulteration cases -- demonstrate that our system significantly outperforms traditional extractors and a competitive meta-classifier baseline.
GRITHopper: Decomposition-Free Multi-Hop Dense Retrieval
Decomposition-based multi-hop retrieval methods rely on many autoregressive steps to break down complex queries, which breaks end-to-end differentiability and is computationally expensive. Decomposition-free methods tackle this, but current decomposition-free approaches struggle with longer multi-hop problems and generalization to out-of-distribution data. To address these challenges, we introduce GRITHopper-7B, a novel multi-hop dense retrieval model that achieves state-of-the-art performance on both in-distribution and out-of-distribution benchmarks. GRITHopper combines generative and representational instruction tuning by integrating causal language modeling with dense retrieval training. Through controlled studies, we find that incorporating additional context after the retrieval process, referred to as post-retrieval language modeling, enhances dense retrieval performance. By including elements such as final answers during training, the model learns to better contextualize and retrieve relevant information. GRITHopper-7B offers a robust, scalable, and generalizable solution for multi-hop dense retrieval, and we release it to the community for future research and applications requiring multi-hop reasoning and retrieval capabilities.
Offline Pseudo Relevance Feedback for Efficient and Effective Single-pass Dense Retrieval
Dense retrieval has made significant advancements in information retrieval (IR) by achieving high levels of effectiveness while maintaining online efficiency during a single-pass retrieval process. However, the application of pseudo relevance feedback (PRF) to further enhance retrieval effectiveness results in a doubling of online latency. To address this challenge, this paper presents a single-pass dense retrieval framework that shifts the PRF process offline through the utilization of pre-generated pseudo-queries. As a result, online retrieval is reduced to a single matching with the pseudo-queries, hence providing faster online retrieval. The effectiveness of the proposed approach is evaluated on the standard TREC DL and HARD datasets, and the results demonstrate its promise. Our code is openly available at https://github.com/Rosenberg37/OPRF.
LEANN: A Low-Storage Vector Index
Embedding-based search is widely used in applications such as recommendation and retrieval-augmented generation (RAG). Recently, there is a growing demand to support these capabilities over personal data stored locally on devices. However, maintaining the necessary data structure associated with the embedding-based search is often infeasible due to its high storage overhead. For example, indexing 100 GB of raw data requires 150 to 700 GB of storage, making local deployment impractical. Reducing this overhead while maintaining search quality and latency becomes a critical challenge. In this paper, we present LEANN, a storage-efficient approximate nearest neighbor (ANN) search index optimized for resource-constrained personal devices. LEANN combines a compact graph-based structure with an efficient on-the-fly recomputation strategy to enable fast and accurate retrieval with minimal storage overhead. Our evaluation shows that LEANN reduces index size to under 5% of the original raw data, achieving up to 50 times smaller storage than standard indexes, while maintaining 90% top-3 recall in under 2 seconds on real-world question answering benchmarks.
RORL: Robust Offline Reinforcement Learning via Conservative Smoothing
Offline reinforcement learning (RL) provides a promising direction to exploit massive amount of offline data for complex decision-making tasks. Due to the distribution shift issue, current offline RL algorithms are generally designed to be conservative in value estimation and action selection. However, such conservatism can impair the robustness of learned policies when encountering observation deviation under realistic conditions, such as sensor errors and adversarial attacks. To trade off robustness and conservatism, we propose Robust Offline Reinforcement Learning (RORL) with a novel conservative smoothing technique. In RORL, we explicitly introduce regularization on the policy and the value function for states near the dataset, as well as additional conservative value estimation on these states. Theoretically, we show RORL enjoys a tighter suboptimality bound than recent theoretical results in linear MDPs. We demonstrate that RORL can achieve state-of-the-art performance on the general offline RL benchmark and is considerably robust to adversarial observation perturbations.
CMDBench: A Benchmark for Coarse-to-fine Multimodal Data Discovery in Compound AI Systems
Compound AI systems (CASs) that employ LLMs as agents to accomplish knowledge-intensive tasks via interactions with tools and data retrievers have garnered significant interest within database and AI communities. While these systems have the potential to supplement typical analysis workflows of data analysts in enterprise data platforms, unfortunately, CASs are subject to the same data discovery challenges that analysts have encountered over the years -- silos of multimodal data sources, created across teams and departments within an organization, make it difficult to identify appropriate data sources for accomplishing the task at hand. Existing data discovery benchmarks do not model such multimodality and multiplicity of data sources. Moreover, benchmarks of CASs prioritize only evaluating end-to-end task performance. To catalyze research on evaluating the data discovery performance of multimodal data retrievers in CASs within a real-world setting, we propose CMDBench, a benchmark modeling the complexity of enterprise data platforms. We adapt existing datasets and benchmarks in open-domain -- from question answering and complex reasoning tasks to natural language querying over structured data -- to evaluate coarse- and fine-grained data discovery and task execution performance. Our experiments reveal the impact of data retriever design on downstream task performance -- a 46% drop in task accuracy on average -- across various modalities, data sources, and task difficulty. The results indicate the need to develop optimization strategies to identify appropriate LLM agents and retrievers for efficient execution of CASs over enterprise data.
Evaluation is all you need. Prompting Generative Large Language Models for Annotation Tasks in the Social Sciences. A Primer using Open Models
This paper explores the use of open generative Large Language Models (LLMs) for annotation tasks in the social sciences. The study highlights the challenges associated with proprietary models, such as limited reproducibility and privacy concerns, and advocates for the adoption of open (source) models that can be operated on independent devices. Two examples of annotation tasks, sentiment analysis in tweets and identification of leisure activities in childhood aspirational essays are provided. The study evaluates the performance of different prompting strategies and models (neural-chat-7b-v3-2, Starling-LM-7B-alpha, openchat_3.5, zephyr-7b-alpha and zephyr-7b-beta). The results indicate the need for careful validation and tailored prompt engineering. The study highlights the advantages of open models for data privacy and reproducibility.
Distributional Offline Policy Evaluation with Predictive Error Guarantees
We study the problem of estimating the distribution of the return of a policy using an offline dataset that is not generated from the policy, i.e., distributional offline policy evaluation (OPE). We propose an algorithm called Fitted Likelihood Estimation (FLE), which conducts a sequence of Maximum Likelihood Estimation (MLE) and has the flexibility of integrating any state-of-the-art probabilistic generative models as long as it can be trained via MLE. FLE can be used for both finite-horizon and infinite-horizon discounted settings where rewards can be multi-dimensional vectors. Our theoretical results show that for both finite-horizon and infinite-horizon discounted settings, FLE can learn distributions that are close to the ground truth under total variation distance and Wasserstein distance, respectively. Our theoretical results hold under the conditions that the offline data covers the test policy's traces and that the supervised learning MLE procedures succeed. Experimentally, we demonstrate the performance of FLE with two generative models, Gaussian mixture models and diffusion models. For the multi-dimensional reward setting, FLE with diffusion models is capable of estimating the complicated distribution of the return of a test policy.
Adaptive Machine Learning for Resource-Constrained Environments
The Internet of Things is an example domain where data is perpetually generated in ever-increasing quantities, reflecting the proliferation of connected devices and the formation of continuous data streams over time. Consequently, the demand for ad-hoc, cost-effective machine learning solutions must adapt to this evolving data influx. This study tackles the task of offloading in small gateways, exacerbated by their dynamic availability over time. An approach leveraging CPU utilization metrics using online and continual machine learning techniques is proposed to predict gateway availability. These methods are compared to popular machine learning algorithms and a recent time-series foundation model, Lag-Llama, for fine-tuned and zero-shot setups. Their performance is benchmarked on a dataset of CPU utilization measurements over time from an IoT gateway and focuses on model metrics such as prediction errors, training and inference times, and memory consumption. Our primary objective is to study new efficient ways to predict CPU performance in IoT environments. Across various scenarios, our findings highlight that ensemble and online methods offer promising results for this task in terms of accuracy while maintaining a low resource footprint.
BLADE: Benchmarking Language Model Agents for Data-Driven Science
Data-driven scientific discovery requires the iterative integration of scientific domain knowledge, statistical expertise, and an understanding of data semantics to make nuanced analytical decisions, e.g., about which variables, transformations, and statistical models to consider. LM-based agents equipped with planning, memory, and code execution capabilities have the potential to support data-driven science. However, evaluating agents on such open-ended tasks is challenging due to multiple valid approaches, partially correct steps, and different ways to express the same decisions. To address these challenges, we present BLADE, a benchmark to automatically evaluate agents' multifaceted approaches to open-ended research questions. BLADE consists of 12 datasets and research questions drawn from existing scientific literature, with ground truth collected from independent analyses by expert data scientists and researchers. To automatically evaluate agent responses, we developed corresponding computational methods to match different representations of analyses to this ground truth. Though language models possess considerable world knowledge, our evaluation shows that they are often limited to basic analyses. However, agents capable of interacting with the underlying data demonstrate improved, but still non-optimal, diversity in their analytical decision making. Our work enables the evaluation of agents for data-driven science and provides researchers deeper insights into agents' analysis approaches.
Semantic Retrieval at Walmart
In product search, the retrieval of candidate products before re-ranking is more critical and challenging than other search like web search, especially for tail queries, which have a complex and specific search intent. In this paper, we present a hybrid system for e-commerce search deployed at Walmart that combines traditional inverted index and embedding-based neural retrieval to better answer user tail queries. Our system significantly improved the relevance of the search engine, measured by both offline and online evaluations. The improvements were achieved through a combination of different approaches. We present a new technique to train the neural model at scale. and describe how the system was deployed in production with little impact on response time. We highlight multiple learnings and practical tricks that were used in the deployment of this system.
TAGLETS: A System for Automatic Semi-Supervised Learning with Auxiliary Data
Machine learning practitioners often have access to a spectrum of data: labeled data for the target task (which is often limited), unlabeled data, and auxiliary data, the many available labeled datasets for other tasks. We describe TAGLETS, a system built to study techniques for automatically exploiting all three types of data and creating high-quality, servable classifiers. The key components of TAGLETS are: (1) auxiliary data organized according to a knowledge graph, (2) modules encapsulating different methods for exploiting auxiliary and unlabeled data, and (3) a distillation stage in which the ensembled modules are combined into a servable model. We compare TAGLETS with state-of-the-art transfer learning and semi-supervised learning methods on four image classification tasks. Our study covers a range of settings, varying the amount of labeled data and the semantic relatedness of the auxiliary data to the target task. We find that the intelligent incorporation of auxiliary and unlabeled data into multiple learning techniques enables TAGLETS to match-and most often significantly surpass-these alternatives. TAGLETS is available as an open-source system at github.com/BatsResearch/taglets.
Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph
The proposed research aims to develop an innovative semantic query processing system that enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University (ANU). The system integrates Large Language Models (LLMs) with the ANU Scholarly Knowledge Graph (ASKG), a structured repository of all research-related artifacts produced at ANU in the CS field. Each artifact and its parts are represented as textual nodes stored in a Knowledge Graph (KG). To address the limitations of traditional scholarly KG construction and utilization methods, which often fail to capture fine-grained details, we propose a novel framework that integrates the Deep Document Model (DDM) for comprehensive document representation and the KG-enhanced Query Processing (KGQP) for optimized complex query handling. DDM enables a fine-grained representation of the hierarchical structure and semantic relationships within academic papers, while KGQP leverages the KG structure to improve query accuracy and efficiency with LLMs. By combining the ASKG with LLMs, our approach enhances knowledge utilization and natural language understanding capabilities. The proposed system employs an automatic LLM-SPARQL fusion to retrieve relevant facts and textual nodes from the ASKG. Initial experiments demonstrate that our framework is superior to baseline methods in terms of accuracy retrieval and query efficiency. We showcase the practical application of our framework in academic research scenarios, highlighting its potential to revolutionize scholarly knowledge management and discovery. This work empowers researchers to acquire and utilize knowledge from documents more effectively and provides a foundation for developing precise and reliable interactions with LLMs.
Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering
There has been a growing effort to replace hand extraction of data from research papers with automated data extraction based on natural language processing, language models, and recently, large language models (LLMs). Although these methods enable efficient extraction of data from large sets of research papers, they require a significant amount of up-front effort, expertise, and coding. In this work we propose the ChatExtract method that can fully automate very accurate data extraction with minimal initial effort and background, using an advanced conversational LLM. ChatExtract consists of a set of engineered prompts applied to a conversational LLM that both identify sentences with data, extract that data, and assure the data's correctness through a series of follow-up questions. These follow-up questions largely overcome known issues with LLMs providing factually inaccurate responses. ChatExtract can be applied with any conversational LLMs and yields very high quality data extraction. In tests on materials data we find precision and recall both close to 90% from the best conversational LLMs, like ChatGPT-4. We demonstrate that the exceptional performance is enabled by the information retention in a conversational model combined with purposeful redundancy and introducing uncertainty through follow-up prompts. These results suggest that approaches similar to ChatExtract, due to their simplicity, transferability, and accuracy are likely to become powerful tools for data extraction in the near future. Finally, databases for critical cooling rates of metallic glasses and yield strengths of high entropy alloys are developed using ChatExtract.
Internet-Augmented Dialogue Generation
The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020).
Improving Offline RL by Blending Heuristics
We propose Heuristic Blending (HUBL), a simple performance-improving technique for a broad class of offline RL algorithms based on value bootstrapping. HUBL modifies the Bellman operators used in these algorithms, partially replacing the bootstrapped values with heuristic ones that are estimated with Monte-Carlo returns. For trajectories with higher returns, HUBL relies more on the heuristic values and less on bootstrapping; otherwise, it leans more heavily on bootstrapping. HUBL is very easy to combine with many existing offline RL implementations by relabeling the offline datasets with adjusted rewards and discount factors. We derive a theory that explains HUBL's effect on offline RL as reducing offline RL's complexity and thus increasing its finite-sample performance. Furthermore, we empirically demonstrate that HUBL consistently improves the policy quality of four state-of-the-art bootstrapping-based offline RL algorithms (ATAC, CQL, TD3+BC, and IQL), by 9% on average over 27 datasets of the D4RL and Meta-World benchmarks.
Untangling Gaussian Mixtures
Tangles were originally introduced as a concept to formalize regions of high connectivity in graphs. In recent years, they have also been discovered as a link between structural graph theory and data science: when interpreting similarity in data sets as connectivity between points, finding clusters in the data essentially amounts to finding tangles in the underlying graphs. This paper further explores the potential of tangles in data sets as a means for a formal study of clusters. Real-world data often follow a normal distribution. Accounting for this, we develop a quantitative theory of tangles in data sets drawn from Gaussian mixtures. To this end, we equip the data with a graph structure that models similarity between the points and allows us to apply tangle theory to the data. We provide explicit conditions under which tangles associated with the marginal Gaussian distributions exist asymptotically almost surely. This can be considered as a sufficient formal criterion for the separabability of clusters in the data.
A Large-scale Dataset with Behavior, Attributes, and Content of Mobile Short-video Platform
Short-video platforms show an increasing impact on people's daily lives nowadays, with billions of active users spending plenty of time each day. The interactions between users and online platforms give rise to many scientific problems across computational social science and artificial intelligence. However, despite the rapid development of short-video platforms, currently there are serious shortcomings in existing relevant datasets on three aspects: inadequate user-video feedback, limited user attributes and lack of video content. To address these problems, we provide a large-scale dataset with rich user behavior, attributes and video content from a real mobile short-video platform. This dataset covers 10,000 voluntary users and 153,561 videos, and we conduct four-fold technical validations of the dataset. First, we verify the richness of the behavior and attribute data. Second, we confirm the representing ability of the content features. Third, we provide benchmarking results on recommendation algorithms with our dataset. Finally, we explore the filter bubble phenomenon on the platform using the dataset. We believe the dataset could support the broad research community, including but not limited to user modeling, social science, human behavior understanding, etc. The dataset and code is available at https://github.com/tsinghua-fib-lab/ShortVideo_dataset.
Rethinking E-Commerce Search
E-commerce search and recommendation usually operate on structured data such as product catalogs and taxonomies. However, creating better search and recommendation systems often requires a large variety of unstructured data including customer reviews and articles on the web. Traditionally, the solution has always been converting unstructured data into structured data through information extraction, and conducting search over the structured data. However, this is a costly approach that often has low quality. In this paper, we envision a solution that does entirely the opposite. Instead of converting unstructured data (web pages, customer reviews, etc) to structured data, we instead convert structured data (product inventory, catalogs, taxonomies, etc) into textual data, which can be easily integrated into the text corpus that trains LLMs. Then, search and recommendation can be performed through a Q/A mechanism through an LLM instead of using traditional information retrieval methods over structured data.
NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing
Scientific literature searches are often exploratory, whereby users are not yet familiar with a particular field or concept but are interested in learning more about it. However, existing systems for scientific literature search are typically tailored to keyword-based lookup searches, limiting the possibilities for exploration. We propose NLP-KG, a feature-rich system designed to support the exploration of research literature in unfamiliar natural language processing (NLP) fields. In addition to a semantic search, NLP-KG allows users to easily find survey papers that provide a quick introduction to a field of interest. Further, a Fields of Study hierarchy graph enables users to familiarize themselves with a field and its related areas. Finally, a chat interface allows users to ask questions about unfamiliar concepts or specific articles in NLP and obtain answers grounded in knowledge retrieved from scientific publications. Our system provides users with comprehensive exploration possibilities, supporting them in investigating the relationships between different fields, understanding unfamiliar concepts in NLP, and finding relevant research literature. Demo, video, and code are available at: https://github.com/NLP-Knowledge-Graph/NLP-KG-WebApp.
Uni-O4: Unifying Online and Offline Deep Reinforcement Learning with Multi-Step On-Policy Optimization
Combining offline and online reinforcement learning (RL) is crucial for efficient and safe learning. However, previous approaches treat offline and online learning as separate procedures, resulting in redundant designs and limited performance. We ask: Can we achieve straightforward yet effective offline and online learning without introducing extra conservatism or regularization? In this study, we propose Uni-o4, which utilizes an on-policy objective for both offline and online learning. Owning to the alignment of objectives in two phases, the RL agent can transfer between offline and online learning seamlessly. This property enhances the flexibility of the learning paradigm, allowing for arbitrary combinations of pretraining, fine-tuning, offline, and online learning. In the offline phase, specifically, Uni-o4 leverages diverse ensemble policies to address the mismatch issues between the estimated behavior policy and the offline dataset. Through a simple offline policy evaluation (OPE) approach, Uni-o4 can achieve multi-step policy improvement safely. We demonstrate that by employing the method above, the fusion of these two paradigms can yield superior offline initialization as well as stable and rapid online fine-tuning capabilities. Through real-world robot tasks, we highlight the benefits of this paradigm for rapid deployment in challenging, previously unseen real-world environments. Additionally, through comprehensive evaluations using numerous simulated benchmarks, we substantiate that our method achieves state-of-the-art performance in both offline and offline-to-online fine-tuning learning. Our website: https://lei-kun.github.io/uni-o4/ .
Accountability in Offline Reinforcement Learning: Explaining Decisions with a Corpus of Examples
Learning transparent, interpretable controllers with offline data in decision-making systems is an essential area of research due to its potential to reduce the risk of applications in real-world systems. However, in responsibility-sensitive settings such as healthcare, decision accountability is of paramount importance, yet has not been adequately addressed by the literature. This paper introduces the Accountable Offline Controller (AOC) that employs the offline dataset as the Decision Corpus and performs accountable control based on a tailored selection of examples, referred to as the Corpus Subset. ABC operates effectively in low-data scenarios, can be extended to the strictly offline imitation setting, and displays qualities of both conservation and adaptability. We assess ABC's performance in both simulated and real-world healthcare scenarios, emphasizing its capability to manage offline control tasks with high levels of performance while maintaining accountability. Keywords: Interpretable Reinforcement Learning, Explainable Reinforcement Learning, Reinforcement Learning Transparency, Offline Reinforcement Learning, Batched Control.
Vector Search with OpenAI Embeddings: Lucene Is All You Need
We provide a reproducible, end-to-end demonstration of vector search with OpenAI embeddings using Lucene on the popular MS MARCO passage ranking test collection. The main goal of our work is to challenge the prevailing narrative that a dedicated vector store is necessary to take advantage of recent advances in deep neural networks as applied to search. Quite the contrary, we show that hierarchical navigable small-world network (HNSW) indexes in Lucene are adequate to provide vector search capabilities in a standard bi-encoder architecture. This suggests that, from a simple cost-benefit analysis, there does not appear to be a compelling reason to introduce a dedicated vector store into a modern "AI stack" for search, since such applications have already received substantial investments in existing, widely deployed infrastructure.
Assessing In-context Learning and Fine-tuning for Topic Classification of German Web Data
Researchers in the political and social sciences often rely on classification models to analyze trends in information consumption by examining browsing histories of millions of webpages. Automated scalable methods are necessary due to the impracticality of manual labeling. In this paper, we model the detection of topic-related content as a binary classification task and compare the accuracy of fine-tuned pre-trained encoder models against in-context learning strategies. Using only a few hundred annotated data points per topic, we detect content related to three German policies in a database of scraped webpages. We compare multilingual and monolingual models, as well as zero and few-shot approaches, and investigate the impact of negative sampling strategies and the combination of URL & content-based features. Our results show that a small sample of annotated data is sufficient to train an effective classifier. Fine-tuning encoder-based models yields better results than in-context learning. Classifiers using both URL & content-based features perform best, while using URLs alone provides adequate results when content is unavailable.
WebThinker: Empowering Large Reasoning Models with Deep Research Capability
Large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, demonstrate impressive long-horizon reasoning capabilities. However, their reliance on static internal knowledge limits their performance on complex, knowledge-intensive tasks and hinders their ability to produce comprehensive research reports requiring synthesis of diverse web information. To address this, we propose WebThinker, a deep research agent that empowers LRMs to autonomously search the web, navigate web pages, and draft research reports during the reasoning process. WebThinker integrates a Deep Web Explorer module, enabling LRMs to dynamically search, navigate, and extract information from the web when encountering knowledge gaps. It also employs an Autonomous Think-Search-and-Draft strategy, allowing the model to seamlessly interleave reasoning, information gathering, and report writing in real time. To further enhance research tool utilization, we introduce an RL-based training strategy via iterative online Direct Preference Optimization (DPO). Extensive experiments on complex reasoning benchmarks (GPQA, GAIA, WebWalkerQA, HLE) and scientific report generation tasks (Glaive) demonstrate that WebThinker significantly outperforms existing methods and strong proprietary systems. Our approach enhances LRM reliability and applicability in complex scenarios, paving the way for more capable and versatile deep research systems. The code is available at https://github.com/RUC-NLPIR/WebThinker.
When to Trust Your Simulator: Dynamics-Aware Hybrid Offline-and-Online Reinforcement Learning
Learning effective reinforcement learning (RL) policies to solve real-world complex tasks can be quite challenging without a high-fidelity simulation environment. In most cases, we are only given imperfect simulators with simplified dynamics, which inevitably lead to severe sim-to-real gaps in RL policy learning. The recently emerged field of offline RL provides another possibility to learn policies directly from pre-collected historical data. However, to achieve reasonable performance, existing offline RL algorithms need impractically large offline data with sufficient state-action space coverage for training. This brings up a new question: is it possible to combine learning from limited real data in offline RL and unrestricted exploration through imperfect simulators in online RL to address the drawbacks of both approaches? In this study, we propose the Dynamics-Aware Hybrid Offline-and-Online Reinforcement Learning (H2O) framework to provide an affirmative answer to this question. H2O introduces a dynamics-aware policy evaluation scheme, which adaptively penalizes the Q function learning on simulated state-action pairs with large dynamics gaps, while also simultaneously allowing learning from a fixed real-world dataset. Through extensive simulation and real-world tasks, as well as theoretical analysis, we demonstrate the superior performance of H2O against other cross-domain online and offline RL algorithms. H2O provides a brand new hybrid offline-and-online RL paradigm, which can potentially shed light on future RL algorithm design for solving practical real-world tasks.
Multimodal Neural Databases
The rise in loosely-structured data available through text, images, and other modalities has called for new ways of querying them. Multimedia Information Retrieval has filled this gap and has witnessed exciting progress in recent years. Tasks such as search and retrieval of extensive multimedia archives have undergone massive performance improvements, driven to a large extent by recent developments in multimodal deep learning. However, methods in this field remain limited in the kinds of queries they support and, in particular, their inability to answer database-like queries. For this reason, inspired by recent work on neural databases, we propose a new framework, which we name Multimodal Neural Databases (MMNDBs). MMNDBs can answer complex database-like queries that involve reasoning over different input modalities, such as text and images, at scale. In this paper, we present the first architecture able to fulfill this set of requirements and test it with several baselines, showing the limitations of currently available models. The results show the potential of these new techniques to process unstructured data coming from different modalities, paving the way for future research in the area. Code to replicate the experiments will be released at https://github.com/GiovanniTRA/MultimodalNeuralDatabases
LitSearch: A Retrieval Benchmark for Scientific Literature Search
Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.
Linking Datasets on Organizations Using Half A Billion Open Collaborated Records
Scholars studying organizations often work with multiple datasets lacking shared unique identifiers or covariates. In such situations, researchers may turn to approximate string matching methods to combine datasets. String matching, although useful, faces fundamental challenges. Even when two strings appear similar to humans, fuzzy matching often does not work because it fails to adapt to the informativeness of the character combinations presented. Worse, many entities have multiple names that are dissimilar (e.g., "Fannie Mae" and "Federal National Mortgage Association"), a case where string matching has little hope of succeeding. This paper introduces data from a prominent employment-related networking site (LinkedIn) as a tool to address these problems. We propose interconnected approaches to leveraging the massive amount of information from LinkedIn regarding organizational name-to-name links. The first approach builds a machine learning model for predicting matches from character strings, treating the trillions of user-contributed organizational name pairs as a training corpus: this approach constructs a string matching metric that explicitly maximizes match probabilities. A second approach identifies relationships between organization names using network representations of the LinkedIn data. A third approach combines the first and second. We document substantial improvements over fuzzy matching in applications, making all methods accessible in open-source software ("LinkOrgs").
Harnessing Large Language Models for Scientific Novelty Detection
In an era of exponential scientific growth, identifying novel research ideas is crucial and challenging in academia. Despite potential, the lack of an appropriate benchmark dataset hinders the research of novelty detection. More importantly, simply adopting existing NLP technologies, e.g., retrieving and then cross-checking, is not a one-size-fits-all solution due to the gap between textual similarity and idea conception. In this paper, we propose to harness large language models (LLMs) for scientific novelty detection (ND), associated with two new datasets in marketing and NLP domains. To construct the considerate datasets for ND, we propose to extract closure sets of papers based on their relationship, and then summarize their main ideas based on LLMs. To capture idea conception, we propose to train a lightweight retriever by distilling the idea-level knowledge from LLMs to align ideas with similar conception, enabling efficient and accurate idea retrieval for LLM novelty detection. Experiments show our method consistently outperforms others on the proposed benchmark datasets for idea retrieval and ND tasks. Codes and data are available at https://anonymous.4open.science/r/NoveltyDetection-10FB/.
Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge
Agentic search such as Deep Research systems, where large language models autonomously browse the web, synthesize information, and return comprehensive citation-backed answers, represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1,000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of nine frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, showing a great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.
SymbioticRAG: Enhancing Document Intelligence Through Human-LLM Symbiotic Collaboration
We present SymbioticRAG, a novel framework that fundamentally reimagines Retrieval-Augmented Generation~(RAG) systems by establishing a bidirectional learning relationship between humans and machines. Our approach addresses two critical challenges in current RAG systems: the inherently human-centered nature of relevance determination and users' progression from "unconscious incompetence" in query formulation. SymbioticRAG introduces a two-tier solution where Level 1 enables direct human curation of retrieved content through interactive source document exploration, while Level 2 aims to build personalized retrieval models based on captured user interactions. We implement Level 1 through three key components: (1)~a comprehensive document processing pipeline with specialized models for layout detection, OCR, and extraction of tables, formulas, and figures; (2)~an extensible retriever module supporting multiple retrieval strategies; and (3)~an interactive interface that facilitates both user engagement and interaction data logging. We experiment Level 2 implementation via a retriever strategy incorporated LLM summarized user intention from user interaction logs. To maintain high-quality data preparation, we develop a human-on-the-loop validation interface that improves pipeline output while advancing research in specialized extraction tasks. Evaluation across three scenarios (literature review, geological exploration, and education) demonstrates significant improvements in retrieval relevance and user satisfaction compared to traditional RAG approaches. To facilitate broader research and further advancement of SymbioticRAG Level 2 implementation, we will make our system openly accessible to the research community.
A Search Engine for Discovery of Scientific Challenges and Directions
Keeping track of scientific challenges, advances and emerging directions is a fundamental part of research. However, researchers face a flood of papers that hinders discovery of important knowledge. In biomedicine, this directly impacts human lives. To address this problem, we present a novel task of extraction and search of scientific challenges and directions, to facilitate rapid knowledge discovery. We construct and release an expert-annotated corpus of texts sampled from full-length papers, labeled with novel semantic categories that generalize across many types of challenges and directions. We focus on a large corpus of interdisciplinary work relating to the COVID-19 pandemic, ranging from biomedicine to areas such as AI and economics. We apply a model trained on our data to identify challenges and directions across the corpus and build a dedicated search engine. In experiments with 19 researchers and clinicians using our system, we outperform a popular scientific search engine in assisting knowledge discovery. Finally, we show that models trained on our resource generalize to the wider biomedical domain and to AI papers, highlighting its broad utility. We make our data, model and search engine publicly available. https://challenges.apps.allenai.org/
DeepResearchGym: A Free, Transparent, and Reproducible Evaluation Sandbox for Deep Research
Deep research systems represent an emerging class of agentic information retrieval methods that generate comprehensive and well-supported reports to complex queries. However, most existing frameworks rely on dynamic commercial search APIs, which pose reproducibility and transparency challenges in addition to their cost. To address these limitations, we introduce DeepResearchGym, an open-source sandbox that combines a reproducible search API with a rigorous evaluation protocol for benchmarking deep research systems. The API indexes large-scale public web corpora, namely ClueWeb22 and FineWeb, using a state-of-the-art dense retriever and approximate nearest neighbor search via DiskANN. It achieves lower latency than popular commercial APIs while ensuring stable document rankings across runs, and is freely available for research use. To evaluate deep research systems' outputs, we extend the Researchy Questions benchmark with automatic metrics through LLM-as-a-judge assessments to measure alignment with users' information needs, retrieval faithfulness, and report quality. Experimental results show that systems integrated with DeepResearchGym achieve performance comparable to those using commercial APIs, with performance rankings remaining consistent across evaluation metrics. A human evaluation study further confirms that our automatic protocol aligns with human preferences, validating the framework's ability to help support controlled assessment of deep research systems. Our code and API documentation are available at https://www.deepresearchgym.ai.
Offline Planning and Online Learning under Recovering Rewards
Motivated by emerging applications such as live-streaming e-commerce, promotions and recommendations, we introduce and solve a general class of non-stationary multi-armed bandit problems that have the following two features: (i) the decision maker can pull and collect rewards from up to K,(ge 1) out of N different arms in each time period; (ii) the expected reward of an arm immediately drops after it is pulled, and then non-parametrically recovers as the arm's idle time increases. With the objective of maximizing the expected cumulative reward over T time periods, we design a class of ``Purely Periodic Policies'' that jointly set a period to pull each arm. For the proposed policies, we prove performance guarantees for both the offline problem and the online problems. For the offline problem when all model parameters are known, the proposed periodic policy obtains an approximation ratio that is at the order of 1-mathcal O(1/K), which is asymptotically optimal when K grows to infinity. For the online problem when the model parameters are unknown and need to be dynamically learned, we integrate the offline periodic policy with the upper confidence bound procedure to construct on online policy. The proposed online policy is proved to approximately have mathcal O(NT) regret against the offline benchmark. Our framework and policy design may shed light on broader offline planning and online learning applications with non-stationary and recovering rewards.
ScIRGen: Synthesize Realistic and Large-Scale RAG Dataset for Scientific Research
Scientific researchers need intensive information about datasets to effectively evaluate and develop theories and methodologies. The information needs regarding datasets are implicitly embedded in particular research tasks, rather than explicitly expressed in search queries. However, existing scientific retrieval and question-answering (QA) datasets typically address straightforward questions, which do not align with the distribution of real-world research inquiries. To bridge this gap, we developed ScIRGen, a dataset generation framework for scientific QA \& retrieval that more accurately reflects the information needs of professional science researchers, and uses it to create a large-scale scientific retrieval-augmented generation (RAG) dataset with realistic queries, datasets and papers. Technically, we designed a dataset-oriented information extraction method that leverages academic papers to augment the dataset representation. We then proposed a question generation framework by employing cognitive taxonomy to ensure the quality of synthesized questions. We also design a method to automatically filter synthetic answers based on the perplexity shift of LLMs, which is highly aligned with human judgment of answers' validity. Collectively, these methodologies culminated in the creation of the 61k QA dataset, ScIRGen-Geo. We benchmarked representative methods on the ScIRGen-Geo dataset for their question-answering and retrieval capabilities, finding out that current methods still suffer from reasoning from complex questions. This work advances the development of more sophisticated tools to support the intricate information needs of the scientific community.
Instruct and Extract: Instruction Tuning for On-Demand Information Extraction
Large language models with instruction-following capabilities open the door to a wider group of users. However, when it comes to information extraction - a classic task in natural language processing - most task-specific systems cannot align well with long-tail ad hoc extraction use cases for non-expert users. To address this, we propose a novel paradigm, termed On-Demand Information Extraction, to fulfill the personalized demands of real-world users. Our task aims to follow the instructions to extract the desired content from the associated text and present it in a structured tabular format. The table headers can either be user-specified or inferred contextually by the model. To facilitate research in this emerging area, we present a benchmark named InstructIE, inclusive of both automatically generated training data, as well as the human-annotated test set. Building on InstructIE, we further develop an On-Demand Information Extractor, ODIE. Comprehensive evaluations on our benchmark reveal that ODIE substantially outperforms the existing open-source models of similar size. Our code and dataset are released on https://github.com/yzjiao/On-Demand-IE.
WanJuan: A Comprehensive Multimodal Dataset for Advancing English and Chinese Large Models
The rise in popularity of ChatGPT and GPT-4 has significantly accelerated the development of large models, leading to the creation of numerous impressive large language models(LLMs) and multimodal large language models (MLLMs). These cutting-edge models owe their remarkable performance to high-quality data. However, the details of the training data used in leading paradigms are often kept confidential. This lack of transparency, coupled with the scarcity of open-source data, impedes further developments within the community. As a response, this paper presents "Wan Juan", a large-scale multimodal dataset composed of both Chinese and English data, collected from a wide range of web sources. The dataset incorporates text, image-text, and video modalities, with a total volume exceeding 2TB. It was utilized in the training of InternLM, a model that demonstrated significant advantages in multi-dimensional evaluations when compared to models of a similar scale. All data can be accessed at https://opendatalab.org.cn/WanJuan1.0.
Sensitive Content Classification in Social Media: A Holistic Resource and Evaluation
The detection of sensitive content in large datasets is crucial for ensuring that shared and analysed data is free from harmful material. However, current moderation tools, such as external APIs, suffer from limitations in customisation, accuracy across diverse sensitive categories, and privacy concerns. Additionally, existing datasets and open-source models focus predominantly on toxic language, leaving gaps in detecting other sensitive categories such as substance abuse or self-harm. In this paper, we put forward a unified dataset tailored for social media content moderation across six sensitive categories: conflictual language, profanity, sexually explicit material, drug-related content, self-harm, and spam. By collecting and annotating data with consistent retrieval strategies and guidelines, we address the shortcomings of previous focalised research. Our analysis demonstrates that fine-tuning large language models (LLMs) on this novel dataset yields significant improvements in detection performance compared to open off-the-shelf models such as LLaMA, and even proprietary OpenAI models, which underperform by 10-15% overall. This limitation is even more pronounced on popular moderation APIs, which cannot be easily tailored to specific sensitive content categories, among others.
Active Learning Meets Optimized Item Selection
Designing recommendation systems with limited or no available training data remains a challenge. To that end, a new combinatorial optimization problem is formulated to generate optimized item selection for experimentation with the goal to shorten the time for collecting randomized training data. We first present an overview of the optimized item selection problem and a multi-level optimization framework to solve it. The approach integrates techniques from discrete optimization, unsupervised clustering, and latent text embeddings. We then discuss how to incorporate optimized item selection with active learning as part of randomized exploration in an ongoing fashion.
A Comprehensive Survey on Vector Database: Storage and Retrieval Technique, Challenge
A vector database is used to store high-dimensional data that cannot be characterized by traditional DBMS. Although there are not many articles describing existing or introducing new vector database architectures, the approximate nearest neighbor search problem behind vector databases has been studied for a long time, and considerable related algorithmic articles can be found in the literature. This article attempts to comprehensively review relevant algorithms to provide a general understanding of this booming research area. The basis of our framework categorises these studies by the approach of solving ANNS problem, respectively hash-based, tree-based, graph-based and quantization-based approaches. Then we present an overview of existing challenges for vector databases. Lastly, we sketch how vector databases can be combined with large language models and provide new possibilities.
Revisiting the Minimalist Approach to Offline Reinforcement Learning
Recent years have witnessed significant advancements in offline reinforcement learning (RL), resulting in the development of numerous algorithms with varying degrees of complexity. While these algorithms have led to noteworthy improvements, many incorporate seemingly minor design choices that impact their effectiveness beyond core algorithmic advances. However, the effect of these design choices on established baselines remains understudied. In this work, we aim to bridge this gap by conducting a retrospective analysis of recent works in offline RL and propose ReBRAC, a minimalistic algorithm that integrates such design elements built on top of the TD3+BC method. We evaluate ReBRAC on 51 datasets with both proprioceptive and visual state spaces using D4RL and V-D4RL benchmarks, demonstrating its state-of-the-art performance among ensemble-free methods in both offline and offline-to-online settings. To further illustrate the efficacy of these design choices, we perform a large-scale ablation study and hyperparameter sensitivity analysis on the scale of thousands of experiments.
Policy Regularization with Dataset Constraint for Offline Reinforcement Learning
We consider the problem of learning the best possible policy from a fixed dataset, known as offline Reinforcement Learning (RL). A common taxonomy of existing offline RL works is policy regularization, which typically constrains the learned policy by distribution or support of the behavior policy. However, distribution and support constraints are overly conservative since they both force the policy to choose similar actions as the behavior policy when considering particular states. It will limit the learned policy's performance, especially when the behavior policy is sub-optimal. In this paper, we find that regularizing the policy towards the nearest state-action pair can be more effective and thus propose Policy Regularization with Dataset Constraint (PRDC). When updating the policy in a given state, PRDC searches the entire dataset for the nearest state-action sample and then restricts the policy with the action of this sample. Unlike previous works, PRDC can guide the policy with proper behaviors from the dataset, allowing it to choose actions that do not appear in the dataset along with the given state. It is a softer constraint but still keeps enough conservatism from out-of-distribution actions. Empirical evidence and theoretical analysis show that PRDC can alleviate offline RL's fundamentally challenging value overestimation issue with a bounded performance gap. Moreover, on a set of locomotion and navigation tasks, PRDC achieves state-of-the-art performance compared with existing methods. Code is available at https://github.com/LAMDA-RL/PRDC
Paper Copilot: A Self-Evolving and Efficient LLM System for Personalized Academic Assistance
As scientific research proliferates, researchers face the daunting task of navigating and reading vast amounts of literature. Existing solutions, such as document QA, fail to provide personalized and up-to-date information efficiently. We present Paper Copilot, a self-evolving, efficient LLM system designed to assist researchers, based on thought-retrieval, user profile and high performance optimization. Specifically, Paper Copilot can offer personalized research services, maintaining a real-time updated database. Quantitative evaluation demonstrates that Paper Copilot saves 69.92\% of time after efficient deployment. This paper details the design and implementation of Paper Copilot, highlighting its contributions to personalized academic support and its potential to streamline the research process.
When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data
Many methods now exist for conditioning model outputs on task instructions, retrieved documents, and user-provided explanations and feedback. Rather than relying solely on examples of task inputs and outputs, these approaches use valuable additional data for improving model correctness and aligning learned models with human priors. Meanwhile, a growing body of evidence suggests that some language models can (1) store a large amount of knowledge in their parameters, and (2) perform inference over tasks in textual inputs at test time. These results raise the possibility that, for some tasks, humans cannot explain to a model any more about the task than it already knows or could infer on its own. In this paper, we study the circumstances under which explanations of individual data points can (or cannot) improve modeling performance. In order to carefully control important properties of the data and explanations, we introduce a synthetic dataset for experiments, and we also make use of three existing datasets with explanations: e-SNLI, TACRED, and SemEval. We first give a formal framework for the available modeling approaches, in which explanation data can be used as model inputs, as targets, or as a prior. After arguing that the most promising role for explanation data is as model inputs, we propose to use a retrieval-based method and show that it solves our synthetic task with accuracies upwards of 95%, while baselines without explanation data achieve below 65% accuracy. We then identify properties of datasets for which retrieval-based modeling fails. With the three existing datasets, we find no improvements from explanation retrieval. Drawing on findings from our synthetic task, we suggest that at least one of six preconditions for successful modeling fails to hold with these datasets. Our code is publicly available at https://github.com/peterbhase/ExplanationRoles
Hybrid Semantic Search: Unveiling User Intent Beyond Keywords
This paper addresses the limitations of traditional keyword-based search in understanding user intent and introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models. The proposed system integrates keyword matching, semantic vector embeddings, and LLM-generated structured queries to deliver highly relevant and contextually appropriate search results. By combining these complementary methods, the hybrid approach effectively captures both explicit and implicit user intent.The paper further explores techniques to optimize query execution for faster response times and demonstrates the effectiveness of this hybrid search model in producing comprehensive and accurate search outcomes.
Offline Data Enhanced On-Policy Policy Gradient with Provable Guarantees
Hybrid RL is the setting where an RL agent has access to both offline data and online data by interacting with the real-world environment. In this work, we propose a new hybrid RL algorithm that combines an on-policy actor-critic method with offline data. On-policy methods such as policy gradient and natural policy gradient (NPG) have shown to be more robust to model misspecification, though sometimes it may not be as sample efficient as methods that rely on off-policy learning. On the other hand, offline methods that depend on off-policy training often require strong assumptions in theory and are less stable to train in practice. Our new approach integrates a procedure of off-policy training on the offline data into an on-policy NPG framework. We show that our approach, in theory, can obtain a best-of-both-worlds type of result -- it achieves the state-of-art theoretical guarantees of offline RL when offline RL-specific assumptions hold, while at the same time maintaining the theoretical guarantees of on-policy NPG regardless of the offline RL assumptions' validity. Experimentally, in challenging rich-observation environments, we show that our approach outperforms a state-of-the-art hybrid RL baseline which only relies on off-policy policy optimization, demonstrating the empirical benefit of combining on-policy and off-policy learning. Our code is publicly available at https://github.com/YifeiZhou02/HNPG.
A Strongly-Labelled Polyphonic Dataset of Urban Sounds with Spatiotemporal Context
This paper introduces SINGA:PURA, a strongly labelled polyphonic urban sound dataset with spatiotemporal context. The data were collected via several recording units deployed across Singapore as a part of a wireless acoustic sensor network. These recordings were made as part of a project to identify and mitigate noise sources in Singapore, but also possess a wider applicability to sound event detection, classification, and localization. This paper introduces an accompanying hierarchical label taxonomy, which has been designed to be compatible with other existing datasets for urban sound tagging while also able to capture sound events unique to the Singaporean context. This paper details the data collection, annotation, and processing methodologies for the creation of the dataset. We further perform exploratory data analysis and include the performance of a baseline model on the dataset as a benchmark.
Large Language Models for Next Point-of-Interest Recommendation
The next Point of Interest (POI) recommendation task is to predict users' immediate next POI visit given their historical data. Location-Based Social Network (LBSN) data, which is often used for the next POI recommendation task, comes with challenges. One frequently disregarded challenge is how to effectively use the abundant contextual information present in LBSN data. Previous methods are limited by their numerical nature and fail to address this challenge. In this paper, we propose a framework that uses pretrained Large Language Models (LLMs) to tackle this challenge. Our framework allows us to preserve heterogeneous LBSN data in its original format, hence avoiding the loss of contextual information. Furthermore, our framework is capable of comprehending the inherent meaning of contextual information due to the inclusion of commonsense knowledge. In experiments, we test our framework on three real-world LBSN datasets. Our results show that the proposed framework outperforms the state-of-the-art models in all three datasets. Our analysis demonstrates the effectiveness of the proposed framework in using contextual information as well as alleviating the commonly encountered cold-start and short trajectory problems.
GEO: Generative Engine Optimization
The advent of large language models (LLMs) has ushered in a new paradigm of search engines that use generative models to gather and summarize information to answer user queries. This emerging technology, which we formalize under the unified framework of generative engines (GEs), can generate accurate and personalized responses, rapidly replacing traditional search engines like Google and Bing. Generative Engines typically satisfy queries by synthesizing information from multiple sources and summarizing them using LLMs. While this shift significantly improves user utility and generative search engine traffic, it poses a huge challenge for the third stakeholder - website and content creators. Given the black-box and fast-moving nature of generative engines, content creators have little to no control over when and how their content is displayed. With generative engines here to stay, we must ensure the creator economy is not disadvantaged. To address this, we introduce Generative Engine Optimization (GEO), the first novel paradigm to aid content creators in improving their content visibility in GE responses through a flexible black-box optimization framework for optimizing and defining visibility metrics. We facilitate systematic evaluation by introducing GEO-bench, a large-scale benchmark of diverse user queries across multiple domains, along with relevant web sources to answer these queries. Through rigorous evaluation, we demonstrate that GEO can boost visibility by up to 40\% in GE responses. Moreover, we show the efficacy of these strategies varies across domains, underscoring the need for domain-specific optimization methods. Our work opens a new frontier in information discovery systems, with profound implications for both developers of GEs and content creators.
How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods
Creating test collections for offline retrieval evaluation requires human effort to judge documents' relevance. This expensive activity motivated much work in developing methods for constructing benchmarks with fewer assessment costs. In this respect, adjudication methods actively decide both which documents and the order in which experts review them, in order to better exploit the assessment budget or to lower it. Researchers evaluate the quality of those methods by measuring the correlation between the known gold ranking of systems under the full collection and the observed ranking of systems under the lower-cost one. This traditional analysis ignores whether and how the low-cost judgements impact on the statistically significant differences among systems with respect to the full collection. We fill this void by proposing a novel methodology to evaluate how the low-cost adjudication methods preserve the pairwise significant differences between systems as the full collection. In other terms, while traditional approaches look for stability in answering the question "is system A better than system B?", our proposed approach looks for stability in answering the question "is system A significantly better than system B?", which is the ultimate questions researchers need to answer to guarantee the generalisability of their results. Among other results, we found that the best methods in terms of ranking of systems correlation do not always match those preserving statistical significance.
Do Answers to Boolean Questions Need Explanations? Yes
Existing datasets that contain boolean questions, such as BoolQ and TYDI QA , provide the user with a YES/NO response to the question. However, a one word response is not sufficient for an explainable system. We promote explainability by releasing a new set of annotations marking the evidence in existing TyDi QA and BoolQ datasets. We show that our annotations can be used to train a model that extracts improved evidence spans compared to models that rely on existing resources. We confirm our findings with a user study which shows that our extracted evidence spans enhance the user experience. We also provide further insight into the challenges of answering boolean questions, such as passages containing conflicting YES and NO answers, and varying degrees of relevance of the predicted evidence.
Retrieval-Augmented Generation with Graphs (GraphRAG)
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.
OmniQuery: Contextually Augmenting Captured Multimodal Memory to Enable Personal Question Answering
People often capture memories through photos, screenshots, and videos. While existing AI-based tools enable querying this data using natural language, they mostly only support retrieving individual pieces of information like certain objects in photos and struggle with answering more complex queries that involve interpreting interconnected memories like event sequences. We conducted a one-month diary study to collect realistic user queries and generated a taxonomy of necessary contextual information for integrating with captured memories. We then introduce OmniQuery, a novel system that is able to answer complex personal memory-related questions that require extracting and inferring contextual information. OmniQuery augments single captured memories through integrating scattered contextual information from multiple interconnected memories, retrieves relevant memories, and uses a large language model (LLM) to comprehensive answers. In human evaluations, we show the effectiveness of OmniQuery with an accuracy of 71.5%, and it outperformed a conventional RAG system, winning or tying in 74.5% of the time.
Capture the Flag: Uncovering Data Insights with Large Language Models
The extraction of a small number of relevant insights from vast amounts of data is a crucial component of data-driven decision-making. However, accomplishing this task requires considerable technical skills, domain expertise, and human labor. This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data, leveraging recent advances in reasoning and code generation techniques. We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset. We further propose two proof-of-concept agents, with different inner workings, and compare their ability to capture such flags in a real-world sales dataset. While the work reported here is preliminary, our results are sufficiently interesting to mandate future exploration by the community.
Scaling Laws for Data Filtering -- Data Curation cannot be Compute Agnostic
Vision-language models (VLMs) are trained for thousands of GPU hours on carefully curated web datasets. In recent times, data curation has gained prominence with several works developing strategies to retain 'high-quality' subsets of 'raw' scraped data. For instance, the LAION public dataset retained only 10% of the total crawled data. However, these strategies are typically developed agnostic of the available compute for training. In this paper, we first demonstrate that making filtering decisions independent of training compute is often suboptimal: the limited high-quality data rapidly loses its utility when repeated, eventually requiring the inclusion of 'unseen' but 'lower-quality' data. To address this quality-quantity tradeoff (QQT), we introduce neural scaling laws that account for the non-homogeneous nature of web data, an angle ignored in existing literature. Our scaling laws (i) characterize the differing 'utility' of various quality subsets of web data; (ii) account for how utility diminishes for a data point at its 'nth' repetition; and (iii) formulate the mutual interaction of various data pools when combined, enabling the estimation of model performance on a combination of multiple data pools without ever jointly training on them. Our key message is that data curation cannot be agnostic of the total compute that a model will be trained for. Our scaling laws allow us to curate the best possible pool for achieving top performance on Datacomp at various compute budgets, carving out a pareto-frontier for data curation. Code is available at https://github.com/locuslab/scaling_laws_data_filtering.
Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it challenging to track progress and high-level conceptual links across broad disciplines. While existing tools like citation networks and search engines make it easy to access a few related papers, they fundamentally lack the flexible abstraction needed to represent the density of activity in various scientific subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that allows for the categorization of scientific work across varying levels of abstraction, from very broad fields to very specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve the goals of SCIENCE HIERARCHOGRAPHY, we develop a range of algorithms. Our primary approach combines fast embedding-based clustering with LLM-based prompting to balance the computational efficiency of embedding methods with the semantic precision offered by LLM prompting. We demonstrate that this approach offers the best trade-off between quality and speed compared to methods that heavily rely on LLM prompting, such as iterative tree construction with LLMs. To better reflect the interdisciplinary and multifaceted nature of research papers, our hierarchy captures multiple dimensions of categorization beyond simple topic labels. We evaluate the utility of our framework by assessing how effectively an LLM-based agent can locate target papers using the hierarchy. Results show that this structured approach enhances interpretability, supports trend discovery, and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo: https://github.com/JHU-CLSP/science-hierarchography{https://github.com/JHU-CLSP/science-hierarchography}
AutoSurvey: Large Language Models Can Automatically Write Surveys
This paper introduces AutoSurvey, a speedy and well-organized methodology for automating the creation of comprehensive literature surveys in rapidly evolving fields like artificial intelligence. Traditional survey paper creation faces challenges due to the vast volume and complexity of information, prompting the need for efficient survey methods. While large language models (LLMs) offer promise in automating this process, challenges such as context window limitations, parametric knowledge constraints, and the lack of evaluation benchmarks remain. AutoSurvey addresses these challenges through a systematic approach that involves initial retrieval and outline generation, subsection drafting by specialized LLMs, integration and refinement, and rigorous evaluation and iteration. Our contributions include a comprehensive solution to the survey problem, a reliable evaluation method, and experimental validation demonstrating AutoSurvey's effectiveness.We open our resources at https://github.com/AutoSurveys/AutoSurvey.