Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeExtract Free Dense Misalignment from CLIP
Recent vision-language foundation models still frequently produce outputs misaligned with their inputs, evidenced by object hallucination in captioning and prompt misalignment in the text-to-image generation model. Recent studies have explored methods for identifying misaligned elements, aiming not only to enhance interpretability but also to improve model performance. However, current approaches primarily rely on large foundation models in a zero-shot manner or fine-tuned models with human annotations, which limits scalability due to significant computational costs. This work proposes a novel approach, dubbed CLIP4DM, for detecting dense misalignments from pre-trained CLIP, specifically focusing on pinpointing misaligned words between image and text. We carefully revamp the gradient-based attribution computation method, enabling negative gradient of individual text tokens to indicate misalignment. We also propose F-CLIPScore, which aggregates misaligned attributions with a global alignment score. We evaluate our method on various dense misalignment detection benchmarks, covering various image and text domains and misalignment types. Our method demonstrates state-of-the-art performance among zero-shot models and competitive performance with fine-tuned models while maintaining superior efficiency. Our qualitative examples show that our method has a unique strength to detect entity-level objects, intangible objects, and attributes that can not be easily detected for existing works. We conduct ablation studies and analyses to highlight the strengths and limitations of our approach. Our code is publicly available at https://github.com/naver-ai/CLIP4DM.
Extract-and-Adaptation Network for 3D Interacting Hand Mesh Recovery
Understanding how two hands interact with each other is a key component of accurate 3D interacting hand mesh recovery. However, recent Transformer-based methods struggle to learn the interaction between two hands as they directly utilize two hand features as input tokens, which results in distant token problem. The distant token problem represents that input tokens are in heterogeneous spaces, leading Transformer to fail in capturing correlation between input tokens. Previous Transformer-based methods suffer from the problem especially when poses of two hands are very different as they project features from a backbone to separate left and right hand-dedicated features. We present EANet, extract-and-adaptation network, with EABlock, the main component of our network. Rather than directly utilizing two hand features as input tokens, our EABlock utilizes two complementary types of novel tokens, SimToken and JoinToken, as input tokens. Our two novel tokens are from a combination of separated two hand features; hence, it is much more robust to the distant token problem. Using the two type of tokens, our EABlock effectively extracts interaction feature and adapts it to each hand. The proposed EANet achieves the state-of-the-art performance on 3D interacting hands benchmarks. The codes are available at https://github.com/jkpark0825/EANet.
Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering
There has been a growing effort to replace hand extraction of data from research papers with automated data extraction based on natural language processing, language models, and recently, large language models (LLMs). Although these methods enable efficient extraction of data from large sets of research papers, they require a significant amount of up-front effort, expertise, and coding. In this work we propose the ChatExtract method that can fully automate very accurate data extraction with minimal initial effort and background, using an advanced conversational LLM. ChatExtract consists of a set of engineered prompts applied to a conversational LLM that both identify sentences with data, extract that data, and assure the data's correctness through a series of follow-up questions. These follow-up questions largely overcome known issues with LLMs providing factually inaccurate responses. ChatExtract can be applied with any conversational LLMs and yields very high quality data extraction. In tests on materials data we find precision and recall both close to 90% from the best conversational LLMs, like ChatGPT-4. We demonstrate that the exceptional performance is enabled by the information retention in a conversational model combined with purposeful redundancy and introducing uncertainty through follow-up prompts. These results suggest that approaches similar to ChatExtract, due to their simplicity, transferability, and accuracy are likely to become powerful tools for data extraction in the near future. Finally, databases for critical cooling rates of metallic glasses and yield strengths of high entropy alloys are developed using ChatExtract.
Extracting Training Data from Diffusion Models
Image diffusion models such as DALL-E 2, Imagen, and Stable Diffusion have attracted significant attention due to their ability to generate high-quality synthetic images. In this work, we show that diffusion models memorize individual images from their training data and emit them at generation time. With a generate-and-filter pipeline, we extract over a thousand training examples from state-of-the-art models, ranging from photographs of individual people to trademarked company logos. We also train hundreds of diffusion models in various settings to analyze how different modeling and data decisions affect privacy. Overall, our results show that diffusion models are much less private than prior generative models such as GANs, and that mitigating these vulnerabilities may require new advances in privacy-preserving training.
Extracting Mathematical Concepts with Large Language Models
We extract mathematical concepts from mathematical text using generative large language models (LLMs) like ChatGPT, contributing to the field of automatic term extraction (ATE) and mathematical text processing, and also to the study of LLMs themselves. Our work builds on that of others in that we aim for automatic extraction of terms (keywords) in one mathematical field, category theory, using as a corpus the 755 abstracts from a snapshot of the online journal "Theory and Applications of Categories", circa 2020. Where our study diverges from previous work is in (1) providing a more thorough analysis of what makes mathematical term extraction a difficult problem to begin with; (2) paying close attention to inter-annotator disagreements; (3) providing a set of guidelines which both human and machine annotators could use to standardize the extraction process; (4) introducing a new annotation tool to help humans with ATE, applicable to any mathematical field and even beyond mathematics; (5) using prompts to ChatGPT as part of the extraction process, and proposing best practices for such prompts; and (6) raising the question of whether ChatGPT could be used as an annotator on the same level as human experts. Our overall findings are that the matter of mathematical ATE is an interesting field which can benefit from participation by LLMs, but LLMs themselves cannot at this time surpass human performance on it.
Extractive Summarization via ChatGPT for Faithful Summary Generation
Extractive summarization is a crucial task in natural language processing that aims to condense long documents into shorter versions by directly extracting sentences. The recent introduction of large language models has attracted significant interest in the NLP community due to its remarkable performance on a wide range of downstream tasks. This paper first presents a thorough evaluation of ChatGPT's performance on extractive summarization and compares it with traditional fine-tuning methods on various benchmark datasets. Our experimental analysis reveals that ChatGPT exhibits inferior extractive summarization performance in terms of ROUGE scores compared to existing supervised systems, while achieving higher performance based on LLM-based evaluation metrics. In addition, we explore the effectiveness of in-context learning and chain-of-thought reasoning for enhancing its performance. Furthermore, we find that applying an extract-then-generate pipeline with ChatGPT yields significant performance improvements over abstractive baselines in terms of summary faithfulness. These observations highlight potential directions for enhancing ChatGPT's capabilities in faithful summarization using two-stage approaches.
Extracting Training Data from Large Language Models
It has become common to publish large (billion parameter) language models that have been trained on private datasets. This paper demonstrates that in such settings, an adversary can perform a training data extraction attack to recover individual training examples by querying the language model. We demonstrate our attack on GPT-2, a language model trained on scrapes of the public Internet, and are able to extract hundreds of verbatim text sequences from the model's training data. These extracted examples include (public) personally identifiable information (names, phone numbers, and email addresses), IRC conversations, code, and 128-bit UUIDs. Our attack is possible even though each of the above sequences are included in just one document in the training data. We comprehensively evaluate our extraction attack to understand the factors that contribute to its success. Worryingly, we find that larger models are more vulnerable than smaller models. We conclude by drawing lessons and discussing possible safeguards for training large language models.
Extracting Fix Ingredients using Language Models
Deep learning and language models are increasingly dominating automated program repair research. While previous generate-and-validate approaches were able to find and use fix ingredients on a file or even project level, neural language models are limited to the code that fits their input window. In this work we investigate how important identifier ingredients are in neural program repair and present ScanFix, an approach that leverages an additional scanner model to extract identifiers from a bug's file and potentially project-level context. We find that lack of knowledge of far-away identifiers is an important cause of failed repairs. Augmenting repair model input with scanner-extracted identifiers yields relative improvements of up to 31%. However, ScanFix is outperformed by a model with a large input window (> 5k tokens). When passing ingredients from the ground-truth fix, improvements are even higher. This shows that, with refined extraction techniques, ingredient scanning, similar to fix candidate ranking, could have the potential to become an important subtask of future automated repair systems. At the same time, it also demonstrates that this idea is subject to Sutton's bitter lesson and may be rendered unnecessary by new code models with ever-increasing context windows.
Extracting Prompts by Inverting LLM Outputs
We consider the problem of language model inversion: given outputs of a language model, we seek to extract the prompt that generated these outputs. We develop a new black-box method, output2prompt, that learns to extract prompts without access to the model's logits and without adversarial or jailbreaking queries. In contrast to previous work, output2prompt only needs outputs of normal user queries. To improve memory efficiency, output2prompt employs a new sparse encoding techique. We measure the efficacy of output2prompt on a variety of user and system prompts and demonstrate zero-shot transferability across different LLMs.
Extracting Motion and Appearance via Inter-Frame Attention for Efficient Video Frame Interpolation
Effectively extracting inter-frame motion and appearance information is important for video frame interpolation (VFI). Previous works either extract both types of information in a mixed way or elaborate separate modules for each type of information, which lead to representation ambiguity and low efficiency. In this paper, we propose a novel module to explicitly extract motion and appearance information via a unifying operation. Specifically, we rethink the information process in inter-frame attention and reuse its attention map for both appearance feature enhancement and motion information extraction. Furthermore, for efficient VFI, our proposed module could be seamlessly integrated into a hybrid CNN and Transformer architecture. This hybrid pipeline can alleviate the computational complexity of inter-frame attention as well as preserve detailed low-level structure information. Experimental results demonstrate that, for both fixed- and arbitrary-timestep interpolation, our method achieves state-of-the-art performance on various datasets. Meanwhile, our approach enjoys a lighter computation overhead over models with close performance. The source code and models are available at https://github.com/MCG-NJU/EMA-VFI.
Extracting Radiological Findings With Normalized Anatomical Information Using a Span-Based BERT Relation Extraction Model
Medical imaging is critical to the diagnosis and treatment of numerous medical problems, including many forms of cancer. Medical imaging reports distill the findings and observations of radiologists, creating an unstructured textual representation of unstructured medical images. Large-scale use of this text-encoded information requires converting the unstructured text to a structured, semantic representation. We explore the extraction and normalization of anatomical information in radiology reports that is associated with radiological findings. We investigate this extraction and normalization task using a span-based relation extraction model that jointly extracts entities and relations using BERT. This work examines the factors that influence extraction and normalization performance, including the body part/organ system, frequency of occurrence, span length, and span diversity. It discusses approaches for improving performance and creating high-quality semantic representations of radiological phenomena.
Extracting inter-dot tunnel couplings between few donor quantum dots in silicon
The long term scaling prospects for solid-state quantum computing architectures relies heavily on the ability to simply and reliably measure and control the coherent electron interaction strength, known as the tunnel coupling, t_c. Here, we describe a method to extract the t_c between two quantum dots (QDs) utilising their different tunnel rates to a reservoir. We demonstrate the technique on a few donor triple QD tunnel coupled to a nearby single-electron transistor (SET) in silicon. The device was patterned using scanning tunneling microscopy-hydrogen lithography allowing for a direct measurement of the tunnel coupling for a given inter-dot distance. We extract {t}_{{c}}=5.5pm 1.8;{GHz} and {t}_{{c}}=2.2pm 1.3;{GHz} between each of the nearest-neighbour QDs which are separated by 14.5 nm and 14.0 nm, respectively. The technique allows for an accurate measurement of t_c for nanoscale devices even when it is smaller than the electron temperature and is an ideal characterisation tool for multi-dot systems with a charge sensor.
Taming generative video models for zero-shot optical flow extraction
Extracting optical flow from videos remains a core computer vision problem. Motivated by the success of large general-purpose models, we ask whether frozen self-supervised video models trained only for future frame prediction can be prompted, without fine-tuning, to output flow. Prior work reading out depth or illumination from video generators required fine-tuning, which is impractical for flow where labels are scarce and synthetic datasets suffer from a sim-to-real gap. Inspired by the Counterfactual World Model (CWM) paradigm, which can obtain point-wise correspondences by injecting a small tracer perturbation into a next-frame predictor and tracking its propagation, we extend this idea to generative video models. We explore several popular architectures and find that successful zero-shot flow extraction in this manner is aided by three model properties: (1) distributional prediction of future frames (avoiding blurry or noisy outputs); (2) factorized latents that treat each spatio-temporal patch independently; and (3) random-access decoding that can condition on any subset of future pixels. These properties are uniquely present in the recent Local Random Access Sequence (LRAS) architecture. Building on LRAS, we propose KL-tracing: a novel test-time procedure that injects a localized perturbation into the first frame, rolls out the model one step, and computes the Kullback-Leibler divergence between perturbed and unperturbed predictive distributions. Without any flow-specific fine-tuning, our method outperforms state-of-the-art models on real-world TAP-Vid DAVIS dataset (16.6% relative improvement for endpoint error) and synthetic TAP-Vid Kubric (4.7% relative improvement). Our results indicate that counterfactual prompting of controllable generative video models is a scalable and effective alternative to supervised or photometric-loss approaches for high-quality flow.
Extracting Molecular Properties from Natural Language with Multimodal Contrastive Learning
Deep learning in computational biochemistry has traditionally focused on molecular graphs neural representations; however, recent advances in language models highlight how much scientific knowledge is encoded in text. To bridge these two modalities, we investigate how molecular property information can be transferred from natural language to graph representations. We study property prediction performance gains after using contrastive learning to align neural graph representations with representations of textual descriptions of their characteristics. We implement neural relevance scoring strategies to improve text retrieval, introduce a novel chemically-valid molecular graph augmentation strategy inspired by organic reactions, and demonstrate improved performance on downstream MoleculeNet property classification tasks. We achieve a +4.26% AUROC gain versus models pre-trained on the graph modality alone, and a +1.54% gain compared to recently proposed molecular graph/text contrastively trained MoMu model (Su et al. 2022).
Spatial ModernBERT: Spatial-Aware Transformer for Table and Key-Value Extraction in Financial Documents at Scale
Extracting tables and key-value pairs from financial documents is essential for business workflows such as auditing, data analytics, and automated invoice processing. In this work, we introduce Spatial ModernBERT-a transformer-based model augmented with spatial embeddings-to accurately detect and extract tabular data and key-value fields from complex financial documents. We cast the extraction task as token classification across three heads: (1) Label Head, classifying each token as a label (e.g., PO Number, PO Date, Item Description, Quantity, Base Cost, MRP, etc.); (2) Column Head, predicting column indices; (3) Row Head, distinguishing the start of item rows and header rows. The model is pretrained on the PubTables-1M dataset, then fine-tuned on a financial document dataset, achieving robust performance through cross-entropy loss on each classification head. We propose a post-processing method to merge tokens using B-I-IB tagging, reconstruct the tabular layout, and extract key-value pairs. Empirical evaluation shows that Spatial ModernBERT effectively leverages both textual and spatial cues, facilitating highly accurate table and key-value extraction in real-world financial documents.
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
Extraction of building footprint polygons from remotely sensed data is essential for several urban understanding tasks such as reconstruction, navigation, and mapping. Despite significant progress in the area, extracting accurate polygonal building footprints remains an open problem. In this paper, we introduce Pix2Poly, an attention-based end-to-end trainable and differentiable deep neural network capable of directly generating explicit high-quality building footprints in a ring graph format. Pix2Poly employs a generative encoder-decoder transformer to produce a sequence of graph vertex tokens whose connectivity information is learned by an optimal matching network. Compared to previous graph learning methods, ours is a truly end-to-end trainable approach that extracts high-quality building footprints and road networks without requiring complicated, computationally intensive raster loss functions and intricate training pipelines. Upon evaluating Pix2Poly on several complex and challenging datasets, we report that Pix2Poly outperforms state-of-the-art methods in several vector shape quality metrics while being an entirely explicit method. Our code is available at https://github.com/yeshwanth95/Pix2Poly.
HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction
Extraction and interpretation of intricate information from unstructured text data arising in financial applications, such as earnings call transcripts, present substantial challenges to large language models (LLMs) even using the current best practices to use Retrieval Augmented Generation (RAG) (referred to as VectorRAG techniques which utilize vector databases for information retrieval) due to challenges such as domain specific terminology and complex formats of the documents. We introduce a novel approach based on a combination, called HybridRAG, of the Knowledge Graphs (KGs) based RAG techniques (called GraphRAG) and VectorRAG techniques to enhance question-answer (Q&A) systems for information extraction from financial documents that is shown to be capable of generating accurate and contextually relevant answers. Using experiments on a set of financial earning call transcripts documents which come in the form of Q&A format, and hence provide a natural set of pairs of ground-truth Q&As, we show that HybridRAG which retrieves context from both vector database and KG outperforms both traditional VectorRAG and GraphRAG individually when evaluated at both the retrieval and generation stages in terms of retrieval accuracy and answer generation. The proposed technique has applications beyond the financial domain
Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs
Extractive summarization plays a pivotal role in natural language processing due to its wide-range applications in summarizing diverse content efficiently, while also being faithful to the original content. Despite significant advancement achieved in extractive summarization by Large Language Models (LLMs), these summaries frequently exhibit incoherence. An important aspect of the coherent summary is its readability for intended users. Although there have been many datasets and benchmarks proposed for creating coherent extractive summaries, none of them currently incorporate user intent to improve coherence in extractive summarization. Motivated by this, we propose a systematically created human-annotated dataset consisting of coherent summaries for five publicly available datasets and natural language user feedback, offering valuable insights into how to improve coherence in extractive summaries. We utilize this dataset for aligning LLMs through supervised fine-tuning with natural language human feedback to enhance the coherence of their generated summaries. Preliminary experiments with Falcon-40B and Llama-2-13B show significant performance improvements (~10% Rouge-L) in terms of producing coherent summaries. We further utilize human feedback to benchmark results over instruction-tuned models such as FLAN-T5 which resulted in several interesting findings. Data and source code are available at https://github.com/Mihir3009/Extract-AI.
Extracting and Emulsifying Cultural Explanation to Improve Multilingual Capability of LLMs
Large Language Models (LLMs) have achieved remarkable success, but their English-centric training data limits performance in non-English languages, highlighting the need for enhancements in their multilingual capabilities. While some work on multilingual prompting methods handles non-English queries by utilizing English translations or restructuring them to more closely align with LLM reasoning patterns, these works often overlook the importance of cultural context, limiting their effectiveness. To address this limitation, we propose EMCEI, a simple yet effective approach that improves LLMs' multilingual capabilities by incorporating cultural context for more accurate and appropriate responses. Specifically, EMCEI follows a two-step process that first extracts relevant cultural context from the LLM's parametric knowledge via prompting. Then, EMCEI employs an LLM-as-Judge mechanism to select the most appropriate response by balancing cultural relevance and reasoning ability. Experiments on diverse multilingual benchmarks show that EMCEI outperforms existing baselines, demonstrating its effectiveness in handling multilingual queries with LLMs.
Label Drop for Multi-Aspect Relation Modeling in Universal Information Extraction
Universal Information Extraction (UIE) has garnered significant attention due to its ability to address model explosion problems effectively. Extractive UIE can achieve strong performance using a relatively small model, making it widely adopted. Extractive UIEs generally rely on task instructions for different tasks, including single-target instructions and multiple-target instructions. Single-target instruction UIE enables the extraction of only one type of relation at a time, limiting its ability to model correlations between relations and thus restricting its capability to extract complex relations. While multiple-target instruction UIE allows for the extraction of multiple relations simultaneously, the inclusion of irrelevant relations introduces decision complexity and impacts extraction accuracy. Therefore, for multi-relation extraction, we propose LDNet, which incorporates multi-aspect relation modeling and a label drop mechanism. By assigning different relations to different levels for understanding and decision-making, we reduce decision confusion. Additionally, the label drop mechanism effectively mitigates the impact of irrelevant relations. Experiments show that LDNet outperforms or achieves competitive performance with state-of-the-art systems on 9 tasks, 33 datasets, in both single-modal and multi-modal, few-shot and zero-shot settings.https://github.com/Lu-Yang666/LDNet
PdfTable: A Unified Toolkit for Deep Learning-Based Table Extraction
Currently, a substantial volume of document data exists in an unstructured format, encompassing Portable Document Format (PDF) files and images. Extracting information from these documents presents formidable challenges due to diverse table styles, complex forms, and the inclusion of different languages. Several open-source toolkits, such as Camelot, Plumb a PDF (pdfnumber), and Paddle Paddle Structure V2 (PP-StructureV2), have been developed to facilitate table extraction from PDFs or images. However, each toolkit has its limitations. Camelot and pdfnumber can solely extract tables from digital PDFs and cannot handle image-based PDFs and pictures. On the other hand, PP-StructureV2 can comprehensively extract image-based PDFs and tables from pictures. Nevertheless, it lacks the ability to differentiate between diverse application scenarios, such as wired tables and wireless tables, digital PDFs, and image-based PDFs. To address these issues, we have introduced the PDF table extraction (PdfTable) toolkit. This toolkit integrates numerous open-source models, including seven table recognition models, four Optical character recognition (OCR) recognition tools, and three layout analysis models. By refining the PDF table extraction process, PdfTable achieves adaptability across various application scenarios. We substantiate the efficacy of the PdfTable toolkit through verification on a self-labeled wired table dataset and the open-source wireless Publicly Table Reconition Dataset (PubTabNet). The PdfTable code will available on Github: https://github.com/CycloneBoy/pdf_table.
Extracting polygonal footprints in off-nadir images with Segment Anything Model
Building Footprint Extraction (BFE) from off-nadir aerial images often involves roof segmentation and offset prediction to adjust roof boundaries to the building footprint. However, this multi-stage approach typically produces low-quality results, limiting its applicability in real-world data production. To address this issue, we present OBMv2, an end-to-end and promptable model for polygonal footprint prediction. Unlike its predecessor OBM, OBMv2 introduces a novel Self Offset Attention (SOFA) mechanism that improves performance across diverse building types, from bungalows to skyscrapers, enabling end-to-end footprint prediction without post-processing. Additionally, we propose a Multi-level Information System (MISS) to effectively leverage roof masks, building masks, and offsets for accurate footprint prediction. We evaluate OBMv2 on the BONAI and OmniCity-view3 datasets and demonstrate its generalization on the Huizhou test set. The code will be available at https://github.com/likaiucas/OBMv2.
Leveraging Large Language Models for Mobile App Review Feature Extraction
Mobile app review analysis presents unique challenges due to the low quality, subjective bias, and noisy content of user-generated documents. Extracting features from these reviews is essential for tasks such as feature prioritization and sentiment analysis, but it remains a challenging task. Meanwhile, encoder-only models based on the Transformer architecture have shown promising results for classification and information extraction tasks for multiple software engineering processes. This study explores the hypothesis that encoder-only large language models can enhance feature extraction from mobile app reviews. By leveraging crowdsourced annotations from an industrial context, we redefine feature extraction as a supervised token classification task. Our approach includes extending the pre-training of these models with a large corpus of user reviews to improve contextual understanding and employing instance selection techniques to optimize model fine-tuning. Empirical evaluations demonstrate that this method improves the precision and recall of extracted features and enhances performance efficiency. Key contributions include a novel approach to feature extraction, annotated datasets, extended pre-trained models, and an instance selection mechanism for cost-effective fine-tuning. This research provides practical methods and empirical evidence in applying large language models to natural language processing tasks within mobile app reviews, offering improved performance in feature extraction.
QLSC: A Query Latent Semantic Calibrator for Robust Extractive Question Answering
Extractive Question Answering (EQA) in Machine Reading Comprehension (MRC) often faces the challenge of dealing with semantically identical but format-variant inputs. Our work introduces a novel approach, called the ``Query Latent Semantic Calibrator (QLSC)'', designed as an auxiliary module for existing MRC models. We propose a unique scaling strategy to capture latent semantic center features of queries. These features are then seamlessly integrated into traditional query and passage embeddings using an attention mechanism. By deepening the comprehension of the semantic queries-passage relationship, our approach diminishes sensitivity to variations in text format and boosts the model's capability in pinpointing accurate answers. Experimental results on robust Question-Answer datasets confirm that our approach effectively handles format-variant but semantically identical queries, highlighting the effectiveness and adaptability of our proposed method.
SciDaSynth: Interactive Structured Knowledge Extraction and Synthesis from Scientific Literature with Large Language Model
Extraction and synthesis of structured knowledge from extensive scientific literature are crucial for advancing and disseminating scientific progress. Although many existing systems facilitate literature review and digest, they struggle to process multimodal, varied, and inconsistent information within and across the literature into structured data. We introduce SciDaSynth, a novel interactive system powered by large language models (LLMs) that enables researchers to efficiently build structured knowledge bases from scientific literature at scale. The system automatically creates data tables to organize and summarize users' interested knowledge in literature via question-answering. Furthermore, it provides multi-level and multi-faceted exploration of the generated data tables, facilitating iterative validation, correction, and refinement. Our within-subjects study with researchers demonstrates the effectiveness and efficiency of SciDaSynth in constructing quality scientific knowledge bases. We further discuss the design implications for human-AI interaction tools for data extraction and structuring.
`Keep it Together': Enforcing Cohesion in Extractive Summaries by Simulating Human Memory
Extractive summaries are usually presented as lists of sentences with no expected cohesion between them. In this paper, we aim to enforce cohesion whilst controlling for informativeness and redundancy in summaries, in cases where the input exhibits high redundancy. The pipeline controls for redundancy in long inputs as it is consumed, and balances informativeness and cohesion during sentence selection. Our sentence selector simulates human memory to keep track of topics --modeled as lexical chains--, enforcing cohesive ties between noun phrases. Across a variety of domains, our experiments revealed that it is possible to extract highly cohesive summaries that nevertheless read as informative to humans as summaries extracted by only accounting for informativeness or redundancy. The extracted summaries exhibit smooth topic transitions between sentences as signaled by lexical chains, with chains spanning adjacent or near-adjacent sentences.
Extracting Definienda in Mathematical Scholarly Articles with Transformers
We consider automatically identifying the defined term within a mathematical definition from the text of an academic article. Inspired by the development of transformer-based natural language processing applications, we pose the problem as (a) a token-level classification task using fine-tuned pre-trained transformers; and (b) a question-answering task using a generalist large language model (GPT). We also propose a rule-based approach to build a labeled dataset from the LATEX source of papers. Experimental results show that it is possible to reach high levels of precision and recall using either recent (and expensive) GPT 4 or simpler pre-trained models fine-tuned on our task.
Unlocking Science: Novel Dataset and Benchmark for Cross-Modality Scientific Information Extraction
Extracting key information from scientific papers has the potential to help researchers work more efficiently and accelerate the pace of scientific progress. Over the last few years, research on Scientific Information Extraction (SciIE) witnessed the release of several new systems and benchmarks. However, existing paper-focused datasets mostly focus only on specific parts of a manuscript (e.g., abstracts) and are single-modality (i.e., text- or table-only), due to complex processing and expensive annotations. Moreover, core information can be present in either text or tables or across both. To close this gap in data availability and enable cross-modality IE, while alleviating labeling costs, we propose a semi-supervised pipeline for annotating entities in text, as well as entities and relations in tables, in an iterative procedure. Based on this pipeline, we release novel resources for the scientific community, including a high-quality benchmark, a large-scale corpus, and a semi-supervised annotation pipeline. We further report the performance of state-of-the-art IE models on the proposed benchmark dataset, as a baseline. Lastly, we explore the potential capability of large language models such as ChatGPT for the current task. Our new dataset, results, and analysis validate the effectiveness and efficiency of our semi-supervised pipeline, and we discuss its remaining limitations.
Extracting user needs with Chat-GPT for dialogue recommendation
Large-scale language models (LLMs), such as ChatGPT, are becoming increasingly sophisticated and exhibit human-like capabilities, playing an essential role in assisting humans in a variety of everyday tasks. An important application of AI is interactive recommendation systems that respond to human inquiries and make recommendations tailored to the user. In most conventional interactive recommendation systems, the language model is used only as a dialogue model, and there is a separate recommendation system. This is due to the fact that the language model used as a dialogue system does not have the capability to serve as a recommendation system. Therefore, we will realize the construction of a dialogue system with recommendation capability by using OpenAI's Chat-GPT, which has a very high inference capability as a dialogue system and the ability to generate high-quality sentences, and verify the effectiveness of the system.
Extraction of Medication and Temporal Relation from Clinical Text using Neural Language Models
Clinical texts, represented in electronic medical records (EMRs), contain rich medical information and are essential for disease prediction, personalised information recommendation, clinical decision support, and medication pattern mining and measurement. Relation extractions between medication mentions and temporal information can further help clinicians better understand the patients' treatment history. To evaluate the performances of deep learning (DL) and large language models (LLMs) in medication extraction and temporal relations classification, we carry out an empirical investigation of MedTem project using several advanced learning structures including BiLSTM-CRF and CNN-BiLSTM for a clinical domain named entity recognition (NER), and BERT-CNN for temporal relation extraction (RE), in addition to the exploration of different word embedding techniques. Furthermore, we also designed a set of post-processing roles to generate structured output on medications and the temporal relation. Our experiments show that CNN-BiLSTM slightly wins the BiLSTM-CRF model on the i2b2-2009 clinical NER task yielding 75.67, 77.83, and 78.17 for precision, recall, and F1 scores using Macro Average. BERT-CNN model also produced reasonable evaluation scores 64.48, 67.17, and 65.03 for P/R/F1 using Macro Avg on the temporal relation extraction test set from i2b2-2012 challenges. Code and Tools from MedTem will be hosted at https://github.com/HECTA-UoM/MedTem
Self-Verification Improves Few-Shot Clinical Information Extraction
Extracting patient information from unstructured text is a critical task in health decision-support and clinical research. Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning, in contrast to supervised learning which requires much more costly human annotations. However, despite drastic advances in modern LLMs such as GPT-4, they still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health. Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs. This is made possible by the asymmetry between verification and generation, where the latter is often much easier than the former. Experimental results show that our method consistently improves accuracy for various LLMs in standard clinical information extraction tasks. Additionally, self-verification yields interpretations in the form of a short text span corresponding to each output, which makes it very efficient for human experts to audit the results, paving the way towards trustworthy extraction of clinical information in resource-constrained scenarios. To facilitate future research in this direction, we release our code and prompts.
Design of Negative Sampling Strategies for Distantly Supervised Skill Extraction
Skills play a central role in the job market and many human resources (HR) processes. In the wake of other digital experiences, today's online job market has candidates expecting to see the right opportunities based on their skill set. Similarly, enterprises increasingly need to use data to guarantee that the skills within their workforce remain future-proof. However, structured information about skills is often missing, and processes building on self- or manager-assessment have shown to struggle with issues around adoption, completeness, and freshness of the resulting data. Extracting skills is a highly challenging task, given the many thousands of possible skill labels mentioned either explicitly or merely described implicitly and the lack of finely annotated training corpora. Previous work on skill extraction overly simplifies the task to an explicit entity detection task or builds on manually annotated training data that would be infeasible if applied to a complete vocabulary of skills. We propose an end-to-end system for skill extraction, based on distant supervision through literal matching. We propose and evaluate several negative sampling strategies, tuned on a small validation dataset, to improve the generalization of skill extraction towards implicitly mentioned skills, despite the lack of such implicit skills in the distantly supervised data. We observe that using the ESCO taxonomy to select negative examples from related skills yields the biggest improvements, and combining three different strategies in one model further increases the performance, up to 8 percentage points in RP@5. We introduce a manually annotated evaluation benchmark for skill extraction based on the ESCO taxonomy, on which we validate our models. We release the benchmark dataset for research purposes to stimulate further research on the task.
Extracting Latent Steering Vectors from Pretrained Language Models
Prior work on controllable text generation has focused on learning how to control language models through trainable decoding, smart-prompt design, or fine-tuning based on a desired objective. We hypothesize that the information needed to steer the model to generate a target sentence is already encoded within the model. Accordingly, we explore a different approach altogether: extracting latent vectors directly from pretrained language model decoders without fine-tuning. Experiments show that there exist steering vectors, which, when added to the hidden states of the language model, generate a target sentence nearly perfectly (> 99 BLEU) for English sentences from a variety of domains. We show that vector arithmetic can be used for unsupervised sentiment transfer on the Yelp sentiment benchmark, with performance comparable to models tailored to this task. We find that distances between steering vectors reflect sentence similarity when evaluated on a textual similarity benchmark (STS-B), outperforming pooled hidden states of models. Finally, we present an analysis of the intrinsic properties of the steering vectors. Taken together, our results suggest that frozen LMs can be effectively controlled through their latent steering space.
MIMICause: Representation and automatic extraction of causal relation types from clinical notes
Understanding causal narratives communicated in clinical notes can help make strides towards personalized healthcare. Extracted causal information from clinical notes can be combined with structured EHR data such as patients' demographics, diagnoses, and medications. This will enhance healthcare providers' ability to identify aspects of a patient's story communicated in the clinical notes and help make more informed decisions. In this work, we propose annotation guidelines, develop an annotated corpus and provide baseline scores to identify types and direction of causal relations between a pair of biomedical concepts in clinical notes; communicated implicitly or explicitly, identified either in a single sentence or across multiple sentences. We annotate a total of 2714 de-identified examples sampled from the 2018 n2c2 shared task dataset and train four different language model based architectures. Annotation based on our guidelines achieved a high inter-annotator agreement i.e. Fleiss' kappa (kappa) score of 0.72, and our model for identification of causal relations achieved a macro F1 score of 0.56 on the test data. The high inter-annotator agreement for clinical text shows the quality of our annotation guidelines while the provided baseline F1 score sets the direction for future research towards understanding narratives in clinical texts.
RadGraph: Extracting Clinical Entities and Relations from Radiology Reports
Extracting structured clinical information from free-text radiology reports can enable the use of radiology report information for a variety of critical healthcare applications. In our work, we present RadGraph, a dataset of entities and relations in full-text chest X-ray radiology reports based on a novel information extraction schema we designed to structure radiology reports. We release a development dataset, which contains board-certified radiologist annotations for 500 radiology reports from the MIMIC-CXR dataset (14,579 entities and 10,889 relations), and a test dataset, which contains two independent sets of board-certified radiologist annotations for 100 radiology reports split equally across the MIMIC-CXR and CheXpert datasets. Using these datasets, we train and test a deep learning model, RadGraph Benchmark, that achieves a micro F1 of 0.82 and 0.73 on relation extraction on the MIMIC-CXR and CheXpert test sets respectively. Additionally, we release an inference dataset, which contains annotations automatically generated by RadGraph Benchmark across 220,763 MIMIC-CXR reports (around 6 million entities and 4 million relations) and 500 CheXpert reports (13,783 entities and 9,908 relations) with mappings to associated chest radiographs. Our freely available dataset can facilitate a wide range of research in medical natural language processing, as well as computer vision and multi-modal learning when linked to chest radiographs.
TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking
Extracting entities and relations from unstructured text has attracted increasing attention in recent years but remains challenging, due to the intrinsic difficulty in identifying overlapping relations with shared entities. Prior works show that joint learning can result in a noticeable performance gain. However, they usually involve sequential interrelated steps and suffer from the problem of exposure bias. At training time, they predict with the ground truth conditions while at inference it has to make extraction from scratch. This discrepancy leads to error accumulation. To mitigate the issue, we propose in this paper a one-stage joint extraction model, namely, TPLinker, which is capable of discovering overlapping relations sharing one or both entities while immune from the exposure bias. TPLinker formulates joint extraction as a token pair linking problem and introduces a novel handshaking tagging scheme that aligns the boundary tokens of entity pairs under each relation type. Experiment results show that TPLinker performs significantly better on overlapping and multiple relation extraction, and achieves state-of-the-art performance on two public datasets.
An Automated Pipeline for Character and Relationship Extraction from Readers' Literary Book Reviews on Goodreads.com
Reader reviews of literary fiction on social media, especially those in persistent, dedicated forums, create and are in turn driven by underlying narrative frameworks. In their comments about a novel, readers generally include only a subset of characters and their relationships, thus offering a limited perspective on that work. Yet in aggregate, these reviews capture an underlying narrative framework comprised of different actants (people, places, things), their roles, and interactions that we label the "consensus narrative framework". We represent this framework in the form of an actant-relationship story graph. Extracting this graph is a challenging computational problem, which we pose as a latent graphical model estimation problem. Posts and reviews are viewed as samples of sub graphs/networks of the hidden narrative framework. Inspired by the qualitative narrative theory of Greimas, we formulate a graphical generative Machine Learning (ML) model where nodes represent actants, and multi-edges and self-loops among nodes capture context-specific relationships. We develop a pipeline of interlocking automated methods to extract key actants and their relationships, and apply it to thousands of reviews and comments posted on Goodreads.com. We manually derive the ground truth narrative framework from SparkNotes, and then use word embedding tools to compare relationships in ground truth networks with our extracted networks. We find that our automated methodology generates highly accurate consensus narrative frameworks: for our four target novels, with approximately 2900 reviews per novel, we report average coverage/recall of important relationships of > 80% and an average edge detection rate of >89\%. These extracted narrative frameworks can generate insight into how people (or classes of people) read and how they recount what they have read to others.
Pathology Extraction from Chest X-Ray Radiology Reports: A Performance Study
Extraction of relevant pathological terms from radiology reports is important for correct image label generation and disease population studies. In this letter, we compare the performance of some known application program interface (APIs) for the task of thoracic abnormality extraction from radiology reports. We explored several medical domain specific annotation tools like Medical Text Indexer(MTI) with Non-MEDLINE and Mesh On Demand(MOD) options and generic Natural Language Understanding (NLU) API provided by the IBM cloud. Our results show that although MTI and MOD are intended for extracting medical terms, their performance is worst compared to generic extraction API like IBM NLU. Finally, we trained a DNN-based Named Entity Recognition (NER) model to extract the key concept words from radiology reports. Our model outperforms the medical specific and generic API performance by a large margin. Our results demonstrate the inadequacy of generic APIs for pathology extraction task and establish the importance of domain specific model training for improved results. We hope that these results motivate the research community to release larger de-identified radiology reports corpus for building high accuracy machine learning models for the important task of pathology extraction.
Extracting Sentiment Attitudes From Analytical Texts
In this paper we present the RuSentRel corpus including analytical texts in the sphere of international relations. For each document we annotated sentiments from the author to mentioned named entities, and sentiments of relations between mentioned entities. In the current experiments, we considered the problem of extracting sentiment relations between entities for the whole documents as a three-class machine learning task. We experimented with conventional machine-learning methods (Naive Bayes, SVM, Random Forest).
Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies
We present NEWSROOM, a summarization dataset of 1.3 million articles and summaries written by authors and editors in newsrooms of 38 major news publications. Extracted from search and social media metadata between 1998 and 2017, these high-quality summaries demonstrate high diversity of summarization styles. In particular, the summaries combine abstractive and extractive strategies, borrowing words and phrases from articles at varying rates. We analyze the extraction strategies used in NEWSROOM summaries against other datasets to quantify the diversity and difficulty of our new data, and train existing methods on the data to evaluate its utility and challenges.
Extracting textual overlays from social media videos using neural networks
Textual overlays are often used in social media videos as people who watch them without the sound would otherwise miss essential information conveyed in the audio stream. This is why extraction of those overlays can serve as an important meta-data source, e.g. for content classification or retrieval tasks. In this work, we present a robust method for extracting textual overlays from videos that builds up on multiple neural network architectures. The proposed solution relies on several processing steps: keyframe extraction, text detection and text recognition. The main component of our system, i.e. the text recognition module, is inspired by a convolutional recurrent neural network architecture and we improve its performance using synthetically generated dataset of over 600,000 images with text prepared by authors specifically for this task. We also develop a filtering method that reduces the amount of overlapping text phrases using Levenshtein distance and further boosts system's performance. The final accuracy of our solution reaches over 80A% and is au pair with state-of-the-art methods.
New Methods for Metadata Extraction from Scientific Literature
Within the past few decades we have witnessed digital revolution, which moved scholarly communication to electronic media and also resulted in a substantial increase in its volume. Nowadays keeping track with the latest scientific achievements poses a major challenge for the researchers. Scientific information overload is a severe problem that slows down scholarly communication and knowledge propagation across the academia. Modern research infrastructures facilitate studying scientific literature by providing intelligent search tools, proposing similar and related documents, visualizing citation and author networks, assessing the quality and impact of the articles, and so on. In order to provide such high quality services the system requires the access not only to the text content of stored documents, but also to their machine-readable metadata. Since in practice good quality metadata is not always available, there is a strong demand for a reliable automatic method of extracting machine-readable metadata directly from source documents. This research addresses these problems by proposing an automatic, accurate and flexible algorithm for extracting wide range of metadata directly from scientific articles in born-digital form. Extracted information includes basic document metadata, structured full text and bibliography section. Designed as a universal solution, proposed algorithm is able to handle a vast variety of publication layouts with high precision and thus is well-suited for analyzing heterogeneous document collections. This was achieved by employing supervised and unsupervised machine-learning algorithms trained on large, diverse datasets. The evaluation we conducted showed good performance of proposed metadata extraction algorithm. The comparison with other similar solutions also proved our algorithm performs better than competition for most metadata types.
Éclair -- Extracting Content and Layout with Integrated Reading Order for Documents
Optical Character Recognition (OCR) technology is widely used to extract text from images of documents, facilitating efficient digitization and data retrieval. However, merely extracting text is insufficient when dealing with complex documents. Fully comprehending such documents requires an understanding of their structure -- including formatting, formulas, tables, and the reading order of multiple blocks and columns across multiple pages -- as well as semantic information for detecting elements like footnotes and image captions. This comprehensive understanding is crucial for downstream tasks such as retrieval, document question answering, and data curation for training Large Language Models (LLMs) and Vision Language Models (VLMs). To address this, we introduce \'Eclair, a general-purpose text-extraction tool specifically designed to process a wide range of document types. Given an image, \'Eclair is able to extract formatted text in reading order, along with bounding boxes and their corresponding semantic classes. To thoroughly evaluate these novel capabilities, we introduce our diverse human-annotated benchmark for document-level OCR and semantic classification. \'Eclair achieves state-of-the-art accuracy on this benchmark, outperforming other methods across key metrics. Additionally, we evaluate \'Eclair on established benchmarks, demonstrating its versatility and strength across several evaluation standards.
Sharingan: Extract User Action Sequence from Desktop Recordings
Video recordings of user activities, particularly desktop recordings, offer a rich source of data for understanding user behaviors and automating processes. However, despite advancements in Vision-Language Models (VLMs) and their increasing use in video analysis, extracting user actions from desktop recordings remains an underexplored area. This paper addresses this gap by proposing two novel VLM-based methods for user action extraction: the Direct Frame-Based Approach (DF), which inputs sampled frames directly into VLMs, and the Differential Frame-Based Approach (DiffF), which incorporates explicit frame differences detected via computer vision techniques. We evaluate these methods using a basic self-curated dataset and an advanced benchmark adapted from prior work. Our results show that the DF approach achieves an accuracy of 70% to 80% in identifying user actions, with the extracted action sequences being re-playable though Robotic Process Automation. We find that while VLMs show potential, incorporating explicit UI changes can degrade performance, making the DF approach more reliable. This work represents the first application of VLMs for extracting user action sequences from desktop recordings, contributing new methods, benchmarks, and insights for future research.
Scalable Extraction of Training Data from (Production) Language Models
This paper studies extractable memorization: training data that an adversary can efficiently extract by querying a machine learning model without prior knowledge of the training dataset. We show an adversary can extract gigabytes of training data from open-source language models like Pythia or GPT-Neo, semi-open models like LLaMA or Falcon, and closed models like ChatGPT. Existing techniques from the literature suffice to attack unaligned models; in order to attack the aligned ChatGPT, we develop a new divergence attack that causes the model to diverge from its chatbot-style generations and emit training data at a rate 150x higher than when behaving properly. Our methods show practical attacks can recover far more data than previously thought, and reveal that current alignment techniques do not eliminate memorization.
BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction
Manual digitization of bibliographic metadata is time consuming and labor intensive, especially for historical and real-world archives with highly variable formatting across documents. Despite advances in machine learning, the absence of dedicated datasets for metadata extraction hinders automation. To address this gap, we introduce BiblioPage, a dataset of scanned title pages annotated with structured bibliographic metadata. The dataset consists of approximately 2,000 monograph title pages collected from 14 Czech libraries, spanning a wide range of publication periods, typographic styles, and layout structures. Each title page is annotated with 16 bibliographic attributes, including title, contributors, and publication metadata, along with precise positional information in the form of bounding boxes. To extract structured information from this dataset, we valuated object detection models such as YOLO and DETR combined with transformer-based OCR, achieving a maximum mAP of 52 and an F1 score of 59. Additionally, we assess the performance of various visual large language models, including LlamA 3.2-Vision and GPT-4o, with the best model reaching an F1 score of 67. BiblioPage serves as a real-world benchmark for bibliographic metadata extraction, contributing to document understanding, document question answering, and document information extraction. Dataset and evaluation scripts are availible at: https://github.com/DCGM/biblio-dataset
ReFlex: Text-Guided Editing of Real Images in Rectified Flow via Mid-Step Feature Extraction and Attention Adaptation
Rectified Flow text-to-image models surpass diffusion models in image quality and text alignment, but adapting ReFlow for real-image editing remains challenging. We propose a new real-image editing method for ReFlow by analyzing the intermediate representations of multimodal transformer blocks and identifying three key features. To extract these features from real images with sufficient structural preservation, we leverage mid-step latent, which is inverted only up to the mid-step. We then adapt attention during injection to improve editability and enhance alignment to the target text. Our method is training-free, requires no user-provided mask, and can be applied even without a source prompt. Extensive experiments on two benchmarks with nine baselines demonstrate its superior performance over prior methods, further validated by human evaluations confirming a strong user preference for our approach.
Enhancing Phrase Representation by Information Bottleneck Guided Text Diffusion Process for Keyphrase Extraction
Keyphrase extraction (KPE) is an important task in Natural Language Processing for many scenarios, which aims to extract keyphrases that are present in a given document. Many existing supervised methods treat KPE as sequential labeling, span-level classification, or generative tasks. However, these methods lack the ability to utilize keyphrase information, which may result in biased results. In this study, we propose Diff-KPE, which leverages the supervised Variational Information Bottleneck (VIB) to guide the text diffusion process for generating enhanced keyphrase representations. Diff-KPE first generates the desired keyphrase embeddings conditioned on the entire document and then injects the generated keyphrase embeddings into each phrase representation. A ranking network and VIB are then optimized together with rank loss and classification loss, respectively. This design of Diff-KPE allows us to rank each candidate phrase by utilizing both the information of keyphrases and the document. Experiments show that Diff-KPE outperforms existing KPE methods on a large open domain keyphrase extraction benchmark, OpenKP, and a scientific domain dataset, KP20K.
Automatically Extracting Web API Specifications from HTML Documentation
Web API specifications are machine-readable descriptions of APIs. These specifications, in combination with related tooling, simplify and support the consumption of APIs. However, despite the increased distribution of web APIs, specifications are rare and their creation and maintenance heavily relies on manual efforts by third parties. In this paper, we propose an automatic approach and an associated tool called D2Spec for extracting specifications from web API documentation pages. Given a seed online documentation page on an API, D2Spec first crawls all documentation pages on the API, and then uses a set of machine learning techniques to extract the base URL, path templates, and HTTP methods, which collectively describe the endpoints of an API. We evaluated whether D2Spec can accurately extract endpoints from documentation on 120 web APIs. The results showed that D2Spec achieved a precision of 87.5% in identifying base URLs, a precision of 81.3% and a recall of 80.6% in generating path templates, and a precision of 84.4% and a recall of 76.2% in extracting HTTP methods. In addition, we found that D2Spec was useful when applied to APIs with pre-existing API specifications: D2Spec revealed many inconsistencies between web API documentation and their corresponding publicly available specifications. Thus, D2Spec can be used by web API providers to keep documentation and specifications in synchronization.
On Mechanistic Circuits for Extractive Question-Answering
Large language models are increasingly used to process documents and facilitate question-answering on them. In our paper, we extract mechanistic circuits for this real-world language modeling task: context-augmented language modeling for extractive question-answering (QA) tasks and understand the potential benefits of circuits towards downstream applications such as data attribution to context information. We extract circuits as a function of internal model components (e.g., attention heads, MLPs) using causal mediation analysis techniques. Leveraging the extracted circuits, we first understand the interplay between the model's usage of parametric memory and retrieved context towards a better mechanistic understanding of context-augmented language models. We then identify a small set of attention heads in our circuit which performs reliable data attribution by default, thereby obtaining attribution for free in just the model's forward pass. Using this insight, we then introduce ATTNATTRIB, a fast data attribution algorithm which obtains state-of-the-art attribution results across various extractive QA benchmarks. Finally, we show the possibility to steer the language model towards answering from the context, instead of the parametric memory by using the attribution from ATTNATTRIB as an additional signal during the forward pass. Beyond mechanistic understanding, our paper provides tangible applications of circuits in the form of reliable data attribution and model steering.
Information Extraction from Heterogeneous Documents without Ground Truth Labels using Synthetic Label Generation and Knowledge Distillation
Invoices and receipts submitted by employees are visually rich documents (VRDs) with textual, visual and layout information. To protect against the risk of fraud and abuse, it is crucial for organizations to efficiently extract desired information from submitted receipts. This helps in the assessment of key factors such as appropriateness of the expense claim, adherence to spending and transaction policies, the validity of the receipt, as well as downstream anomaly detection at various levels. These documents are heterogeneous, with multiple formats and languages, uploaded with different image qualities, and often do not contain ground truth labels for the efficient training of models. In this paper we propose Task Aware Instruction-based Labelling (TAIL), a method for synthetic label generation in VRD corpuses without labels, and fine-tune a multimodal Visually Rich Document Understanding Model (VRDU) on TAIL labels using response-based knowledge distillation without using the teacher model's weights or training dataset to conditionally generate annotations in the appropriate format. Using a benchmark external dataset where ground truth labels are available, we demonstrate conditions under which our approach performs at par with Claude 3 Sonnet through empirical studies. We then show that the resulting model performs at par or better on the internal expense documents of a large multinational organization than state-of-the-art LMM (large multimodal model) Claude 3 Sonnet while being 85% less costly and ~5X faster, and outperforms layout-aware baselines by more than 10% in Average Normalized Levenshtein Similarity (ANLS) scores due to its ability to reason and extract information from rare formats. Finally, we illustrate the usage of our approach in overpayment prevention.
Towards Better Question Generation in QA-based Event Extraction
Event Extraction (EE) is an essential information extraction task that aims to extract event-related information from unstructured texts. The paradigm of this task has shifted from conventional classification-based methods to more contemporary question-answering-based (QA-based) approaches. However, in QA-based EE, the quality of the questions dramatically affects the extraction accuracy, and how to generate high-quality questions for QA-based EE remains a challenge. In this work, to tackle this challenge, we suggest four criteria to evaluate the quality of a question and propose a reinforcement learning method, RLQG, for QA-based EE that can generate generalizable, high-quality, and context-dependent questions and provides clear guidance to QA models. The extensive experiments conducted on ACE and RAMS datasets have strongly validated our approach's effectiveness, which also demonstrates its robustness in scenarios with limited training data. The corresponding code of RLQG is released for further research.
Automatically Extracting Numerical Results from Randomized Controlled Trials with Large Language Models
Meta-analyses statistically aggregate the findings of different randomized controlled trials (RCTs) to assess treatment effectiveness. Because this yields robust estimates of treatment effectiveness, results from meta-analyses are considered the strongest form of evidence. However, rigorous evidence syntheses are time-consuming and labor-intensive, requiring manual extraction of data from individual trials to be synthesized. Ideally, language technologies would permit fully automatic meta-analysis, on demand. This requires accurately extracting numerical results from individual trials, which has been beyond the capabilities of natural language processing (NLP) models to date. In this work, we evaluate whether modern large language models (LLMs) can reliably perform this task. We annotate (and release) a modest but granular evaluation dataset of clinical trial reports with numerical findings attached to interventions, comparators, and outcomes. Using this dataset, we evaluate the performance of seven LLMs applied zero-shot for the task of conditionally extracting numerical findings from trial reports. We find that massive LLMs that can accommodate lengthy inputs are tantalizingly close to realizing fully automatic meta-analysis, especially for dichotomous (binary) outcomes (e.g., mortality). However, LLMs -- including ones trained on biomedical texts -- perform poorly when the outcome measures are complex and tallying the results requires inference. This work charts a path toward fully automatic meta-analysis of RCTs via LLMs, while also highlighting the limitations of existing models for this aim.
PrivShape: Extracting Shapes in Time Series under User-Level Local Differential Privacy
Time series have numerous applications in finance, healthcare, IoT, and smart city. In many of these applications, time series typically contain personal data, so privacy infringement may occur if they are released directly to the public. Recently, local differential privacy (LDP) has emerged as the state-of-the-art approach to protecting data privacy. However, existing works on LDP-based collections cannot preserve the shape of time series. A recent work, PatternLDP, attempts to address this problem, but it can only protect a finite group of elements in a time series due to {\omega}-event level privacy guarantee. In this paper, we propose PrivShape, a trie-based mechanism under user-level LDP to protect all elements. PrivShape first transforms a time series to reduce its length, and then adopts trie-expansion and two-level refinement to improve utility. By extensive experiments on real-world datasets, we demonstrate that PrivShape outperforms PatternLDP when adapted for offline use, and can effectively extract frequent shapes.
Style-Extracting Diffusion Models for Semi-Supervised Histopathology Segmentation
Deep learning-based image generation has seen significant advancements with diffusion models, notably improving the quality of generated images. Despite these developments, generating images with unseen characteristics beneficial for downstream tasks has received limited attention. To bridge this gap, we propose Style-Extracting Diffusion Models, featuring two conditioning mechanisms. Specifically, we utilize 1) a style conditioning mechanism which allows to inject style information of previously unseen images during image generation and 2) a content conditioning which can be targeted to a downstream task, e.g., layout for segmentation. We introduce a trainable style encoder to extract style information from images, and an aggregation block that merges style information from multiple style inputs. This architecture enables the generation of images with unseen styles in a zero-shot manner, by leveraging styles from unseen images, resulting in more diverse generations. In this work, we use the image layout as target condition and first show the capability of our method on a natural image dataset as a proof-of-concept. We further demonstrate its versatility in histopathology, where we combine prior knowledge about tissue composition and unannotated data to create diverse synthetic images with known layouts. This allows us to generate additional synthetic data to train a segmentation network in a semi-supervised fashion. We verify the added value of the generated images by showing improved segmentation results and lower performance variability between patients when synthetic images are included during segmentation training. Our code will be made publicly available at [LINK].
Text2MDT: Extracting Medical Decision Trees from Medical Texts
Knowledge of the medical decision process, which can be modeled as medical decision trees (MDTs), is critical to build clinical decision support systems. However, the current MDT construction methods rely heavily on time-consuming and laborious manual annotation. In this work, we propose a novel task, Text2MDT, to explore the automatic extraction of MDTs from medical texts such as medical guidelines and textbooks. We normalize the form of the MDT and create an annotated Text-to-MDT dataset in Chinese with the participation of medical experts. We investigate two different methods for the Text2MDT tasks: (a) an end-to-end framework which only relies on a GPT style large language models (LLM) instruction tuning to generate all the node information and tree structures. (b) The pipeline framework which decomposes the Text2MDT task to three subtasks. Experiments on our Text2MDT dataset demonstrate that: (a) the end-to-end method basd on LLMs (7B parameters or larger) show promising results, and successfully outperform the pipeline methods. (b) The chain-of-thought (COT) prompting method Wei2022ChainOT can improve the performance of the fine-tuned LLMs on the Text2MDT test set. (c) the lightweight pipelined method based on encoder-based pretrained models can perform comparably with LLMs with model complexity two magnititudes smaller. Our Text2MDT dataset is open-sourced at https://tianchi.aliyun.com/dataset/95414, and the source codes are open-sourced at https://github.com/michael-wzhu/text2dt.
Large Language Models for Generative Information Extraction: A Survey
Information extraction (IE) aims to extract structural knowledge (such as entities, relations, and events) from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation, allowing for generalization across various domains and tasks. As a result, numerous works have been proposed to harness abilities of LLMs and offer viable solutions for IE tasks based on a generative paradigm. To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks, in this study, we survey the most recent advancements in this field. We first present an extensive overview by categorizing these works in terms of various IE subtasks and learning paradigms, then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs. Based on thorough review conducted, we identify several insights in technique and promising research directions that deserve further exploration in future studies. We maintain a public repository and consistently update related resources at: https://github.com/quqxui/Awesome-LLM4IE-Papers.
ChemScraper: Graphics Extraction, Molecular Diagram Parsing, and Annotated Data Generation for PDF Images
Existing visual parsers for molecule diagrams translate pixel-based raster images such as PNGs to chemical structure representations (e.g., SMILES). However, PDFs created by word processors including LaTeX and Word provide explicit locations and shapes for characters, lines, and polygons. We extract symbols from born-digital PDF molecule images and then apply simple graph transformations to capture both visual and chemical structure in editable ChemDraw files (CDXML). Our fast ( PDF rightarrow visual graph rightarrow chemical graph ) pipeline does not require GPUs, Optical Character Recognition (OCR) or vectorization. We evaluate on standard benchmarks using SMILES strings, along with a novel evaluation that provides graph-based metrics and error compilation using LgEval. The geometric information in born-digital PDFs produces a highly accurate parser, motivating generating training data for visual parsers that recognize from raster images, with extracted graphics, visual structure, and chemical structure as annotations. To do this we render SMILES strings in Indigo, parse molecule structure, and then validate recognized structure to select correct files.
Retrieval-Augmented Code Generation for Universal Information Extraction
Information Extraction (IE) aims to extract structural knowledge (e.g., entities, relations, events) from natural language texts, which brings challenges to existing methods due to task-specific schemas and complex text expressions. Code, as a typical kind of formalized language, is capable of describing structural knowledge under various schemas in a universal way. On the other hand, Large Language Models (LLMs) trained on both codes and texts have demonstrated powerful capabilities of transforming texts into codes, which provides a feasible solution to IE tasks. Therefore, in this paper, we propose a universal retrieval-augmented code generation framework based on LLMs, called Code4UIE, for IE tasks. Specifically, Code4UIE adopts Python classes to define task-specific schemas of various structural knowledge in a universal way. By so doing, extracting knowledge under these schemas can be transformed into generating codes that instantiate the predefined Python classes with the information in texts. To generate these codes more precisely, Code4UIE adopts the in-context learning mechanism to instruct LLMs with examples. In order to obtain appropriate examples for different tasks, Code4UIE explores several example retrieval strategies, which can retrieve examples semantically similar to the given texts. Extensive experiments on five representative IE tasks across nine datasets demonstrate the effectiveness of the Code4UIE framework.
GeoLLM: Extracting Geospatial Knowledge from Large Language Models
The application of machine learning (ML) in a range of geospatial tasks is increasingly common but often relies on globally available covariates such as satellite imagery that can either be expensive or lack predictive power. Here we explore the question of whether the vast amounts of knowledge found in Internet language corpora, now compressed within large language models (LLMs), can be leveraged for geospatial prediction tasks. We first demonstrate that LLMs embed remarkable spatial information about locations, but naively querying LLMs using geographic coordinates alone is ineffective in predicting key indicators like population density. We then present GeoLLM, a novel method that can effectively extract geospatial knowledge from LLMs with auxiliary map data from OpenStreetMap. We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods. Across these tasks, our method demonstrates a 70% improvement in performance (measured using Pearson's r^2) relative to baselines that use nearest neighbors or use information directly from the prompt, and performance equal to or exceeding satellite-based benchmarks in the literature. With GeoLLM, we observe that GPT-3.5 outperforms Llama 2 and RoBERTa by 19% and 51% respectively, suggesting that the performance of our method scales well with the size of the model and its pretraining dataset. Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe. Crucially, GeoLLM shows promise in mitigating the limitations of existing geospatial covariates and complementing them well. Code is available on the project website: https://rohinmanvi.github.io/GeoLLM
Surface Extraction from Neural Unsigned Distance Fields
We propose a method, named DualMesh-UDF, to extract a surface from unsigned distance functions (UDFs), encoded by neural networks, or neural UDFs. Neural UDFs are becoming increasingly popular for surface representation because of their versatility in presenting surfaces with arbitrary topologies, as opposed to the signed distance function that is limited to representing a closed surface. However, the applications of neural UDFs are hindered by the notorious difficulty in extracting the target surfaces they represent. Recent methods for surface extraction from a neural UDF suffer from significant geometric errors or topological artifacts due to two main difficulties: (1) A UDF does not exhibit sign changes; and (2) A neural UDF typically has substantial approximation errors. DualMesh-UDF addresses these two difficulties. Specifically, given a neural UDF encoding a target surface S to be recovered, we first estimate the tangent planes of S at a set of sample points close to S. Next, we organize these sample points into local clusters, and for each local cluster, solve a linear least squares problem to determine a final surface point. These surface points are then connected to create the output mesh surface, which approximates the target surface. The robust estimation of the tangent planes of the target surface and the subsequent minimization problem constitute our core strategy, which contributes to the favorable performance of DualMesh-UDF over other competing methods. To efficiently implement this strategy, we employ an adaptive Octree. Within this framework, we estimate the location of a surface point in each of the octree cells identified as containing part of the target surface. Extensive experiments show that our method outperforms existing methods in terms of surface reconstruction quality while maintaining comparable computational efficiency.
BaDExpert: Extracting Backdoor Functionality for Accurate Backdoor Input Detection
We present a novel defense, against backdoor attacks on Deep Neural Networks (DNNs), wherein adversaries covertly implant malicious behaviors (backdoors) into DNNs. Our defense falls within the category of post-development defenses that operate independently of how the model was generated. The proposed defense is built upon a novel reverse engineering approach that can directly extract backdoor functionality of a given backdoored model to a backdoor expert model. The approach is straightforward -- finetuning the backdoored model over a small set of intentionally mislabeled clean samples, such that it unlearns the normal functionality while still preserving the backdoor functionality, and thus resulting in a model (dubbed a backdoor expert model) that can only recognize backdoor inputs. Based on the extracted backdoor expert model, we show the feasibility of devising highly accurate backdoor input detectors that filter out the backdoor inputs during model inference. Further augmented by an ensemble strategy with a finetuned auxiliary model, our defense, BaDExpert (Backdoor Input Detection with Backdoor Expert), effectively mitigates 17 SOTA backdoor attacks while minimally impacting clean utility. The effectiveness of BaDExpert has been verified on multiple datasets (CIFAR10, GTSRB and ImageNet) across various model architectures (ResNet, VGG, MobileNetV2 and Vision Transformer).
Modulation Extraction for LFO-driven Audio Effects
Low frequency oscillator (LFO) driven audio effects such as phaser, flanger, and chorus, modify an input signal using time-varying filters and delays, resulting in characteristic sweeping or widening effects. It has been shown that these effects can be modeled using neural networks when conditioned with the ground truth LFO signal. However, in most cases, the LFO signal is not accessible and measurement from the audio signal is nontrivial, hindering the modeling process. To address this, we propose a framework capable of extracting arbitrary LFO signals from processed audio across multiple digital audio effects, parameter settings, and instrument configurations. Since our system imposes no restrictions on the LFO signal shape, we demonstrate its ability to extract quasiperiodic, combined, and distorted modulation signals that are relevant to effect modeling. Furthermore, we show how coupling the extraction model with a simple processing network enables training of end-to-end black-box models of unseen analog or digital LFO-driven audio effects using only dry and wet audio pairs, overcoming the need to access the audio effect or internal LFO signal. We make our code available and provide the trained audio effect models in a real-time VST plugin.
Easy-to-Hard Learning for Information Extraction
Information extraction (IE) systems aim to automatically extract structured information, such as named entities, relations between entities, and events, from unstructured texts. While most existing work addresses a particular IE task, universally modeling various IE tasks with one model has achieved great success recently. Despite their success, they employ a one-stage learning strategy, i.e., directly learning to extract the target structure given the input text, which contradicts the human learning process. In this paper, we propose a unified easy-to-hard learning framework consisting of three stages, i.e., the easy stage, the hard stage, and the main stage, for IE by mimicking the human learning process. By breaking down the learning process into multiple stages, our framework facilitates the model to acquire general IE task knowledge and improve its generalization ability. Extensive experiments across four IE tasks demonstrate the effectiveness of our framework. We achieve new state-of-the-art results on 13 out of 17 datasets. Our code is available at https://github.com/DAMO-NLP-SG/IE-E2H.
A Reproducible Extraction of Training Images from Diffusion Models
Recently, Carlini et al. demonstrated the widely used model Stable Diffusion can regurgitate real training samples, which is troublesome from a copyright perspective. In this work, we provide an efficient extraction attack on par with the recent attack, with several order of magnitudes less network evaluations. In the process, we expose a new phenomena, which we dub template verbatims, wherein a diffusion model will regurgitate a training sample largely in tact. Template verbatims are harder to detect as they require retrieval and masking to correctly label. Furthermore, they are still generated by newer systems, even those which de-duplicate their training set, and we give insight into why they still appear during generation. We extract training images from several state of the art systems, including Stable Diffusion 2.0, Deep Image Floyd, and finally Midjourney v4. We release code to verify our extraction attack, perform the attack, as well as all extracted prompts at https://github.com/ryanwebster90/onestep-extraction.
Canary Extraction in Natural Language Understanding Models
Natural Language Understanding (NLU) models can be trained on sensitive information such as phone numbers, zip-codes etc. Recent literature has focused on Model Inversion Attacks (ModIvA) that can extract training data from model parameters. In this work, we present a version of such an attack by extracting canaries inserted in NLU training data. In the attack, an adversary with open-box access to the model reconstructs the canaries contained in the model's training set. We evaluate our approach by performing text completion on canaries and demonstrate that by using the prefix (non-sensitive) tokens of the canary, we can generate the full canary. As an example, our attack is able to reconstruct a four digit code in the training dataset of the NLU model with a probability of 0.5 in its best configuration. As countermeasures, we identify several defense mechanisms that, when combined, effectively eliminate the risk of ModIvA in our experiments.
How Optimal is Greedy Decoding for Extractive Question Answering?
Fine-tuned language models use greedy decoding to answer reading comprehension questions with relative success. However, this approach does not ensure that the answer is a span in the given passage, nor does it guarantee that it is the most probable one. Does greedy decoding actually perform worse than an algorithm that does adhere to these properties? To study the performance and optimality of greedy decoding, we present exact-extract, a decoding algorithm that efficiently finds the most probable answer span in the context. We compare the performance of T5 with both decoding algorithms on zero-shot and few-shot extractive question answering. When no training examples are available, exact-extract significantly outperforms greedy decoding. However, greedy decoding quickly converges towards the performance of exact-extract with the introduction of a few training examples, becoming more extractive and increasingly likelier to generate the most probable span as the training set grows. We also show that self-supervised training can bias the model towards extractive behavior, increasing performance in the zero-shot setting without resorting to annotated examples. Overall, our results suggest that pretrained language models are so good at adapting to extractive question answering, that it is often enough to fine-tune on a small training set for the greedy algorithm to emulate the optimal decoding strategy.
Optimal Subarchitecture Extraction For BERT
We extract an optimal subset of architectural parameters for the BERT architecture from Devlin et al. (2018) by applying recent breakthroughs in algorithms for neural architecture search. This optimal subset, which we refer to as "Bort", is demonstrably smaller, having an effective (that is, not counting the embedding layer) size of 5.5% the original BERT-large architecture, and 16% of the net size. Bort is also able to be pretrained in 288 GPU hours, which is 1.2% of the time required to pretrain the highest-performing BERT parametric architectural variant, RoBERTa-large (Liu et al., 2019), and about 33% of that of the world-record, in GPU hours, required to train BERT-large on the same hardware. It is also 7.9x faster on a CPU, as well as being better performing than other compressed variants of the architecture, and some of the non-compressed variants: it obtains performance improvements of between 0.3% and 31%, absolute, with respect to BERT-large, on multiple public natural language understanding (NLU) benchmarks.
CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data
Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia.
Logzip: Extracting Hidden Structures via Iterative Clustering for Log Compression
System logs record detailed runtime information of software systems and are used as the main data source for many tasks around software engineering. As modern software systems are evolving into large scale and complex structures, logs have become one type of fast-growing big data in industry. In particular, such logs often need to be stored for a long time in practice (e.g., a year), in order to analyze recurrent problems or track security issues. However, archiving logs consumes a large amount of storage space and computing resources, which in turn incurs high operational cost. Data compression is essential to reduce the cost of log storage. Traditional compression tools (e.g., gzip) work well for general texts, but are not tailed for system logs. In this paper, we propose a novel and effective log compression method, namely logzip. Logzip is capable of extracting hidden structures from raw logs via fast iterative clustering and further generating coherent intermediate representations that allow for more effective compression. We evaluate logzip on five large log datasets of different system types, with a total of 63.6 GB in size. The results show that logzip can save about half of the storage space on average over traditional compression tools. Meanwhile, the design of logzip is highly parallel and only incurs negligible overhead. In addition, we share our industrial experience of applying logzip to Huawei's real products.
Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy
Joint extraction of entities and relations aims to detect entity pairs along with their relations using a single model. Prior work typically solves this task in the extract-then-classify or unified labeling manner. However, these methods either suffer from the redundant entity pairs, or ignore the important inner structure in the process of extracting entities and relations. To address these limitations, in this paper, we first decompose the joint extraction task into two interrelated subtasks, namely HE extraction and TER extraction. The former subtask is to distinguish all head-entities that may be involved with target relations, and the latter is to identify corresponding tail-entities and relations for each extracted head-entity. Next, these two subtasks are further deconstructed into several sequence labeling problems based on our proposed span-based tagging scheme, which are conveniently solved by a hierarchical boundary tagger and a multi-span decoding algorithm. Owing to the reasonable decomposition strategy, our model can fully capture the semantic interdependency between different steps, as well as reduce noise from irrelevant entity pairs. Experimental results show that our method outperforms previous work by 5.2%, 5.9% and 21.5% (F1 score), achieving a new state-of-the-art on three public datasets
A New Data Representation Based on Training Data Characteristics to Extract Drug Named-Entity in Medical Text
One essential task in information extraction from the medical corpus is drug name recognition. Compared with text sources come from other domains, the medical text is special and has unique characteristics. In addition, the medical text mining poses more challenges, e.g., more unstructured text, the fast growing of new terms addition, a wide range of name variation for the same drug. The mining is even more challenging due to the lack of labeled dataset sources and external knowledge, as well as multiple token representations for a single drug name that is more common in the real application setting. Although many approaches have been proposed to overwhelm the task, some problems remained with poor F-score performance (less than 0.75). This paper presents a new treatment in data representation techniques to overcome some of those challenges. We propose three data representation techniques based on the characteristics of word distribution and word similarities as a result of word embedding training. The first technique is evaluated with the standard NN model, i.e., MLP (Multi-Layer Perceptrons). The second technique involves two deep network classifiers, i.e., DBN (Deep Belief Networks), and SAE (Stacked Denoising Encoders). The third technique represents the sentence as a sequence that is evaluated with a recurrent NN model, i.e., LSTM (Long Short Term Memory). In extracting the drug name entities, the third technique gives the best F-score performance compared to the state of the art, with its average F-score being 0.8645.
GLiNER multi-task: Generalist Lightweight Model for Various Information Extraction Tasks
Information extraction tasks require both accurate, efficient, and generalisable models. Classical supervised deep learning approaches can achieve the required performance, but they need large datasets and are limited in their ability to adapt to different tasks. On the other hand, large language models (LLMs) demonstrate good generalization, meaning that they can adapt to many different tasks based on user requests. However, LLMs are computationally expensive and tend to fail to generate structured outputs. In this article, we will introduce a new kind of GLiNER model that can be used for various information extraction tasks while being a small encoder model. Our model achieved SoTA performance on zero-shot NER benchmarks and leading performance on question-answering, summarization and relation extraction tasks. Additionally, in this article, we will cover experimental results on self-learning approaches for named entity recognition using GLiNER models.
GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface
Information extraction (IE) is fundamental to numerous NLP applications, yet existing solutions often require specialized models for different tasks or rely on computationally expensive large language models. We present GLiNER2, a unified framework that enhances the original GLiNER architecture to support named entity recognition, text classification, and hierarchical structured data extraction within a single efficient model. Built pretrained transformer encoder architecture, GLiNER2 maintains CPU efficiency and compact size while introducing multi-task composition through an intuitive schema-based interface. Our experiments demonstrate competitive performance across extraction and classification tasks with substantial improvements in deployment accessibility compared to LLM-based alternatives. We release GLiNER2 as an open-source pip-installable library with pre-trained models and documentation at https://github.com/fastino-ai/GLiNER2.
Beyond Extraction: Contextualising Tabular Data for Efficient Summarisation by Language Models
The conventional use of the Retrieval-Augmented Generation (RAG) architecture has proven effective for retrieving information from diverse documents. However, challenges arise in handling complex table queries, especially within PDF documents containing intricate tabular structures.This research introduces an innovative approach to enhance the accuracy of complex table queries in RAG-based systems. Our methodology involves storing PDFs in the retrieval database and extracting tabular content separately. The extracted tables undergo a process of context enrichment, concatenating headers with corresponding values. To ensure a comprehensive understanding of the enriched data, we employ a fine-tuned version of the Llama-2-chat language model for summarisation within the RAG architecture. Furthermore, we augment the tabular data with contextual sense using the ChatGPT 3.5 API through a one-shot prompt. This enriched data is then fed into the retrieval database alongside other PDFs. Our approach aims to significantly improve the precision of complex table queries, offering a promising solution to a longstanding challenge in information retrieval.
R1-RE: Cross-Domain Relationship Extraction with RLVR
Relationship extraction (RE) is a core task in natural language processing. Traditional approaches typically frame RE as a supervised learning problem, directly mapping context to labels-an approach that often suffers from poor out-of-domain (OOD) generalization. Inspired by the workflow of human annotators, we reframe RE as a reasoning task guided by annotation guidelines and introduce R1-RE, the first reinforcement learning with verifiable reward (RLVR) framework for RE tasks. Our method elicits the reasoning abilities of small language models for annotation tasks, resulting in significantly improved OOD robustness. We evaluate our approach on the public Sem-2010 dataset and a private MDKG dataset. The R1-RE-7B model attains an average OOD accuracy of approximately 70%, on par with leading proprietary models such as GPT-4o. Additionally, our comprehensive analysis provides novel insights into the training dynamics and emergent reasoning behaviors of the RLVR paradigm for RE.
SynFinTabs: A Dataset of Synthetic Financial Tables for Information and Table Extraction
Table extraction from document images is a challenging AI problem, and labelled data for many content domains is difficult to come by. Existing table extraction datasets often focus on scientific tables due to the vast amount of academic articles that are readily available, along with their source code. However, there are significant layout and typographical differences between tables found across scientific, financial, and other domains. Current datasets often lack the words, and their positions, contained within the tables, instead relying on unreliable OCR to extract these features for training modern machine learning models on natural language processing tasks. Therefore, there is a need for a more general method of obtaining labelled data. We present SynFinTabs, a large-scale, labelled dataset of synthetic financial tables. Our hope is that our method of generating these synthetic tables is transferable to other domains. To demonstrate the effectiveness of our dataset in training models to extract information from table images, we create FinTabQA, a layout large language model trained on an extractive question-answering task. We test our model using real-world financial tables and compare it to a state-of-the-art generative model and discuss the results. We make the dataset, model, and dataset generation code publicly available.
GraphER: A Structure-aware Text-to-Graph Model for Entity and Relation Extraction
Information extraction (IE) is an important task in Natural Language Processing (NLP), involving the extraction of named entities and their relationships from unstructured text. In this paper, we propose a novel approach to this task by formulating it as graph structure learning (GSL). By formulating IE as GSL, we enhance the model's ability to dynamically refine and optimize the graph structure during the extraction process. This formulation allows for better interaction and structure-informed decisions for entity and relation prediction, in contrast to previous models that have separate or untied predictions for these tasks. When compared against state-of-the-art baselines on joint entity and relation extraction benchmarks, our model, GraphER, achieves competitive results.
RED$^{\rm FM}$: a Filtered and Multilingual Relation Extraction Dataset
Relation Extraction (RE) is a task that identifies relationships between entities in a text, enabling the acquisition of relational facts and bridging the gap between natural language and structured knowledge. However, current RE models often rely on small datasets with low coverage of relation types, particularly when working with languages other than English. In this paper, we address the above issue and provide two new resources that enable the training and evaluation of multilingual RE systems. First, we present SRED^{rm FM}, an automatically annotated dataset covering 18 languages, 400 relation types, 13 entity types, totaling more than 40 million triplet instances. Second, we propose RED^{rm FM}, a smaller, human-revised dataset for seven languages that allows for the evaluation of multilingual RE systems. To demonstrate the utility of these novel datasets, we experiment with the first end-to-end multilingual RE model, mREBEL, that extracts triplets, including entity types, in multiple languages. We release our resources and model checkpoints at https://www.github.com/babelscape/rebel
GuideX: Guided Synthetic Data Generation for Zero-Shot Information Extraction
Information Extraction (IE) systems are traditionally domain-specific, requiring costly adaptation that involves expert schema design, data annotation, and model training. While Large Language Models have shown promise in zero-shot IE, performance degrades significantly in unseen domains where label definitions differ. This paper introduces GUIDEX, a novel method that automatically defines domain-specific schemas, infers guidelines, and generates synthetically labeled instances, allowing for better out-of-domain generalization. Fine-tuning Llama 3.1 with GUIDEX sets a new state-of-the-art across seven zeroshot Named Entity Recognition benchmarks. Models trained with GUIDEX gain up to 7 F1 points over previous methods without humanlabeled data, and nearly 2 F1 points higher when combined with it. Models trained on GUIDEX demonstrate enhanced comprehension of complex, domain-specific annotation schemas. Code, models, and synthetic datasets are available at neilus03.github.io/guidex.com
MOLE: Metadata Extraction and Validation in Scientific Papers Using LLMs
Metadata extraction is essential for cataloging and preserving datasets, enabling effective research discovery and reproducibility, especially given the current exponential growth in scientific research. While Masader (Alyafeai et al.,2021) laid the groundwork for extracting a wide range of metadata attributes from Arabic NLP datasets' scholarly articles, it relies heavily on manual annotation. In this paper, we present MOLE, a framework that leverages Large Language Models (LLMs) to automatically extract metadata attributes from scientific papers covering datasets of languages other than Arabic. Our schema-driven methodology processes entire documents across multiple input formats and incorporates robust validation mechanisms for consistent output. Additionally, we introduce a new benchmark to evaluate the research progress on this task. Through systematic analysis of context length, few-shot learning, and web browsing integration, we demonstrate that modern LLMs show promising results in automating this task, highlighting the need for further future work improvements to ensure consistent and reliable performance. We release the code: https://github.com/IVUL-KAUST/MOLE and dataset: https://huggingface.co/datasets/IVUL-KAUST/MOLE for the research community.
Automatic extraction of materials and properties from superconductors scientific literature
The automatic extraction of materials and related properties from the scientific literature is gaining attention in data-driven materials science (Materials Informatics). In this paper, we discuss Grobid-superconductors, our solution for automatically extracting superconductor material names and respective properties from text. Built as a Grobid module, it combines machine learning and heuristic approaches in a multi-step architecture that supports input data as raw text or PDF documents. Using Grobid-superconductors, we built SuperCon2, a database of 40324 materials and properties records from 37700 papers. The material (or sample) information is represented by name, chemical formula, and material class, and is characterized by shape, doping, substitution variables for components, and substrate as adjoined information. The properties include the Tc superconducting critical temperature and, when available, applied pressure with the Tc measurement method.
Claim Extraction for Fact-Checking: Data, Models, and Automated Metrics
In this paper, we explore the problem of Claim Extraction using one-to-many text generation methods, comparing LLMs, small summarization models finetuned for the task, and a previous NER-centric baseline QACG. As the current publications on Claim Extraction, Fact Extraction, Claim Generation and Check-worthy Claim Detection are quite scattered in their means and terminology, we compile their common objectives, releasing the FEVERFact dataset, with 17K atomic factual claims extracted from 4K contextualised Wikipedia sentences, adapted from the original FEVER. We compile the known objectives into an Evaluation framework of: Atomicity, Fluency, Decontextualization, Faithfulness checked for each generated claim separately, and Focus and Coverage measured against the full set of predicted claims for a single input. For each metric, we implement a scale using a reduction to an already-explored NLP task. We validate our metrics against human grading of generic claims, to see that the model ranking on F_{fact}, our hardest metric, did not change and the evaluation framework approximates human grading very closely in terms of F_1 and RMSE.
Towards scientific discovery with dictionary learning: Extracting biological concepts from microscopy foundation models
Dictionary learning (DL) has emerged as a powerful interpretability tool for large language models. By extracting known concepts (e.g., Golden-Gate Bridge) from human-interpretable data (e.g., text), sparse DL can elucidate a model's inner workings. In this work, we ask if DL can also be used to discover unknown concepts from less human-interpretable scientific data (e.g., cell images), ultimately enabling modern approaches to scientific discovery. As a first step, we use DL algorithms to study microscopy foundation models trained on multi-cell image data, where little prior knowledge exists regarding which high-level concepts should arise. We show that sparse dictionaries indeed extract biologically-meaningful concepts such as cell type and genetic perturbation type. We also propose a new DL algorithm, Iterative Codebook Feature Learning~(ICFL), and combine it with a pre-processing step that uses PCA whitening from a control dataset. In our experiments, we demonstrate that both ICFL and PCA improve the selectivity of extracted features compared to TopK sparse autoencoders.
CaBaGe: Data-Free Model Extraction using ClAss BAlanced Generator Ensemble
Machine Learning as a Service (MLaaS) is often provided as a pay-per-query, black-box system to clients. Such a black-box approach not only hinders open replication, validation, and interpretation of model results, but also makes it harder for white-hat researchers to identify vulnerabilities in the MLaaS systems. Model extraction is a promising technique to address these challenges by reverse-engineering black-box models. Since training data is typically unavailable for MLaaS models, this paper focuses on the realistic version of it: data-free model extraction. We propose a data-free model extraction approach, CaBaGe, to achieve higher model extraction accuracy with a small number of queries. Our innovations include (1) a novel experience replay for focusing on difficult training samples; (2) an ensemble of generators for steadily producing diverse synthetic data; and (3) a selective filtering process for querying the victim model with harder, more balanced samples. In addition, we create a more realistic setting, for the first time, where the attacker has no knowledge of the number of classes in the victim training data, and create a solution to learn the number of classes on the fly. Our evaluation shows that CaBaGe outperforms existing techniques on seven datasets -- MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100, ImageNet-subset, and Tiny ImageNet -- with an accuracy improvement of the extracted models by up to 43.13%. Furthermore, the number of queries required to extract a clone model matching the final accuracy of prior work is reduced by up to 75.7%.
Diagnosis extraction from unstructured Dutch echocardiogram reports using span- and document-level characteristic classification
Clinical machine learning research and AI driven clinical decision support models rely on clinically accurate labels. Manually extracting these labels with the help of clinical specialists is often time-consuming and expensive. This study tests the feasibility of automatic span- and document-level diagnosis extraction from unstructured Dutch echocardiogram reports. We included 115,692 unstructured echocardiogram reports from the UMCU a large university hospital in the Netherlands. A randomly selected subset was manually annotated for the occurrence and severity of eleven commonly described cardiac characteristics. We developed and tested several automatic labelling techniques at both span and document levels, using weighted and macro F1-score, precision, and recall for performance evaluation. We compared the performance of span labelling against document labelling methods, which included both direct document classifiers and indirect document classifiers that rely on span classification results. The SpanCategorizer and MedRoBERTa.nl models outperformed all other span and document classifiers, respectively. The weighted F1-score varied between characteristics, ranging from 0.60 to 0.93 in SpanCategorizer and 0.96 to 0.98 in MedRoBERTa.nl. Direct document classification was superior to indirect document classification using span classifiers. SetFit achieved competitive document classification performance using only 10\% of the training data. Utilizing a reduced label set yielded near-perfect document classification results. We recommend using our published SpanCategorizer and MedRoBERTa.nl models for span- and document-level diagnosis extraction from Dutch echocardiography reports. For settings with limited training data, SetFit may be a promising alternative for document classification.
Pruning as a Domain-specific LLM Extractor
Large Language Models (LLMs) have exhibited remarkable proficiency across a wide array of NLP tasks. However, the escalation in model size also engenders substantial deployment costs. While few efforts have explored model pruning techniques to reduce the size of LLMs, they mainly center on general or task-specific weights. This leads to suboptimal performance due to lacking specificity on the target domain or generality on different tasks when applied to domain-specific challenges. This work introduces an innovative unstructured dual-pruning methodology, D-Pruner, for domain-specific compression on LLM. It extracts a compressed, domain-specific, and task-agnostic LLM by identifying LLM weights that are pivotal for general capabilities, like linguistic capability and multi-task solving, and domain-specific knowledge. More specifically, we first assess general weight importance by quantifying the error incurred upon their removal with the help of an open-domain calibration dataset. Then, we utilize this general weight importance to refine the training loss, so that it preserves generality when fitting into a specific domain. Moreover, by efficiently approximating weight importance with the refined training loss on a domain-specific calibration dataset, we obtain a pruned model emphasizing generality and specificity. Our comprehensive experiments across various tasks in healthcare and legal domains show the effectiveness of D-Pruner in domain-specific compression. Our code is available at https://github.com/psunlpgroup/D-Pruner.
CRAFT: Extracting and Tuning Cultural Instructions from the Wild
Large language models (LLMs) have rapidly evolved as the foundation of various natural language processing (NLP) applications. Despite their wide use cases, their understanding of culturally-related concepts and reasoning remains limited. Meantime, there is a significant need to enhance these models' cultural reasoning capabilities, especially concerning underrepresented regions. This paper introduces a novel pipeline for extracting high-quality, culturally-related instruction tuning datasets from vast unstructured corpora. We utilize a self-instruction generation pipeline to identify cultural concepts and trigger instruction. By integrating with a general-purpose instruction tuning dataset, our model demonstrates enhanced capabilities in recognizing and understanding regional cultural nuances, thereby enhancing its reasoning capabilities. We conduct experiments across three regions: Singapore, the Philippines, and the United States, achieving performance improvement of up to 6%. Our research opens new avenues for extracting cultural instruction tuning sets directly from unstructured data, setting a precedent for future innovations in the field.
Retrieval-Augmented Generation-based Relation Extraction
Information Extraction (IE) is a transformative process that converts unstructured text data into a structured format by employing entity and relation extraction (RE) methodologies. The identification of the relation between a pair of entities plays a crucial role within this framework. Despite the existence of various techniques for relation extraction, their efficacy heavily relies on access to labeled data and substantial computational resources. In addressing these challenges, Large Language Models (LLMs) emerge as promising solutions; however, they might return hallucinating responses due to their own training data. To overcome these limitations, Retrieved-Augmented Generation-based Relation Extraction (RAG4RE) in this work is proposed, offering a pathway to enhance the performance of relation extraction tasks. This work evaluated the effectiveness of our RAG4RE approach utilizing different LLMs. Through the utilization of established benchmarks, such as TACRED, TACREV, Re-TACRED, and SemEval RE datasets, our aim is to comprehensively evaluate the efficacy of our RAG4RE approach. In particularly, we leverage prominent LLMs including Flan T5, Llama2, and Mistral in our investigation. The results of our study demonstrate that our RAG4RE approach surpasses performance of traditional RE approaches based solely on LLMs, particularly evident in the TACRED dataset and its variations. Furthermore, our approach exhibits remarkable performance compared to previous RE methodologies across both TACRED and TACREV datasets, underscoring its efficacy and potential for advancing RE tasks in natural language processing.
Segment anything model (SAM) for brain extraction in fMRI studies
Brain extraction and removal of skull artifacts from magnetic resonance images (MRI) is an important preprocessing step in neuroimaging analysis. There are many tools developed to handle human fMRI images, which could involve manual steps for verifying results from brain segmentation that makes it time consuming and inefficient. In this study, we will use the segment anything model (SAM), a freely available neural network released by Meta[4], which has shown promising results in many generic segmentation applications. We will analyze the efficiency of SAM for neuroimaging brain segmentation by removing skull artifacts. The results of the experiments showed promising results that explore using automated segmentation algorithms for neuroimaging without the need to train on custom medical imaging dataset.
Relation Extraction in underexplored biomedical domains: A diversity-optimised sampling and synthetic data generation approach
The sparsity of labelled data is an obstacle to the development of Relation Extraction models and the completion of databases in various biomedical areas. While being of high interest in drug-discovery, the natural-products literature, reporting the identification of potential bioactive compounds from organisms, is a concrete example of such an overlooked topic. To mark the start of this new task, we created the first curated evaluation dataset and extracted literature items from the LOTUS database to build training sets. To this end, we developed a new sampler inspired by diversity metrics in ecology, named Greedy Maximum Entropy sampler, or GME-sampler (https://github.com/idiap/gme-sampler). The strategic optimization of both balance and diversity of the selected items in the evaluation set is important given the resource-intensive nature of manual curation. After quantifying the noise in the training set, in the form of discrepancies between the input abstracts text and the expected output labels, we explored different strategies accordingly. Framing the task as an end-to-end Relation Extraction, we evaluated the performance of standard fine-tuning as a generative task and few-shot learning with open Large Language Models (LLaMA 7B-65B). In addition to their evaluation in few-shot settings, we explore the potential of open Large Language Models (Vicuna-13B) as synthetic data generator and propose a new workflow for this purpose. All evaluated models exhibited substantial improvements when fine-tuned on synthetic abstracts rather than the original noisy data. We provide our best performing (f1-score=59.0) BioGPT-Large model for end-to-end RE of natural-products relationships along with all the generated synthetic data and the evaluation dataset. See more details at https://github.com/idiap/abroad-re.
Nearest Neighbor Search over Vectorized Lexico-Syntactic Patterns for Relation Extraction from Financial Documents
Relation extraction (RE) has achieved remarkable progress with the help of pre-trained language models. However, existing RE models are usually incapable of handling two situations: implicit expressions and long-tail relation classes, caused by language complexity and data sparsity. Further, these approaches and models are largely inaccessible to users who don't have direct access to large language models (LLMs) and/or infrastructure for supervised training or fine-tuning. Rule-based systems also struggle with implicit expressions. Apart from this, Real world financial documents such as various 10-X reports (including 10-K, 10-Q, etc.) of publicly traded companies pose another challenge to rule-based systems in terms of longer and complex sentences. In this paper, we introduce a simple approach that consults training relations at test time through a nearest-neighbor search over dense vectors of lexico-syntactic patterns and provides a simple yet effective means to tackle the above issues. We evaluate our approach on REFinD and show that our method achieves state-of-the-art performance. We further show that it can provide a good start for human in the loop setup when a small number of annotations are available and it is also beneficial when domain experts can provide high quality patterns.
REFER: An End-to-end Rationale Extraction Framework for Explanation Regularization
Human-annotated textual explanations are becoming increasingly important in Explainable Natural Language Processing. Rationale extraction aims to provide faithful (i.e., reflective of the behavior of the model) and plausible (i.e., convincing to humans) explanations by highlighting the inputs that had the largest impact on the prediction without compromising the performance of the task model. In recent works, the focus of training rationale extractors was primarily on optimizing for plausibility using human highlights, while the task model was trained on jointly optimizing for task predictive accuracy and faithfulness. We propose REFER, a framework that employs a differentiable rationale extractor that allows to back-propagate through the rationale extraction process. We analyze the impact of using human highlights during training by jointly training the task model and the rationale extractor. In our experiments, REFER yields significantly better results in terms of faithfulness, plausibility, and downstream task accuracy on both in-distribution and out-of-distribution data. On both e-SNLI and CoS-E, our best setting produces better results in terms of composite normalized relative gain than the previous baselines by 11% and 3%, respectively.
DocParser: End-to-end OCR-free Information Extraction from Visually Rich Documents
Information Extraction from visually rich documents is a challenging task that has gained a lot of attention in recent years due to its importance in several document-control based applications and its widespread commercial value. The majority of the research work conducted on this topic to date follow a two-step pipeline. First, they read the text using an off-the-shelf Optical Character Recognition (OCR) engine, then, they extract the fields of interest from the obtained text. The main drawback of these approaches is their dependence on an external OCR system, which can negatively impact both performance and computational speed. Recent OCR-free methods were proposed to address the previous issues. Inspired by their promising results, we propose in this paper an OCR-free end-to-end information extraction model named DocParser. It differs from prior end-to-end approaches by its ability to better extract discriminative character features. DocParser achieves state-of-the-art results on various datasets, while still being faster than previous works.
Multi-hop Evidence Retrieval for Cross-document Relation Extraction
Relation Extraction (RE) has been extended to cross-document scenarios because many relations are not simply described in a single document. This inevitably brings the challenge of efficient open-space evidence retrieval to support the inference of cross-document relations, along with the challenge of multi-hop reasoning on top of entities and evidence scattered in an open set of documents. To combat these challenges, we propose MR.COD (Multi-hop evidence retrieval for Cross-document relation extraction), which is a multi-hop evidence retrieval method based on evidence path mining and ranking. We explore multiple variants of retrievers to show evidence retrieval is essential in cross-document RE. We also propose a contextual dense retriever for this setting. Experiments on CodRED show that evidence retrieval with MR.COD effectively acquires crossdocument evidence and boosts end-to-end RE performance in both closed and open settings.
Improving Keyphrase Extraction with Data Augmentation and Information Filtering
Keyphrase extraction is one of the essential tasks for document understanding in NLP. While the majority of the prior works are dedicated to the formal setting, e.g., books, news or web-blogs, informal texts such as video transcripts are less explored. To address this limitation, in this work we present a novel corpus and method for keyphrase extraction from the transcripts of the videos streamed on the Behance platform. More specifically, in this work, a novel data augmentation is proposed to enrich the model with the background knowledge about the keyphrase extraction task from other domains. Extensive experiments on the proposed dataset dataset show the effectiveness of the introduced method.
Summarization as Indirect Supervision for Relation Extraction
Relation extraction (RE) models have been challenged by their reliance on training data with expensive annotations. Considering that summarization tasks aim at acquiring concise expressions of synoptical information from the longer context, these tasks naturally align with the objective of RE, i.e., extracting a kind of synoptical information that describes the relation of entity mentions. We present SuRE, which converts RE into a summarization formulation. SuRE leads to more precise and resource-efficient RE based on indirect supervision from summarization tasks. To achieve this goal, we develop sentence and relation conversion techniques that essentially bridge the formulation of summarization and RE tasks. We also incorporate constraint decoding techniques with Trie scoring to further enhance summarization-based RE with robust inference. Experiments on three RE datasets demonstrate the effectiveness of SuRE in both full-dataset and low-resource settings, showing that summarization is a promising source of indirect supervision to improve RE models.
SkillSpan: Hard and Soft Skill Extraction from English Job Postings
Skill Extraction (SE) is an important and widely-studied task useful to gain insights into labor market dynamics. However, there is a lacuna of datasets and annotation guidelines; available datasets are few and contain crowd-sourced labels on the span-level or labels from a predefined skill inventory. To address this gap, we introduce SKILLSPAN, a novel SE dataset consisting of 14.5K sentences and over 12.5K annotated spans. We release its respective guidelines created over three different sources annotated for hard and soft skills by domain experts. We introduce a BERT baseline (Devlin et al., 2019). To improve upon this baseline, we experiment with language models that are optimized for long spans (Joshi et al., 2020; Beltagy et al., 2020), continuous pre-training on the job posting domain (Han and Eisenstein, 2019; Gururangan et al., 2020), and multi-task learning (Caruana, 1997). Our results show that the domain-adapted models significantly outperform their non-adapted counterparts, and single-task outperforms multi-task learning.
MACRONYM: A Large-Scale Dataset for Multilingual and Multi-Domain Acronym Extraction
Acronym extraction is the task of identifying acronyms and their expanded forms in texts that is necessary for various NLP applications. Despite major progress for this task in recent years, one limitation of existing AE research is that they are limited to the English language and certain domains (i.e., scientific and biomedical). As such, challenges of AE in other languages and domains is mainly unexplored. Lacking annotated datasets in multiple languages and domains has been a major issue to hinder research in this area. To address this limitation, we propose a new dataset for multilingual multi-domain AE. Specifically, 27,200 sentences in 6 typologically different languages and 2 domains, i.e., Legal and Scientific, is manually annotated for AE. Our extensive experiments on the proposed dataset show that AE in different languages and different learning settings has unique challenges, emphasizing the necessity of further research on multilingual and multi-domain AE.
A Joint Model for Definition Extraction with Syntactic Connection and Semantic Consistency
Definition Extraction (DE) is one of the well-known topics in Information Extraction that aims to identify terms and their corresponding definitions in unstructured texts. This task can be formalized either as a sentence classification task (i.e., containing term-definition pairs or not) or a sequential labeling task (i.e., identifying the boundaries of the terms and definitions). The previous works for DE have only focused on one of the two approaches, failing to model the inter-dependencies between the two tasks. In this work, we propose a novel model for DE that simultaneously performs the two tasks in a single framework to benefit from their inter-dependencies. Our model features deep learning architectures to exploit the global structures of the input sentences as well as the semantic consistencies between the terms and the definitions, thereby improving the quality of the representation vectors for DE. Besides the joint inference between sentence classification and sequential labeling, the proposed model is fundamentally different from the prior work for DE in that the prior work has only employed the local structures of the input sentences (i.e., word-to-word relations), and not yet considered the semantic consistencies between terms and definitions. In order to implement these novel ideas, our model presents a multi-task learning framework that employs graph convolutional neural networks and predicts the dependency paths between the terms and the definitions. We also seek to enforce the consistency between the representations of the terms and definitions both globally (i.e., increasing semantic consistency between the representations of the entire sentences and the terms/definitions) and locally (i.e., promoting the similarity between the representations of the terms and the definitions).
PARALLELPROMPT: Extracting Parallelism from Large Language Model Queries
LLM serving systems typically treat user prompts as monolithic inputs, optimizing inference through decoding tricks or inter-query batching. However, many real-world prompts contain latent semantic parallelism--decomposable structures where subtasks can be executed independently to reduce latency while preserving meaning. We introduce PARALLELPROMPT, the first benchmark for measuring intra-query parallelism in natural user prompts. Our dataset comprises over 37,000 real-world prompts from public LLM chat logs, each annotated with a structured schema capturing task templates, shared context, and iteration inputs. These schemas are extracted using LLM-assisted prompting with rule-based multilingual validation. To evaluate the benefits of decomposition, we provide an execution suite that benchmarks serial vs. parallel strategies, measuring latency, structural adherence, and semantic fidelity. Our results show that intra-query parallelism can be successfully parsed in over 75% of curated datasets, unlocking up to 5x speedups on tasks like translation, comprehension, and comparative analysis, with minimal quality degradation. By releasing this benchmark, curation pipeline, and evaluation suite, we provide the first standardized testbed for studying structure-aware execution in LLM serving pipelines.
ReasonAgain: Using Extractable Symbolic Programs to Evaluate Mathematical Reasoning
Existing math datasets evaluate the reasoning abilities of large language models (LLMs) by either using the final answer or the intermediate reasoning steps derived from static examples. However, the former approach fails to surface model's uses of shortcuts and wrong reasoning while the later poses challenges in accommodating alternative solutions. In this work, we seek to use symbolic programs as a means for automated evaluation if a model can consistently produce correct final answers across various inputs to the program. We begin by extracting programs for popular math datasets (GSM8K and MATH) using GPT4-o. For those executable programs verified using the original input-output pairs, they are found to encapsulate the proper reasoning required to solve the original text questions. We then prompt GPT4-o to generate new questions using alternative input-output pairs based the extracted program. We apply the resulting datasets to evaluate a collection of LLMs. In our experiments, we observe significant accuracy drops using our proposed evaluation compared with original static examples, suggesting the fragility of math reasoning in state-of-the-art LLMs.
INSIGHTBUDDY-AI: Medication Extraction and Entity Linking using Large Language Models and Ensemble Learning
Medication Extraction and Mining play an important role in healthcare NLP research due to its practical applications in hospital settings, such as their mapping into standard clinical knowledge bases (SNOMED-CT, BNF, etc.). In this work, we investigate state-of-the-art LLMs in text mining tasks on medications and their related attributes such as dosage, route, strength, and adverse effects. In addition, we explore different ensemble learning methods (Stack-Ensemble and Voting-Ensemble) to augment the model performances from individual LLMs. Our ensemble learning result demonstrated better performances than individually fine-tuned base models BERT, RoBERTa, RoBERTa-L, BioBERT, BioClinicalBERT, BioMedRoBERTa, ClinicalBERT, and PubMedBERT across general and specific domains. Finally, we build up an entity linking function to map extracted medical terminologies into the SNOMED-CT codes and the British National Formulary (BNF) codes, which are further mapped to the Dictionary of Medicines and Devices (dm+d), and ICD. Our model's toolkit and desktop applications are publicly available at https://github.com/HECTA-UoM/ensemble-NER.
DANIEL: A fast Document Attention Network for Information Extraction and Labelling of handwritten documents
Information extraction from handwritten documents involves traditionally three distinct steps: Document Layout Analysis, Handwritten Text Recognition, and Named Entity Recognition. Recent approaches have attempted to integrate these steps into a single process using fully end-to-end architectures. Despite this, these integrated approaches have not yet matched the performance of language models, when applied to information extraction in plain text. In this paper, we introduce DANIEL (Document Attention Network for Information Extraction and Labelling), a fully end-to-end architecture integrating a language model and designed for comprehensive handwritten document understanding. DANIEL performs layout recognition, handwriting recognition, and named entity recognition on full-page documents. Moreover, it can simultaneously learn across multiple languages, layouts, and tasks. For named entity recognition, the ontology to be applied can be specified via the input prompt. The architecture employs a convolutional encoder capable of processing images of any size without resizing, paired with an autoregressive decoder based on a transformer-based language model. DANIEL achieves competitive results on four datasets, including a new state-of-the-art performance on RIMES 2009 and M-POPP for Handwriting Text Recognition, and IAM NER for Named Entity Recognition. Furthermore, DANIEL is much faster than existing approaches. We provide the source code and the weights of the trained models at https://github.com/Shulk97/daniel.
ConceptExpress: Harnessing Diffusion Models for Single-image Unsupervised Concept Extraction
While personalized text-to-image generation has enabled the learning of a single concept from multiple images, a more practical yet challenging scenario involves learning multiple concepts within a single image. However, existing works tackling this scenario heavily rely on extensive human annotations. In this paper, we introduce a novel task named Unsupervised Concept Extraction (UCE) that considers an unsupervised setting without any human knowledge of the concepts. Given an image that contains multiple concepts, the task aims to extract and recreate individual concepts solely relying on the existing knowledge from pretrained diffusion models. To achieve this, we present ConceptExpress that tackles UCE by unleashing the inherent capabilities of pretrained diffusion models in two aspects. Specifically, a concept localization approach automatically locates and disentangles salient concepts by leveraging spatial correspondence from diffusion self-attention; and based on the lookup association between a concept and a conceptual token, a concept-wise optimization process learns discriminative tokens that represent each individual concept. Finally, we establish an evaluation protocol tailored for the UCE task. Extensive experiments demonstrate that ConceptExpress is a promising solution to the UCE task. Our code and data are available at: https://github.com/haoosz/ConceptExpress
Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks
Information Extraction (IE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs). A key task within IE is Relation Extraction (RE), which identifies relationships between entities in text. Various RE methods exist, including supervised, unsupervised, weakly supervised, and rule-based approaches. Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area. In the current era dominated by Large Language Models (LLMs), fine-tuning these models can overcome limitations associated with zero-shot LLM prompting-based RE methods, especially regarding domain adaptation challenges and identifying implicit relations between entities in sentences. These implicit relations, which cannot be easily extracted from a sentence's dependency tree, require logical inference for accurate identification. This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach to address the challenges of identifying implicit relations at the sentence level, particularly when LLMs act as generators within the RAG framework. Empirical evaluations on the TACRED, TACRED-Revisited (TACREV), Re-TACRED, and SemEVAL datasets show significant performance improvements with fine-tuned LLMs, including Llama2-7B, Mistral-7B, and T5 (Large). Notably, our approach achieves substantial gains on SemEVAL, where implicit relations are common, surpassing previous results on this dataset. Additionally, our method outperforms previous works on TACRED, TACREV, and Re-TACRED, demonstrating exceptional performance across diverse evaluation scenarios.
Event Extraction in Basque: Typologically motivated Cross-Lingual Transfer-Learning Analysis
Cross-lingual transfer-learning is widely used in Event Extraction for low-resource languages and involves a Multilingual Language Model that is trained in a source language and applied to the target language. This paper studies whether the typological similarity between source and target languages impacts the performance of cross-lingual transfer, an under-explored topic. We first focus on Basque as the target language, which is an ideal target language because it is typologically different from surrounding languages. Our experiments on three Event Extraction tasks show that the shared linguistic characteristic between source and target languages does have an impact on transfer quality. Further analysis of 72 language pairs reveals that for tasks that involve token classification such as entity and event trigger identification, common writing script and morphological features produce higher quality cross-lingual transfer. In contrast, for tasks involving structural prediction like argument extraction, common word order is the most relevant feature. In addition, we show that when increasing the training size, not all the languages scale in the same way in the cross-lingual setting. To perform the experiments we introduce EusIE, an event extraction dataset for Basque, which follows the Multilingual Event Extraction dataset (MEE). The dataset and code are publicly available.
T-FREX: A Transformer-based Feature Extraction Method from Mobile App Reviews
Mobile app reviews are a large-scale data source for software-related knowledge generation activities, including software maintenance, evolution and feedback analysis. Effective extraction of features (i.e., functionalities or characteristics) from these reviews is key to support analysis on the acceptance of these features, identification of relevant new feature requests and prioritization of feature development, among others. Traditional methods focus on syntactic pattern-based approaches, typically context-agnostic, evaluated on a closed set of apps, difficult to replicate and limited to a reduced set and domain of apps. Meanwhile, the pervasiveness of Large Language Models (LLMs) based on the Transformer architecture in software engineering tasks lays the groundwork for empirical evaluation of the performance of these models to support feature extraction. In this study, we present T-FREX, a Transformer-based, fully automatic approach for mobile app review feature extraction. First, we collect a set of ground truth features from users in a real crowdsourced software recommendation platform and transfer them automatically into a dataset of app reviews. Then, we use this newly created dataset to fine-tune multiple LLMs on a named entity recognition task under different data configurations. We assess the performance of T-FREX with respect to this ground truth, and we complement our analysis by comparing T-FREX with a baseline method from the field. Finally, we assess the quality of new features predicted by T-FREX through an external human evaluation. Results show that T-FREX outperforms on average the traditional syntactic-based method, especially when discovering new features from a domain for which the model has been fine-tuned.
GIELLM: Japanese General Information Extraction Large Language Model Utilizing Mutual Reinforcement Effect
Information Extraction (IE) stands as a cornerstone in natural language processing, traditionally segmented into distinct sub-tasks. The advent of Large Language Models (LLMs) heralds a paradigm shift, suggesting the feasibility of a singular model addressing multiple IE subtasks. In this vein, we introduce the General Information Extraction Large Language Model (GIELLM), which integrates text Classification, Sentiment Analysis, Named Entity Recognition, Relation Extraction, and Event Extraction using a uniform input-output schema. This innovation marks the first instance of a model simultaneously handling such a diverse array of IE subtasks. Notably, the GIELLM leverages the Mutual Reinforcement Effect (MRE), enhancing performance in integrated tasks compared to their isolated counterparts. Our experiments demonstrate State-of-the-Art (SOTA) results in five out of six Japanese mixed datasets, significantly surpassing GPT-3.5-Turbo. Further, an independent evaluation using the novel Text Classification Relation and Event Extraction(TCREE) dataset corroborates the synergistic advantages of MRE in text and word classification. This breakthrough paves the way for most IE subtasks to be subsumed under a singular LLM framework. Specialized fine-tune task-specific models are no longer needed.
Supervised domain adaptation for building extraction from off-nadir aerial images
Building extraction - needed for inventory management and planning of urban environment - is affected by the misalignment between labels and off-nadir source imagery in training data. Teacher-Student learning of noise-tolerant convolutional neural networks (CNNs) is the existing solution, but the Student networks typically have lower accuracy and cannot surpass the Teacher's performance. This paper proposes a supervised domain adaptation (SDA) of encoder-decoder networks (EDNs) between noisy and clean datasets to tackle the problem. EDNs are configured with high-performing lightweight encoders such as EfficientNet, ResNeSt, and MobileViT. The proposed method is compared against the existing Teacher-Student learning methods like knowledge distillation (KD) and deep mutual learning (DML) with three newly developed datasets. The methods are evaluated for different urban buildings (low-rise, mid-rise, high-rise, and skyscrapers), where misalignment increases with the increase in building height and spatial resolution. For a robust experimental design, 43 lightweight CNNs, five optimisers, nine loss functions, and seven EDNs are benchmarked to obtain the best-performing EDN for SDA. The SDA of the best-performing EDN from our study significantly outperformed KD and DML with up to 0.943, 0.868, 0.912, and 0.697 F1 scores in the low-rise, mid-rise, high-rise, and skyscrapers respectively. The proposed method and the experimental findings will be beneficial in training robust CNNs for building extraction.
PromptRE: Weakly-Supervised Document-Level Relation Extraction via Prompting-Based Data Programming
Relation extraction aims to classify the relationships between two entities into pre-defined categories. While previous research has mainly focused on sentence-level relation extraction, recent studies have expanded the scope to document-level relation extraction. Traditional relation extraction methods heavily rely on human-annotated training data, which is time-consuming and labor-intensive. To mitigate the need for manual annotation, recent weakly-supervised approaches have been developed for sentence-level relation extraction while limited work has been done on document-level relation extraction. Weakly-supervised document-level relation extraction faces significant challenges due to an imbalanced number "no relation" instances and the failure of directly probing pretrained large language models for document relation extraction. To address these challenges, we propose PromptRE, a novel weakly-supervised document-level relation extraction method that combines prompting-based techniques with data programming. Furthermore, PromptRE incorporates the label distribution and entity types as prior knowledge to improve the performance. By leveraging the strengths of both prompting and data programming, PromptRE achieves improved performance in relation classification and effectively handles the "no relation" problem. Experimental results on ReDocRED, a benchmark dataset for document-level relation extraction, demonstrate the superiority of PromptRE over baseline approaches.
Benchmarking Large Language Models with Augmented Instructions for Fine-grained Information Extraction
Information Extraction (IE) is an essential task in Natural Language Processing. Traditional methods have relied on coarse-grained extraction with simple instructions. However, with the emergence of Large Language Models (LLMs), there is a need to adapt IE techniques to leverage the capabilities of these models. This paper introduces a fine-grained IE benchmark dataset tailored for LLMs, employing augmented instructions for each information type, which includes task descriptions, extraction rules, output formats, and examples. Through extensive evaluations, we observe that encoder-decoder models, particularly T5 and FLAN-T5, perform well in generalizing to unseen information types, while ChatGPT exhibits greater adaptability to new task forms. Our results also indicate that performance is not solely dictated by model scale, and highlight the significance of architecture, data diversity, and learning techniques. This work paves the way for a more refined and versatile utilization of LLMs in Information Extraction.
From LAION-5B to LAION-EO: Filtering Billions of Images Using Anchor Datasets for Satellite Image Extraction
Large datasets, such as LAION-5B, contain a diverse distribution of images shared online. However, extraction of domain-specific subsets of large image corpora is challenging. The extraction approach based on an anchor dataset, combined with further filtering, is proposed here and demonstrated for the domain of satellite imagery. This results in the release of LAION-EO, a dataset sourced from the web containing pairs of text and satellite images in high (pixel-wise) resolution. The paper outlines the acquisition procedure as well as some of the features of the dataset.
Performance Analysis of Various EfficientNet Based U-Net++ Architecture for Automatic Building Extraction from High Resolution Satellite Images
Building extraction is an essential component of study in the science of remote sensing, and applications for building extraction heavily rely on semantic segmentation of high-resolution remote sensing imagery. Semantic information extraction gap constraints in the present deep learning based approaches, however can result in inadequate segmentation outcomes. To address this issue and extract buildings with high accuracy, various efficientNet backbone based U-Net++ has been proposed in this study. The designed network, based on U-Net, can improve the sensitivity of the model by deep supervision, voluminous redesigned skip-connections and hence reducing the influence of irrelevant feature areas in the background. Various effecientNet backbone based encoders have been employed when training the network to enhance the capacity of the model to extract more relevant feature. According on the experimental findings, the suggested model significantly outperforms previous cutting-edge approaches. Among the 5 efficientNet variation Unet++ based on efficientb4 achieved the best result by scoring mean accuracy of 92.23%, mean iou of 88.32%, and mean precision of 93.2% on publicly available Massachusetts building dataset and thus showing the promises of the model for automatic building extraction from high resolution satellite images.
Zero-shot information extraction from radiological reports using ChatGPT
Electronic health records contain an enormous amount of valuable information, but many are recorded in free text. Information extraction is the strategy to transform the sequence of characters into structured data, which can be employed for secondary analysis. However, the traditional information extraction components, such as named entity recognition and relation extraction, require annotated data to optimize the model parameters, which has become one of the major bottlenecks in building information extraction systems. With the large language models achieving good performances on various downstream NLP tasks without parameter tuning, it becomes possible to use large language models for zero-shot information extraction. In this study, we aim to explore whether the most popular large language model, ChatGPT, can extract useful information from the radiological reports. We first design the prompt template for the interested information in the CT reports. Then, we generate the prompts by combining the prompt template with the CT reports as the inputs of ChatGPT to obtain the responses. A post-processing module is developed to transform the responses into structured extraction results. We conducted the experiments with 847 CT reports collected from Peking University Cancer Hospital. The experimental results indicate that ChatGPT can achieve competitive performances for some extraction tasks compared with the baseline information extraction system, but some limitations need to be further improved.
Advancing Italian Biomedical Information Extraction with Large Language Models: Methodological Insights and Multicenter Practical Application
The introduction of computerized medical records in hospitals has reduced burdensome operations like manual writing and information fetching. However, the data contained in medical records are still far underutilized, primarily because extracting them from unstructured textual medical records takes time and effort. Information Extraction, a subfield of Natural Language Processing, can help clinical practitioners overcome this limitation, using automated text-mining pipelines. In this work, we created the first Italian neuropsychiatric Named Entity Recognition dataset, PsyNIT, and used it to develop a Large Language Model for this task. Moreover, we conducted several experiments with three external independent datasets to implement an effective multicenter model, with overall F1-score 84.77%, Precision 83.16%, Recall 86.44%. The lessons learned are: (i) the crucial role of a consistent annotation process and (ii) a fine-tuning strategy that combines classical methods with a "few-shot" approach. This allowed us to establish methodological guidelines that pave the way for future implementations in this field and allow Italian hospitals to tap into important research opportunities.
MultiTACRED: A Multilingual Version of the TAC Relation Extraction Dataset
Relation extraction (RE) is a fundamental task in information extraction, whose extension to multilingual settings has been hindered by the lack of supervised resources comparable in size to large English datasets such as TACRED (Zhang et al., 2017). To address this gap, we introduce the MultiTACRED dataset, covering 12 typologically diverse languages from 9 language families, which is created by machine-translating TACRED instances and automatically projecting their entity annotations. We analyze translation and annotation projection quality, identify error categories, and experimentally evaluate fine-tuned pretrained mono- and multilingual language models in common transfer learning scenarios. Our analyses show that machine translation is a viable strategy to transfer RE instances, with native speakers judging more than 83% of the translated instances to be linguistically and semantically acceptable. We find monolingual RE model performance to be comparable to the English original for many of the target languages, and that multilingual models trained on a combination of English and target language data can outperform their monolingual counterparts. However, we also observe a variety of translation and annotation projection errors, both due to the MT systems and linguistic features of the target languages, such as pronoun-dropping, compounding and inflection, that degrade dataset quality and RE model performance.
Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models
We present Text2Room, a method for generating room-scale textured 3D meshes from a given text prompt as input. To this end, we leverage pre-trained 2D text-to-image models to synthesize a sequence of images from different poses. In order to lift these outputs into a consistent 3D scene representation, we combine monocular depth estimation with a text-conditioned inpainting model. The core idea of our approach is a tailored viewpoint selection such that the content of each image can be fused into a seamless, textured 3D mesh. More specifically, we propose a continuous alignment strategy that iteratively fuses scene frames with the existing geometry to create a seamless mesh. Unlike existing works that focus on generating single objects or zoom-out trajectories from text, our method generates complete 3D scenes with multiple objects and explicit 3D geometry. We evaluate our approach using qualitative and quantitative metrics, demonstrating it as the first method to generate room-scale 3D geometry with compelling textures from only text as input.
Theme-driven Keyphrase Extraction to Analyze Social Media Discourse
Social media platforms are vital resources for sharing self-reported health experiences, offering rich data on various health topics. Despite advancements in Natural Language Processing (NLP) enabling large-scale social media data analysis, a gap remains in applying keyphrase extraction to health-related content. Keyphrase extraction is used to identify salient concepts in social media discourse without being constrained by predefined entity classes. This paper introduces a theme-driven keyphrase extraction framework tailored for social media, a pioneering approach designed to capture clinically relevant keyphrases from user-generated health texts. Themes are defined as broad categories determined by the objectives of the extraction task. We formulate this novel task of theme-driven keyphrase extraction and demonstrate its potential for efficiently mining social media text for the use case of treatment for opioid use disorder. This paper leverages qualitative and quantitative analysis to demonstrate the feasibility of extracting actionable insights from social media data and efficiently extracting keyphrases using minimally supervised NLP models. Our contributions include the development of a novel data collection and curation framework for theme-driven keyphrase extraction and the creation of MOUD-Keyphrase, the first dataset of its kind comprising human-annotated keyphrases from a Reddit community. We also identify the scope of minimally supervised NLP models to extract keyphrases from social media data efficiently. Lastly, we found that a large language model (ChatGPT) outperforms unsupervised keyphrase extraction models, and we evaluate its efficacy in this task.
Structured information extraction from complex scientific text with fine-tuned large language models
Intelligently extracting and linking complex scientific information from unstructured text is a challenging endeavor particularly for those inexperienced with natural language processing. Here, we present a simple sequence-to-sequence approach to joint named entity recognition and relation extraction for complex hierarchical information in scientific text. The approach leverages a pre-trained large language model (LLM), GPT-3, that is fine-tuned on approximately 500 pairs of prompts (inputs) and completions (outputs). Information is extracted either from single sentences or across sentences in abstracts/passages, and the output can be returned as simple English sentences or a more structured format, such as a list of JSON objects. We demonstrate that LLMs trained in this way are capable of accurately extracting useful records of complex scientific knowledge for three representative tasks in materials chemistry: linking dopants with their host materials, cataloging metal-organic frameworks, and general chemistry/phase/morphology/application information extraction. This approach represents a simple, accessible, and highly-flexible route to obtaining large databases of structured knowledge extracted from unstructured text. An online demo is available at http://www.matscholar.com/info-extraction.
A Dataset for Hyper-Relational Extraction and a Cube-Filling Approach
Relation extraction has the potential for large-scale knowledge graph construction, but current methods do not consider the qualifier attributes for each relation triplet, such as time, quantity or location. The qualifiers form hyper-relational facts which better capture the rich and complex knowledge graph structure. For example, the relation triplet (Leonard Parker, Educated At, Harvard University) can be factually enriched by including the qualifier (End Time, 1967). Hence, we propose the task of hyper-relational extraction to extract more specific and complete facts from text. To support the task, we construct HyperRED, a large-scale and general-purpose dataset. Existing models cannot perform hyper-relational extraction as it requires a model to consider the interaction between three entities. Hence, we propose CubeRE, a cube-filling model inspired by table-filling approaches and explicitly considers the interaction between relation triplets and qualifiers. To improve model scalability and reduce negative class imbalance, we further propose a cube-pruning method. Our experiments show that CubeRE outperforms strong baselines and reveal possible directions for future research. Our code and data are available at github.com/declare-lab/HyperRED.
MEE: A Novel Multilingual Event Extraction Dataset
Event Extraction (EE) is one of the fundamental tasks in Information Extraction (IE) that aims to recognize event mentions and their arguments (i.e., participants) from text. Due to its importance, extensive methods and resources have been developed for Event Extraction. However, one limitation of current research for EE involves the under-exploration for non-English languages in which the lack of high-quality multilingual EE datasets for model training and evaluation has been the main hindrance. To address this limitation, we propose a novel Multilingual Event Extraction dataset (MEE) that provides annotation for more than 50K event mentions in 8 typologically different languages. MEE comprehensively annotates data for entity mentions, event triggers and event arguments. We conduct extensive experiments on the proposed dataset to reveal challenges and opportunities for multilingual EE.
Cross-Domain Aspect Extraction using Transformers Augmented with Knowledge Graphs
The extraction of aspect terms is a critical step in fine-grained sentiment analysis of text. Existing approaches for this task have yielded impressive results when the training and testing data are from the same domain. However, these methods show a drastic decrease in performance when applied to cross-domain settings where the domain of the testing data differs from that of the training data. To address this lack of extensibility and robustness, we propose a novel approach for automatically constructing domain-specific knowledge graphs that contain information relevant to the identification of aspect terms. We introduce a methodology for injecting information from these knowledge graphs into Transformer models, including two alternative mechanisms for knowledge insertion: via query enrichment and via manipulation of attention patterns. We demonstrate state-of-the-art performance on benchmark datasets for cross-domain aspect term extraction using our approach and investigate how the amount of external knowledge available to the Transformer impacts model performance.
CrossRE: A Cross-Domain Dataset for Relation Extraction
Relation Extraction (RE) has attracted increasing attention, but current RE evaluation is limited to in-domain evaluation setups. Little is known on how well a RE system fares in challenging, but realistic out-of-distribution evaluation setups. To address this gap, we propose CrossRE, a new, freely-available cross-domain benchmark for RE, which comprises six distinct text domains and includes multi-label annotations. An additional innovation is that we release meta-data collected during annotation, to include explanations and flags of difficult instances. We provide an empirical evaluation with a state-of-the-art model for relation classification. As the meta-data enables us to shed new light on the state-of-the-art model, we provide a comprehensive analysis on the impact of difficult cases and find correlations between model and human annotations. Overall, our empirical investigation highlights the difficulty of cross-domain RE. We release our dataset, to spur more research in this direction.
PatternRank: Leveraging Pretrained Language Models and Part of Speech for Unsupervised Keyphrase Extraction
Keyphrase extraction is the process of automatically selecting a small set of most relevant phrases from a given text. Supervised keyphrase extraction approaches need large amounts of labeled training data and perform poorly outside the domain of the training data. In this paper, we present PatternRank, which leverages pretrained language models and part-of-speech for unsupervised keyphrase extraction from single documents. Our experiments show PatternRank achieves higher precision, recall and F1-scores than previous state-of-the-art approaches. In addition, we present the KeyphraseVectorizers package, which allows easy modification of part-of-speech patterns for candidate keyphrase selection, and hence adaptation of our approach to any domain.
Keyword Extraction from Short Texts with a Text-To-Text Transfer Transformer
The paper explores the relevance of the Text-To-Text Transfer Transformer language model (T5) for Polish (plT5) to the task of intrinsic and extrinsic keyword extraction from short text passages. The evaluation is carried out on the new Polish Open Science Metadata Corpus (POSMAC), which is released with this paper: a collection of 216,214 abstracts of scientific publications compiled in the CURLICAT project. We compare the results obtained by four different methods, i.e. plT5kw, extremeText, TermoPL, KeyBERT and conclude that the plT5kw model yields particularly promising results for both frequent and sparsely represented keywords. Furthermore, a plT5kw keyword generation model trained on the POSMAC also seems to produce highly useful results in cross-domain text labelling scenarios. We discuss the performance of the model on news stories and phone-based dialog transcripts which represent text genres and domains extrinsic to the dataset of scientific abstracts. Finally, we also attempt to characterize the challenges of evaluating a text-to-text model on both intrinsic and extrinsic keyword extraction.
A general-purpose material property data extraction pipeline from large polymer corpora using Natural Language Processing
The ever-increasing number of materials science articles makes it hard to infer chemistry-structure-property relations from published literature. We used natural language processing (NLP) methods to automatically extract material property data from the abstracts of polymer literature. As a component of our pipeline, we trained MaterialsBERT, a language model, using 2.4 million materials science abstracts, which outperforms other baseline models in three out of five named entity recognition datasets when used as the encoder for text. Using this pipeline, we obtained ~300,000 material property records from ~130,000 abstracts in 60 hours. The extracted data was analyzed for a diverse range of applications such as fuel cells, supercapacitors, and polymer solar cells to recover non-trivial insights. The data extracted through our pipeline is made available through a web platform at https://polymerscholar.org which can be used to locate material property data recorded in abstracts conveniently. This work demonstrates the feasibility of an automatic pipeline that starts from published literature and ends with a complete set of extracted material property information.
MedDistant19: Towards an Accurate Benchmark for Broad-Coverage Biomedical Relation Extraction
Relation extraction in the biomedical domain is challenging due to the lack of labeled data and high annotation costs, needing domain experts. Distant supervision is commonly used to tackle the scarcity of annotated data by automatically pairing knowledge graph relationships with raw texts. Such a pipeline is prone to noise and has added challenges to scale for covering a large number of biomedical concepts. We investigated existing broad-coverage distantly supervised biomedical relation extraction benchmarks and found a significant overlap between training and test relationships ranging from 26% to 86%. Furthermore, we noticed several inconsistencies in the data construction process of these benchmarks, and where there is no train-test leakage, the focus is on interactions between narrower entity types. This work presents a more accurate benchmark MedDistant19 for broad-coverage distantly supervised biomedical relation extraction that addresses these shortcomings and is obtained by aligning the MEDLINE abstracts with the widely used SNOMED Clinical Terms knowledge base. Lacking thorough evaluation with domain-specific language models, we also conduct experiments validating general domain relation extraction findings to biomedical relation extraction.
Unified Structure Generation for Universal Information Extraction
Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. In this paper, we propose a unified text-to-structure generation framework, namely UIE, which can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE.
PET: An Annotated Dataset for Process Extraction from Natural Language Text
Process extraction from text is an important task of process discovery, for which various approaches have been developed in recent years. However, in contrast to other information extraction tasks, there is a lack of gold-standard corpora of business process descriptions that are carefully annotated with all the entities and relationships of interest. Due to this, it is currently hard to compare the results obtained by extraction approaches in an objective manner, whereas the lack of annotated texts also prevents the application of data-driven information extraction methodologies, typical of the natural language processing field. Therefore, to bridge this gap, we present the PET dataset, a first corpus of business process descriptions annotated with activities, gateways, actors, and flow information. We present our new resource, including a variety of baselines to benchmark the difficulty and challenges of business process extraction from text. PET can be accessed via huggingface.co/datasets/patriziobellan/PET
LAMP: Extracting Text from Gradients with Language Model Priors
Recent work shows that sensitive user data can be reconstructed from gradient updates, breaking the key privacy promise of federated learning. While success was demonstrated primarily on image data, these methods do not directly transfer to other domains such as text. In this work, we propose LAMP, a novel attack tailored to textual data, that successfully reconstructs original text from gradients. Our attack is based on two key insights: (i) modeling prior text probability with an auxiliary language model, guiding the search towards more natural text, and (ii) alternating continuous and discrete optimization, which minimizes reconstruction loss on embeddings, while avoiding local minima by applying discrete text transformations. Our experiments demonstrate that LAMP is significantly more effective than prior work: it reconstructs 5x more bigrams and 23% longer subsequences on average. Moreover, we are the first to recover inputs from batch sizes larger than 1 for textual models. These findings indicate that gradient updates of models operating on textual data leak more information than previously thought.
DirectQuote: A Dataset for Direct Quotation Extraction and Attribution in News Articles
Quotation extraction and attribution are challenging tasks, aiming at determining the spans containing quotations and attributing each quotation to the original speaker. Applying this task to news data is highly related to fact-checking, media monitoring and news tracking. Direct quotations are more traceable and informative, and therefore of great significance among different types of quotations. Therefore, this paper introduces DirectQuote, a corpus containing 19,760 paragraphs and 10,279 direct quotations manually annotated from online news media. To the best of our knowledge, this is the largest and most complete corpus that focuses on direct quotations in news texts. We ensure that each speaker in the annotation can be linked to a specific named entity on Wikidata, benefiting various downstream tasks. In addition, for the first time, we propose several sequence labeling models as baseline methods to extract and attribute quotations simultaneously in an end-to-end manner.
Slot Filling for Biomedical Information Extraction
Information Extraction (IE) from text refers to the task of extracting structured knowledge from unstructured text. The task typically consists of a series of sub-tasks such as Named Entity Recognition and Relation Extraction. Sourcing entity and relation type specific training data is a major bottleneck in domains with limited resources such as biomedicine. In this work we present a slot filling approach to the task of biomedical IE, effectively replacing the need for entity and relation-specific training data, allowing us to deal with zero-shot settings. We follow the recently proposed paradigm of coupling a Tranformer-based bi-encoder, Dense Passage Retrieval, with a Transformer-based reading comprehension model to extract relations from biomedical text. We assemble a biomedical slot filling dataset for both retrieval and reading comprehension and conduct a series of experiments demonstrating that our approach outperforms a number of simpler baselines. We also evaluate our approach end-to-end for standard as well as zero-shot settings. Our work provides a fresh perspective on how to solve biomedical IE tasks, in the absence of relevant training data. Our code, models and datasets are available at https://github.com/ypapanik/biomedical-slot-filling.
Label Verbalization and Entailment for Effective Zero- and Few-Shot Relation Extraction
Relation extraction systems require large amounts of labeled examples which are costly to annotate. In this work we reformulate relation extraction as an entailment task, with simple, hand-made, verbalizations of relations produced in less than 15 min per relation. The system relies on a pretrained textual entailment engine which is run as-is (no training examples, zero-shot) or further fine-tuned on labeled examples (few-shot or fully trained). In our experiments on TACRED we attain 63% F1 zero-shot, 69% with 16 examples per relation (17% points better than the best supervised system on the same conditions), and only 4 points short to the state-of-the-art (which uses 20 times more training data). We also show that the performance can be improved significantly with larger entailment models, up to 12 points in zero-shot, allowing to report the best results to date on TACRED when fully trained. The analysis shows that our few-shot systems are specially effective when discriminating between relations, and that the performance difference in low data regimes comes mainly from identifying no-relation cases.
Knowledge Graph Enhanced Event Extraction in Financial Documents
Event extraction is a classic task in natural language processing with wide use in handling large amount of yet rapidly growing financial, legal, medical, and government documents which often contain multiple events with their elements scattered and mixed across the documents, making the problem much more difficult. Though the underlying relations between event elements to be extracted provide helpful contextual information, they are somehow overlooked in prior studies. We showcase the enhancement to this task brought by utilizing the knowledge graph that captures entity relations and their attributes. We propose a first event extraction framework that embeds a knowledge graph through a Graph Neural Network and integrates the embedding with regular features, all at document-level. Specifically, for extracting events from Chinese financial announcements, our method outperforms the state-of-the-art method by 5.3% in F1-score.
DEGREE: A Data-Efficient Generation-Based Event Extraction Model
Event extraction requires high-quality expert human annotations, which are usually expensive. Therefore, learning a data-efficient event extraction model that can be trained with only a few labeled examples has become a crucial challenge. In this paper, we focus on low-resource end-to-end event extraction and propose DEGREE, a data-efficient model that formulates event extraction as a conditional generation problem. Given a passage and a manually designed prompt, DEGREE learns to summarize the events mentioned in the passage into a natural sentence that follows a predefined pattern. The final event predictions are then extracted from the generated sentence with a deterministic algorithm. DEGREE has three advantages to learn well with less training data. First, our designed prompts provide semantic guidance for DEGREE to leverage DEGREE and thus better capture the event arguments. Moreover, DEGREE is capable of using additional weakly-supervised information, such as the description of events encoded in the prompts. Finally, DEGREE learns triggers and arguments jointly in an end-to-end manner, which encourages the model to better utilize the shared knowledge and dependencies among them. Our experimental results demonstrate the strong performance of DEGREE for low-resource event extraction.
Sentence Extraction-Based Machine Reading Comprehension for Vietnamese
The development of natural language processing (NLP) in general and machine reading comprehension in particular has attracted the great attention of the research community. In recent years, there are a few datasets for machine reading comprehension tasks in Vietnamese with large sizes, such as UIT-ViQuAD and UIT-ViNewsQA. However, the datasets are not diverse in answers to serve the research. In this paper, we introduce UIT-ViWikiQA, the first dataset for evaluating sentence extraction-based machine reading comprehension in the Vietnamese language. The UIT-ViWikiQA dataset is converted from the UIT-ViQuAD dataset, consisting of comprises 23.074 question-answers based on 5.109 passages of 174 Wikipedia Vietnamese articles. We propose a conversion algorithm to create the dataset for sentence extraction-based machine reading comprehension and three types of approaches for sentence extraction-based machine reading comprehension in Vietnamese. Our experiments show that the best machine model is XLM-R_Large, which achieves an exact match (EM) of 85.97% and an F1-score of 88.77% on our dataset. Besides, we analyze experimental results in terms of the question type in Vietnamese and the effect of context on the performance of the MRC models, thereby showing the challenges from the UIT-ViWikiQA dataset that we propose to the language processing community.
FRAKE: Fusional Real-time Automatic Keyword Extraction
Keyword extraction is the process of identifying the words or phrases that express the main concepts of text to the best of one's ability. Electronic infrastructure creates a considerable amount of text every day and at all times. This massive volume of documents makes it practically impossible for human resources to study and manage them. Nevertheless, the need for these documents to be accessed efficiently and effectively is evident in numerous purposes. A blog, news article, or technical note is considered a relatively long text since the reader aims to learn the subject based on keywords or topics. Our approach consists of a combination of two models: graph centrality features and textural features. The proposed method has been used to extract the best keyword among the candidate keywords with an optimal combination of graph centralities, such as degree, betweenness, eigenvector, closeness centrality and etc, and textural, such as Casing, Term position, Term frequency normalization, Term different sentence, Part Of Speech tagging. There have also been attempts to distinguish keywords from candidate phrases and consider them on separate keywords. For evaluating the proposed method, seven datasets were used: Semeval2010, SemEval2017, Inspec, fao30, Thesis100, pak2018, and Wikinews, with results reported as Precision, Recall, and F- measure. Our proposed method performed much better in terms of evaluation metrics in all reviewed datasets compared with available methods in literature. An approximate 16.9% increase was witnessed in F-score metric and this was much more for the Inspec in English datasets and WikiNews in forgone languages.
Relation Extraction with Self-determined Graph Convolutional Network
Relation Extraction is a way of obtaining the semantic relationship between entities in text. The state-of-the-art methods use linguistic tools to build a graph for the text in which the entities appear and then a Graph Convolutional Network (GCN) is employed to encode the pre-built graphs. Although their performance is promising, the reliance on linguistic tools results in a non end-to-end process. In this work, we propose a novel model, the Self-determined Graph Convolutional Network (SGCN), which determines a weighted graph using a self-attention mechanism, rather using any linguistic tool. Then, the self-determined graph is encoded using a GCN. We test our model on the TACRED dataset and achieve the state-of-the-art result. Our experiments show that SGCN outperforms the traditional GCN, which uses dependency parsing tools to build the graph.
PERLEX: A Bilingual Persian-English Gold Dataset for Relation Extraction
Relation extraction is the task of extracting semantic relations between entities in a sentence. It is an essential part of some natural language processing tasks such as information extraction, knowledge extraction, and knowledge base population. The main motivations of this research stem from a lack of a dataset for relation extraction in the Persian language as well as the necessity of extracting knowledge from the growing big-data in the Persian language for different applications. In this paper, we present "PERLEX" as the first Persian dataset for relation extraction, which is an expert-translated version of the "Semeval-2010-Task-8" dataset. Moreover, this paper addresses Persian relation extraction utilizing state-of-the-art language-agnostic algorithms. We employ six different models for relation extraction on the proposed bilingual dataset, including a non-neural model (as the baseline), three neural models, and two deep learning models fed by multilingual-BERT contextual word representations. The experiments result in the maximum f-score 77.66% (provided by BERTEM-MTB method) as the state-of-the-art of relation extraction in the Persian language.
Keyphrase Extraction from Scholarly Articles as Sequence Labeling using Contextualized Embeddings
In this paper, we formulate keyphrase extraction from scholarly articles as a sequence labeling task solved using a BiLSTM-CRF, where the words in the input text are represented using deep contextualized embeddings. We evaluate the proposed architecture using both contextualized and fixed word embedding models on three different benchmark datasets (Inspec, SemEval 2010, SemEval 2017) and compare with existing popular unsupervised and supervised techniques. Our results quantify the benefits of (a) using contextualized embeddings (e.g. BERT) over fixed word embeddings (e.g. Glove); (b) using a BiLSTM-CRF architecture with contextualized word embeddings over fine-tuning the contextualized word embedding model directly, and (c) using genre-specific contextualized embeddings (SciBERT). Through error analysis, we also provide some insights into why particular models work better than others. Lastly, we present a case study where we analyze different self-attention layers of the two best models (BERT and SciBERT) to better understand the predictions made by each for the task of keyphrase extraction.
ABSApp: A Portable Weakly-Supervised Aspect-Based Sentiment Extraction System
We present ABSApp, a portable system for weakly-supervised aspect-based sentiment extraction. The system is interpretable and user friendly and does not require labeled training data, hence can be rapidly and cost-effectively used across different domains in applied setups. The system flow includes three stages: First, it generates domain-specific aspect and opinion lexicons based on an unlabeled dataset; second, it enables the user to view and edit those lexicons (weak supervision); and finally, it enables the user to select an unlabeled target dataset from the same domain, classify it, and generate an aspect-based sentiment report. ABSApp has been successfully used in a number of real-life use cases, among them movie review analysis and convention impact analysis.
Improving Distantly Supervised Relation Extraction using Word and Entity Based Attention
Relation extraction is the problem of classifying the relationship between two entities in a given sentence. Distant Supervision (DS) is a popular technique for developing relation extractors starting with limited supervision. We note that most of the sentences in the distant supervision relation extraction setting are very long and may benefit from word attention for better sentence representation. Our contributions in this paper are threefold. Firstly, we propose two novel word attention models for distantly- supervised relation extraction: (1) a Bi-directional Gated Recurrent Unit (Bi-GRU) based word attention model (BGWA), (2) an entity-centric attention model (EA), and (3) a combination model which combines multiple complementary models using weighted voting method for improved relation extraction. Secondly, we introduce GDS, a new distant supervision dataset for relation extraction. GDS removes test data noise present in all previous distant- supervision benchmark datasets, making credible automatic evaluation possible. Thirdly, through extensive experiments on multiple real-world datasets, we demonstrate the effectiveness of the proposed methods.
Zero-Shot Relation Extraction via Reading Comprehension
We show that relation extraction can be reduced to answering simple reading comprehension questions, by associating one or more natural-language questions with each relation slot. This reduction has several advantages: we can (1) learn relation-extraction models by extending recent neural reading-comprehension techniques, (2) build very large training sets for those models by combining relation-specific crowd-sourced questions with distant supervision, and even (3) do zero-shot learning by extracting new relation types that are only specified at test-time, for which we have no labeled training examples. Experiments on a Wikipedia slot-filling task demonstrate that the approach can generalize to new questions for known relation types with high accuracy, and that zero-shot generalization to unseen relation types is possible, at lower accuracy levels, setting the bar for future work on this task.
Break-A-Scene: Extracting Multiple Concepts from a Single Image
Text-to-image model personalization aims to introduce a user-provided concept to the model, allowing its synthesis in diverse contexts. However, current methods primarily focus on the case of learning a single concept from multiple images with variations in backgrounds and poses, and struggle when adapted to a different scenario. In this work, we introduce the task of textual scene decomposition: given a single image of a scene that may contain several concepts, we aim to extract a distinct text token for each concept, enabling fine-grained control over the generated scenes. To this end, we propose augmenting the input image with masks that indicate the presence of target concepts. These masks can be provided by the user or generated automatically by a pre-trained segmentation model. We then present a novel two-phase customization process that optimizes a set of dedicated textual embeddings (handles), as well as the model weights, striking a delicate balance between accurately capturing the concepts and avoiding overfitting. We employ a masked diffusion loss to enable handles to generate their assigned concepts, complemented by a novel loss on cross-attention maps to prevent entanglement. We also introduce union-sampling, a training strategy aimed to improve the ability of combining multiple concepts in generated images. We use several automatic metrics to quantitatively compare our method against several baselines, and further affirm the results using a user study. Finally, we showcase several applications of our method. Project page is available at: https://omriavrahami.com/break-a-scene/
A Biomedical Entity Extraction Pipeline for Oncology Health Records in Portuguese
Textual health records of cancer patients are usually protracted and highly unstructured, making it very time-consuming for health professionals to get a complete overview of the patient's therapeutic course. As such limitations can lead to suboptimal and/or inefficient treatment procedures, healthcare providers would greatly benefit from a system that effectively summarizes the information of those records. With the advent of deep neural models, this objective has been partially attained for English clinical texts, however, the research community still lacks an effective solution for languages with limited resources. In this paper, we present the approach we developed to extract procedures, drugs, and diseases from oncology health records written in European Portuguese. This project was conducted in collaboration with the Portuguese Institute for Oncology which, besides holding over 10 years of duly protected medical records, also provided oncologist expertise throughout the development of the project. Since there is no annotated corpus for biomedical entity extraction in Portuguese, we also present the strategy we followed in annotating the corpus for the development of the models. The final models, which combined a neural architecture with entity linking, achieved F_1 scores of 88.6, 95.0, and 55.8 per cent in the mention extraction of procedures, drugs, and diseases, respectively.
A Frustratingly Easy Approach for Entity and Relation Extraction
End-to-end relation extraction aims to identify named entities and extract relations between them. Most recent work models these two subtasks jointly, either by casting them in one structured prediction framework, or performing multi-task learning through shared representations. In this work, we present a simple pipelined approach for entity and relation extraction, and establish the new state-of-the-art on standard benchmarks (ACE04, ACE05 and SciERC), obtaining a 1.7%-2.8% absolute improvement in relation F1 over previous joint models with the same pre-trained encoders. Our approach essentially builds on two independent encoders and merely uses the entity model to construct the input for the relation model. Through a series of careful examinations, we validate the importance of learning distinct contextual representations for entities and relations, fusing entity information early in the relation model, and incorporating global context. Finally, we also present an efficient approximation to our approach which requires only one pass of both entity and relation encoders at inference time, achieving an 8-16times speedup with a slight reduction in accuracy.
The Newspaper Navigator Dataset: Extracting And Analyzing Visual Content from 16 Million Historic Newspaper Pages in Chronicling America
Chronicling America is a product of the National Digital Newspaper Program, a partnership between the Library of Congress and the National Endowment for the Humanities to digitize historic newspapers. Over 16 million pages of historic American newspapers have been digitized for Chronicling America to date, complete with high-resolution images and machine-readable METS/ALTO OCR. Of considerable interest to Chronicling America users is a semantified corpus, complete with extracted visual content and headlines. To accomplish this, we introduce a visual content recognition model trained on bounding box annotations of photographs, illustrations, maps, comics, and editorial cartoons collected as part of the Library of Congress's Beyond Words crowdsourcing initiative and augmented with additional annotations including those of headlines and advertisements. We describe our pipeline that utilizes this deep learning model to extract 7 classes of visual content: headlines, photographs, illustrations, maps, comics, editorial cartoons, and advertisements, complete with textual content such as captions derived from the METS/ALTO OCR, as well as image embeddings for fast image similarity querying. We report the results of running the pipeline on 16.3 million pages from the Chronicling America corpus and describe the resulting Newspaper Navigator dataset, the largest dataset of extracted visual content from historic newspapers ever produced. The Newspaper Navigator dataset, finetuned visual content recognition model, and all source code are placed in the public domain for unrestricted re-use.
An approach to extract information from academic transcripts of HUST
In many Vietnamese schools, grades are still being inputted into the database manually, which is not only inefficient but also prone to human error. Thus, the automation of this process is highly necessary, which can only be achieved if we can extract information from academic transcripts. In this paper, we test our improved CRNN model in extracting information from 126 transcripts, with 1008 vertical lines, 3859 horizontal lines, and 2139 handwritten test scores. Then, this model is compared to the Baseline model. The results show that our model significantly outperforms the Baseline model with an accuracy of 99.6% in recognizing vertical lines, 100% in recognizing horizontal lines, and 96.11% in recognizing handwritten test scores.
Universal Information Extraction as Unified Semantic Matching
The challenge of information extraction (IE) lies in the diversity of label schemas and the heterogeneity of structures. Traditional methods require task-specific model design and rely heavily on expensive supervision, making them difficult to generalize to new schemas. In this paper, we decouple IE into two basic abilities, structuring and conceptualizing, which are shared by different tasks and schemas. Based on this paradigm, we propose to universally model various IE tasks with Unified Semantic Matching (USM) framework, which introduces three unified token linking operations to model the abilities of structuring and conceptualizing. In this way, USM can jointly encode schema and input text, uniformly extract substructures in parallel, and controllably decode target structures on demand. Empirical evaluation on 4 IE tasks shows that the proposed method achieves state-of-the-art performance under the supervised experiments and shows strong generalization ability in zero/few-shot transfer settings.
Comparison of biomedical relationship extraction methods and models for knowledge graph creation
Biomedical research is growing at such an exponential pace that scientists, researchers, and practitioners are no more able to cope with the amount of published literature in the domain. The knowledge presented in the literature needs to be systematized in such a way that claims and hypotheses can be easily found, accessed, and validated. Knowledge graphs can provide such a framework for semantic knowledge representation from literature. However, in order to build a knowledge graph, it is necessary to extract knowledge as relationships between biomedical entities and normalize both entities and relationship types. In this paper, we present and compare few rule-based and machine learning-based (Naive Bayes, Random Forests as examples of traditional machine learning methods and DistilBERT, PubMedBERT, T5 and SciFive-based models as examples of modern deep learning transformers) methods for scalable relationship extraction from biomedical literature, and for the integration into the knowledge graphs. We examine how resilient are these various methods to unbalanced and fairly small datasets. Our experiments show that transformer-based models handle well both small (due to pre-training on a large dataset) and unbalanced datasets. The best performing model was the PubMedBERT-based model fine-tuned on balanced data, with a reported F1-score of 0.92. DistilBERT-based model followed with F1-score of 0.89, performing faster and with lower resource requirements. BERT-based models performed better then T5-based generative models.
ALIKE: Accurate and Lightweight Keypoint Detection and Descriptor Extraction
Existing methods detect the keypoints in a non-differentiable way, therefore they can not directly optimize the position of keypoints through back-propagation. To address this issue, we present a partially differentiable keypoint detection module, which outputs accurate sub-pixel keypoints. The reprojection loss is then proposed to directly optimize these sub-pixel keypoints, and the dispersity peak loss is presented for accurate keypoints regularization. We also extract the descriptors in a sub-pixel way, and they are trained with the stable neural reprojection error loss. Moreover, a lightweight network is designed for keypoint detection and descriptor extraction, which can run at 95 frames per second for 640x480 images on a commercial GPU. On homography estimation, camera pose estimation, and visual (re-)localization tasks, the proposed method achieves equivalent performance with the state-of-the-art approaches, while greatly reduces the inference time.
Automatic Metadata Extraction Incorporating Visual Features from Scanned Electronic Theses and Dissertations
Electronic Theses and Dissertations (ETDs) contain domain knowledge that can be used for many digital library tasks, such as analyzing citation networks and predicting research trends. Automatic metadata extraction is important to build scalable digital library search engines. Most existing methods are designed for born-digital documents, so they often fail to extract metadata from scanned documents such as for ETDs. Traditional sequence tagging methods mainly rely on text-based features. In this paper, we propose a conditional random field (CRF) model that combines text-based and visual features. To verify the robustness of our model, we extended an existing corpus and created a new ground truth corpus consisting of 500 ETD cover pages with human validated metadata. Our experiments show that CRF with visual features outperformed both a heuristic and a CRF model with only text-based features. The proposed model achieved 81.3%-96% F1 measure on seven metadata fields. The data and source code are publicly available on Google Drive (https://tinyurl.com/y8kxzwrp) and a GitHub repository (https://github.com/lamps-lab/ETDMiner/tree/master/etd_crf), respectively.
HoVer: A Dataset for Many-Hop Fact Extraction And Claim Verification
We introduce HoVer (HOppy VERification), a dataset for many-hop evidence extraction and fact verification. It challenges models to extract facts from several Wikipedia articles that are relevant to a claim and classify whether the claim is Supported or Not-Supported by the facts. In HoVer, the claims require evidence to be extracted from as many as four English Wikipedia articles and embody reasoning graphs of diverse shapes. Moreover, most of the 3/4-hop claims are written in multiple sentences, which adds to the complexity of understanding long-range dependency relations such as coreference. We show that the performance of an existing state-of-the-art semantic-matching model degrades significantly on our dataset as the number of reasoning hops increases, hence demonstrating the necessity of many-hop reasoning to achieve strong results. We hope that the introduction of this challenging dataset and the accompanying evaluation task will encourage research in many-hop fact retrieval and information verification. We make the HoVer dataset publicly available at https://hover-nlp.github.io
Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection
The common practice in coreference resolution is to identify and evaluate the maximum span of mentions. The use of maximum spans tangles coreference evaluation with the challenges of mention boundary detection like prepositional phrase attachment. To address this problem, minimum spans are manually annotated in smaller corpora. However, this additional annotation is costly and therefore, this solution does not scale to large corpora. In this paper, we propose the MINA algorithm for automatically extracting minimum spans to benefit from minimum span evaluation in all corpora. We show that the extracted minimum spans by MINA are consistent with those that are manually annotated by experts. Our experiments show that using minimum spans is in particular important in cross-dataset coreference evaluation, in which detected mention boundaries are noisier due to domain shift. We will integrate MINA into https://github.com/ns-moosavi/coval for reporting standard coreference scores based on both maximum and automatically detected minimum spans.