- Open-domain Implicit Format Control for Large Language Model Generation Controlling the format of outputs generated by large language models (LLMs) is a critical functionality in various applications. Current methods typically employ constrained decoding with rule-based automata or fine-tuning with manually crafted format instructions, both of which struggle with open-domain format requirements. To address this limitation, we introduce a novel framework for controlled generation in LLMs, leveraging user-provided, one-shot QA pairs. This study investigates LLMs' capabilities to follow open-domain, one-shot constraints and replicate the format of the example answers. We observe that this is a non-trivial problem for current LLMs. We also develop a dataset collection methodology for supervised fine-tuning that enhances the open-domain format control of LLMs without degrading output quality, as well as a benchmark on which we evaluate both the helpfulness and format correctness of LLM outputs. The resulting datasets, named OIFC-SFT, along with the related code, will be made publicly available at https://github.com/cofe-ai/OIFC. 10 authors · Aug 8, 2024
30 Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers.Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0\% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams , in other words, to unlock the capabilities it already possesses. 7 authors · May 25 2
- Ground-R1: Incentivizing Grounded Visual Reasoning via Reinforcement Learning Large Vision-Language Models (LVLMs) have demonstrated impressive general capabilities across a wide range of multi-modal tasks. However, the reasoning processes of LVLMs often suffer from unreliable outputs and limited interpretability. To address this, grounded visual reasoning has emerged as a promising paradigm that enforces responses anchored on salient visual evidence regions. However, existing approaches typically rely on costly supervision such as bounding box annotations, chain-of-thought rationale or external tool calls, limiting their scalability. In this work, we propose Ground-R1, a reinforcement learning framework that enables grounded visual reasoning without requiring explicit evidence or rationale annotations. Ground-R1 consists of a grounding phase that generates evidence region rollouts based on format constraints, and an answering phase that produces responses guided by both answer correctness and format adherence rewards. Extensive experiments across multiple visual reasoning benchmarks manifest that Ground-R1 achieves superior performance and exhibits emergent cognitive behaviors such as uncertainty awareness, spatial perception, and iterative refinement, offering a scalable and interpretable alternative to existing approaches. 6 authors · May 26
25 APIGen: Automated Pipeline for Generating Verifiable and Diverse Function-Calling Datasets The advancement of function-calling agent models requires diverse, reliable, and high-quality datasets. This paper presents APIGen, an automated data generation pipeline designed to synthesize verifiable high-quality datasets for function-calling applications. We leverage APIGen and collect 3,673 executable APIs across 21 different categories to generate diverse function-calling datasets in a scalable and structured manner. Each data in our dataset is verified through three hierarchical stages: format checking, actual function executions, and semantic verification, ensuring its reliability and correctness. We demonstrate that models trained with our curated datasets, even with only 7B parameters, can achieve state-of-the-art performance on the Berkeley Function-Calling Benchmark, outperforming multiple GPT-4 models. Moreover, our 1B model achieves exceptional performance, surpassing GPT-3.5-Turbo and Claude-3 Haiku. We release a dataset containing 60,000 high-quality entries, aiming to advance the field of function-calling agent domains. The dataset is available on Huggingface: https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k and the project homepage: https://apigen-pipeline.github.io/ 17 authors · Jun 26, 2024 1
18 StructEval: Benchmarking LLMs' Capabilities to Generate Structural Outputs As Large Language Models (LLMs) become integral to software development workflows, their ability to generate structured outputs has become critically important. We introduce StructEval, a comprehensive benchmark for evaluating LLMs' capabilities in producing both non-renderable (JSON, YAML, CSV) and renderable (HTML, React, SVG) structured formats. Unlike prior benchmarks, StructEval systematically evaluates structural fidelity across diverse formats through two paradigms: 1) generation tasks, producing structured output from natural language prompts, and 2) conversion tasks, translating between structured formats. Our benchmark encompasses 18 formats and 44 types of task, with novel metrics for format adherence and structural correctness. Results reveal significant performance gaps, even state-of-the-art models like o1-mini achieve only 75.58 average score, with open-source alternatives lagging approximately 10 points behind. We find generation tasks more challenging than conversion tasks, and producing correct visual content more difficult than generating text-only structures. 20 authors · May 26 1
- Language Models Can Teach Themselves to Program Better Recent Language Models (LMs) achieve breakthrough performance in code generation when trained on human-authored problems, even solving some competitive-programming problems. Self-play has proven useful in games such as Go, and thus it is natural to ask whether LMs can generate their own instructive programming problems to improve their performance. We show that it is possible for an LM to synthesize programming problems and solutions, which are filtered for correctness by a Python interpreter. The LM's performance is then seen to improve when it is fine-tuned on its own synthetic problems and verified solutions; thus the model 'improves itself' using the Python interpreter. Problems are specified formally as programming puzzles [Schuster et al., 2021], a code-based problem format where solutions can easily be verified for correctness by execution. In experiments on publicly-available LMs, test accuracy more than doubles. This work demonstrates the potential for code LMs, with an interpreter, to generate instructive problems and improve their own performance. 3 authors · Jul 29, 2022
1 DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models Scientific documents record research findings and valuable human knowledge, comprising a vast corpus of high-quality data. Leveraging multi-modality data extracted from these documents and assessing large models' abilities to handle scientific document-oriented tasks is therefore meaningful. Despite promising advancements, large models still perform poorly on multi-page scientific document extraction and understanding tasks, and their capacity to process within-document data formats such as charts and equations remains under-explored. To address these issues, we present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community, using our custom auto-labeling pipeline. DocGenome features four key characteristics: 1) Completeness: It is the first dataset to structure data from all modalities including 13 layout attributes along with their LaTeX source codes. 2) Logicality: It provides 6 logical relationships between different entities within each scientific document. 3) Diversity: It covers various document-oriented tasks, including document classification, visual grounding, document layout detection, document transformation, open-ended single-page QA and multi-page QA. 4) Correctness: It undergoes rigorous quality control checks conducted by a specialized team. We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark. 23 authors · Jun 17, 2024
- Hierarchical Planning for Complex Tasks with Knowledge Graph-RAG and Symbolic Verification Large Language Models (LLMs) have shown promise as robotic planners but often struggle with long-horizon and complex tasks, especially in specialized environments requiring external knowledge. While hierarchical planning and Retrieval-Augmented Generation (RAG) address some of these challenges, they remain insufficient on their own and a deeper integration is required for achieving more reliable systems. To this end, we propose a neuro-symbolic approach that enhances LLMs-based planners with Knowledge Graph-based RAG for hierarchical plan generation. This method decomposes complex tasks into manageable subtasks, further expanded into executable atomic action sequences. To ensure formal correctness and proper decomposition, we integrate a Symbolic Validator, which also functions as a failure detector by aligning expected and observed world states. Our evaluation against baseline methods demonstrates the consistent significant advantages of integrating hierarchical planning, symbolic verification, and RAG across tasks of varying complexity and different LLMs. Additionally, our experimental setup and novel metrics not only validate our approach for complex planning but also serve as a tool for assessing LLMs' reasoning and compositional capabilities. 3 authors · Apr 6
2 Probabilistic Programming with Programmable Variational Inference Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs. 7 authors · Jun 22, 2024 1
- T2Ranking: A large-scale Chinese Benchmark for Passage Ranking Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/ 11 authors · Apr 7, 2023
2 QuALITY: Question Answering with Long Input Texts, Yes! To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%). 11 authors · Dec 15, 2021
- Dealing with Typos for BERT-based Passage Retrieval and Ranking Passage retrieval and ranking is a key task in open-domain question answering and information retrieval. Current effective approaches mostly rely on pre-trained deep language model-based retrievers and rankers. These methods have been shown to effectively model the semantic matching between queries and passages, also in presence of keyword mismatch, i.e. passages that are relevant to a query but do not contain important query keywords. In this paper we consider the Dense Retriever (DR), a passage retrieval method, and the BERT re-ranker, a popular passage re-ranking method. In this context, we formally investigate how these models respond and adapt to a specific type of keyword mismatch -- that caused by keyword typos occurring in queries. Through empirical investigation, we find that typos can lead to a significant drop in retrieval and ranking effectiveness. We then propose a simple typos-aware training framework for DR and BERT re-ranker to address this issue. Our experimental results on the MS MARCO passage ranking dataset show that, with our proposed typos-aware training, DR and BERT re-ranker can become robust to typos in queries, resulting in significantly improved effectiveness compared to models trained without appropriately accounting for typos. 2 authors · Aug 27, 2021
1 Dense X Retrieval: What Retrieval Granularity Should We Use? Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information. 8 authors · Dec 11, 2023
- Prompt-Based Document Modifications In Ranking Competitions We study prompting-based approaches with Large Language Models (LLMs) for modifying documents so as to promote their ranking in a competitive search setting. Our methods are inspired by prior work on leveraging LLMs as rankers. We evaluate our approach by deploying it as a bot in previous ranking competitions and in competitions we organized. Our findings demonstrate that our approach effectively improves document ranking while preserving high levels of faithfulness to the original content and maintaining overall document quality. 5 authors · Feb 11
- Neural Passage Quality Estimation for Static Pruning Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods. 4 authors · Jul 16, 2024
- Benchmarking Clinical Decision Support Search Finding relevant literature underpins the practice of evidence-based medicine. From 2014 to 2016, TREC conducted a clinical decision support track, wherein participants were tasked with finding articles relevant to clinical questions posed by physicians. In total, 87 teams have participated over the past three years, generating 395 runs. During this period, each team has trialled a variety of methods. While there was significant overlap in the methods employed by different teams, the results were varied. Due to the diversity of the platforms used, the results arising from the different techniques are not directly comparable, reducing the ability to build on previous work. By using a stable platform, we have been able to compare different document and query processing techniques, allowing us to experiment with different search parameters. We have used our system to reproduce leading teams runs, and compare the results obtained. By benchmarking our indexing and search techniques, we can statistically test a variety of hypotheses, paving the way for further research. 4 authors · Jan 28, 2018
- Copyright Violations and Large Language Models Language models may memorize more than just facts, including entire chunks of texts seen during training. Fair use exemptions to copyright laws typically allow for limited use of copyrighted material without permission from the copyright holder, but typically for extraction of information from copyrighted materials, rather than {\em verbatim} reproduction. This work explores the issue of copyright violations and large language models through the lens of verbatim memorization, focusing on possible redistribution of copyrighted text. We present experiments with a range of language models over a collection of popular books and coding problems, providing a conservative characterization of the extent to which language models can redistribute these materials. Overall, this research highlights the need for further examination and the potential impact on future developments in natural language processing to ensure adherence to copyright regulations. Code is at https://github.com/coastalcph/CopyrightLLMs. 4 authors · Oct 20, 2023
- Text Annotation Handbook: A Practical Guide for Machine Learning Projects This handbook is a hands-on guide on how to approach text annotation tasks. It provides a gentle introduction to the topic, an overview of theoretical concepts as well as practical advice. The topics covered are mostly technical, but business, ethical and regulatory issues are also touched upon. The focus lies on readability and conciseness rather than completeness and scientific rigor. Experience with annotation and knowledge of machine learning are useful but not required. The document may serve as a primer or reference book for a wide range of professions such as team leaders, project managers, IT architects, software developers and machine learning engineers. 8 authors · Oct 18, 2023
- Spelling Correction with Denoising Transformer We present a novel method of performing spelling correction on short input strings, such as search queries or individual words. At its core lies a procedure for generating artificial typos which closely follow the error patterns manifested by humans. This procedure is used to train the production spelling correction model based on a transformer architecture. This model is currently served in the HubSpot product search. We show that our approach to typo generation is superior to the widespread practice of adding noise, which ignores human patterns. We also demonstrate how our approach may be extended to resource-scarce settings and train spelling correction models for Arabic, Greek, Russian, and Setswana languages, without using any labeled data. 2 authors · May 12, 2021
- PatentMatch: A Dataset for Matching Patent Claims & Prior Art Patent examiners need to solve a complex information retrieval task when they assess the novelty and inventive step of claims made in a patent application. Given a claim, they search for prior art, which comprises all relevant publicly available information. This time-consuming task requires a deep understanding of the respective technical domain and the patent-domain-specific language. For these reasons, we address the computer-assisted search for prior art by creating a training dataset for supervised machine learning called PatentMatch. It contains pairs of claims from patent applications and semantically corresponding text passages of different degrees from cited patent documents. Each pair has been labeled by technically-skilled patent examiners from the European Patent Office. Accordingly, the label indicates the degree of semantic correspondence (matching), i.e., whether the text passage is prejudicial to the novelty of the claimed invention or not. Preliminary experiments using a baseline system show that PatentMatch can indeed be used for training a binary text pair classifier on this challenging information retrieval task. The dataset is available online: https://hpi.de/naumann/s/patentmatch. 4 authors · Dec 27, 2020
- LitSearch: A Retrieval Benchmark for Scientific Literature Search Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case. 6 authors · Jul 10, 2024
2 What Evidence Do Language Models Find Convincing? Retrieval-augmented language models are being increasingly tasked with subjective, contentious, and conflicting queries such as "is aspartame linked to cancer". To resolve these ambiguous queries, one must search through a large range of websites and consider "which, if any, of this evidence do I find convincing?". In this work, we study how LLMs answer this question. In particular, we construct ConflictingQA, a dataset that pairs controversial queries with a series of real-world evidence documents that contain different facts (e.g., quantitative results), argument styles (e.g., appeals to authority), and answers (Yes or No). We use this dataset to perform sensitivity and counterfactual analyses to explore which text features most affect LLM predictions. Overall, we find that current models rely heavily on the relevance of a website to the query, while largely ignoring stylistic features that humans find important such as whether a text contains scientific references or is written with a neutral tone. Taken together, these results highlight the importance of RAG corpus quality (e.g., the need to filter misinformation), and possibly even a shift in how LLMs are trained to better align with human judgements. 3 authors · Feb 18, 2024
- Simple Applications of BERT for Ad Hoc Document Retrieval Following recent successes in applying BERT to question answering, we explore simple applications to ad hoc document retrieval. This required confronting the challenge posed by documents that are typically longer than the length of input BERT was designed to handle. We address this issue by applying inference on sentences individually, and then aggregating sentence scores to produce document scores. Experiments on TREC microblog and newswire test collections show that our approach is simple yet effective, as we report the highest average precision on these datasets by neural approaches that we are aware of. 3 authors · Mar 26, 2019
- An Evaluation on Large Language Model Outputs: Discourse and Memorization We present an empirical evaluation of various outputs generated by nine of the most widely-available large language models (LLMs). Our analysis is done with off-the-shelf, readily-available tools. We find a correlation between percentage of memorized text, percentage of unique text, and overall output quality, when measured with respect to output pathologies such as counterfactual and logically-flawed statements, and general failures like not staying on topic. Overall, 80.0% of the outputs evaluated contained memorized data, but outputs containing the most memorized content were also more likely to be considered of high quality. We discuss and evaluate mitigation strategies, showing that, in the models evaluated, the rate of memorized text being output is reduced. We conclude with a discussion on potential implications around what it means to learn, to memorize, and to evaluate quality text. 5 authors · Apr 17, 2023
- DAPR: A Benchmark on Document-Aware Passage Retrieval Recent neural retrieval mainly focuses on ranking short texts and is challenged with long documents. Existing work mainly evaluates either ranking passages or whole documents. However, there are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. legal cases, research papers, etc. In this scenario, the passage often provides little document context and thus challenges the current approaches to finding the correct document and returning accurate results. To fill this gap, we propose and name this task Document-Aware Passage Retrieval (DAPR) and build a benchmark including multiple datasets from various domains, covering both DAPR and whole-document retrieval. In experiments, we extend the state-of-the-art neural passage retrievers with document-level context via different approaches including prepending document summary, pooling over passage representations, and hybrid retrieval with BM25. The hybrid-retrieval systems, the overall best, can only improve on the DAPR tasks marginally while significantly improving on the document-retrieval tasks. This motivates further research in developing better retrieval systems for the new task. The code and the data are available at https://github.com/kwang2049/dapr 3 authors · May 23, 2023
- Learning to Determine the Quality of News Headlines Today, most newsreaders read the online version of news articles rather than traditional paper-based newspapers. Also, news media publishers rely heavily on the income generated from subscriptions and website visits made by newsreaders. Thus, online user engagement is a very important issue for online newspapers. Much effort has been spent on writing interesting headlines to catch the attention of online users. On the other hand, headlines should not be misleading (e.g., clickbaits); otherwise, readers would be disappointed when reading the content. In this paper, we propose four indicators to determine the quality of published news headlines based on their click count and dwell time, which are obtained by website log analysis. Then, we use soft target distribution of the calculated quality indicators to train our proposed deep learning model which can predict the quality of unpublished news headlines. The proposed model not only processes the latent features of both headline and body of the article to predict its headline quality but also considers the semantic relation between headline and body as well. To evaluate our model, we use a real dataset from a major Canadian newspaper. Results show our proposed model outperforms other state-of-the-art NLP models. 4 authors · Nov 25, 2019
36 Evaluating D-MERIT of Partial-annotation on Information Retrieval Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., ``journals about linguistics'') and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that Language is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval. 7 authors · Jun 23, 2024 2
- Using clarification questions to improve software developers' Web search Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals. 2 authors · Jul 26, 2022
- FOFO: A Benchmark to Evaluate LLMs' Format-Following Capability This paper presents FoFo, a pioneering benchmark for evaluating large language models' (LLMs) ability to follow complex, domain-specific formats, a crucial yet underexamined capability for their application as AI agents. Despite LLMs' advancements, existing benchmarks fail to assess their format-following proficiency adequately. FoFo fills this gap with a diverse range of real-world formats and instructions, developed through an AI-Human collaborative method. Our evaluation across both open-source (e.g., Llama 2, WizardLM) and closed-source (e.g., GPT-4, PALM2, Gemini) LLMs highlights three key findings: open-source models significantly lag behind closed-source ones in format adherence; LLMs' format-following performance is independent of their content generation quality; and LLMs' format proficiency varies across different domains. These insights suggest the need for specialized tuning for format-following skills and highlight FoFo's role in guiding the selection of domain-specific AI agents. FoFo is released here at https://github.com/SalesforceAIResearch/FoFo. 8 authors · Feb 28, 2024
- Instruct-Tuning Pretrained Causal Language Models for Ancient Greek Papyrology and Epigraphy This article presents an experiment in fine-tuning a pretrained causal language model (Meta's Llama 3.1 8B Instruct) for aiding in three fundamental tasks of philological research: chronological and geographic attribution as well as text restoration in ancient Greek inscriptions and documentary papyri. Using a prompt-based instruct approach, the fine-tuned models surpass the state of the art in key metrics. For inscriptions, the models achieve a lower average character error rate (CER) of 22.5% (vs. 26.3%), while closely matching top-1 accuracy (60.9% vs. 61.8%) and top-20 accuracy (77.5% vs. 78.3%) for sequences up to 10 characters. They also provide a practical advantage by ignoring spaces during reconstruction, aligning better with the scriptio continua typically used in ancient written artifacts. In geographic attribution, the model outperforms previous benchmarks with a top-1 accuracy of 75.0% (vs. 70.8%) and a top-3 accuracy of 83.7% (vs. 82.1%). For dating, it achieves an average deviation of 26.2 years (vs. 29.3) and a median deviation of 1 year (vs. 3) from the actual date range. The models also set new baselines for documentary papyri, with a CER of 16.3%, a top-1 accuracy of 71.3%, and top-20 of 85.0% in text reconstruction; a top-1 accuracy of 66.4% and top-3 of 79.9% in geographic attribution; and, in chronological attribution, a deviation of 21.7 years from the actual termini post/ante quem, with a median deviation of 0 years. 1 authors · Sep 20, 2024
- Preserving Multilingual Quality While Tuning Query Encoder on English Only A dense passage retrieval system can serve as the initial stages of information retrieval, selecting the most relevant text passages for downstream tasks. In this work we conducted experiments with the goal of finding how much the quality of a multilingual retrieval could be degraded if the query part of a dual encoder is tuned on an English-only dataset (assuming scarcity of cross-lingual samples for the targeted domain or task). Specifically, starting with a high quality multilingual embedding model, we observe that an English-only tuning may not only preserve the original quality of the multilingual retrieval, but even improve it. 3 authors · Jun 30, 2024
- An Evaluation Framework for Legal Document Summarization A law practitioner has to go through numerous lengthy legal case proceedings for their practices of various categories, such as land dispute, corruption, etc. Hence, it is important to summarize these documents, and ensure that summaries contain phrases with intent matching the category of the case. To the best of our knowledge, there is no evaluation metric that evaluates a summary based on its intent. We propose an automated intent-based summarization metric, which shows a better agreement with human evaluation as compared to other automated metrics like BLEU, ROUGE-L etc. in terms of human satisfaction. We also curate a dataset by annotating intent phrases in legal documents, and show a proof of concept as to how this system can be automated. Additionally, all the code and data to generate reproducible results is available on Github. 6 authors · May 17, 2022
- Enabling Large Language Models to Generate Text with Citations Large language models (LLMs) have emerged as a widely-used tool for information seeking, but their generated outputs are prone to hallucination. In this work, we aim to enable LLMs to generate text with citations, improving their factual correctness and verifiability. Existing work mainly relies on commercial search engines and human evaluation, making it challenging to reproduce and compare with different modeling approaches. We propose ALCE, the first benchmark for Automatic LLMs' Citation Evaluation. ALCE collects a diverse set of questions and retrieval corpora and requires building end-to-end systems to retrieve supporting evidence and generate answers with citations. We build automatic metrics along three dimensions -- fluency, correctness, and citation quality -- and demonstrate their strong correlation with human judgements. Our experiments with state-of-the-art LLMs and novel prompting strategies show that current systems have considerable room for improvements -- for example, on the ELI5 dataset, even the best model has 49% of its generations lacking complete citation support. Our extensive analyses further highlight promising future directions, including developing better retrievers, advancing long-context LLMs, and improving the ability to synthesize information from multiple sources. 4 authors · May 23, 2023
1 When Good and Reproducible Results are a Giant with Feet of Clay: The Importance of Software Quality in NLP Despite its crucial role in research experiments, code correctness is often presumed only on the basis of the perceived quality of results. This assumption comes with the risk of erroneous outcomes and potentially misleading findings. To address this issue, we posit that the current focus on reproducibility should go hand in hand with the emphasis on software quality. We present a case study in which we identify and fix three bugs in widely used implementations of the state-of-the-art Conformer architecture. Through experiments on speech recognition and translation in various languages, we demonstrate that the presence of bugs does not prevent the achievement of good and reproducible results, which however can lead to incorrect conclusions that potentially misguide future research. As a countermeasure, we propose a Code-quality Checklist and release pangoliNN, a library dedicated to testing neural models, with the goal of promoting coding best practices and improving research software quality within the NLP community. 4 authors · Mar 28, 2023
- ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension We present a large-scale dataset, ReCoRD, for machine reading comprehension requiring commonsense reasoning. Experiments on this dataset demonstrate that the performance of state-of-the-art MRC systems fall far behind human performance. ReCoRD represents a challenge for future research to bridge the gap between human and machine commonsense reading comprehension. ReCoRD is available at http://nlp.jhu.edu/record. 6 authors · Oct 30, 2018
1 Mark My Words: A Robust Multilingual Model for Punctuation in Text and Speech Transcripts Punctuation plays a vital role in structuring meaning, yet current models often struggle to restore it accurately in transcripts of spontaneous speech, especially in the presence of disfluencies such as false starts and backtracking. These limitations hinder the performance of downstream tasks like translation, text to speech, summarization, etc. where sentence boundaries are critical for preserving quality. In this work, we introduce Cadence, a generalist punctuation restoration model adapted from a pretrained large language model. Cadence is designed to handle both clean written text and highly spontaneous spoken transcripts. It surpasses the previous state of the art in performance while expanding support from 14 to all 22 Indian languages and English. We conduct a comprehensive analysis of model behavior across punctuation types and language families, identifying persistent challenges under domain shift and with rare punctuation marks. Our findings demonstrate the efficacy of utilizing pretrained language models for multilingual punctuation restoration and highlight Cadence practical value for low resource NLP pipelines at scale. 4 authors · Jun 4
- The Spotify Podcast Dataset Podcasts are a relatively new form of audio media. Episodes appear on a regular cadence, and come in many different formats and levels of formality. They can be formal news journalism or conversational chat; fiction or non-fiction. They are rapidly growing in popularity and yet have been relatively little studied. As an audio format, podcasts are more varied in style and production types than, say, broadcast news, and contain many more genres than typically studied in video research. The medium is therefore a rich domain with many research avenues for the IR and NLP communities. We present the Spotify Podcast Dataset, a set of approximately 100K podcast episodes comprised of raw audio files along with accompanying ASR transcripts. This represents over 47,000 hours of transcribed audio, and is an order of magnitude larger than previous speech-to-text corpora. 7 authors · Apr 8, 2020
- Is ChatGPT a Biomedical Expert? -- Exploring the Zero-Shot Performance of Current GPT Models in Biomedical Tasks We assessed the performance of commercial Large Language Models (LLMs) GPT-3.5-Turbo and GPT-4 on tasks from the 2023 BioASQ challenge. In Task 11b Phase B, which is focused on answer generation, both models demonstrated competitive abilities with leading systems. Remarkably, they achieved this with simple zero-shot learning, grounded with relevant snippets. Even without relevant snippets, their performance was decent, though not on par with the best systems. Interestingly, the older and cheaper GPT-3.5-Turbo system was able to compete with GPT-4 in the grounded Q&A setting on factoid and list answers. In Task 11b Phase A, focusing on retrieval, query expansion through zero-shot learning improved performance, but the models fell short compared to other systems. The code needed to rerun these experiments is available through GitHub. 2 authors · Jun 28, 2023
- Natural Language Processing in the Legal Domain In this paper, we summarize the current state of the field of NLP & Law with a specific focus on recent technical and substantive developments. To support our analysis, we construct and analyze a nearly complete corpus of more than six hundred NLP & Law related papers published over the past decade. Our analysis highlights several major trends. Namely, we document an increasing number of papers written, tasks undertaken, and languages covered over the course of the past decade. We observe an increase in the sophistication of the methods which researchers deployed in this applied context. Slowly but surely, Legal NLP is beginning to match not only the methodological sophistication of general NLP but also the professional standards of data availability and code reproducibility observed within the broader scientific community. We believe all of these trends bode well for the future of the field, but many questions in both the academic and commercial sphere still remain open. 5 authors · Feb 23, 2023
- Structural Text Segmentation of Legal Documents The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange 4 authors · Dec 7, 2020
- Doc2Query--: When Less is More Doc2Query -- the process of expanding the content of a document before indexing using a sequence-to-sequence model -- has emerged as a prominent technique for improving the first-stage retrieval effectiveness of search engines. However, sequence-to-sequence models are known to be prone to "hallucinating" content that is not present in the source text. We argue that Doc2Query is indeed prone to hallucination, which ultimately harms retrieval effectiveness and inflates the index size. In this work, we explore techniques for filtering out these harmful queries prior to indexing. We find that using a relevance model to remove poor-quality queries can improve the retrieval effectiveness of Doc2Query by up to 16%, while simultaneously reducing mean query execution time by 23% and cutting the index size by 33%. We release the code, data, and a live demonstration to facilitate reproduction and further exploration at https://github.com/terrierteam/pyterrier_doc2query. 3 authors · Jan 9, 2023
7 Are Neural Language Models Good Plagiarists? A Benchmark for Neural Paraphrase Detection The rise of language models such as BERT allows for high-quality text paraphrasing. This is a problem to academic integrity, as it is difficult to differentiate between original and machine-generated content. We propose a benchmark consisting of paraphrased articles using recent language models relying on the Transformer architecture. Our contribution fosters future research of paraphrase detection systems as it offers a large collection of aligned original and paraphrased documents, a study regarding its structure, classification experiments with state-of-the-art systems, and we make our findings publicly available. 4 authors · Mar 23, 2021
- Correcting diacritics and typos with a ByT5 transformer model Due to the fast pace of life and online communications and the prevalence of English and the QWERTY keyboard, people tend to forgo using diacritics, make typographical errors (typos) when typing in other languages. Restoring diacritics and correcting spelling is important for proper language use and the disambiguation of texts for both humans and downstream algorithms. However, both of these problems are typically addressed separately: the state-of-the-art diacritics restoration methods do not tolerate other typos, but classical spellcheckers also cannot deal adequately with all the diacritics missing. In this work, we tackle both problems at once by employing the newly-developed universal ByT5 byte-level seq2seq transformer model that requires no language-specific model structures. For a comparison, we perform diacritics restoration on benchmark datasets of 12 languages, with the addition of Lithuanian. The experimental investigation proves that our approach is able to achieve results (> 98%) comparable to the previous state-of-the-art, despite being trained less and on fewer data. Our approach is also able to restore diacritics in words not seen during training with > 76% accuracy. Our simultaneous diacritics restoration and typos correction approach reaches > 94% alpha-word accuracy on the 13 languages. It has no direct competitors and strongly outperforms classical spell-checking or dictionary-based approaches. We also demonstrate all the accuracies to further improve with more training. Taken together, this shows the great real-world application potential of our suggested methods to more data, languages, and error classes. 5 authors · Jan 31, 2022
1 What Looks Good with my Sofa: Multimodal Search Engine for Interior Design In this paper, we propose a multi-modal search engine for interior design that combines visual and textual queries. The goal of our engine is to retrieve interior objects, e.g. furniture or wall clocks, that share visual and aesthetic similarities with the query. Our search engine allows the user to take a photo of a room and retrieve with a high recall a list of items identical or visually similar to those present in the photo. Additionally, it allows to return other items that aesthetically and stylistically fit well together. To achieve this goal, our system blends the results obtained using textual and visual modalities. Thanks to this blending strategy, we increase the average style similarity score of the retrieved items by 11%. Our work is implemented as a Web-based application and it is planned to be opened to the public. 6 authors · Jul 21, 2017
16 Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license. 5 authors · Jun 24, 2024 3
3 Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa 5 authors · Jul 31, 2023
4 Patience is all you need! An agentic system for performing scientific literature review Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation. 2 authors · Mar 28 1
- Decomposing Complex Queries for Tip-of-the-tongue Retrieval When re-finding items, users who forget or are uncertain about identifying details often rely on creative strategies for expressing their information needs -- complex queries that describe content elements (e.g., book characters or events), information beyond the document text (e.g., descriptions of book covers), or personal context (e.g., when they read a book). This retrieval setting, called tip of the tongue (TOT), is especially challenging for models heavily reliant on lexical and semantic overlap between query and document text. In this work, we introduce a simple yet effective framework for handling such complex queries by decomposing the query into individual clues, routing those as sub-queries to specialized retrievers, and ensembling the results. This approach allows us to take advantage of off-the-shelf retrievers (e.g., CLIP for retrieving images of book covers) or incorporate retriever-specific logic (e.g., date constraints). We show that our framework incorportating query decompositions into retrievers can improve gold book recall up to 7% relative again for Recall@5 on a new collection of 14,441 real-world query-book pairs from an online community for resolving TOT inquiries. 4 authors · May 24, 2023
- Some Like It Small: Czech Semantic Embedding Models for Industry Applications This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance. 4 authors · Nov 23, 2023
- Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems. 8 authors · Jun 24, 2024
- Evaluating Verifiability in Generative Search Engines Generative search engines directly generate responses to user queries, along with in-line citations. A prerequisite trait of a trustworthy generative search engine is verifiability, i.e., systems should cite comprehensively (high citation recall; all statements are fully supported by citations) and accurately (high citation precision; every cite supports its associated statement). We conduct human evaluation to audit four popular generative search engines -- Bing Chat, NeevaAI, perplexity.ai, and YouChat -- across a diverse set of queries from a variety of sources (e.g., historical Google user queries, dynamically-collected open-ended questions on Reddit, etc.). We find that responses from existing generative search engines are fluent and appear informative, but frequently contain unsupported statements and inaccurate citations: on average, a mere 51.5% of generated sentences are fully supported by citations and only 74.5% of citations support their associated sentence. We believe that these results are concerningly low for systems that may serve as a primary tool for information-seeking users, especially given their facade of trustworthiness. We hope that our results further motivate the development of trustworthy generative search engines and help researchers and users better understand the shortcomings of existing commercial systems. 3 authors · Apr 19, 2023
- Sequencing Matters: A Generate-Retrieve-Generate Model for Building Conversational Agents This paper contains what the Georgetown InfoSense group has done in regard to solving the challenges presented by TREC iKAT 2023. Our submitted runs outperform the median runs by a significant margin, exhibiting superior performance in nDCG across various cut numbers and in overall success rate. Our approach uses a Generate-Retrieve-Generate method, which we've found to greatly outpace Retrieve-Then-Generate approaches for the purposes of iKAT. Our solution involves the use of Large Language Models (LLMs) for initial answers, answer grounding by BM25, passage quality filtering by logistic regression, and answer generation by LLMs again. We leverage several purpose-built Language Models, including BERT, Chat-based, and text-to-transfer-based models, for text understanding, classification, generation, and summarization. The official results of the TREC evaluation contradict our initial self-evaluation, which may suggest that a decrease in the reliance on our retrieval and classification methods is better. Nonetheless, our findings suggest that the sequence of involving these different components matters, where we see an essentiality of using LLMs before using search engines. 2 authors · Nov 15, 2023
2 The Knesset Corpus: An Annotated Corpus of Hebrew Parliamentary Proceedings We present the Knesset Corpus, a corpus of Hebrew parliamentary proceedings containing over 30 million sentences (over 384 million tokens) from all the (plenary and committee) protocols held in the Israeli parliament between 1998 and 2022. Sentences are annotated with morpho-syntactic information and are associated with detailed meta-information reflecting demographic and political properties of the speakers, based on a large database of parliament members and factions that we compiled. We discuss the structure and composition of the corpus and the various processing steps we applied to it. To demonstrate the utility of this novel dataset we present two use cases. We show that the corpus can be used to examine historical developments in the style of political discussions by showing a reduction in lexical richness in the proceedings over time. We also investigate some differences between the styles of men and women speakers. These use cases exemplify the potential of the corpus to shed light on important trends in the Israeli society, supporting research in linguistics, political science, communication, law, etc. 5 authors · May 28, 2024
- Precise Legal Sentence Boundary Detection for Retrieval at Scale: NUPunkt and CharBoundary We present NUPunkt and CharBoundary, two sentence boundary detection libraries optimized for high-precision, high-throughput processing of legal text in large-scale applications such as due diligence, e-discovery, and legal research. These libraries address the critical challenges posed by legal documents containing specialized citations, abbreviations, and complex sentence structures that confound general-purpose sentence boundary detectors. Our experimental evaluation on five diverse legal datasets comprising over 25,000 documents and 197,000 annotated sentence boundaries demonstrates that NUPunkt achieves 91.1% precision while processing 10 million characters per second with modest memory requirements (432 MB). CharBoundary models offer balanced and adjustable precision-recall tradeoffs, with the large model achieving the highest F1 score (0.782) among all tested methods. Notably, NUPunkt provides a 29-32% precision improvement over general-purpose tools while maintaining exceptional throughput, processing multi-million document collections in minutes rather than hours. Both libraries run efficiently on standard CPU hardware without requiring specialized accelerators. NUPunkt is implemented in pure Python with zero external dependencies, while CharBoundary relies only on scikit-learn and optional ONNX runtime integration for optimized performance. Both libraries are available under the MIT license, can be installed via PyPI, and can be interactively tested at https://sentences.aleainstitute.ai/. These libraries address critical precision issues in retrieval-augmented generation systems by preserving coherent legal concepts across sentences, where each percentage improvement in precision yields exponentially greater reductions in context fragmentation, creating cascading benefits throughout retrieval pipelines and significantly enhancing downstream reasoning quality. 3 authors · Apr 5
1 Multiresolution Textual Inversion We extend Textual Inversion to learn pseudo-words that represent a concept at different resolutions. This allows us to generate images that use the concept with different levels of detail and also to manipulate different resolutions using language. Once learned, the user can generate images at different levels of agreement to the original concept; "A photo of S^*(0)" produces the exact object while the prompt "A photo of S^*(0.8)" only matches the rough outlines and colors. Our framework allows us to generate images that use different resolutions of an image (e.g. details, textures, styles) as separate pseudo-words that can be composed in various ways. We open-soure our code in the following URL: https://github.com/giannisdaras/multires_textual_inversion 2 authors · Nov 30, 2022
- Learning to Recognize Musical Genre from Audio We here summarize our experience running a challenge with open data for musical genre recognition. Those notes motivate the task and the challenge design, show some statistics about the submissions, and present the results. 4 authors · Mar 13, 2018
1 VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area. 3 authors · Jul 31, 2023
- Teaching LLMs at Charles University: Assignments and Activities This paper presents teaching materials, particularly assignments and ideas for classroom activities, from a new course on large language models (LLMs) taught at Charles University. The assignments include experiments with LLM inference for weather report generation and machine translation. The classroom activities include class quizzes, focused research on downstream tasks and datasets, and an interactive "best paper" session aimed at reading and comprehension of research papers. 7 authors · Jul 29, 2024
- DOLFIN -- Document-Level Financial test set for Machine Translation Despite the strong research interest in document-level Machine Translation (MT), the test sets dedicated to this task are still scarce. The existing test sets mainly cover topics from the general domain and fall short on specialised domains, such as legal and financial. Also, in spite of their document-level aspect, they still follow a sentence-level logic that does not allow for including certain linguistic phenomena such as information reorganisation. In this work, we aim to fill this gap by proposing a novel test set: DOLFIN. The dataset is built from specialised financial documents, and it makes a step towards true document-level MT by abandoning the paradigm of perfectly aligned sentences, presenting data in units of sections rather than sentences. The test set consists of an average of 1950 aligned sections for five language pairs. We present a detailed data collection pipeline that can serve as inspiration for aligning new document-level datasets. We demonstrate the usefulness and quality of this test set by evaluating a number of models. Our results show that the test set is able to discriminate between context-sensitive and context-agnostic models and shows the weaknesses when models fail to accurately translate financial texts. The test set is made public for the community. 5 authors · Feb 5
- Rethinking Search: Making Domain Experts out of Dilettantes When experiencing an information need, users want to engage with a domain expert, but often turn to an information retrieval system, such as a search engine, instead. Classical information retrieval systems do not answer information needs directly, but instead provide references to (hopefully authoritative) answers. Successful question answering systems offer a limited corpus created on-demand by human experts, which is neither timely nor scalable. Pre-trained language models, by contrast, are capable of directly generating prose that may be responsive to an information need, but at present they are dilettantes rather than domain experts -- they do not have a true understanding of the world, they are prone to hallucinating, and crucially they are incapable of justifying their utterances by referring to supporting documents in the corpus they were trained over. This paper examines how ideas from classical information retrieval and pre-trained language models can be synthesized and evolved into systems that truly deliver on the promise of domain expert advice. 4 authors · May 5, 2021
- Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations There is a compelling necessity from enterprises for fine tuning LLMs (Large Language Models) o get them trained on proprietary domain knowledge. The challenge is to imbibe the LLMs with domain specific knowledge using the most optimial resource and cost and in the best possible time. Many enterprises rely on RAG (Retrieval Augmented Generation) which does not need LLMs to be ine-tuned but they are limited by the quality of vector databases and their retrieval capabilities rather than the intrinsic capabilities of the LLMs themselves. In our current work we focus on fine tuning LLaMA, an open source LLM using proprietary documents and code from an enterprise repository and use the fine tuned models to evaluate the quality of responses. As part of this work, we aim to guide beginners on how to start with fine tuning an LLM for documentation and code by making educated guesses on size of GPU required and options that are available for formatting the data. We also propose pre processing recipes for both documentation and code to prepare dataset in different formats. The proposed methods of data preparation for document datasets are forming paragraph chunks, forming question and answer pairs and forming keyword and paragraph chunk pairs. For code dataset we propose forming summary and function pairs. Further, we qualitatively evaluate the results of the models for domain specific queries. Finally, we also propose practical guidelines and recommendations for fine tuning LLMs. 4 authors · Mar 23, 2024
- INSTRUCTIR: A Benchmark for Instruction Following of Information Retrieval Models Despite the critical need to align search targets with users' intention, retrievers often only prioritize query information without delving into the users' intended search context. Enhancing the capability of retrievers to understand intentions and preferences of users, akin to language model instructions, has the potential to yield more aligned search targets. Prior studies restrict the application of instructions in information retrieval to a task description format, neglecting the broader context of diverse and evolving search scenarios. Furthermore, the prevailing benchmarks utilized for evaluation lack explicit tailoring to assess instruction-following ability, thereby hindering progress in this field. In response to these limitations, we propose a novel benchmark,INSTRUCTIR, specifically designed to evaluate instruction-following ability in information retrieval tasks. Our approach focuses on user-aligned instructions tailored to each query instance, reflecting the diverse characteristics inherent in real-world search scenarios. Through experimental analysis, we observe that retrievers fine-tuned to follow task-style instructions, such as INSTRUCTOR, can underperform compared to their non-instruction-tuned counterparts. This underscores potential overfitting issues inherent in constructing retrievers trained on existing instruction-aware retrieval datasets. 7 authors · Feb 22, 2024
- NS3: Neuro-Symbolic Semantic Code Search Semantic code search is the task of retrieving a code snippet given a textual description of its functionality. Recent work has been focused on using similarity metrics between neural embeddings of text and code. However, current language models are known to struggle with longer, compositional text, and multi-step reasoning. To overcome this limitation, we propose supplementing the query sentence with a layout of its semantic structure. The semantic layout is used to break down the final reasoning decision into a series of lower-level decisions. We use a Neural Module Network architecture to implement this idea. We compare our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines, including state-of-the-art semantic code retrieval methods, and evaluate on two datasets - CodeSearchNet and Code Search and Question Answering. We demonstrate that our approach results in more precise code retrieval, and we study the effectiveness of our modular design when handling compositional queries. 6 authors · May 21, 2022
- LePaRD: A Large-Scale Dataset of Judges Citing Precedents We present the Legal Passage Retrieval Dataset LePaRD. LePaRD is a massive collection of U.S. federal judicial citations to precedent in context. The dataset aims to facilitate work on legal passage prediction, a challenging practice-oriented legal retrieval and reasoning task. Legal passage prediction seeks to predict relevant passages from precedential court decisions given the context of a legal argument. We extensively evaluate various retrieval approaches on LePaRD, and find that classification appears to work best. However, we note that legal precedent prediction is a difficult task, and there remains significant room for improvement. We hope that by publishing LePaRD, we will encourage others to engage with a legal NLP task that promises to help expand access to justice by reducing the burden associated with legal research. A subset of the LePaRD dataset is freely available and the whole dataset will be released upon publication. 4 authors · Nov 15, 2023
- WeaverBird: Empowering Financial Decision-Making with Large Language Model, Knowledge Base, and Search Engine We present WeaverBird, an intelligent dialogue system designed specifically for the finance domain. Our system harnesses a large language model of GPT architecture that has been tuned using extensive corpora of finance-related text. As a result, our system possesses the capability to understand complex financial queries, such as "How should I manage my investments during inflation?", and provide informed responses. Furthermore, our system incorporates a local knowledge base and a search engine to retrieve relevant information. The final responses are conditioned on the search results and include proper citations to the sources, thus enjoying an enhanced credibility. Through a range of finance-related questions, we have demonstrated the superior performance of our system compared to other models. To experience our system firsthand, users can interact with our live demo at https://weaverbird.ttic.edu, as well as watch our 2-min video illustration at https://www.youtube.com/watch?v=fyV2qQkX6Tc. 13 authors · Aug 10, 2023
- CiteME: Can Language Models Accurately Cite Scientific Claims? Thousands of new scientific papers are published each month. Such information overload complicates researcher efforts to stay current with the state-of-the-art as well as to verify and correctly attribute claims. We pose the following research question: Given a text excerpt referencing a paper, could an LM act as a research assistant to correctly identify the referenced paper? We advance efforts to answer this question by building a benchmark that evaluates the abilities of LMs in citation attribution. Our benchmark, CiteME, consists of text excerpts from recent machine learning papers, each referencing a single other paper. CiteME use reveals a large gap between frontier LMs and human performance, with LMs achieving only 4.2-18.5% accuracy and humans 69.7%. We close this gap by introducing CiteAgent, an autonomous system built on the GPT-4o LM that can also search and read papers, which achieves an accuracy of 35.3\% on CiteME. Overall, CiteME serves as a challenging testbed for open-ended claim attribution, driving the research community towards a future where any claim made by an LM can be automatically verified and discarded if found to be incorrect. 6 authors · Jul 10, 2024
- Improving Access to Justice for the Indian Population: A Benchmark for Evaluating Translation of Legal Text to Indian Languages Most legal text in the Indian judiciary is written in complex English due to historical reasons. However, only about 10% of the Indian population is comfortable in reading English. Hence legal text needs to be made available in various Indian languages, possibly by translating the available legal text from English. Though there has been a lot of research on translation to and between Indian languages, to our knowledge, there has not been much prior work on such translation in the legal domain. In this work, we construct the first high-quality legal parallel corpus containing aligned text units in English and nine Indian languages, that includes several low-resource languages. We also benchmark the performance of a wide variety of Machine Translation (MT) systems over this corpus, including commercial MT systems, open-source MT systems and Large Language Models. Through a comprehensive survey by Law practitioners, we check how satisfied they are with the translations by some of these MT systems, and how well automatic MT evaluation metrics agree with the opinions of Law practitioners. 5 authors · Oct 15, 2023
2 ReviewerGPT? An Exploratory Study on Using Large Language Models for Paper Reviewing Given the rapid ascent of large language models (LLMs), we study the question: (How) can large language models help in reviewing of scientific papers or proposals? We first conduct some pilot studies where we find that (i) GPT-4 outperforms other LLMs (Bard, Vicuna, Koala, Alpaca, LLaMa, Dolly, OpenAssistant, StableLM), and (ii) prompting with a specific question (e.g., to identify errors) outperforms prompting to simply write a review. With these insights, we study the use of LLMs (specifically, GPT-4) for three tasks: 1. Identifying errors: We construct 13 short computer science papers each with a deliberately inserted error, and ask the LLM to check for the correctness of these papers. We observe that the LLM finds errors in 7 of them, spanning both mathematical and conceptual errors. 2. Verifying checklists: We task the LLM to verify 16 closed-ended checklist questions in the respective sections of 15 NeurIPS 2022 papers. We find that across 119 {checklist question, paper} pairs, the LLM had an 86.6% accuracy. 3. Choosing the "better" paper: We generate 10 pairs of abstracts, deliberately designing each pair in such a way that one abstract was clearly superior than the other. The LLM, however, struggled to discern these relatively straightforward distinctions accurately, committing errors in its evaluations for 6 out of the 10 pairs. Based on these experiments, we think that LLMs have a promising use as reviewing assistants for specific reviewing tasks, but not (yet) for complete evaluations of papers or proposals. 2 authors · Jun 1, 2023
53 PDFTriage: Question Answering over Long, Structured Documents Large Language Models (LLMs) have issues with document question answering (QA) in situations where the document is unable to fit in the small context length of an LLM. To overcome this issue, most existing works focus on retrieving the relevant context from the document, representing them as plain text. However, documents such as PDFs, web pages, and presentations are naturally structured with different pages, tables, sections, and so on. Representing such structured documents as plain text is incongruous with the user's mental model of these documents with rich structure. When a system has to query the document for context, this incongruity is brought to the fore, and seemingly trivial questions can trip up the QA system. To bridge this fundamental gap in handling structured documents, we propose an approach called PDFTriage that enables models to retrieve the context based on either structure or content. Our experiments demonstrate the effectiveness of the proposed PDFTriage-augmented models across several classes of questions where existing retrieval-augmented LLMs fail. To facilitate further research on this fundamental problem, we release our benchmark dataset consisting of 900+ human-generated questions over 80 structured documents from 10 different categories of question types for document QA. 6 authors · Sep 16, 2023 9
- Handling and Presenting Harmful Text in NLP Research Text data can pose a risk of harm. However, the risks are not fully understood, and how to handle, present, and discuss harmful text in a safe way remains an unresolved issue in the NLP community. We provide an analytical framework categorising harms on three axes: (1) the harm type (e.g., misinformation, hate speech or racial stereotypes); (2) whether a harm is sought as a feature of the research design if explicitly studying harmful content (e.g., training a hate speech classifier), versus unsought if harmful content is encountered when working on unrelated problems (e.g., language generation or part-of-speech tagging); and (3) who it affects, from people (mis)represented in the data to those handling the data and those publishing on the data. We provide advice for practitioners, with concrete steps for mitigating harm in research and in publication. To assist implementation we introduce HarmCheck -- a documentation standard for handling and presenting harmful text in research. 4 authors · Apr 29, 2022
1 Factual Error Correction for Abstractive Summaries Using Entity Retrieval Despite the recent advancements in abstractive summarization systems leveraged from large-scale datasets and pre-trained language models, the factual correctness of the summary is still insufficient. One line of trials to mitigate this problem is to include a post-editing process that can detect and correct factual errors in the summary. In building such a post-editing system, it is strongly required that 1) the process has a high success rate and interpretability and 2) has a fast running time. Previous approaches focus on regeneration of the summary using the autoregressive models, which lack interpretability and require high computing resources. In this paper, we propose an efficient factual error correction system RFEC based on entities retrieval post-editing process. RFEC first retrieves the evidence sentences from the original document by comparing the sentences with the target summary. This approach greatly reduces the length of text for a system to analyze. Next, RFEC detects the entity-level errors in the summaries by considering the evidence sentences and substitutes the wrong entities with the accurate entities from the evidence sentences. Experimental results show that our proposed error correction system shows more competitive performance than baseline methods in correcting the factual errors with a much faster speed. 7 authors · Apr 18, 2022
1 Do RAG Systems Suffer From Positional Bias? Retrieval Augmented Generation enhances LLM accuracy by adding passages retrieved from an external corpus to the LLM prompt. This paper investigates how positional bias - the tendency of LLMs to weight information differently based on its position in the prompt - affects not only the LLM's capability to capitalize on relevant passages, but also its susceptibility to distracting passages. Through extensive experiments on three benchmarks, we show how state-of-the-art retrieval pipelines, while attempting to retrieve relevant passages, systematically bring highly distracting ones to the top ranks, with over 60% of queries containing at least one highly distracting passage among the top-10 retrieved passages. As a result, the impact of the LLM positional bias, which in controlled settings is often reported as very prominent by related works, is actually marginal in real scenarios since both relevant and distracting passages are, in turn, penalized. Indeed, our findings reveal that sophisticated strategies that attempt to rearrange the passages based on LLM positional preferences do not perform better than random shuffling. 5 authors · May 21 2
- IDK-MRC: Unanswerable Questions for Indonesian Machine Reading Comprehension Machine Reading Comprehension (MRC) has become one of the essential tasks in Natural Language Understanding (NLU) as it is often included in several NLU benchmarks (Liang et al., 2020; Wilie et al., 2020). However, most MRC datasets only have answerable question type, overlooking the importance of unanswerable questions. MRC models trained only on answerable questions will select the span that is most likely to be the answer, even when the answer does not actually exist in the given passage (Rajpurkar et al., 2018). This problem especially remains in medium- to low-resource languages like Indonesian. Existing Indonesian MRC datasets (Purwarianti et al., 2007; Clark et al., 2020) are still inadequate because of the small size and limited question types, i.e., they only cover answerable questions. To fill this gap, we build a new Indonesian MRC dataset called I(n)don'tKnow- MRC (IDK-MRC) by combining the automatic and manual unanswerable question generation to minimize the cost of manual dataset construction while maintaining the dataset quality. Combined with the existing answerable questions, IDK-MRC consists of more than 10K questions in total. Our analysis shows that our dataset significantly improves the performance of Indonesian MRC models, showing a large improvement for unanswerable questions. 2 authors · Oct 25, 2022
- SQUINKY! A Corpus of Sentence-level Formality, Informativeness, and Implicature We introduce a corpus of 7,032 sentences rated by human annotators for formality, informativeness, and implicature on a 1-7 scale. The corpus was annotated using Amazon Mechanical Turk. Reliability in the obtained judgments was examined by comparing mean ratings across two MTurk experiments, and correlation with pilot annotations (on sentence formality) conducted in a more controlled setting. Despite the subjectivity and inherent difficulty of the annotation task, correlations between mean ratings were quite encouraging, especially on formality and informativeness. We further explored correlation between the three linguistic variables, genre-wise variation of ratings and correlations within genres, compatibility with automatic stylistic scoring, and sentential make-up of a document in terms of style. To date, our corpus is the largest sentence-level annotated corpus released for formality, informativeness, and implicature. 1 authors · Jun 7, 2015
1 What are the Desired Characteristics of Calibration Sets? Identifying Correlates on Long Form Scientific Summarization Summarization models often generate text that is poorly calibrated to quality metrics because they are trained to maximize the likelihood of a single reference (MLE). To address this, recent work has added a calibration step, which exposes a model to its own ranked outputs to improve relevance or, in a separate line of work, contrasts positive and negative sets to improve faithfulness. While effective, much of this work has focused on how to generate and optimize these sets. Less is known about why one setup is more effective than another. In this work, we uncover the underlying characteristics of effective sets. For each training instance, we form a large, diverse pool of candidates and systematically vary the subsets used for calibration fine-tuning. Each selection strategy targets distinct aspects of the sets, such as lexical diversity or the size of the gap between positive and negatives. On three diverse scientific long-form summarization datasets (spanning biomedical, clinical, and chemical domains), we find, among others, that faithfulness calibration is optimal when the negative sets are extractive and more likely to be generated, whereas for relevance calibration, the metric margin between candidates should be maximized and surprise--the disagreement between model and metric defined candidate rankings--minimized. Code to create, select, and optimize calibration sets is available at https://github.com/griff4692/calibrating-summaries 10 authors · May 12, 2023 1
- Telco-DPR: A Hybrid Dataset for Evaluating Retrieval Models of 3GPP Technical Specifications This paper proposes a Question-Answering (QA) system for the telecom domain using 3rd Generation Partnership Project (3GPP) technical documents. Alongside, a hybrid dataset, Telco-DPR, which consists of a curated 3GPP corpus in a hybrid format, combining text and tables, is presented. Additionally, the dataset includes a set of synthetic question/answer pairs designed to evaluate the retrieval performance of QA systems on this type of data. The retrieval models, including the sparse model, Best Matching 25 (BM25), as well as dense models, such as Dense Passage Retriever (DPR) and Dense Hierarchical Retrieval (DHR), are evaluated and compared using top-K accuracy and Mean Reciprocal Rank (MRR). The results show that DHR, a retriever model utilising hierarchical passage selection through fine-tuning at both the document and passage levels, outperforms traditional methods in retrieving relevant technical information, achieving a Top-10 accuracy of 86.2%. Additionally, the Retriever-Augmented Generation (RAG) technique, used in the proposed QA system, is evaluated to demonstrate the benefits of using the hybrid dataset and the DHR. The proposed QA system, using the developed RAG model and the Generative Pretrained Transformer (GPT)-4, achieves a 14% improvement in answer accuracy, when compared to a previous benchmark on the same dataset. 4 authors · Oct 15, 2024
- [Call for Papers] The 2nd BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus After last year's successful BabyLM Challenge, the competition will be hosted again in 2024/2025. The overarching goals of the challenge remain the same; however, some of the competition rules will be different. The big changes for this year's competition are as follows: First, we replace the loose track with a paper track, which allows (for example) non-model-based submissions, novel cognitively-inspired benchmarks, or analysis techniques. Second, we are relaxing the rules around pretraining data, and will now allow participants to construct their own datasets provided they stay within the 100M-word or 10M-word budget. Third, we introduce a multimodal vision-and-language track, and will release a corpus of 50% text-only and 50% image-text multimodal data as a starting point for LM model training. The purpose of this CfP is to provide rules for this year's challenge, explain these rule changes and their rationale in greater detail, give a timeline of this year's competition, and provide answers to frequently asked questions from last year's challenge. 10 authors · Apr 9, 2024
- TransEvalnia: Reasoning-based Evaluation and Ranking of Translations We present TransEvalnia, a prompting-based translation evaluation and ranking system that uses reasoning in performing its evaluations and ranking. This system presents fine-grained evaluations based on a subset of the Multidimensional Quality Metrics (https://themqm.org/), returns an assessment of which translation it deems the best, and provides numerical scores for the various dimensions and for the overall translation. We show that TransEvalnia performs as well as or better than the state-of-the-art MT-Ranker (Moosa et al. 2024) on our own English-Japanese data as well as several language pairs from various WMT shared tasks. Using Anthropic's Claude-3.5-Sonnet and Qwen-2.5-72B-Instruct as the evaluation LLMs, we show that the evaluations returned are deemed highly acceptable to human raters, and that the scores assigned to the translations by Sonnet, as well as other LLMs, correlate well with scores assigned by the human raters. We also note the sensitivity of our system -- as well as MT-Ranker -- to the order in which the translations are presented, and we propose methods to address this position bias. All data, including the system's evaluation and reasoning, human assessments, as well as code is released. 3 authors · Jul 16
11 BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. BRIGHT is constructed from the 1,398 real-world queries collected from diverse domains (such as economics, psychology, robotics, software engineering, earth sciences, etc.), sourced from naturally occurring or carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard [38 ], which achieves a score of 59.0 nDCG@10,2 produces a score of nDCG@10 of 18.0 on BRIGHT. We further demonstrate that augmenting queries with Chain-of-Thought reasoning generated by large language models (LLMs) improves performance by up to 12.2 points. Moreover, BRIGHT is robust against data leakage during pretraining of the benchmarked models as we validate by showing similar performance even when documents from the benchmark are included in the training data. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings. Our code and data are available at https://brightbenchmark.github.io. 15 authors · Jul 16, 2024 2
- Development of a New Image-to-text Conversion System for Pashto, Farsi and Traditional Chinese We report upon the results of a research and prototype building project Worldly~OCR dedicated to developing new, more accurate image-to-text conversion software for several languages and writing systems. These include the cursive scripts Farsi and Pashto, and Latin cursive scripts. We also describe approaches geared towards Traditional Chinese, which is non-cursive, but features an extremely large character set of 65,000 characters. Our methodology is based on Machine Learning, especially Deep Learning, and Data Science, and is directed towards vast quantities of original documents, exceeding a billion pages. The target audience of this paper is a general audience with interest in Digital Humanities or in retrieval of accurate full-text and metadata from digital images. 4 authors · May 8, 2020
- Leveraging Closed-Access Multilingual Embedding for Automatic Sentence Alignment in Low Resource Languages The importance of qualitative parallel data in machine translation has long been determined but it has always been very difficult to obtain such in sufficient quantity for the majority of world languages, mainly because of the associated cost and also the lack of accessibility to these languages. Despite the potential for obtaining parallel datasets from online articles using automatic approaches, forensic investigations have found a lot of quality-related issues such as misalignment, and wrong language codes. In this work, we present a simple but qualitative parallel sentence aligner that carefully leveraged the closed-access Cohere multilingual embedding, a solution that ranked second in the just concluded #CoHereAIHack 2023 Challenge (see https://ai6lagos.devpost.com). The proposed approach achieved 94.96 and 54.83 f1 scores on FLORES and MAFAND-MT, compared to 3.64 and 0.64 of LASER respectively. Our method also achieved an improvement of more than 5 BLEU scores over LASER, when the resulting datasets were used with MAFAND-MT dataset to train translation models. Our code and data are available for research purposes here (https://github.com/abumafrim/Cohere-Align). 8 authors · Nov 20, 2023
- Investigating Prompt Engineering in Diffusion Models With the spread of the use of Text2Img diffusion models such as DALL-E 2, Imagen, Mid Journey and Stable Diffusion, one challenge that artists face is selecting the right prompts to achieve the desired artistic output. We present techniques for measuring the effect that specific words and phrases in prompts have, and (in the Appendix) present guidance on the selection of prompts to produce desired effects. 2 authors · Nov 21, 2022
- Unified Multi-Modal Interleaved Document Representation for Information Retrieval Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way. 5 authors · Oct 3, 2024
- LegalNLP -- Natural Language Processing methods for the Brazilian Legal Language We present and make available pre-trained language models (Phraser, Word2Vec, Doc2Vec, FastText, and BERT) for the Brazilian legal language, a Python package with functions to facilitate their use, and a set of demonstrations/tutorials containing some applications involving them. Given that our material is built upon legal texts coming from several Brazilian courts, this initiative is extremely helpful for the Brazilian legal field, which lacks other open and specific tools and language models. Our main objective is to catalyze the use of natural language processing tools for legal texts analysis by the Brazilian industry, government, and academia, providing the necessary tools and accessible material. 9 authors · Oct 5, 2021
1 SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications We describe the SemEval task of extracting keyphrases and relations between them from scientific documents, which is crucial for understanding which publications describe which processes, tasks and materials. Although this was a new task, we had a total of 26 submissions across 3 evaluation scenarios. We expect the task and the findings reported in this paper to be relevant for researchers working on understanding scientific content, as well as the broader knowledge base population and information extraction communities. 5 authors · Apr 10, 2017
1 More efficient manual review of automatically transcribed tabular data Machine learning methods have proven useful in transcribing historical data. However, results from even highly accurate methods require manual verification and correction. Such manual review can be time-consuming and expensive, therefore the objective of this paper was to make it more efficient. Previously, we used machine learning to transcribe 2.3 million handwritten occupation codes from the Norwegian 1950 census with high accuracy (97%). We manually reviewed the 90,000 (3%) codes with the lowest model confidence. We allocated those 90,000 codes to human reviewers, who used our annotation tool to review the codes. To assess reviewer agreement, some codes were assigned to multiple reviewers. We then analyzed the review results to understand the relationship between accuracy improvements and effort. Additionally, we interviewed the reviewers to improve the workflow. The reviewers corrected 62.8% of the labels and agreed with the model label in 31.9% of cases. About 0.2% of the images could not be assigned a label, while for 5.1% the reviewers were uncertain, or they assigned an invalid label. 9,000 images were independently reviewed by multiple reviewers, resulting in an agreement of 86.43% and disagreement of 8.96%. We learned that our automatic transcription is biased towards the most frequent codes, with a higher degree of misclassification for the lowest frequency codes. Our interview findings show that the reviewers did internal quality control and found our custom tool well-suited. So, only one reviewer is needed, but they should report uncertainty. 5 authors · Jun 28, 2023
- ARAGOG: Advanced RAG Output Grading Retrieval-Augmented Generation (RAG) is essential for integrating external knowledge into Large Language Model (LLM) outputs. While the literature on RAG is growing, it primarily focuses on systematic reviews and comparisons of new state-of-the-art (SoTA) techniques against their predecessors, with a gap in extensive experimental comparisons. This study begins to address this gap by assessing various RAG methods' impacts on retrieval precision and answer similarity. We found that Hypothetical Document Embedding (HyDE) and LLM reranking significantly enhance retrieval precision. However, Maximal Marginal Relevance (MMR) and Cohere rerank did not exhibit notable advantages over a baseline Naive RAG system, and Multi-query approaches underperformed. Sentence Window Retrieval emerged as the most effective for retrieval precision, despite its variable performance on answer similarity. The study confirms the potential of the Document Summary Index as a competent retrieval approach. All resources related to this research are publicly accessible for further investigation through our GitHub repository ARAGOG (https://github.com/predlico/ARAGOG). We welcome the community to further this exploratory study in RAG systems. 3 authors · Apr 1, 2024
- HC4: A New Suite of Test Collections for Ad Hoc CLIR HC4 is a new suite of test collections for ad hoc Cross-Language Information Retrieval (CLIR), with Common Crawl News documents in Chinese, Persian, and Russian, topics in English and in the document languages, and graded relevance judgments. New test collections are needed because existing CLIR test collections built using pooling of traditional CLIR runs have systematic gaps in their relevance judgments when used to evaluate neural CLIR methods. The HC4 collections contain 60 topics and about half a million documents for each of Chinese and Persian, and 54 topics and five million documents for Russian. Active learning was used to determine which documents to annotate after being seeded using interactive search and judgment. Documents were judged on a three-grade relevance scale. This paper describes the design and construction of the new test collections and provides baseline results for demonstrating their utility for evaluating systems. 4 authors · Jan 24, 2022
- Alloprof: a new French question-answer education dataset and its use in an information retrieval case study Teachers and students are increasingly relying on online learning resources to supplement the ones provided in school. This increase in the breadth and depth of available resources is a great thing for students, but only provided they are able to find answers to their queries. Question-answering and information retrieval systems have benefited from public datasets to train and evaluate their algorithms, but most of these datasets have been in English text written by and for adults. We introduce a new public French question-answering dataset collected from Alloprof, a Quebec-based primary and high-school help website, containing 29 349 questions and their explanations in a variety of school subjects from 10 368 students, with more than half of the explanations containing links to other questions or some of the 2 596 reference pages on the website. We also present a case study of this dataset in an information retrieval task. This dataset was collected on the Alloprof public forum, with all questions verified for their appropriateness and the explanations verified both for their appropriateness and their relevance to the question. To predict relevant documents, architectures using pre-trained BERT models were fine-tuned and evaluated. This dataset will allow researchers to develop question-answering, information retrieval and other algorithms specifically for the French speaking education context. Furthermore, the range of language proficiency, images, mathematical symbols and spelling mistakes will necessitate algorithms based on a multimodal comprehension. The case study we present as a baseline shows an approach that relies on recent techniques provides an acceptable performance level, but more work is necessary before it can reliably be used and trusted in a production setting. 3 authors · Feb 10, 2023
- UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language We present a corpus professionally annotated for grammatical error correction (GEC) and fluency edits in the Ukrainian language. To the best of our knowledge, this is the first GEC corpus for the Ukrainian language. We collected texts with errors (20,715 sentences) from a diverse pool of contributors, including both native and non-native speakers. The data cover a wide variety of writing domains, from text chats and essays to formal writing. Professional proofreaders corrected and annotated the corpus for errors relating to fluency, grammar, punctuation, and spelling. This corpus can be used for developing and evaluating GEC systems in Ukrainian. More generally, it can be used for researching multilingual and low-resource NLP, morphologically rich languages, document-level GEC, and fluency correction. The corpus is publicly available at https://github.com/grammarly/ua-gec 2 authors · Mar 31, 2021
- Challenges and Considerations in Annotating Legal Data: A Comprehensive Overview The process of annotating data within the legal sector is filled with distinct challenges that differ from other fields, primarily due to the inherent complexities of legal language and documentation. The initial task usually involves selecting an appropriate raw dataset that captures the intricate aspects of legal texts. Following this, extracting text becomes a complicated task, as legal documents often have complex structures, footnotes, references, and unique terminology. The importance of data cleaning is magnified in this context, ensuring that redundant information is eliminated while maintaining crucial legal details and context. Creating comprehensive yet straightforward annotation guidelines is imperative, as these guidelines serve as the road map for maintaining uniformity and addressing the subtle nuances of legal terminology. Another critical aspect is the involvement of legal professionals in the annotation process. Their expertise is valuable in ensuring that the data not only remains contextually accurate but also adheres to prevailing legal standards and interpretations. This paper provides an expanded view of these challenges and aims to offer a foundational understanding and guidance for researchers and professionals engaged in legal data annotation projects. In addition, we provide links to our created and fine-tuned datasets and language models. These resources are outcomes of our discussed projects and solutions to challenges faced while working on them. 3 authors · Jul 5, 2024
1 Copyright Traps for Large Language Models Questions of fair use of copyright-protected content to train Large Language Models (LLMs) are being very actively debated. Document-level inference has been proposed as a new task: inferring from black-box access to the trained model whether a piece of content has been seen during training. SOTA methods however rely on naturally occurring memorization of (part of) the content. While very effective against models that memorize a lot, we hypothesize--and later confirm--that they will not work against models that do not naturally memorize, e.g. medium-size 1B models. We here propose to use copyright traps, the inclusion of fictitious entries in original content, to detect the use of copyrighted materials in LLMs with a focus on models where memorization does not naturally occur. We carefully design an experimental setup, randomly inserting traps into original content (books) and train a 1.3B LLM. We first validate that the use of content in our target model would be undetectable using existing methods. We then show, contrary to intuition, that even medium-length trap sentences repeated a significant number of times (100) are not detectable using existing methods. However, we show that longer sequences repeated a large number of times can be reliably detected (AUC=0.75) and used as copyright traps. We further improve these results by studying how the number of times a sequence is seen improves detectability, how sequences with higher perplexity tend to be memorized more, and how taking context into account further improves detectability. 4 authors · Feb 14, 2024
- FinanceBench: A New Benchmark for Financial Question Answering FinanceBench is a first-of-its-kind test suite for evaluating the performance of LLMs on open book financial question answering (QA). It comprises 10,231 questions about publicly traded companies, with corresponding answers and evidence strings. The questions in FinanceBench are ecologically valid and cover a diverse set of scenarios. They are intended to be clear-cut and straightforward to answer to serve as a minimum performance standard. We test 16 state of the art model configurations (including GPT-4-Turbo, Llama2 and Claude2, with vector stores and long context prompts) on a sample of 150 cases from FinanceBench, and manually review their answers (n=2,400). The cases are available open-source. We show that existing LLMs have clear limitations for financial QA. Notably, GPT-4-Turbo used with a retrieval system incorrectly answered or refused to answer 81% of questions. While augmentation techniques such as using longer context window to feed in relevant evidence improve performance, they are unrealistic for enterprise settings due to increased latency and cannot support larger financial documents. We find that all models examined exhibit weaknesses, such as hallucinations, that limit their suitability for use by enterprises. 6 authors · Nov 20, 2023
- Trends, Limitations and Open Challenges in Automatic Readability Assessment Research Readability assessment is the task of evaluating the reading difficulty of a given piece of text. Although research on computational approaches to readability assessment is now two decades old, there is not much work on synthesizing this research. This article is a brief survey of contemporary research on developing computational models for readability assessment. We identify the common approaches, discuss their shortcomings, and identify some challenges for the future. Where possible, we also connect computational research with insights from related work in other disciplines such as education and psychology. 1 authors · May 3, 2021
- PARADE: Passage Representation Aggregation for Document Reranking Pretrained transformer models, such as BERT and T5, have shown to be highly effective at ad-hoc passage and document ranking. Due to inherent sequence length limits of these models, they need to be run over a document's passages, rather than processing the entire document sequence at once. Although several approaches for aggregating passage-level signals have been proposed, there has yet to be an extensive comparison of these techniques. In this work, we explore strategies for aggregating relevance signals from a document's passages into a final ranking score. We find that passage representation aggregation techniques can significantly improve over techniques proposed in prior work, such as taking the maximum passage score. We call this new approach PARADE. In particular, PARADE can significantly improve results on collections with broad information needs where relevance signals can be spread throughout the document (such as TREC Robust04 and GOV2). Meanwhile, less complex aggregation techniques may work better on collections with an information need that can often be pinpointed to a single passage (such as TREC DL and TREC Genomics). We also conduct efficiency analyses, and highlight several strategies for improving transformer-based aggregation. 5 authors · Aug 20, 2020
- Reasoning or Simply Next Token Prediction? A Benchmark for Stress-Testing Large Language Models We propose MMLU-SR, a novel dataset designed to measure the true comprehension abilities of Large Language Models (LLMs) by challenging their performance in question-answering tasks with modified terms. We reasoned that an agent that ``truly'' understands a concept can still evaluate it when key terms are replaced by suitably defined alternate terms, and sought to differentiate such comprehension from mere text replacement. In our study, we modified standardized test questions by replacing a key term with a dummy word along with its definition. The key term could be in the context of questions, answers, or both questions and answers. Notwithstanding the high scores achieved by recent popular LLMs on the MMLU leaderboard, we found a substantial reduction in model performance after such replacement, suggesting poor comprehension. This new benchmark provides a rigorous benchmark for testing true model comprehension, and poses a challenge to the broader scientific community. 5 authors · Jun 15, 2024
- Doctors Handwritten Prescription Recognition System In Multi Language Using Deep Learning Doctors typically write in incomprehensible handwriting, making it difficult for both the general public and some pharmacists to understand the medications they have prescribed. It is not ideal for them to write the prescription quietly and methodically because they will be dealing with dozens of patients every day and will be swamped with work.As a result, their handwriting is illegible. This may result in reports or prescriptions consisting of short forms and cursive writing that a typical person or pharmacist won't be able to read properly, which will cause prescribed medications to be misspelled. However, some individuals are accustomed to writing prescriptions in regional languages because we all live in an area with a diversity of regional languages. It makes analyzing the content much more challenging. So, in this project, we'll use a recognition system to build a tool that can translate the handwriting of physicians in any language. This system will be made into an application which is fully autonomous in functioning. As the user uploads the prescription image the program will pre-process the image by performing image pre-processing, and word segmentations initially before processing the image for training. And it will be done for every language we require the model to detect. And as of the deduction model will be made using deep learning techniques including CNN, RNN, and LSTM, which are utilized to train the model. To match words from various languages that will be written in the system, Unicode will be used. Furthermore, fuzzy search and market basket analysis are employed to offer an end result that will be optimized from the pharmaceutical database and displayed to the user as a structured output. 6 authors · Oct 20, 2022
- TeXpert: A Multi-Level Benchmark for Evaluating LaTeX Code Generation by LLMs LaTeX's precision and flexibility in typesetting have made it the gold standard for the preparation of scientific documentation. Large Language Models (LLMs) present a promising opportunity for researchers to produce publication-ready material using LaTeX with natural language instructions, yet current benchmarks completely lack evaluation of this ability. By introducing TeXpert, our benchmark dataset with natural language prompts for generating LaTeX code focused on components of scientific documents across multiple difficulty levels, we conduct an in-depth analysis of LLM performance in this regard and identify frequent error types. Our evaluation across open and closed-source LLMs highlights multiple key findings: LLMs excelling on standard benchmarks perform poorly in LaTeX generation with a significant accuracy drop-off as the complexity of tasks increases; open-source models like DeepSeek v3 and DeepSeek Coder strongly rival closed-source counterparts in LaTeX tasks; and formatting and package errors are unexpectedly prevalent, suggesting a lack of diverse LaTeX examples in the training datasets of most LLMs. Our dataset, code, and model evaluations are available at https://github.com/knowledge-verse-ai/TeXpert. 2 authors · Jun 20
1 OMoS-QA: A Dataset for Cross-Lingual Extractive Question Answering in a German Migration Context When immigrating to a new country, it is easy to feel overwhelmed by the need to obtain information on financial support, housing, schooling, language courses, and other issues. If relocation is rushed or even forced, the necessity for high-quality answers to such questions is all the more urgent. Official immigration counselors are usually overbooked, and online systems could guide newcomers to the requested information or a suitable counseling service. To this end, we present OMoS-QA, a dataset of German and English questions paired with relevant trustworthy documents and manually annotated answers, specifically tailored to this scenario. Questions are automatically generated with an open-source large language model (LLM) and answer sentences are selected by crowd workers with high agreement. With our data, we conduct a comparison of 5 pretrained LLMs on the task of extractive question answering (QA) in German and English. Across all models and both languages, we find high precision and low-to-mid recall in selecting answer sentences, which is a favorable trade-off to avoid misleading users. This performance even holds up when the question language does not match the document language. When it comes to identifying unanswerable questions given a context, there are larger differences between the two languages. 3 authors · Jul 22, 2024
- FeruzaSpeech: A 60 Hour Uzbek Read Speech Corpus with Punctuation, Casing, and Context This paper introduces FeruzaSpeech, a read speech corpus of the Uzbek language, containing transcripts in both Cyrillic and Latin alphabets, freely available for academic research purposes. This corpus includes 60 hours of high-quality recordings from a single native female speaker from Tashkent, Uzbekistan. These recordings consist of short excerpts from a book and BBC News. This paper discusses the enhancement of the Word Error Rates (WERs) on CommonVoice 16.1's Uzbek data, Uzbek Speech Corpus data, and FeruzaSpeech data upon integrating FeruzaSpeech. 2 authors · Sep 22, 2024
2 Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools Legal practice has witnessed a sharp rise in products incorporating artificial intelligence (AI). Such tools are designed to assist with a wide range of core legal tasks, from search and summarization of caselaw to document drafting. But the large language models used in these tools are prone to "hallucinate," or make up false information, making their use risky in high-stakes domains. Recently, certain legal research providers have touted methods such as retrieval-augmented generation (RAG) as "eliminating" (Casetext, 2023) or "avoid[ing]" hallucinations (Thomson Reuters, 2023), or guaranteeing "hallucination-free" legal citations (LexisNexis, 2023). Because of the closed nature of these systems, systematically assessing these claims is challenging. In this article, we design and report on the first preregistered empirical evaluation of AI-driven legal research tools. We demonstrate that the providers' claims are overstated. While hallucinations are reduced relative to general-purpose chatbots (GPT-4), we find that the AI research tools made by LexisNexis (Lexis+ AI) and Thomson Reuters (Westlaw AI-Assisted Research and Ask Practical Law AI) each hallucinate between 17% and 33% of the time. We also document substantial differences between systems in responsiveness and accuracy. Our article makes four key contributions. It is the first to assess and report the performance of RAG-based proprietary legal AI tools. Second, it introduces a comprehensive, preregistered dataset for identifying and understanding vulnerabilities in these systems. Third, it proposes a clear typology for differentiating between hallucinations and accurate legal responses. Last, it provides evidence to inform the responsibilities of legal professionals in supervising and verifying AI outputs, which remains a central open question for the responsible integration of AI into law. 6 authors · May 30, 2024
- ChID: A Large-scale Chinese IDiom Dataset for Cloze Test Cloze-style reading comprehension in Chinese is still limited due to the lack of various corpora. In this paper we propose a large-scale Chinese cloze test dataset ChID, which studies the comprehension of idiom, a unique language phenomenon in Chinese. In this corpus, the idioms in a passage are replaced by blank symbols and the correct answer needs to be chosen from well-designed candidate idioms. We carefully study how the design of candidate idioms and the representation of idioms affect the performance of state-of-the-art models. Results show that the machine accuracy is substantially worse than that of human, indicating a large space for further research. 3 authors · Jun 4, 2019
- mRobust04: A Multilingual Version of the TREC Robust 2004 Benchmark Robust 2004 is an information retrieval benchmark whose large number of judgments per query make it a reliable evaluation dataset. In this paper, we present mRobust04, a multilingual version of Robust04 that was translated to 8 languages using Google Translate. We also provide results of three different multilingual retrievers on this dataset. The dataset is available at https://huggingface.co/datasets/unicamp-dl/mrobust 4 authors · Sep 27, 2022
- Adposition and Case Supersenses v2.6: Guidelines for English This document offers a detailed linguistic description of SNACS (Semantic Network of Adposition and Case Supersenses; Schneider et al., 2018), an inventory of 52 semantic labels ("supersenses") that characterize the use of adpositions and case markers at a somewhat coarse level of granularity, as demonstrated in the STREUSLE corpus (https://github.com/nert-nlp/streusle/ ; version 4.5 tracks guidelines version 2.6). Though the SNACS inventory aspires to be universal, this document is specific to English; documentation for other languages will be published separately. Version 2 is a revision of the supersense inventory proposed for English by Schneider et al. (2015, 2016) (henceforth "v1"), which in turn was based on previous schemes. The present inventory was developed after extensive review of the v1 corpus annotations for English, plus previously unanalyzed genitive case possessives (Blodgett and Schneider, 2018), as well as consideration of adposition and case phenomena in Hebrew, Hindi, Korean, and German. Hwang et al. (2017) present the theoretical underpinnings of the v2 scheme. Schneider et al. (2018) summarize the scheme, its application to English corpus data, and an automatic disambiguation task. Liu et al. (2021) offer an English Lexical Semantic Recognition tagger that includes SNACS labels in its output. This documentation can also be browsed alongside corpus data on the Xposition website (Gessler et al., 2022): http://www.xposition.org/ 11 authors · Apr 7, 2017
1 Pron vs Prompt: Can Large Language Models already Challenge a World-Class Fiction Author at Creative Text Writing? It has become routine to report research results where Large Language Models (LLMs) outperform average humans in a wide range of language-related tasks, and creative text writing is no exception. It seems natural, then, to raise the bid: Are LLMs ready to compete in creative writing skills with a top (rather than average) novelist? To provide an initial answer for this question, we have carried out a contest between Patricio Pron (an awarded novelist, considered one of the best of his generation) and GPT-4 (one of the top performing LLMs), in the spirit of AI-human duels such as DeepBlue vs Kasparov and AlphaGo vs Lee Sidol. We asked Pron and GPT-4 to provide thirty titles each, and then to write short stories for both their titles and their opponent's. Then, we prepared an evaluation rubric inspired by Boden's definition of creativity, and we collected 5,400 manual assessments provided by literature critics and scholars. The results of our experimentation indicate that LLMs are still far from challenging a top human creative writer, and that reaching such level of autonomous creative writing skills probably cannot be reached simply with larger language models. 4 authors · Jul 1, 2024
- Query-as-context Pre-training for Dense Passage Retrieval Recently, methods have been developed to improve the performance of dense passage retrieval by using context-supervised pre-training. These methods simply consider two passages from the same document to be relevant, without taking into account the possibility of weakly correlated pairs. Thus, this paper proposes query-as-context pre-training, a simple yet effective pre-training technique to alleviate the issue. Query-as-context pre-training assumes that the query derived from a passage is more likely to be relevant to that passage and forms a passage-query pair. These passage-query pairs are then used in contrastive or generative context-supervised pre-training. The pre-trained models are evaluated on large-scale passage retrieval benchmarks and out-of-domain zero-shot benchmarks. Experimental results show that query-as-context pre-training brings considerable gains and meanwhile speeds up training, demonstrating its effectiveness and efficiency. Our code will be available at https://github.com/caskcsg/ir/tree/main/cotmae-qc . 6 authors · Dec 19, 2022
87 Textbooks Are All You Need II: phi-1.5 technical report We continue the investigation into the power of smaller Transformer-based language models as initiated by TinyStories -- a 10 million parameter model that can produce coherent English -- and the follow-up work on phi-1, a 1.3 billion parameter model with Python coding performance close to the state-of-the-art. The latter work proposed to use existing Large Language Models (LLMs) to generate ``textbook quality" data as a way to enhance the learning process compared to traditional web data. We follow the ``Textbooks Are All You Need" approach, focusing this time on common sense reasoning in natural language, and create a new 1.3 billion parameter model named phi-1.5, with performance on natural language tasks comparable to models 5x larger, and surpassing most non-frontier LLMs on more complex reasoning tasks such as grade-school mathematics and basic coding. More generally, phi-1.5 exhibits many of the traits of much larger LLMs, both good -- such as the ability to ``think step by step" or perform some rudimentary in-context learning -- and bad, including hallucinations and the potential for toxic and biased generations -- encouragingly though, we are seeing improvement on that front thanks to the absence of web data. We open-source phi-1.5 to promote further research on these urgent topics. 6 authors · Sep 11, 2023 5
- SpokesBiz -- an Open Corpus of Conversational Polish This paper announces the early release of SpokesBiz, a freely available corpus of conversational Polish developed within the CLARIN-BIZ project and comprising over 650 hours of recordings. The transcribed recordings have been diarized and manually annotated for punctuation and casing. We outline the general structure and content of the corpus, showcasing selected applications in linguistic research, evaluation and improvement of automatic speech recognition (ASR) systems 11 authors · Dec 19, 2023
- Kapchinsky Memorial Book -- English Translation English translation of Russian book compiled to honor the memory of Ilya Mikhailovich Kapchinsky - To the 90th Birthday Collection of Memories. The idea for this publication belongs to Nikolai Vladimirovich Lazarev, a close collaborator of Ilya Mikhailovich Kapchinsky, head of one of the laboratories in the ITEP department that Kapchinsky headed. It was through the efforts of N.V. Lazarev that most of the materials in the collection were gathered. The main headings are: I. Little Known Heritage of I.M. Kapchinsky, II. Documents Joyful and Mournful, III. Memories of Family and Friends, Fragments of our life, IV. Memories of Colleagues of I.M. Kapchinsky, List of Scientific Papers, Afterword, Photos and Documents. 2 authors · Mar 1, 2023
- Do language models practice what they preach? Examining language ideologies about gendered language reform encoded in LLMs We study language ideologies in text produced by LLMs through a case study on English gendered language reform (related to role nouns like congressperson/-woman/-man, and singular they). First, we find political bias: when asked to use language that is "correct" or "natural", LLMs use language most similarly to when asked to align with conservative (vs. progressive) values. This shows how LLMs' metalinguistic preferences can implicitly communicate the language ideologies of a particular political group, even in seemingly non-political contexts. Second, we find LLMs exhibit internal inconsistency: LLMs use gender-neutral variants more often when more explicit metalinguistic context is provided. This shows how the language ideologies expressed in text produced by LLMs can vary, which may be unexpected to users. We discuss the broader implications of these findings for value alignment. 4 authors · Sep 20, 2024
- EduQG: A Multi-format Multiple Choice Dataset for the Educational Domain We introduce a high-quality dataset that contains 3,397 samples comprising (i) multiple choice questions, (ii) answers (including distractors), and (iii) their source documents, from the educational domain. Each question is phrased in two forms, normal and close. Correct answers are linked to source documents with sentence-level annotations. Thus, our versatile dataset can be used for both question and distractor generation, as well as to explore new challenges such as question format conversion. Furthermore, 903 questions are accompanied by their cognitive complexity level as per Bloom's taxonomy. All questions have been generated by educational experts rather than crowd workers to ensure they are maintaining educational and learning standards. Our analysis and experiments suggest distinguishable differences between our dataset and commonly used ones for question generation for educational purposes. We believe this new dataset can serve as a valuable resource for research and evaluation in the educational domain. The dataset and baselines will be released to support further research in question generation. 5 authors · Oct 12, 2022
- Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables. 6 authors · Jun 12, 2023
1 Reasoning Over Paragraph Effects in Situations A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., "animal pollinators increase efficiency of fertilization in flowers"), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%. 4 authors · Aug 16, 2019
- Application of NotebookLM, a Large Language Model with Retrieval-Augmented Generation, for Lung Cancer Staging Purpose: In radiology, large language models (LLMs), including ChatGPT, have recently gained attention, and their utility is being rapidly evaluated. However, concerns have emerged regarding their reliability in clinical applications due to limitations such as hallucinations and insufficient referencing. To address these issues, we focus on the latest technology, retrieval-augmented generation (RAG), which enables LLMs to reference reliable external knowledge (REK). Specifically, this study examines the utility and reliability of a recently released RAG-equipped LLM (RAG-LLM), NotebookLM, for staging lung cancer. Materials and methods: We summarized the current lung cancer staging guideline in Japan and provided this as REK to NotebookLM. We then tasked NotebookLM with staging 100 fictional lung cancer cases based on CT findings and evaluated its accuracy. For comparison, we performed the same task using a gold-standard LLM, GPT-4 Omni (GPT-4o), both with and without the REK. Results: NotebookLM achieved 86% diagnostic accuracy in the lung cancer staging experiment, outperforming GPT-4o, which recorded 39% accuracy with the REK and 25% without it. Moreover, NotebookLM demonstrated 95% accuracy in searching reference locations within the REK. Conclusion: NotebookLM successfully performed lung cancer staging by utilizing the REK, demonstrating superior performance compared to GPT-4o. Additionally, it provided highly accurate reference locations within the REK, allowing radiologists to efficiently evaluate the reliability of NotebookLM's responses and detect possible hallucinations. Overall, this study highlights the potential of NotebookLM, a RAG-LLM, in image diagnosis. 8 authors · Oct 8, 2024
- Icelandic Parallel Abstracts Corpus We present a new Icelandic-English parallel corpus, the Icelandic Parallel Abstracts Corpus (IPAC), composed of abstracts from student theses and dissertations. The texts were collected from the Skemman repository which keeps records of all theses, dissertations and final projects from students at Icelandic universities. The corpus was aligned based on sentence-level BLEU scores, in both translation directions, from NMT models using Bleualign. The result is a corpus of 64k sentence pairs from over 6 thousand parallel abstracts. 2 authors · Aug 11, 2021
- Does It Capture STEL? A Modular, Similarity-based Linguistic Style Evaluation Framework Style is an integral part of natural language. However, evaluation methods for style measures are rare, often task-specific and usually do not control for content. We propose the modular, fine-grained and content-controlled similarity-based STyle EvaLuation framework (STEL) to test the performance of any model that can compare two sentences on style. We illustrate STEL with two general dimensions of style (formal/informal and simple/complex) as well as two specific characteristics of style (contrac'tion and numb3r substitution). We find that BERT-based methods outperform simple versions of commonly used style measures like 3-grams, punctuation frequency and LIWC-based approaches. We invite the addition of further tasks and task instances to STEL and hope to facilitate the improvement of style-sensitive measures. 2 authors · Sep 10, 2021
- Corpus for Automatic Structuring of Legal Documents In populous countries, pending legal cases have been growing exponentially. There is a need for developing techniques for processing and organizing legal documents. In this paper, we introduce a new corpus for structuring legal documents. In particular, we introduce a corpus of legal judgment documents in English that are segmented into topical and coherent parts. Each of these parts is annotated with a label coming from a list of pre-defined Rhetorical Roles. We develop baseline models for automatically predicting rhetorical roles in a legal document based on the annotated corpus. Further, we show the application of rhetorical roles to improve performance on the tasks of summarization and legal judgment prediction. We release the corpus and baseline model code along with the paper. 7 authors · Jan 31, 2022
- Fine-grained Intent Classification in the Legal Domain A law practitioner has to go through a lot of long legal case proceedings. To understand the motivation behind the actions of different parties/individuals in a legal case, it is essential that the parts of the document that express an intent corresponding to the case be clearly understood. In this paper, we introduce a dataset of 93 legal documents, belonging to the case categories of either Murder, Land Dispute, Robbery, or Corruption, where phrases expressing intent same as the category of the document are annotated. Also, we annotate fine-grained intents for each such phrase to enable a deeper understanding of the case for a reader. Finally, we analyze the performance of several transformer-based models in automating the process of extracting intent phrases (both at a coarse and a fine-grained level), and classifying a document into one of the possible 4 categories, and observe that, our dataset is challenging, especially in the case of fine-grained intent classification. 5 authors · May 6, 2022
- Query Understanding for Natural Language Enterprise Search Natural Language Search (NLS) extends the capabilities of search engines that perform keyword search allowing users to issue queries in a more "natural" language. The engine tries to understand the meaning of the queries and to map the query words to the symbols it supports like Persons, Organizations, Time Expressions etc.. It, then, retrieves the information that satisfies the user's need in different forms like an answer, a record or a list of records. We present an NLS system we implemented as part of the Search service of a major CRM platform. The system is currently in production serving thousands of customers. Our user studies showed that creating dynamic reports with NLS saved more than 50% of our user's time compared to achieving the same result with navigational search. We describe the architecture of the system, the particularities of the CRM domain as well as how they have influenced our design decisions. Among several submodules of the system we detail the role of a Deep Learning Named Entity Recognizer. The paper concludes with discussion over the lessons learned while developing this product. 8 authors · Dec 11, 2020
- HLTCOE at LiveRAG: GPT-Researcher using ColBERT retrieval The HLTCOE LiveRAG submission utilized the GPT-researcher framework for researching the context of the question, filtering the returned results, and generating the final answer. The retrieval system was a ColBERT bi-encoder architecture, which represents a passage with many dense tokens. Retrieval used a local, compressed index of the FineWeb10-BT collection created with PLAID-X, using a model fine-tuned for multilingual retrieval. Query generation from context was done with Qwen2.5-7B-Instruct, while filtering was accomplished with m2-bert-80M-8k-retrieval. Up to nine passages were used as context to generate an answer using Falcon3-10B. This system placed 5th in the LiveRAG automatic evaluation for correctness with a score of 1.07. 5 authors · Jun 27
8 Foundations of Large Language Models This is a book about large language models. As indicated by the title, it primarily focuses on foundational concepts rather than comprehensive coverage of all cutting-edge technologies. The book is structured into four main chapters, each exploring a key area: pre-training, generative models, prompting techniques, and alignment methods. It is intended for college students, professionals, and practitioners in natural language processing and related fields, and can serve as a reference for anyone interested in large language models. 2 authors · Jan 15
- Substance Beats Style: Why Beginning Students Fail to Code with LLMs Although LLMs are increasing the productivity of professional programmers, existing work shows that beginners struggle to prompt LLMs to solve text-to-code tasks. Why is this the case? This paper explores two competing hypotheses about the cause of student-LLM miscommunication: (1) students simply lack the technical vocabulary needed to write good prompts, and (2) students do not understand the extent of information that LLMs need to solve code generation tasks. We study (1) with a causal intervention experiment on technical vocabulary and (2) by analyzing graphs that abstract how students edit prompts and the different failures that they encounter. We find that substance beats style: a poor grasp of technical vocabulary is merely correlated with prompt failure; that the information content of prompts predicts success; that students get stuck making trivial edits; and more. Our findings have implications for the use of LLMs in programming education, and for efforts to make computing more accessible with LLMs. 5 authors · Oct 15, 2024
- Evaluating the Factual Consistency of Large Language Models Through News Summarization While large language models (LLMs) have proven to be effective on a large variety of tasks, they are also known to hallucinate information. To measure whether an LLM prefers factually consistent continuations of its input, we propose a new benchmark called FIB(Factual Inconsistency Benchmark) that focuses on the task of summarization. Specifically, our benchmark involves comparing the scores an LLM assigns to a factually consistent versus a factually inconsistent summary for an input news article. For factually consistent summaries, we use human-written reference summaries that we manually verify as factually consistent. To generate summaries that are factually inconsistent, we generate summaries from a suite of summarization models that we have manually annotated as factually inconsistent. A model's factual consistency is then measured according to its accuracy, i.e.\ the proportion of documents where it assigns a higher score to the factually consistent summary. To validate the usefulness of FIB, we evaluate 23 large language models ranging from 1B to 176B parameters from six different model families including BLOOM and OPT. We find that existing LLMs generally assign a higher score to factually consistent summaries than to factually inconsistent summaries. However, if the factually inconsistent summaries occur verbatim in the document, then LLMs assign a higher score to these factually inconsistent summaries than factually consistent summaries. We validate design choices in our benchmark including the scoring method and source of distractor summaries. Our code and benchmark data can be found at https://github.com/r-three/fib. 6 authors · Nov 15, 2022
- Making Short-Form Videos Accessible with Hierarchical Video Summaries Short videos on platforms such as TikTok, Instagram Reels, and YouTube Shorts (i.e. short-form videos) have become a primary source of information and entertainment. Many short-form videos are inaccessible to blind and low vision (BLV) viewers due to their rapid visual changes, on-screen text, and music or meme-audio overlays. In our formative study, 7 BLV viewers who regularly watched short-form videos reported frequently skipping such inaccessible content. We present ShortScribe, a system that provides hierarchical visual summaries of short-form videos at three levels of detail to support BLV viewers in selecting and understanding short-form videos. ShortScribe allows BLV users to navigate between video descriptions based on their level of interest. To evaluate ShortScribe, we assessed description accuracy and conducted a user study with 10 BLV participants comparing ShortScribe to a baseline interface. When using ShortScribe, participants reported higher comprehension and provided more accurate summaries of video content. 6 authors · Feb 15, 2024
- Evaluating the Quality of Benchmark Datasets for Low-Resource Languages: A Case Study on Turkish The reliance on translated or adapted datasets from English or multilingual resources introduces challenges regarding linguistic and cultural suitability. This study addresses the need for robust and culturally appropriate benchmarks by evaluating the quality of 17 commonly used Turkish benchmark datasets. Using a comprehensive framework that assesses six criteria, both human and LLM-judge annotators provide detailed evaluations to identify dataset strengths and shortcomings. Our results reveal that 70% of the benchmark datasets fail to meet our heuristic quality standards. The correctness of the usage of technical terms is the strongest criterion, but 85% of the criteria are not satisfied in the examined datasets. Although LLM judges demonstrate potential, they are less effective than human annotators, particularly in understanding cultural common sense knowledge and interpreting fluent, unambiguous text. GPT-4o has stronger labeling capabilities for grammatical and technical tasks, while Llama3.3-70B excels at correctness and cultural knowledge evaluation. Our findings emphasize the urgent need for more rigorous quality control in creating and adapting datasets for low-resource languages. 9 authors · Apr 13 1
- A Survey on Explainability in Machine Reading Comprehension This paper presents a systematic review of benchmarks and approaches for explainability in Machine Reading Comprehension (MRC). We present how the representation and inference challenges evolved and the steps which were taken to tackle these challenges. We also present the evaluation methodologies to assess the performance of explainable systems. In addition, we identify persisting open research questions and highlight critical directions for future work. 3 authors · Oct 1, 2020
- Document Expansion by Query Prediction One technique to improve the retrieval effectiveness of a search engine is to expand documents with terms that are related or representative of the documents' content.From the perspective of a question answering system, this might comprise questions the document can potentially answer. Following this observation, we propose a simple method that predicts which queries will be issued for a given document and then expands it with those predictions with a vanilla sequence-to-sequence model, trained using datasets consisting of pairs of query and relevant documents. By combining our method with a highly-effective re-ranking component, we achieve the state of the art in two retrieval tasks. In a latency-critical regime, retrieval results alone (without re-ranking) approach the effectiveness of more computationally expensive neural re-rankers but are much faster. 4 authors · Apr 17, 2019
1 Evaluating Optimal Reference Translations The overall translation quality reached by current machine translation (MT) systems for high-resourced language pairs is remarkably good. Standard methods of evaluation are not suitable nor intended to uncover the many translation errors and quality deficiencies that still persist. Furthermore, the quality of standard reference translations is commonly questioned and comparable quality levels have been reached by MT alone in several language pairs. Navigating further research in these high-resource settings is thus difficult. In this article, we propose a methodology for creating more reliable document-level human reference translations, called "optimal reference translations," with the simple aim to raise the bar of what should be deemed "human translation quality." We evaluate the obtained document-level optimal reference translations in comparison with "standard" ones, confirming a significant quality increase and also documenting the relationship between evaluation and translation editing. 4 authors · Nov 28, 2023
- DaLAJ - a dataset for linguistic acceptability judgments for Swedish: Format, baseline, sharing We present DaLAJ 1.0, a Dataset for Linguistic Acceptability Judgments for Swedish, comprising 9 596 sentences in its first version; and the initial experiment using it for the binary classification task. DaLAJ is based on the SweLL second language learner data, consisting of essays at different levels of proficiency. To make sure the dataset can be freely available despite the GDPR regulations, we have sentence-scrambled learner essays and removed part of the metadata about learners, keeping for each sentence only information about the mother tongue and the level of the course where the essay has been written. We use the normalized version of learner language as the basis for the DaLAJ sentences, and keep only one error per sentence. We repeat the same sentence for each individual correction tag used in the sentence. For DaLAJ 1.0 we have used four error categories (out of 35 available in SweLL), all connected to lexical or word-building choices. Our baseline results for the binary classification show an accuracy of 58% for DaLAJ 1.0 using BERT embeddings. The dataset is included in the SwedishGlue (Swe. SuperLim) benchmark. Below, we describe the format of the dataset, first experiments, our insights and the motivation for the chosen approach to data sharing. 3 authors · May 14, 2021
2 NV-Retriever: Improving text embedding models with effective hard-negative mining Text embedding models have been popular for information retrieval applications such as semantic search and Question-Answering systems based on Retrieval-Augmented Generation (RAG). Those models are typically Transformer models that are fine-tuned with contrastive learning objectives. Many papers introduced new embedding model architectures and training approaches, however, one of the key ingredients, the process of mining negative passages, remains poorly explored or described. One of the challenging aspects of fine-tuning embedding models is the selection of high quality hard-negative passages for contrastive learning. In this paper we propose a family of positive-aware mining methods that leverage the positive relevance score for more effective false negatives removal. We also provide a comprehensive ablation study on hard-negative mining methods over their configurations, exploring different teacher and base models. We demonstrate the efficacy of our proposed methods by introducing the NV-Retriever-v1 model, which scores 60.9 on MTEB Retrieval (BEIR) benchmark and 0.65 points higher than previous methods. The model placed 1st when it was published to MTEB Retrieval on July 07, 2024. 6 authors · Jul 22, 2024
- 1.5 billion words Arabic Corpus This study is an attempt to build a contemporary linguistic corpus for Arabic language. The corpus produced, is a text corpus includes more than five million newspaper articles. It contains over a billion and a half words in total, out of which, there is about three million unique words. The data were collected from newspaper articles in ten major news sources from eight Arabic countries, over a period of fourteen years. The corpus was encoded with two types of encoding, namely: UTF-8, and Windows CP-1256. Also it was marked with two mark-up languages, namely: SGML, and XML. 1 authors · Nov 12, 2016
- Current Challenges and Visions in Music Recommender Systems Research Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field. 5 authors · Oct 9, 2017
1 Hybrid and Collaborative Passage Reranking In passage retrieval system, the initial passage retrieval results may be unsatisfactory, which can be refined by a reranking scheme. Existing solutions to passage reranking focus on enriching the interaction between query and each passage separately, neglecting the context among the top-ranked passages in the initial retrieval list. To tackle this problem, we propose a Hybrid and Collaborative Passage Reranking (HybRank) method, which leverages the substantial similarity measurements of upstream retrievers for passage collaboration and incorporates the lexical and semantic properties of sparse and dense retrievers for reranking. Besides, built on off-the-shelf retriever features, HybRank is a plug-in reranker capable of enhancing arbitrary passage lists including previously reranked ones. Extensive experiments demonstrate the stable improvements of performance over prevalent retrieval and reranking methods, and verify the effectiveness of the core components of HybRank. 4 authors · May 16, 2023
- Toward Human Centered Interactive Clinical Question Answering System Unstructured clinical notes contain essential patient information but are challenging for physicians to search and interpret efficiently. Although large language models (LLMs) have shown promise in question answering (QA), most existing systems lack transparency, usability, and alignment with clinical workflows. This work introduces an interactive QA system that enables physicians to query clinical notes via text or voice and receive extractive answers highlighted directly in the note for traceability. The system was built using OpenAI models with zero-shot prompting and evaluated across multiple metrics, including exact string match, word overlap, SentenceTransformer similarity, and BERTScore. Results show that while exact match scores ranged from 47 to 62 percent, semantic similarity scores exceeded 87 percent, indicating strong contextual alignment even when wording varied. To assess usability, the system was also evaluated using simulated clinical personas. Seven diverse physician and nurse personas interacted with the system across scenario-based tasks and provided structured feedback. The evaluations highlighted strengths in intuitive design and answer accessibility, alongside opportunities for enhancing explanation clarity. 1 authors · May 24
- Empirical analysis of Binding Precedent efficiency in the Brazilian Supreme Court via Similar Case Retrieval Binding precedents (S\'umulas Vinculantes) constitute a juridical instrument unique to the Brazilian legal system and whose objectives include the protection of the Federal Supreme Court against repetitive demands. Studies of the effectiveness of these instruments in decreasing the Court's exposure to similar cases, however, indicate that they tend to fail in such a direction, with some of the binding precedents seemingly creating new demands. We empirically assess the legal impact of five binding precedents, 11, 14, 17, 26 and 37, at the highest court level through their effects on the legal subjects they address. This analysis is only possible through the comparison of the Court's ruling about the precedents' themes before they are created, which means that these decisions should be detected through techniques of Similar Case Retrieval. The contributions of this article are therefore twofold: on the mathematical side, we compare the uses of different methods of Natural Language Processing -- TF-IDF, LSTM, BERT, and regex -- for Similar Case Retrieval, whereas on the legal side, we contrast the inefficiency of these binding precedents with a set of hypotheses that may justify their repeated usage. We observe that the deep learning models performed significantly worse in the specific Similar Case Retrieval task and that the reasons for binding precedents to fail in responding to repetitive demand are heterogeneous and case-dependent, making it impossible to single out a specific cause. 6 authors · Jul 9, 2024
- Language agents achieve superhuman synthesis of scientific knowledge Language models are known to hallucinate incorrect information, and it is unclear if they are sufficiently accurate and reliable for use in scientific research. We developed a rigorous human-AI comparison methodology to evaluate language model agents on real-world literature search tasks covering information retrieval, summarization, and contradiction detection tasks. We show that PaperQA2, a frontier language model agent optimized for improved factuality, matches or exceeds subject matter expert performance on three realistic literature research tasks without any restrictions on humans (i.e., full access to internet, search tools, and time). PaperQA2 writes cited, Wikipedia-style summaries of scientific topics that are significantly more accurate than existing, human-written Wikipedia articles. We also introduce a hard benchmark for scientific literature research called LitQA2 that guided design of PaperQA2, leading to it exceeding human performance. Finally, we apply PaperQA2 to identify contradictions within the scientific literature, an important scientific task that is challenging for humans. PaperQA2 identifies 2.34 +/- 1.99 contradictions per paper in a random subset of biology papers, of which 70% are validated by human experts. These results demonstrate that language model agents are now capable of exceeding domain experts across meaningful tasks on scientific literature. 9 authors · Sep 10, 2024
25 Promptriever: Instruction-Trained Retrievers Can Be Prompted Like Language Models Instruction-tuned language models (LM) are able to respond to imperative commands, providing a more natural user interface compared to their base counterparts. In this work, we present Promptriever, the first retrieval model able to be prompted like an LM. To train Promptriever, we curate and release a new instance-level instruction training set from MS MARCO, spanning nearly 500k instances. Promptriever not only achieves strong performance on standard retrieval tasks, but also follows instructions. We observe: (1) large gains (reaching SoTA) on following detailed relevance instructions (+14.3 p-MRR / +3.1 nDCG on FollowIR), (2) significantly increased robustness to lexical choices/phrasing in the query+instruction (+12.9 Robustness@10 on InstructIR), and (3) the ability to perform hyperparameter search via prompting to reliably improve retrieval performance (+1.4 average increase on BEIR). Promptriever demonstrates that retrieval models can be controlled with prompts on a per-query basis, setting the stage for future work aligning LM prompting techniques with information retrieval. 6 authors · Sep 17, 2024 2
- Towards an Open Platform for Legal Information Recent advances in the area of legal information systems have led to a variety of applications that promise support in processing and accessing legal documents. Unfortunately, these applications have various limitations, e.g., regarding scope or extensibility. Furthermore, we do not observe a trend towards open access in digital libraries in the legal domain as we observe in other domains, e.g., economics of computer science. To improve open access in the legal domain, we present our approach for an open source platform to transparently process and access Legal Open Data. This enables the sustainable development of legal applications by offering a single technology stack. Moreover, the approach facilitates the development and deployment of new technologies. As proof of concept, we implemented six technologies and generated metadata for more than 250,000 German laws and court decisions. Thus, we can provide users of our platform not only access to legal documents, but also the contained information. 3 authors · May 27, 2020
- Measuring the Quality of Answers in Political Q&As with Large Language Models This article proposes a new approach for assessing the quality of answers in political question-and-answer sessions. We measure the quality of an answer based on how easily and accurately it can be recognized in a random set of candidate answers given the question's text. This measure reflects the answer's relevance and depth of engagement with the question. Like semantic search, we can implement this approach by training a language model on the corpus of observed questions and answers without additional human-labeled data. We showcase and validate our methodology within the context of the Question Period in the Canadian House of Commons. Our analysis reveals that while some answers have a weak semantic connection to questions, hinting at some evasion or obfuscation, they are generally at least moderately relevant, far exceeding what we would expect from random replies. We also find a meaningful correlation between answer quality and the party affiliation of the members of Parliament asking the questions. 2 authors · Apr 12, 2024
- CAFE: Retrieval Head-based Coarse-to-Fine Information Seeking to Enhance Multi-Document QA Capability Advancements in Large Language Models (LLMs) have extended their input context length, yet they still struggle with retrieval and reasoning in long-context inputs. Existing methods propose to utilize the prompt strategy and retrieval head to alleviate this limitation. However, they still face challenges in balancing retrieval precision and recall, impacting their efficacy in answering questions. To address this, we introduce CAFE, a two-stage coarse-to-fine method to enhance multi-document question-answering capacities. By gradually eliminating the negative impacts of background and distracting documents, CAFE makes the responses more reliant on the evidence documents. Initially, a coarse-grained filtering method leverages retrieval heads to identify and rank relevant documents. Then, a fine-grained steering method guides attention to the most relevant content. Experiments across benchmarks show CAFE outperforms baselines, achieving up to 22.1% and 13.7% SubEM improvement over SFT and RAG methods on the Mistral model, respectively. 5 authors · May 15
- A Sentence Cloze Dataset for Chinese Machine Reading Comprehension Owing to the continuous efforts by the Chinese NLP community, more and more Chinese machine reading comprehension datasets become available. To add diversity in this area, in this paper, we propose a new task called Sentence Cloze-style Machine Reading Comprehension (SC-MRC). The proposed task aims to fill the right candidate sentence into the passage that has several blanks. We built a Chinese dataset called CMRC 2019 to evaluate the difficulty of the SC-MRC task. Moreover, to add more difficulties, we also made fake candidates that are similar to the correct ones, which requires the machine to judge their correctness in the context. The proposed dataset contains over 100K blanks (questions) within over 10K passages, which was originated from Chinese narrative stories. To evaluate the dataset, we implement several baseline systems based on the pre-trained models, and the results show that the state-of-the-art model still underperforms human performance by a large margin. We release the dataset and baseline system to further facilitate our community. Resources available through https://github.com/ymcui/cmrc2019 8 authors · Apr 7, 2020
- How to Read a Research Compendium Researchers spend a great deal of time reading research papers. Keshav (2012) provides a three-pass method to researchers to improve their reading skills. This article extends Keshav's method for reading a research compendium. Research compendia are an increasingly used form of publication, which packages not only the research paper's text and figures, but also all data and software for better reproducibility. We introduce the existing conventions for research compendia and suggest how to utilise their shared properties in a structured reading process. Unlike the original, this article is not build upon a long history but intends to provide guidance at the outset of an emerging practice. 3 authors · Jun 11, 2018
- ECtHR-PCR: A Dataset for Precedent Understanding and Prior Case Retrieval in the European Court of Human Rights In common law jurisdictions, legal practitioners rely on precedents to construct arguments, in line with the doctrine of stare decisis. As the number of cases grow over the years, prior case retrieval (PCR) has garnered significant attention. Besides lacking real-world scale, existing PCR datasets do not simulate a realistic setting, because their queries use complete case documents while only masking references to prior cases. The query is thereby exposed to legal reasoning not yet available when constructing an argument for an undecided case as well as spurious patterns left behind by citation masks, potentially short-circuiting a comprehensive understanding of case facts and legal principles. To address these limitations, we introduce a PCR dataset based on judgements from the European Court of Human Rights (ECtHR), which explicitly separate facts from arguments and exhibit precedential practices, aiding us to develop this PCR dataset to foster systems' comprehensive understanding. We benchmark different lexical and dense retrieval approaches with various negative sampling strategies, adapting them to deal with long text sequences using hierarchical variants. We found that difficulty-based negative sampling strategies were not effective for the PCR task, highlighting the need for investigation into domain-specific difficulty criteria. Furthermore, we observe performance of the dense models degrade with time and calls for further research into temporal adaptation of retrieval models. Additionally, we assess the influence of different views , Halsbury's and Goodhart's, in practice in ECtHR jurisdiction using PCR task. 3 authors · Mar 31, 2024
- Identifying Well-formed Natural Language Questions Understanding search queries is a hard problem as it involves dealing with "word salad" text ubiquitously issued by users. However, if a query resembles a well-formed question, a natural language processing pipeline is able to perform more accurate interpretation, thus reducing downstream compounding errors. Hence, identifying whether or not a query is well formed can enhance query understanding. Here, we introduce a new task of identifying a well-formed natural language question. We construct and release a dataset of 25,100 publicly available questions classified into well-formed and non-wellformed categories and report an accuracy of 70.7% on the test set. We also show that our classifier can be used to improve the performance of neural sequence-to-sequence models for generating questions for reading comprehension. 2 authors · Aug 28, 2018
- CLAUDETTE: an Automated Detector of Potentially Unfair Clauses in Online Terms of Service Terms of service of on-line platforms too often contain clauses that are potentially unfair to the consumer. We present an experimental study where machine learning is employed to automatically detect such potentially unfair clauses. Results show that the proposed system could provide a valuable tool for lawyers and consumers alike. 7 authors · May 3, 2018
4 QuRating: Selecting High-Quality Data for Training Language Models Selecting high-quality pre-training data is important for creating capable language models, but existing methods rely on simple heuristics. We introduce QuRating, a method for selecting pre-training data that captures the abstract qualities of texts which humans intuitively perceive. In this paper, we investigate four qualities - writing style, required expertise, facts & trivia, and educational value. We find that LLMs are able to discern these qualities and observe that they are better at making pairwise judgments of texts than at rating the quality of a text directly. We train a QuRater model to learn scalar ratings from pairwise judgments, and use it to annotate a 260B training corpus with quality ratings for each of the four criteria. In our experiments, we select 30B tokens according to the different quality ratings and train 1.3B-parameter language models on the selected data. We find that it is important to balance quality and diversity, as selecting only the highest-rated documents leads to poor results. When we sample using quality ratings as logits over documents, our models achieve lower perplexity and stronger in-context learning performance than baselines. Beyond data selection, we use the quality ratings to construct a training curriculum which improves performance without changing the training dataset. We extensively analyze the quality ratings and discuss their characteristics, biases, and wider implications. 4 authors · Feb 15, 2024
1 Addressing "Documentation Debt" in Machine Learning Research: A Retrospective Datasheet for BookCorpus Recent literature has underscored the importance of dataset documentation work for machine learning, and part of this work involves addressing "documentation debt" for datasets that have been used widely but documented sparsely. This paper aims to help address documentation debt for BookCorpus, a popular text dataset for training large language models. Notably, researchers have used BookCorpus to train OpenAI's GPT-N models and Google's BERT models, even though little to no documentation exists about the dataset's motivation, composition, collection process, etc. We offer a preliminary datasheet that provides key context and information about BookCorpus, highlighting several notable deficiencies. In particular, we find evidence that (1) BookCorpus likely violates copyright restrictions for many books, (2) BookCorpus contains thousands of duplicated books, and (3) BookCorpus exhibits significant skews in genre representation. We also find hints of other potential deficiencies that call for future research, including problematic content, potential skews in religious representation, and lopsided author contributions. While more work remains, this initial effort to provide a datasheet for BookCorpus adds to growing literature that urges more careful and systematic documentation for machine learning datasets. 2 authors · May 11, 2021
- DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine In this paper, we present DuReader_retrieval, a large-scale Chinese dataset for passage retrieval. DuReader_retrieval contains more than 90K queries and over 8M unique passages from a commercial search engine. To alleviate the shortcomings of other datasets and ensure the quality of our benchmark, we (1) reduce the false negatives in development and test sets by manually annotating results pooled from multiple retrievers, and (2) remove the training queries that are semantically similar to the development and testing queries. Additionally, we provide two out-of-domain testing sets for cross-domain evaluation, as well as a set of human translated queries for for cross-lingual retrieval evaluation. The experiments demonstrate that DuReader_retrieval is challenging and a number of problems remain unsolved, such as the salient phrase mismatch and the syntactic mismatch between queries and paragraphs. These experiments also show that dense retrievers do not generalize well across domains, and cross-lingual retrieval is essentially challenging. DuReader_retrieval is publicly available at https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval. 8 authors · Mar 18, 2022
- Augmented Embeddings for Custom Retrievals Information retrieval involves selecting artifacts from a corpus that are most relevant to a given search query. The flavor of retrieval typically used in classical applications can be termed as homogeneous and relaxed, where queries and corpus elements are both natural language (NL) utterances (homogeneous) and the goal is to pick most relevant elements from the corpus in the Top-K, where K is large, such as 10, 25, 50 or even 100 (relaxed). Recently, retrieval is being used extensively in preparing prompts for large language models (LLMs) to enable LLMs to perform targeted tasks. These new applications of retrieval are often heterogeneous and strict -- the queries and the corpus contain different kinds of entities, such as NL and code, and there is a need for improving retrieval at Top-K for small values of K, such as K=1 or 3 or 5. Current dense retrieval techniques based on pretrained embeddings provide a general-purpose and powerful approach for retrieval, but they are oblivious to task-specific notions of similarity of heterogeneous artifacts. We introduce Adapted Dense Retrieval, a mechanism to transform embeddings to enable improved task-specific, heterogeneous and strict retrieval. Adapted Dense Retrieval works by learning a low-rank residual adaptation of the pretrained black-box embedding. We empirically validate our approach by showing improvements over the state-of-the-art general-purpose embeddings-based baseline. 5 authors · Oct 8, 2023
- Open-World Evaluation for Retrieving Diverse Perspectives We study retrieving a set of documents that covers various perspectives on a complex and contentious question (e.g., will ChatGPT do more harm than good?). We curate a Benchmark for Retrieval Diversity for Subjective questions (BERDS), where each example consists of a question and diverse perspectives associated with the question, sourced from survey questions and debate websites. On this data, retrievers paired with a corpus are evaluated to surface a document set that contains diverse perspectives. Our framing diverges from most retrieval tasks in that document relevancy cannot be decided by simple string matches to references. Instead, we build a language model based automatic evaluator that decides whether each retrieved document contains a perspective. This allows us to evaluate the performance of three different types of corpus (Wikipedia, web snapshot, and corpus constructed on the fly with retrieved pages from the search engine) paired with retrievers. Retrieving diverse documents remains challenging, with the outputs from existing retrievers covering all perspectives on only 33.74% of the examples. We further study the impact of query expansion and diversity-focused reranking approaches and analyze retriever sycophancy. Together, we lay the foundation for future studies in retrieval diversity handling complex queries. 2 authors · Sep 26, 2024
- The Role of Complex NLP in Transformers for Text Ranking? Even though term-based methods such as BM25 provide strong baselines in ranking, under certain conditions they are dominated by large pre-trained masked language models (MLMs) such as BERT. To date, the source of their effectiveness remains unclear. Is it their ability to truly understand the meaning through modeling syntactic aspects? We answer this by manipulating the input order and position information in a way that destroys the natural sequence order of query and passage and shows that the model still achieves comparable performance. Overall, our results highlight that syntactic aspects do not play a critical role in the effectiveness of re-ranking with BERT. We point to other mechanisms such as query-passage cross-attention and richer embeddings that capture word meanings based on aggregated context regardless of the word order for being the main attributions for its superior performance. 2 authors · Jul 6, 2022
- On a Seldom Oversight in Fermi's Calculations: Seventy Years Later We discuss an unfortunate mistake, for a Dirac free particle, in the last Fermi lecture notes on quantum mechanics, in a course given at the University of Chicago in winter and spring of 1954. As is demonstrated, the correct result can be obtained by a simple matrix multiplication. An attempt to collect a relevant bibliography is made. 1 authors · Jul 9, 2023
- Incorporating Legal Structure in Retrieval-Augmented Generation: A Case Study on Copyright Fair Use This paper presents a domain-specific implementation of Retrieval-Augmented Generation (RAG) tailored to the Fair Use Doctrine in U.S. copyright law. Motivated by the increasing prevalence of DMCA takedowns and the lack of accessible legal support for content creators, we propose a structured approach that combines semantic search with legal knowledge graphs and court citation networks to improve retrieval quality and reasoning reliability. Our prototype models legal precedents at the statutory factor level (e.g., purpose, nature, amount, market effect) and incorporates citation-weighted graph representations to prioritize doctrinally authoritative sources. We use Chain-of-Thought reasoning and interleaved retrieval steps to better emulate legal reasoning. Preliminary testing suggests this method improves doctrinal relevance in the retrieval process, laying groundwork for future evaluation and deployment of LLM-based legal assistance tools. 3 authors · May 4
- A Primer on Large Language Models and their Limitations This paper provides a primer on Large Language Models (LLMs) and identifies their strengths, limitations, applications and research directions. It is intended to be useful to those in academia and industry who are interested in gaining an understanding of the key LLM concepts and technologies, and in utilising this knowledge in both day to day tasks and in more complex scenarios where this technology can enhance current practices and processes. 2 authors · Dec 2, 2024
- CLUE: A Chinese Language Understanding Evaluation Benchmark The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.CLUEbenchmarks.com 32 authors · Apr 13, 2020
- Zero-Shot Translation Quality Estimation with Explicit Cross-Lingual Patterns This paper describes our submission of the WMT 2020 Shared Task on Sentence Level Direct Assessment, Quality Estimation (QE). In this study, we empirically reveal the mismatching issue when directly adopting BERTScore to QE. Specifically, there exist lots of mismatching errors between the source sentence and translated candidate sentence with token pairwise similarity. In response to this issue, we propose to expose explicit cross-lingual patterns, e.g. word alignments and generation score, to our proposed zero-shot models. Experiments show that our proposed QE model with explicit cross-lingual patterns could alleviate the mismatching issue, thereby improving the performance. Encouragingly, our zero-shot QE method could achieve comparable performance with supervised QE method, and even outperforms the supervised counterpart on 2 out of 6 directions. We expect our work could shed light on the zero-shot QE model improvement. 3 authors · Oct 10, 2020
- Fine-grained Czech News Article Dataset: An Interdisciplinary Approach to Trustworthiness Analysis We present the Verifee Dataset: a novel dataset of news articles with fine-grained trustworthiness annotations. We develop a detailed methodology that assesses the texts based on their parameters encompassing editorial transparency, journalist conventions, and objective reporting while penalizing manipulative techniques. We bring aboard a diverse set of researchers from social, media, and computer sciences to overcome barriers and limited framing of this interdisciplinary problem. We collect over 10,000 unique articles from almost 60 Czech online news sources. These are categorized into one of the 4 classes across the credibility spectrum we propose, raging from entirely trustworthy articles all the way to the manipulative ones. We produce detailed statistics and study trends emerging throughout the set. Lastly, we fine-tune multiple popular sequence-to-sequence language models using our dataset on the trustworthiness classification task and report the best testing F-1 score of 0.52. We open-source the dataset, annotation methodology, and annotators' instructions in full length at https://verifee.ai/research to enable easy build-up work. We believe similar methods can help prevent disinformation and educate in the realm of media literacy. 4 authors · Dec 16, 2022
- NewsEdits 2.0: Learning the Intentions Behind Updating News As events progress, news articles often update with new information: if we are not cautious, we risk propagating outdated facts. In this work, we hypothesize that linguistic features indicate factual fluidity, and that we can predict which facts in a news article will update using solely the text of a news article (i.e. not external resources like search engines). We test this hypothesis, first, by isolating fact-updates in large news revisions corpora. News articles may update for many reasons (e.g. factual, stylistic, narrative). We introduce the NewsEdits 2.0 taxonomy, an edit-intentions schema that separates fact updates from stylistic and narrative updates in news writing. We annotate over 9,200 pairs of sentence revisions and train high-scoring ensemble models to apply this schema. Then, taking a large dataset of silver-labeled pairs, we show that we can predict when facts will update in older article drafts with high precision. Finally, to demonstrate the usefulness of these findings, we construct a language model question asking (LLM-QA) abstention task. We wish the LLM to abstain from answering questions when information is likely to become outdated. Using our predictions, we show, LLM absention reaches near oracle levels of accuracy. 4 authors · Nov 27, 2024
- A Reasoning-Focused Legal Retrieval Benchmark As the legal community increasingly examines the use of large language models (LLMs) for various legal applications, legal AI developers have turned to retrieval-augmented LLMs ("RAG" systems) to improve system performance and robustness. An obstacle to the development of specialized RAG systems is the lack of realistic legal RAG benchmarks which capture the complexity of both legal retrieval and downstream legal question-answering. To address this, we introduce two novel legal RAG benchmarks: Bar Exam QA and Housing Statute QA. Our tasks correspond to real-world legal research tasks, and were produced through annotation processes which resemble legal research. We describe the construction of these benchmarks and the performance of existing retriever pipelines. Our results suggest that legal RAG remains a challenging application, thus motivating future research. 8 authors · May 6
- Scaling BERT Models for Turkish Automatic Punctuation and Capitalization Correction This paper investigates the effectiveness of BERT based models for automated punctuation and capitalization corrections in Turkish texts across five distinct model sizes. The models are designated as Tiny, Mini, Small, Medium, and Base. The design and capabilities of each model are tailored to address the specific challenges of the Turkish language, with a focus on optimizing performance while minimizing computational overhead. The study presents a systematic comparison of the performance metrics precision, recall, and F1 score of each model, offering insights into their applicability in diverse operational contexts. The results demonstrate a significant improvement in text readability and accuracy as model size increases, with the Base model achieving the highest correction precision. This research provides a comprehensive guide for selecting the appropriate model size based on specific user needs and computational resources, establishing a framework for deploying these models in real-world applications to enhance the quality of written Turkish. 4 authors · Dec 3, 2024 1
- How does Burrows' Delta work on medieval Chinese poetic texts? Burrows' Delta was introduced in 2002 and has proven to be an effective tool for author attribution. Despite the fact that these are different languages, they mostly belong to the same grammatical type and use the same graphic principle to convey speech in writing: a phonemic alphabet with word separation using spaces. The question I want to address in this article is how well this attribution method works with texts in a language with a different grammatical structure and a script based on different principles. There are fewer studies analyzing the effectiveness of the Delta method on Chinese texts than on texts in European languages. I believe that such a low level of attention to Delta from sinologists is due to the structure of the scientific field dedicated to medieval Chinese poetry. Clustering based on intertextual distances worked flawlessly. Delta produced results where clustering showed that the samples of one author were most similar to each other, and Delta never confused different poets. Despite the fact that I used an unconventional approach and applied the Delta method to a language poorly suited for it, the method demonstrated its effectiveness. Tang dynasty poets are correctly identified using Delta, and the empirical pattern observed for authors writing in European standard languages has been confirmed once again. 1 authors · Jul 10, 2024
- Dense Text Retrieval based on Pretrained Language Models: A Survey Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval. 4 authors · Nov 27, 2022
- ReliableEval: A Recipe for Stochastic LLM Evaluation via Method of Moments LLMs are highly sensitive to prompt phrasing, yet standard benchmarks typically report performance using a single prompt, raising concerns about the reliability of such evaluations. In this work, we argue for a stochastic method of moments evaluation over the space of meaning-preserving prompt perturbations. We introduce a formal definition of reliable evaluation that accounts for prompt sensitivity, and suggest ReliableEval - a method for estimating the number of prompt resamplings needed to obtain meaningful results. Using our framework, we stochastically evaluate five frontier LLMs and find that even top-performing models like GPT-4o and Claude-3.7-Sonnet exhibit substantial prompt sensitivity. Our approach is model-, task-, and metric-agnostic, offering a recipe for meaningful and robust LLM evaluation. 5 authors · May 28
- Southern Newswire Corpus: A Large-Scale Dataset of Mid-Century Wire Articles Beyond the Front Page I introduce a new large-scale dataset of historical wire articles from U.S. Southern newspapers, spanning 1960-1975 and covering multiple wire services: The Associated Press, United Press International, Newspaper Enterprise Association. Unlike prior work focusing on front-page content, this dataset captures articles across the entire newspaper, offering broader insight into mid-century Southern coverage. The dataset includes a version that has undergone an LLM-based text cleanup pipeline to reduce OCR noise, enhancing its suitability for quantitative text analysis. Additionally, duplicate versions of articles are retained to enable analysis of editorial differences in language and framing across newspapers. Each article is tagged by wire service, facilitating comparative studies of editorial patterns across agencies. This resource opens new avenues for research in computational social science, digital humanities, and historical linguistics, providing a detailed perspective on how Southern newspapers relayed national and international news during a transformative period in American history. The dataset will be made available upon publication or request for research purposes. 1 authors · Feb 17
- WikiHow: A Large Scale Text Summarization Dataset Sequence-to-sequence models have recently gained the state of the art performance in summarization. However, not too many large-scale high-quality datasets are available and almost all the available ones are mainly news articles with specific writing style. Moreover, abstractive human-style systems involving description of the content at a deeper level require data with higher levels of abstraction. In this paper, we present WikiHow, a dataset of more than 230,000 article and summary pairs extracted and constructed from an online knowledge base written by different human authors. The articles span a wide range of topics and therefore represent high diversity styles. We evaluate the performance of the existing methods on WikiHow to present its challenges and set some baselines to further improve it. 2 authors · Oct 18, 2018
- Fill in the BLANC: Human-free quality estimation of document summaries We present BLANC, a new approach to the automatic estimation of document summary quality. Our goal is to measure the functional performance of a summary with an objective, reproducible, and fully automated method. Our approach achieves this by measuring the performance boost gained by a pre-trained language model with access to a document summary while carrying out its language understanding task on the document's text. We present evidence that BLANC scores have as good correlation with human evaluations as do the ROUGE family of summary quality measurements. And unlike ROUGE, the BLANC method does not require human-written reference summaries, allowing for fully human-free summary quality estimation. 3 authors · Feb 23, 2020
- Automated Conversion of Music Videos into Lyric Videos Musicians and fans often produce lyric videos, a form of music videos that showcase the song's lyrics, for their favorite songs. However, making such videos can be challenging and time-consuming as the lyrics need to be added in synchrony and visual harmony with the video. Informed by prior work and close examination of existing lyric videos, we propose a set of design guidelines to help creators make such videos. Our guidelines ensure the readability of the lyric text while maintaining a unified focus of attention. We instantiate these guidelines in a fully automated pipeline that converts an input music video into a lyric video. We demonstrate the robustness of our pipeline by generating lyric videos from a diverse range of input sources. A user study shows that lyric videos generated by our pipeline are effective in maintaining text readability and unifying the focus of attention. 6 authors · Aug 28, 2023
- CLSE: Corpus of Linguistically Significant Entities One of the biggest challenges of natural language generation (NLG) is the proper handling of named entities. Named entities are a common source of grammar mistakes such as wrong prepositions, wrong article handling, or incorrect entity inflection. Without factoring linguistic representation, such errors are often underrepresented when evaluating on a small set of arbitrarily picked argument values, or when translating a dataset from a linguistically simpler language, like English, to a linguistically complex language, like Russian. However, for some applications, broadly precise grammatical correctness is critical -- native speakers may find entity-related grammar errors silly, jarring, or even offensive. To enable the creation of more linguistically diverse NLG datasets, we release a Corpus of Linguistically Significant Entities (CLSE) annotated by linguist experts. The corpus includes 34 languages and covers 74 different semantic types to support various applications from airline ticketing to video games. To demonstrate one possible use of CLSE, we produce an augmented version of the Schema-Guided Dialog Dataset, SGD-CLSE. Using the CLSE's entities and a small number of human translations, we create a linguistically representative NLG evaluation benchmark in three languages: French (high-resource), Marathi (low-resource), and Russian (highly inflected language). We establish quality baselines for neural, template-based, and hybrid NLG systems and discuss the strengths and weaknesses of each approach. 3 authors · Nov 4, 2022
20 Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We urge the community to adopt a new idea: convert scholarly documents into Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units: (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright. 12 authors · Feb 26 3
- Rephrasing natural text data with different languages and quality levels for Large Language Model pre-training Recently published work on rephrasing natural text data for pre-training LLMs has shown promising results when combining the original dataset with the synthetically rephrased data. We build upon previous work by replicating existing results on C4 and extending them with our optimized rephrasing pipeline to the English, German, Italian, and Spanish Oscar subsets of CulturaX. Our pipeline leads to increased performance on standard evaluation benchmarks in both the mono- and multilingual setup. In addition, we provide a detailed study of our pipeline, investigating the choice of the base dataset and LLM for the rephrasing, as well as the relationship between the model size and the performance after pre-training. By exploring data with different perceived quality levels, we show that gains decrease with higher quality. Furthermore, we find the difference in performance between model families to be bigger than between different model sizes. This highlights the necessity for detailed tests before choosing an LLM to rephrase large amounts of data. Moreover, we investigate the effect of pre-training with synthetic data on supervised fine-tuning. Here, we find increasing but inconclusive results that highly depend on the used benchmark. These results (again) highlight the need for better benchmarking setups. In summary, we show that rephrasing multilingual and low-quality data is a very promising direction to extend LLM pre-training data. 12 authors · Oct 28, 2024
- Normalization of Lithuanian Text Using Regular Expressions Text Normalization is an integral part of any text-to-speech synthesis system. In a natural language text, there are elements such as numbers, dates, abbreviations, etc. that belong to other semiotic classes. They are called non-standard words (NSW) and need to be expanded into ordinary words. For this purpose, it is necessary to identify the semiotic class of each NSW. The taxonomy of semiotic classes adapted to the Lithuanian language is presented in the work. Sets of rules are created for detecting and expanding NSWs based on regular expressions. Experiments with three completely different data sets were performed and the accuracy was assessed. Causes of errors are explained and recommendations are given for the development of text normalization rules. 1 authors · Dec 29, 2023
- CREPE: Open-Domain Question Answering with False Presuppositions Information seeking users often pose questions with false presuppositions, especially when asking about unfamiliar topics. Most existing question answering (QA) datasets, in contrast, assume all questions have well defined answers. We introduce CREPE, a QA dataset containing a natural distribution of presupposition failures from online information-seeking forums. We find that 25% of questions contain false presuppositions, and provide annotations for these presuppositions and their corrections. Through extensive baseline experiments, we show that adaptations of existing open-domain QA models can find presuppositions moderately well, but struggle when predicting whether a presupposition is factually correct. This is in large part due to difficulty in retrieving relevant evidence passages from a large text corpus. CREPE provides a benchmark to study question answering in the wild, and our analyses provide avenues for future work in better modeling and further studying the task. 4 authors · Nov 30, 2022
- Retrieval Augmented Generation of Symbolic Music with LLMs We explore the use of large language models (LLMs) for music generation using a retrieval system to select relevant examples. We find promising initial results for music generation in a dialogue with the user, especially considering the ease with which such a system can be implemented. The code is available online. 4 authors · Nov 17, 2023
- Constructing Datasets for Multi-hop Reading Comprehension Across Documents Most Reading Comprehension methods limit themselves to queries which can be answered using a single sentence, paragraph, or document. Enabling models to combine disjoint pieces of textual evidence would extend the scope of machine comprehension methods, but currently there exist no resources to train and test this capability. We propose a novel task to encourage the development of models for text understanding across multiple documents and to investigate the limits of existing methods. In our task, a model learns to seek and combine evidence - effectively performing multi-hop (alias multi-step) inference. We devise a methodology to produce datasets for this task, given a collection of query-answer pairs and thematically linked documents. Two datasets from different domains are induced, and we identify potential pitfalls and devise circumvention strategies. We evaluate two previously proposed competitive models and find that one can integrate information across documents. However, both models struggle to select relevant information, as providing documents guaranteed to be relevant greatly improves their performance. While the models outperform several strong baselines, their best accuracy reaches 42.9% compared to human performance at 74.0% - leaving ample room for improvement. 3 authors · Oct 17, 2017
- Aspect-based Analysis of Advertising Appeals for Search Engine Advertising Writing an ad text that attracts people and persuades them to click or act is essential for the success of search engine advertising. Therefore, ad creators must consider various aspects of advertising appeals (A^3) such as the price, product features, and quality. However, products and services exhibit unique effective A^3 for different industries. In this work, we focus on exploring the effective A^3 for different industries with the aim of assisting the ad creation process. To this end, we created a dataset of advertising appeals and used an existing model that detects various aspects for ad texts. Our experiments demonstrated that different industries have their own effective A^3 and that the identification of the A^3 contributes to the estimation of advertising performance. 6 authors · Apr 25, 2022
- SAILER: Structure-aware Pre-trained Language Model for Legal Case Retrieval Legal case retrieval, which aims to find relevant cases for a query case, plays a core role in the intelligent legal system. Despite the success that pre-training has achieved in ad-hoc retrieval tasks, effective pre-training strategies for legal case retrieval remain to be explored. Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. However, most existing language models have difficulty understanding the long-distance dependencies between different structures. Moreover, in contrast to the general retrieval, the relevance in the legal domain is sensitive to key legal elements. Even subtle differences in key legal elements can significantly affect the judgement of relevance. However, existing pre-trained language models designed for general purposes have not been equipped to handle legal elements. To address these issues, in this paper, we propose SAILER, a new Structure-Aware pre-traIned language model for LEgal case Retrieval. It is highlighted in the following three aspects: (1) SAILER fully utilizes the structural information contained in legal case documents and pays more attention to key legal elements, similar to how legal experts browse legal case documents. (2) SAILER employs an asymmetric encoder-decoder architecture to integrate several different pre-training objectives. In this way, rich semantic information across tasks is encoded into dense vectors. (3) SAILER has powerful discriminative ability, even without any legal annotation data. It can distinguish legal cases with different charges accurately. Extensive experiments over publicly available legal benchmarks demonstrate that our approach can significantly outperform previous state-of-the-art methods in legal case retrieval. 8 authors · Apr 22, 2023
- Formal Algorithms for Transformers This document aims to be a self-contained, mathematically precise overview of transformer architectures and algorithms (*not* results). It covers what transformers are, how they are trained, what they are used for, their key architectural components, and a preview of the most prominent models. The reader is assumed to be familiar with basic ML terminology and simpler neural network architectures such as MLPs. 2 authors · Jul 19, 2022
- Bilingual BSARD: Extending Statutory Article Retrieval to Dutch Statutory article retrieval plays a crucial role in making legal information more accessible to both laypeople and legal professionals. Multilingual countries like Belgium present unique challenges for retrieval models due to the need for handling legal issues in multiple languages. Building on the Belgian Statutory Article Retrieval Dataset (BSARD) in French, we introduce the bilingual version of this dataset, bBSARD. The dataset contains parallel Belgian statutory articles in both French and Dutch, along with legal questions from BSARD and their Dutch translation. Using bBSARD, we conduct extensive benchmarking of retrieval models available for Dutch and French. Our benchmarking setup includes lexical models, zero-shot dense models, and fine-tuned small foundation models. Our experiments show that BM25 remains a competitive baseline compared to many zero-shot dense models in both languages. We also observe that while proprietary models outperform open alternatives in the zero-shot setting, they can be matched or surpassed by fine-tuning small language-specific models. Our dataset and evaluation code are publicly available. 4 authors · Dec 10, 2024
- Generative Query Reformulation Using Ensemble Prompting, Document Fusion, and Relevance Feedback Query Reformulation (QR) is a set of techniques used to transform a user's original search query to a text that better aligns with the user's intent and improves their search experience. Recently, zero-shot QR has been a promising approach due to its ability to exploit knowledge inherent in large language models. Inspired by the success of ensemble prompting strategies which have benefited other tasks, we investigate if they can improve query reformulation. In this context, we propose two ensemble-based prompting techniques, GenQREnsemble and GenQRFusion which leverage paraphrases of a zero-shot instruction to generate multiple sets of keywords to improve retrieval performance ultimately. We further introduce their post-retrieval variants to incorporate relevance feedback from a variety of sources, including an oracle simulating a human user and a "critic" LLM. We demonstrate that an ensemble of query reformulations can improve retrieval effectiveness by up to 18% on nDCG@10 in pre-retrieval settings and 9% on post-retrieval settings on multiple benchmarks, outperforming all previously reported SOTA results. We perform subsequent analyses to investigate the effects of feedback documents, incorporate domain-specific instructions, filter reformulations, and generate fluent reformulations that might be more beneficial to human searchers. Together, the techniques and the results presented in this paper establish a new state of the art in automated query reformulation for retrieval and suggest promising directions for future research. 3 authors · May 27, 2024
- Historical Ink: 19th Century Latin American Spanish Newspaper Corpus with LLM OCR Correction This paper presents two significant contributions: first, a novel dataset of 19th-century Latin American press texts, which addresses the lack of specialized corpora for historical and linguistic analysis in this region. Second, it introduces a framework for OCR error correction and linguistic surface form detection in digitized corpora, utilizing a Large Language Model. This framework is adaptable to various contexts and, in this paper, is specifically applied to the newly created dataset. 3 authors · Jul 3, 2024
- Multi-EuP: The Multilingual European Parliament Dataset for Analysis of Bias in Information Retrieval We present Multi-EuP, a new multilingual benchmark dataset, comprising 22K multi-lingual documents collected from the European Parliament, spanning 24 languages. This dataset is designed to investigate fairness in a multilingual information retrieval (IR) context to analyze both language and demographic bias in a ranking context. It boasts an authentic multilingual corpus, featuring topics translated into all 24 languages, as well as cross-lingual relevance judgments. Furthermore, it offers rich demographic information associated with its documents, facilitating the study of demographic bias. We report the effectiveness of Multi-EuP for benchmarking both monolingual and multilingual IR. We also conduct a preliminary experiment on language bias caused by the choice of tokenization strategy. 3 authors · Nov 3, 2023
- RepBERT: Contextualized Text Embeddings for First-Stage Retrieval Although exact term match between queries and documents is the dominant method to perform first-stage retrieval, we propose a different approach, called RepBERT, to represent documents and queries with fixed-length contextualized embeddings. The inner products of query and document embeddings are regarded as relevance scores. On MS MARCO Passage Ranking task, RepBERT achieves state-of-the-art results among all initial retrieval techniques. And its efficiency is comparable to bag-of-words methods. 5 authors · Jun 27, 2020
- Scaling up COMETKIWI: Unbabel-IST 2023 Submission for the Quality Estimation Shared Task We present the joint contribution of Unbabel and Instituto Superior T\'ecnico to the WMT 2023 Shared Task on Quality Estimation (QE). Our team participated on all tasks: sentence- and word-level quality prediction (task 1) and fine-grained error span detection (task 2). For all tasks, we build on the COMETKIWI-22 model (Rei et al., 2022b). Our multilingual approaches are ranked first for all tasks, reaching state-of-the-art performance for quality estimation at word-, span- and sentence-level granularity. Compared to the previous state-of-the-art COMETKIWI-22, we show large improvements in correlation with human judgements (up to 10 Spearman points). Moreover, we surpass the second-best multilingual submission to the shared-task with up to 3.8 absolute points. 8 authors · Sep 21, 2023
- Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources In recent years, large-scale data collection efforts have prioritized the amount of data collected in order to improve the modeling capabilities of large language models. This prioritization, however, has resulted in concerns with respect to the rights of data subjects represented in data collections, particularly when considering the difficulty in interrogating these collections due to insufficient documentation and tools for analysis. Mindful of these pitfalls, we present our methodology for a documentation-first, human-centered data collection project as part of the BigScience initiative. We identified a geographically diverse set of target language groups (Arabic, Basque, Chinese, Catalan, English, French, Indic languages, Indonesian, Niger-Congo languages, Portuguese, Spanish, and Vietnamese, as well as programming languages) for which to collect metadata on potential data sources. To structure this effort, we developed our online catalogue as a supporting tool for gathering metadata through organized public hackathons. We present our development process; analyses of the resulting resource metadata, including distributions over languages, regions, and resource types; and our lessons learned in this endeavor. 18 authors · Jan 24, 2022
3 Airavata: Introducing Hindi Instruction-tuned LLM We announce the initial release of "Airavata," an instruction-tuned LLM for Hindi. Airavata was created by fine-tuning OpenHathi with diverse, instruction-tuning Hindi datasets to make it better suited for assistive tasks. Along with the model, we also share the IndicInstruct dataset, which is a collection of diverse instruction-tuning datasets to enable further research for Indic LLMs. Additionally, we present evaluation benchmarks and a framework for assessing LLM performance across tasks in Hindi. Currently, Airavata supports Hindi, but we plan to expand this to all 22 scheduled Indic languages. You can access all artifacts at https://ai4bharat.github.io/airavata. 11 authors · Jan 26, 2024 3
1 LEXTREME: A Multi-Lingual and Multi-Task Benchmark for the Legal Domain Lately, propelled by the phenomenal advances around the transformer architecture, the legal NLP field has enjoyed spectacular growth. To measure progress, well curated and challenging benchmarks are crucial. However, most benchmarks are English only and in legal NLP specifically there is no multilingual benchmark available yet. Additionally, many benchmarks are saturated, with the best models clearly outperforming the best humans and achieving near perfect scores. We survey the legal NLP literature and select 11 datasets covering 24 languages, creating LEXTREME. To provide a fair comparison, we propose two aggregate scores, one based on the datasets and one on the languages. The best baseline (XLM-R large) achieves both a dataset aggregate score a language aggregate score of 61.3. This indicates that LEXTREME is still very challenging and leaves ample room for improvement. To make it easy for researchers and practitioners to use, we release LEXTREME on huggingface together with all the code required to evaluate models and a public Weights and Biases project with all the runs. 6 authors · Jan 30, 2023
- LEGAL-BERT: The Muppets straight out of Law School BERT has achieved impressive performance in several NLP tasks. However, there has been limited investigation on its adaptation guidelines in specialised domains. Here we focus on the legal domain, where we explore several approaches for applying BERT models to downstream legal tasks, evaluating on multiple datasets. Our findings indicate that the previous guidelines for pre-training and fine-tuning, often blindly followed, do not always generalize well in the legal domain. Thus we propose a systematic investigation of the available strategies when applying BERT in specialised domains. These are: (a) use the original BERT out of the box, (b) adapt BERT by additional pre-training on domain-specific corpora, and (c) pre-train BERT from scratch on domain-specific corpora. We also propose a broader hyper-parameter search space when fine-tuning for downstream tasks and we release LEGAL-BERT, a family of BERT models intended to assist legal NLP research, computational law, and legal technology applications. 5 authors · Oct 6, 2020
- ClueWeb22: 10 Billion Web Documents with Visual and Semantic Information ClueWeb22, the newest iteration of the ClueWeb line of datasets, provides 10 billion web pages affiliated with rich information. Its design was influenced by the need for a high quality, large scale web corpus to support a range of academic and industry research, for example, in information systems, retrieval-augmented AI systems, and model pretraining. Compared with earlier ClueWeb corpora, the ClueWeb22 corpus is larger, more varied, of higher-quality, and aligned with the document distributions in commercial web search. Besides raw HTML, ClueWeb22 includes rich information about the web pages provided by industry-standard document understanding systems, including the visual representation of pages rendered by a web browser, parsed HTML structure information from a neural network parser, and pre-processed cleaned document text to lower the barrier to entry. Many of these signals have been widely used in industry but are available to the research community for the first time at this scale. 5 authors · Nov 28, 2022
2 First Tragedy, then Parse: History Repeats Itself in the New Era of Large Language Models Many NLP researchers are experiencing an existential crisis triggered by the astonishing success of ChatGPT and other systems based on large language models (LLMs). After such a disruptive change to our understanding of the field, what is left to do? Taking a historical lens, we look for guidance from the first era of LLMs, which began in 2005 with large n-gram models for machine translation. We identify durable lessons from the first era, and more importantly, we identify evergreen problems where NLP researchers can continue to make meaningful contributions in areas where LLMs are ascendant. Among these lessons, we discuss the primacy of hardware advancement in shaping the availability and importance of scale, as well as the urgent challenge of quality evaluation, both automated and human. We argue that disparities in scale are transient and that researchers can work to reduce them; that data, rather than hardware, is still a bottleneck for many meaningful applications; that meaningful evaluation informed by actual use is still an open problem; and that there is still room for speculative approaches. 4 authors · Nov 8, 2023
- TeClass: A Human-Annotated Relevance-based Headline Classification and Generation Dataset for Telugu News headline generation is a crucial task in increasing productivity for both the readers and producers of news. This task can easily be aided by automated News headline-generation models. However, the presence of irrelevant headlines in scraped news articles results in sub-optimal performance of generation models. We propose that relevance-based headline classification can greatly aid the task of generating relevant headlines. Relevance-based headline classification involves categorizing news headlines based on their relevance to the corresponding news articles. While this task is well-established in English, it remains under-explored in low-resource languages like Telugu due to a lack of annotated data. To address this gap, we present TeClass, the first-ever human-annotated Telugu news headline classification dataset, containing 78,534 annotations across 26,178 article-headline pairs. We experiment with various baseline models and provide a comprehensive analysis of their results. We further demonstrate the impact of this work by fine-tuning various headline generation models using TeClass dataset. The headlines generated by the models fine-tuned on highly relevant article-headline pairs, showed about a 5 point increment in the ROUGE-L scores. To encourage future research, the annotated dataset as well as the annotation guidelines will be made publicly available. 4 authors · Apr 17, 2024
- Siamese BERT-based Model for Web Search Relevance Ranking Evaluated on a New Czech Dataset Web search engines focus on serving highly relevant results within hundreds of milliseconds. Pre-trained language transformer models such as BERT are therefore hard to use in this scenario due to their high computational demands. We present our real-time approach to the document ranking problem leveraging a BERT-based siamese architecture. The model is already deployed in a commercial search engine and it improves production performance by more than 3%. For further research and evaluation, we release DaReCzech, a unique data set of 1.6 million Czech user query-document pairs with manually assigned relevance levels. We also release Small-E-Czech, an Electra-small language model pre-trained on a large Czech corpus. We believe this data will support endeavours both of search relevance and multilingual-focused research communities. 4 authors · Dec 3, 2021
- Attentive Deep Neural Networks for Legal Document Retrieval Legal text retrieval serves as a key component in a wide range of legal text processing tasks such as legal question answering, legal case entailment, and statute law retrieval. The performance of legal text retrieval depends, to a large extent, on the representation of text, both query and legal documents. Based on good representations, a legal text retrieval model can effectively match the query to its relevant documents. Because legal documents often contain long articles and only some parts are relevant to queries, it is quite a challenge for existing models to represent such documents. In this paper, we study the use of attentive neural network-based text representation for statute law document retrieval. We propose a general approach using deep neural networks with attention mechanisms. Based on it, we develop two hierarchical architectures with sparse attention to represent long sentences and articles, and we name them Attentive CNN and Paraformer. The methods are evaluated on datasets of different sizes and characteristics in English, Japanese, and Vietnamese. Experimental results show that: i) Attentive neural methods substantially outperform non-neural methods in terms of retrieval performance across datasets and languages; ii) Pretrained transformer-based models achieve better accuracy on small datasets at the cost of high computational complexity while lighter weight Attentive CNN achieves better accuracy on large datasets; and iii) Our proposed Paraformer outperforms state-of-the-art methods on COLIEE dataset, achieving the highest recall and F2 scores in the top-N retrieval task. 6 authors · Dec 12, 2022
- RKadiyala at SemEval-2024 Task 8: Black-Box Word-Level Text Boundary Detection in Partially Machine Generated Texts With increasing usage of generative models for text generation and widespread use of machine generated texts in various domains, being able to distinguish between human written and machine generated texts is a significant challenge. While existing models and proprietary systems focus on identifying whether given text is entirely human written or entirely machine generated, only a few systems provide insights at sentence or paragraph level at likelihood of being machine generated at a non reliable accuracy level, working well only for a set of domains and generators. This paper introduces few reliable approaches for the novel task of identifying which part of a given text is machine generated at a word level while comparing results from different approaches and methods. We present a comparison with proprietary systems , performance of our model on unseen domains' and generators' texts. The findings reveal significant improvements in detection accuracy along with comparison on other aspects of detection capabilities. Finally we discuss potential avenues for improvement and implications of our work. The proposed model is also well suited for detecting which parts of a text are machine generated in outputs of Instruct variants of many LLMs. 1 authors · Oct 21, 2024
- Reading Subtext: Evaluating Large Language Models on Short Story Summarization with Writers We evaluate recent Large language Models (LLMs) on the challenging task of summarizing short stories, which can be lengthy, and include nuanced subtext or scrambled timelines. Importantly, we work directly with authors to ensure that the stories have not been shared online (and therefore are unseen by the models), and to obtain informed evaluations of summary quality using judgments from the authors themselves. Through quantitative and qualitative analysis grounded in narrative theory, we compare GPT-4, Claude-2.1, and LLama-2-70B. We find that all three models make faithfulness mistakes in over 50% of summaries and struggle to interpret difficult subtext. However, at their best, the models can provide thoughtful thematic analysis of stories. We additionally demonstrate that LLM judgments of summary quality do not match the feedback from the writers. 4 authors · Mar 1, 2024
- The ROOTS Search Tool: Data Transparency for LLMs ROOTS is a 1.6TB multilingual text corpus developed for the training of BLOOM, currently the largest language model explicitly accompanied by commensurate data governance efforts. In continuation of these efforts, we present the ROOTS Search Tool: a search engine over the entire ROOTS corpus offering both fuzzy and exact search capabilities. ROOTS is the largest corpus to date that can be investigated this way. The ROOTS Search Tool is open-sourced and available on Hugging Face Spaces. We describe our implementation and the possible use cases of our tool. 8 authors · Feb 27, 2023
- Do Language Models Know When They're Hallucinating References? State-of-the-art language models (LMs) are notoriously susceptible to generating hallucinated information. Such inaccurate outputs not only undermine the reliability of these models but also limit their use and raise serious concerns about misinformation and propaganda. In this work, we focus on hallucinated book and article references and present them as the "model organism" of language model hallucination research, due to their frequent and easy-to-discern nature. We posit that if a language model cites a particular reference in its output, then it should ideally possess sufficient information about its authors and content, among other relevant details. Using this basic insight, we illustrate that one can identify hallucinated references without ever consulting any external resources, by asking a set of direct or indirect queries to the language model about the references. These queries can be considered as "consistency checks." Our findings highlight that while LMs, including GPT-4, often produce inconsistent author lists for hallucinated references, they also often accurately recall the authors of real references. In this sense, the LM can be said to "know" when it is hallucinating references. Furthermore, these findings show how hallucinated references can be dissected to shed light on their nature. Replication code and results can be found at https://github.com/microsoft/hallucinated-references. 4 authors · May 29, 2023
- VisionScores -- A system-segmented image score dataset for deep learning tasks VisionScores presents a novel proposal being the first system-segmented image score dataset, aiming to offer structure-rich, high information-density images for machine and deep learning tasks. Delimited to two-handed piano pieces, it was built to consider not only certain graphic similarity but also composition patterns, as this creative process is highly instrument-dependent. It provides two scenarios in relation to composer and composition type. The first, formed by 14k samples, considers works from different authors but the same composition type, specifically, Sonatinas. The latter, consisting of 10.8K samples, presents the opposite case, various composition types from the same author, being the one selected Franz Liszt. All of the 24.8k samples are formatted as grayscale jpg images of 128 times 512 pixels. VisionScores supplies the users not only the formatted samples but the systems' order and pieces' metadata. Moreover, unsegmented full-page scores and the pre-formatted images are included for further analysis. 2 authors · Jun 28
2 A Confederacy of Models: a Comprehensive Evaluation of LLMs on Creative Writing We evaluate a range of recent LLMs on English creative writing, a challenging and complex task that requires imagination, coherence, and style. We use a difficult, open-ended scenario chosen to avoid training data reuse: an epic narration of a single combat between Ignatius J. Reilly, the protagonist of the Pulitzer Prize-winning novel A Confederacy of Dunces (1980), and a pterodactyl, a prehistoric flying reptile. We ask several LLMs and humans to write such a story and conduct a human evalution involving various criteria such as fluency, coherence, originality, humor, and style. Our results show that some state-of-the-art commercial LLMs match or slightly outperform our writers in most dimensions; whereas open-source LLMs lag behind. Humans retain an edge in creativity, while humor shows a binary divide between LLMs that can handle it comparably to humans and those that fail at it. We discuss the implications and limitations of our study and suggest directions for future research. 2 authors · Oct 12, 2023
- Comparative Study and Framework for Automated Summariser Evaluation: LangChain and Hybrid Algorithms Automated Essay Score (AES) is proven to be one of the cutting-edge technologies. Scoring techniques are used for various purposes. Reliable scores are calculated based on influential variables. Such variables can be computed by different methods based on the domain. The research is concentrated on the user's understanding of a given topic. The analysis is based on a scoring index by using Large Language Models. The user can then compare and contrast the understanding of a topic that they recently learned. The results are then contributed towards learning analytics and progression is made for enhancing the learning ability. In this research, the focus is on summarizing a PDF document and gauging a user's understanding of its content. The process involves utilizing a Langchain tool to summarize the PDF and extract the essential information. By employing this technique, the research aims to determine how well the user comprehends the summarized content. 4 authors · Oct 4, 2023
- Learning to Write with Coherence From Negative Examples Coherence is one of the critical factors that determine the quality of writing. We propose writing relevance (WR) training method for neural encoder-decoder natural language generation (NLG) models which improves coherence of the continuation by leveraging negative examples. WR loss regresses the vector representation of the context and generated sentence toward positive continuation by contrasting it with the negatives. We compare our approach with Unlikelihood (UL) training in a text continuation task on commonsense natural language inference (NLI) corpora to show which method better models the coherence by avoiding unlikely continuations. The preference of our approach in human evaluation shows the efficacy of our method in improving coherence. 5 authors · Sep 22, 2022
- Target Prompting for Information Extraction with Vision Language Model The recent trend in the Large Vision and Language model has brought a new change in how information extraction systems are built. VLMs have set a new benchmark with their State-of-the-art techniques in understanding documents and building question-answering systems across various industries. They are significantly better at generating text from document images and providing accurate answers to questions. However, there are still some challenges in effectively utilizing these models to build a precise conversational system. General prompting techniques used with large language models are often not suitable for these specially designed vision language models. The output generated by such generic input prompts is ordinary and may contain information gaps when compared with the actual content of the document. To obtain more accurate and specific answers, a well-targeted prompt is required by the vision language model, along with the document image. In this paper, a technique is discussed called Target prompting, which focuses on explicitly targeting parts of document images and generating related answers from those specific regions only. The paper also covers the evaluation of response for each prompting technique using different user queries and input prompts. 1 authors · Aug 7, 2024
- Passage Re-ranking with BERT Recently, neural models pretrained on a language modeling task, such as ELMo (Peters et al., 2017), OpenAI GPT (Radford et al., 2018), and BERT (Devlin et al., 2018), have achieved impressive results on various natural language processing tasks such as question-answering and natural language inference. In this paper, we describe a simple re-implementation of BERT for query-based passage re-ranking. Our system is the state of the art on the TREC-CAR dataset and the top entry in the leaderboard of the MS MARCO passage retrieval task, outperforming the previous state of the art by 27% (relative) in MRR@10. The code to reproduce our results is available at https://github.com/nyu-dl/dl4marco-bert 2 authors · Jan 13, 2019
32 MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents Multi-modal document retrieval is designed to identify and retrieve various forms of multi-modal content, such as figures, tables, charts, and layout information from extensive documents. Despite its significance, there is a notable lack of a robust benchmark to effectively evaluate the performance of systems in multi-modal document retrieval. To address this gap, this work introduces a new benchmark, named as MMDocIR, encompassing two distinct tasks: page-level and layout-level retrieval. The former focuses on localizing the most relevant pages within a long document, while the latter targets the detection of specific layouts, offering a more fine-grained granularity than whole-page analysis. A layout can refer to a variety of elements such as textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring expertly annotated labels for 1,685 questions and bootstrapped labels for 173,843 questions, making it a pivotal resource for advancing multi-modal document retrieval for both training and evaluation. Through rigorous experiments, we reveal that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR train set can effectively benefit the training process of multi-modal document retrieval and (iii) text retrievers leveraging on VLM-text perform much better than those using OCR-text. These findings underscores the potential advantages of integrating visual elements for multi-modal document retrieval. 6 authors · Jan 15 2
1 KazQAD: Kazakh Open-Domain Question Answering Dataset We introduce KazQAD -- a Kazakh open-domain question answering (ODQA) dataset -- that can be used in both reading comprehension and full ODQA settings, as well as for information retrieval experiments. KazQAD contains just under 6,000 unique questions with extracted short answers and nearly 12,000 passage-level relevance judgements. We use a combination of machine translation, Wikipedia search, and in-house manual annotation to ensure annotation efficiency and data quality. The questions come from two sources: translated items from the Natural Questions (NQ) dataset (only for training) and the original Kazakh Unified National Testing (UNT) exam (for development and testing). The accompanying text corpus contains more than 800,000 passages from the Kazakh Wikipedia. As a supplementary dataset, we release around 61,000 question-passage-answer triples from the NQ dataset that have been machine-translated into Kazakh. We develop baseline retrievers and readers that achieve reasonable scores in retrieval (NDCG@10 = 0.389 MRR = 0.382), reading comprehension (EM = 38.5 F1 = 54.2), and full ODQA (EM = 17.8 F1 = 28.7) settings. Nevertheless, these results are substantially lower than state-of-the-art results for English QA collections, and we think that there should still be ample room for improvement. We also show that the current OpenAI's ChatGPTv3.5 is not able to answer KazQAD test questions in the closed-book setting with acceptable quality. The dataset is freely available under the Creative Commons licence (CC BY-SA) at https://github.com/IS2AI/KazQAD. 5 authors · Apr 5, 2024
- Annotation Guidelines for Corpus Novelties: Part 2 -- Alias Resolution Version 1.0 The Novelties corpus is a collection of novels (and parts of novels) annotated for Alias Resolution, among other tasks. This document describes the guidelines applied during the annotation process. It contains the instructions used by the annotators, as well as a number of examples retrieved from the annotated novels, and illustrating how canonical names should be defined, and which names should be considered as referring to the same entity. 2 authors · Oct 1, 2024
- Named Entity Recognition and Classification on Historical Documents: A Survey After decades of massive digitisation, an unprecedented amount of historical documents is available in digital format, along with their machine-readable texts. While this represents a major step forward with respect to preservation and accessibility, it also opens up new opportunities in terms of content mining and the next fundamental challenge is to develop appropriate technologies to efficiently search, retrieve and explore information from this 'big data of the past'. Among semantic indexing opportunities, the recognition and classification of named entities are in great demand among humanities scholars. Yet, named entity recognition (NER) systems are heavily challenged with diverse, historical and noisy inputs. In this survey, we present the array of challenges posed by historical documents to NER, inventory existing resources, describe the main approaches deployed so far, and identify key priorities for future developments. 5 authors · Sep 23, 2021
- A Massive Scale Semantic Similarity Dataset of Historical English A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time. 2 authors · Jun 30, 2023
1 SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine We publicly release a new large-scale dataset, called SearchQA, for machine comprehension, or question-answering. Unlike recently released datasets, such as DeepMind CNN/DailyMail and SQuAD, the proposed SearchQA was constructed to reflect a full pipeline of general question-answering. That is, we start not from an existing article and generate a question-answer pair, but start from an existing question-answer pair, crawled from J! Archive, and augment it with text snippets retrieved by Google. Following this approach, we built SearchQA, which consists of more than 140k question-answer pairs with each pair having 49.6 snippets on average. Each question-answer-context tuple of the SearchQA comes with additional meta-data such as the snippet's URL, which we believe will be valuable resources for future research. We conduct human evaluation as well as test two baseline methods, one simple word selection and the other deep learning based, on the SearchQA. We show that there is a meaningful gap between the human and machine performances. This suggests that the proposed dataset could well serve as a benchmark for question-answering. 6 authors · Apr 17, 2017
- Retrieval Oriented Masking Pre-training Language Model for Dense Passage Retrieval Pre-trained language model (PTM) has been shown to yield powerful text representations for dense passage retrieval task. The Masked Language Modeling (MLM) is a major sub-task of the pre-training process. However, we found that the conventional random masking strategy tend to select a large number of tokens that have limited effect on the passage retrieval task (e,g. stop-words and punctuation). By noticing the term importance weight can provide valuable information for passage retrieval, we hereby propose alternative retrieval oriented masking (dubbed as ROM) strategy where more important tokens will have a higher probability of being masked out, to capture this straightforward yet essential information to facilitate the language model pre-training process. Notably, the proposed new token masking method will not change the architecture and learning objective of original PTM. Our experiments verify that the proposed ROM enables term importance information to help language model pre-training thus achieving better performance on multiple passage retrieval benchmarks. 4 authors · Oct 26, 2022
6 Retrieval-Enhanced Machine Learning: Synthesis and Opportunities In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research. 5 authors · Jul 17, 2024 2
1 Terminology-Aware Translation with Constrained Decoding and Large Language Model Prompting Terminology correctness is important in the downstream application of machine translation, and a prevalent way to ensure this is to inject terminology constraints into a translation system. In our submission to the WMT 2023 terminology translation task, we adopt a translate-then-refine approach which can be domain-independent and requires minimal manual efforts. We annotate random source words with pseudo-terminology translations obtained from word alignment to first train a terminology-aware model. Further, we explore two post-processing methods. First, we use an alignment process to discover whether a terminology constraint has been violated, and if so, we re-decode with the violating word negatively constrained. Alternatively, we leverage a large language model to refine a hypothesis by providing it with terminology constraints. Results show that our terminology-aware model learns to incorporate terminologies effectively, and the large language model refinement process can further improve terminology recall. 2 authors · Oct 9, 2023
- Annotation Guidelines for Corpus Novelties: Part 1 -- Named Entity Recognition The Novelties corpus is a collection of novels (and parts of novels) annotated for Named Entity Recognition (NER) among other tasks. This document describes the guidelines applied during its annotation. It contains the instructions used by the annotators, as well as a number of examples retrieved from the annotated novels, and illustrating expressions that should be marked as entities as well as expressions that should not. 2 authors · Oct 3, 2024
- Memotion 3: Dataset on Sentiment and Emotion Analysis of Codemixed Hindi-English Memes Memes are the new-age conveyance mechanism for humor on social media sites. Memes often include an image and some text. Memes can be used to promote disinformation or hatred, thus it is crucial to investigate in details. We introduce Memotion 3, a new dataset with 10,000 annotated memes. Unlike other prevalent datasets in the domain, including prior iterations of Memotion, Memotion 3 introduces Hindi-English Codemixed memes while prior works in the area were limited to only the English memes. We describe the Memotion task, the data collection and the dataset creation methodologies. We also provide a baseline for the task. The baseline code and dataset will be made available at https://github.com/Shreyashm16/Memotion-3.0 12 authors · Mar 17, 2023
1 Heaps' law and Heaps functions in tagged texts: Evidences of their linguistic relevance We study the relationship between vocabulary size and text length in a corpus of 75 literary works in English, authored by six writers, distinguishing between the contributions of three grammatical classes (or ``tags,'' namely, {\it nouns}, {\it verbs}, and {\it others}), and analyze the progressive appearance of new words of each tag along each individual text. While the power-law relation prescribed by Heaps' law is satisfactorily fulfilled by total vocabulary sizes and text lengths, the appearance of new words in each text is on the whole well described by the average of random shufflings of the text, which does not obey a power law. Deviations from this average, however, are statistically significant and show a systematic trend across the corpus. Specifically, they reveal that the appearance of new words along each text is predominantly retarded with respect to the average of random shufflings. Moreover, different tags are shown to add systematically distinct contributions to this tendency, with {\it verbs} and {\it others} being respectively more and less retarded than the mean trend, and {\it nouns} following instead this overall mean. These statistical systematicities are likely to point to the existence of linguistically relevant information stored in the different variants of Heaps' law, a feature that is still in need of extensive assessment. 2 authors · Jan 7, 2020
- U-CREAT: Unsupervised Case Retrieval using Events extrAcTion The task of Prior Case Retrieval (PCR) in the legal domain is about automatically citing relevant (based on facts and precedence) prior legal cases in a given query case. To further promote research in PCR, in this paper, we propose a new large benchmark (in English) for the PCR task: IL-PCR (Indian Legal Prior Case Retrieval) corpus. Given the complex nature of case relevance and the long size of legal documents, BM25 remains a strong baseline for ranking the cited prior documents. In this work, we explore the role of events in legal case retrieval and propose an unsupervised retrieval method-based pipeline U-CREAT (Unsupervised Case Retrieval using Events Extraction). We find that the proposed unsupervised retrieval method significantly increases performance compared to BM25 and makes retrieval faster by a considerable margin, making it applicable to real-time case retrieval systems. Our proposed system is generic, we show that it generalizes across two different legal systems (Indian and Canadian), and it shows state-of-the-art performance on the benchmarks for both the legal systems (IL-PCR and COLIEE corpora). 4 authors · Jul 11, 2023
2 Reading the unreadable: Creating a dataset of 19th century English newspapers using image-to-text language models Oscar Wilde said, "The difference between literature and journalism is that journalism is unreadable, and literature is not read." Unfortunately, The digitally archived journalism of Oscar Wilde's 19th century often has no or poor quality Optical Character Recognition (OCR), reducing the accessibility of these archives and making them unreadable both figuratively and literally. This paper helps address the issue by performing OCR on "The Nineteenth Century Serials Edition" (NCSE), an 84k-page collection of 19th-century English newspapers and periodicals, using Pixtral 12B, a pre-trained image-to-text language model. The OCR capability of Pixtral was compared to 4 other OCR approaches, achieving a median character error rate of 1%, 5x lower than the next best model. The resulting NCSE v2.0 dataset features improved article identification, high-quality OCR, and text classified into four types and seventeen topics. The dataset contains 1.4 million entries, and 321 million words. Example use cases demonstrate analysis of topic similarity, readability, and event tracking. NCSE v2.0 is freely available to encourage historical and sociological research. As a result, 21st-century readers can now share Oscar Wilde's disappointment with 19th-century journalistic standards, reading the unreadable from the comfort of their own computers. 1 authors · Feb 18
- MedReadMe: A Systematic Study for Fine-grained Sentence Readability in Medical Domain Medical texts are notoriously challenging to read. Properly measuring their readability is the first step towards making them more accessible. In this paper, we present a systematic study on fine-grained readability measurements in the medical domain at both sentence-level and span-level. We introduce a new dataset MedReadMe, which consists of manually annotated readability ratings and fine-grained complex span annotation for 4,520 sentences, featuring two novel "Google-Easy" and "Google-Hard" categories. It supports our quantitative analysis, which covers 650 linguistic features and automatic complex word and jargon identification. Enabled by our high-quality annotation, we benchmark and improve several state-of-the-art sentence-level readability metrics for the medical domain specifically, which include unsupervised, supervised, and prompting-based methods using recently developed large language models (LLMs). Informed by our fine-grained complex span annotation, we find that adding a single feature, capturing the number of jargon spans, into existing readability formulas can significantly improve their correlation with human judgments. The data is available at tinyurl.com/medreadme-repo 2 authors · May 3, 2024
- UKP-SQUARE: An Online Platform for Question Answering Research Recent advances in NLP and information retrieval have given rise to a diverse set of question answering tasks that are of different formats (e.g., extractive, abstractive), require different model architectures (e.g., generative, discriminative), and setups (e.g., with or without retrieval). Despite having a large number of powerful, specialized QA pipelines (which we refer to as Skills) that consider a single domain, model or setup, there exists no framework where users can easily explore and compare such pipelines and can extend them according to their needs. To address this issue, we present UKP-SQUARE, an extensible online QA platform for researchers which allows users to query and analyze a large collection of modern Skills via a user-friendly web interface and integrated behavioural tests. In addition, QA researchers can develop, manage, and share their custom Skills using our microservices that support a wide range of models (Transformers, Adapters, ONNX), datastores and retrieval techniques (e.g., sparse and dense). UKP-SQUARE is available on https://square.ukp-lab.de. 13 authors · Mar 25, 2022
33 A Survey on the Honesty of Large Language Models Honesty is a fundamental principle for aligning large language models (LLMs) with human values, requiring these models to recognize what they know and don't know and be able to faithfully express their knowledge. Despite promising, current LLMs still exhibit significant dishonest behaviors, such as confidently presenting wrong answers or failing to express what they know. In addition, research on the honesty of LLMs also faces challenges, including varying definitions of honesty, difficulties in distinguishing between known and unknown knowledge, and a lack of comprehensive understanding of related research. To address these issues, we provide a survey on the honesty of LLMs, covering its clarification, evaluation approaches, and strategies for improvement. Moreover, we offer insights for future research, aiming to inspire further exploration in this important area. 15 authors · Sep 27, 2024 3
1 SIGIR 2025 -- LiveRAG Challenge Report The LiveRAG Challenge at SIGIR 2025, held between March and May 2025, provided a competitive platform for advancing Retrieval-Augmented Generation (RAG) technologies. Participants from academia and industry were invited to develop a RAG-based question-answering system using a fixed corpus (Fineweb-10BT) and a common open-source LLM (Falcon3-10B-Instruct). The goal was to facilitate challenging comparisons of retrieval and prompting strategies. During the Live Challenge Day, 70 teams from 27 different countries provided answers and supportive information to 500 unseen questions within a strict two-hour time window. Evaluation was conducted in two stages: first an automated LLM-as-a-judge approach was used to compute correctness and faithfulness score, then a manual review of top ranked submissions was conducted. The finalists were announced on June 12, 2025, with prizes awarded during the LiveRAG Workshop at SIGIR 2025 in Padua, Italy. 6 authors · Jul 7
1 Improving Human Text Comprehension through Semi-Markov CRF-based Neural Section Title Generation Titles of short sections within long documents support readers by guiding their focus towards relevant passages and by providing anchor-points that help to understand the progression of the document. The positive effects of section titles are even more pronounced when measured on readers with less developed reading abilities, for example in communities with limited labeled text resources. We, therefore, aim to develop techniques to generate section titles in low-resource environments. In particular, we present an extractive pipeline for section title generation by first selecting the most salient sentence and then applying deletion-based compression. Our compression approach is based on a Semi-Markov Conditional Random Field that leverages unsupervised word-representations such as ELMo or BERT, eliminating the need for a complex encoder-decoder architecture. The results show that this approach leads to competitive performance with sequence-to-sequence models with high resources, while strongly outperforming it with low resources. In a human-subject study across subjects with varying reading abilities, we find that our section titles improve the speed of completing comprehension tasks while retaining similar accuracy. 3 authors · Apr 15, 2019
- A Survey of Deep Learning Approaches for OCR and Document Understanding Documents are a core part of many businesses in many fields such as law, finance, and technology among others. Automatic understanding of documents such as invoices, contracts, and resumes is lucrative, opening up many new avenues of business. The fields of natural language processing and computer vision have seen tremendous progress through the development of deep learning such that these methods have started to become infused in contemporary document understanding systems. In this survey paper, we review different techniques for document understanding for documents written in English and consolidate methodologies present in literature to act as a jumping-off point for researchers exploring this area. 4 authors · Nov 26, 2020
- SemEval 2023 Task 6: LegalEval - Understanding Legal Texts In populous countries, pending legal cases have been growing exponentially. There is a need for developing NLP-based techniques for processing and automatically understanding legal documents. To promote research in the area of Legal NLP we organized the shared task LegalEval - Understanding Legal Texts at SemEval 2023. LegalEval task has three sub-tasks: Task-A (Rhetorical Roles Labeling) is about automatically structuring legal documents into semantically coherent units, Task-B (Legal Named Entity Recognition) deals with identifying relevant entities in a legal document and Task-C (Court Judgement Prediction with Explanation) explores the possibility of automatically predicting the outcome of a legal case along with providing an explanation for the prediction. In total 26 teams (approx. 100 participants spread across the world) submitted systems paper. In each of the sub-tasks, the proposed systems outperformed the baselines; however, there is a lot of scope for improvement. This paper describes the tasks, and analyzes techniques proposed by various teams. 9 authors · Apr 19, 2023
1 Building astroBERT, a language model for Astronomy & Astrophysics The existing search tools for exploring the NASA Astrophysics Data System (ADS) can be quite rich and empowering (e.g., similar and trending operators), but researchers are not yet allowed to fully leverage semantic search. For example, a query for "results from the Planck mission" should be able to distinguish between all the various meanings of Planck (person, mission, constant, institutions and more) without further clarification from the user. At ADS, we are applying modern machine learning and natural language processing techniques to our dataset of recent astronomy publications to train astroBERT, a deeply contextual language model based on research at Google. Using astroBERT, we aim to enrich the ADS dataset and improve its discoverability, and in particular we are developing our own named entity recognition tool. We present here our preliminary results and lessons learned. 17 authors · Dec 1, 2021
- Stop Clickbait: Detecting and Preventing Clickbaits in Online News Media Most of the online news media outlets rely heavily on the revenues generated from the clicks made by their readers, and due to the presence of numerous such outlets, they need to compete with each other for reader attention. To attract the readers to click on an article and subsequently visit the media site, the outlets often come up with catchy headlines accompanying the article links, which lure the readers to click on the link. Such headlines are known as Clickbaits. While these baits may trick the readers into clicking, in the long run, clickbaits usually don't live up to the expectation of the readers, and leave them disappointed. In this work, we attempt to automatically detect clickbaits and then build a browser extension which warns the readers of different media sites about the possibility of being baited by such headlines. The extension also offers each reader an option to block clickbaits she doesn't want to see. Then, using such reader choices, the extension automatically blocks similar clickbaits during her future visits. We run extensive offline and online experiments across multiple media sites and find that the proposed clickbait detection and the personalized blocking approaches perform very well achieving 93% accuracy in detecting and 89% accuracy in blocking clickbaits. 4 authors · Oct 31, 2016
- Supervised Topical Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-reference Normalization Fast and effective automated indexing is critical for search and personalized services. Key phrases that consist of one or more words and represent the main concepts of the document are often used for the purpose of indexing. In this paper, we investigate the use of additional semantic features and pre-processing steps to improve automatic key phrase extraction. These features include the use of signal words and freebase categories. Some of these features lead to significant improvements in the accuracy of the results. We also experimented with 2 forms of document pre-processing that we call light filtering and co-reference normalization. Light filtering removes sentences from the document, which are judged peripheral to its main content. Co-reference normalization unifies several written forms of the same named entity into a unique form. We also needed a "Gold Standard" - a set of labeled documents for training and evaluation. While the subjective nature of key phrase selection precludes a true "Gold Standard", we used Amazon's Mechanical Turk service to obtain a useful approximation. Our data indicates that the biggest improvements in performance were due to shallow semantic features, news categories, and rhetorical signals (nDCG 78.47% vs. 68.93%). The inclusion of deeper semantic features such as Freebase sub-categories was not beneficial by itself, but in combination with pre-processing, did cause slight improvements in the nDCG scores. 5 authors · Jun 20, 2013
1 Swiss-Judgment-Prediction: A Multilingual Legal Judgment Prediction Benchmark In many jurisdictions, the excessive workload of courts leads to high delays. Suitable predictive AI models can assist legal professionals in their work, and thus enhance and speed up the process. So far, Legal Judgment Prediction (LJP) datasets have been released in English, French, and Chinese. We publicly release a multilingual (German, French, and Italian), diachronic (2000-2020) corpus of 85K cases from the Federal Supreme Court of Switzerland (FSCS). We evaluate state-of-the-art BERT-based methods including two variants of BERT that overcome the BERT input (text) length limitation (up to 512 tokens). Hierarchical BERT has the best performance (approx. 68-70% Macro-F1-Score in German and French). Furthermore, we study how several factors (canton of origin, year of publication, text length, legal area) affect performance. We release both the benchmark dataset and our code to accelerate future research and ensure reproducibility. 3 authors · Oct 2, 2021
- Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval Passage retrieval is a fundamental task in information retrieval (IR) research, which has drawn much attention recently. In the English field, the availability of large-scale annotated dataset (e.g, MS MARCO) and the emergence of deep pre-trained language models (e.g, BERT) has resulted in a substantial improvement of existing passage retrieval systems. However, in the Chinese field, especially for specific domains, passage retrieval systems are still immature due to quality-annotated dataset being limited by scale. Therefore, in this paper, we present a novel multi-domain Chinese dataset for passage retrieval (Multi-CPR). The dataset is collected from three different domains, including E-commerce, Entertainment video and Medical. Each dataset contains millions of passages and a certain amount of human annotated query-passage related pairs. We implement various representative passage retrieval methods as baselines. We find that the performance of retrieval models trained on dataset from general domain will inevitably decrease on specific domain. Nevertheless, a passage retrieval system built on in-domain annotated dataset can achieve significant improvement, which indeed demonstrates the necessity of domain labeled data for further optimization. We hope the release of the Multi-CPR dataset could benchmark Chinese passage retrieval task in specific domain and also make advances for future studies. 10 authors · Mar 7, 2022
2 NitiBench: A Comprehensive Studies of LLM Frameworks Capabilities for Thai Legal Question Answering The application of large language models (LLMs) in the legal domain holds significant potential for information retrieval and question answering, yet Thai legal QA systems face challenges due to a lack of standardized evaluation benchmarks and the complexity of Thai legal structures. This paper introduces NitiBench, a benchmark comprising two datasets: the NitiBench-CCL, covering general Thai financial law, and the NitiBench-Tax, which includes real-world tax law cases requiring advanced legal reasoning. We evaluate retrieval-augmented generation (RAG) and long-context LLM-based approaches to address three key research questions: the impact of domain-specific components like section-based chunking and cross-referencing, the comparative performance of different retrievers and LLMs, and the viability of long-context LLMs as an alternative to RAG. Our results show that section-based chunking significantly improves retrieval and end-to-end performance, current retrievers struggle with complex queries, and long-context LLMs still underperform RAG-based systems in Thai legal QA. To support fair evaluation, we propose tailored multi-label retrieval metrics and the use of an LLM-as-judge for coverage and contradiction detection method. These findings highlight the limitations of current Thai legal NLP solutions and provide a foundation for future research in the field. We also open-sourced our codes and dataset to available publicly. 6 authors · Feb 15
2 The Newspaper Navigator Dataset: Extracting And Analyzing Visual Content from 16 Million Historic Newspaper Pages in Chronicling America Chronicling America is a product of the National Digital Newspaper Program, a partnership between the Library of Congress and the National Endowment for the Humanities to digitize historic newspapers. Over 16 million pages of historic American newspapers have been digitized for Chronicling America to date, complete with high-resolution images and machine-readable METS/ALTO OCR. Of considerable interest to Chronicling America users is a semantified corpus, complete with extracted visual content and headlines. To accomplish this, we introduce a visual content recognition model trained on bounding box annotations of photographs, illustrations, maps, comics, and editorial cartoons collected as part of the Library of Congress's Beyond Words crowdsourcing initiative and augmented with additional annotations including those of headlines and advertisements. We describe our pipeline that utilizes this deep learning model to extract 7 classes of visual content: headlines, photographs, illustrations, maps, comics, editorial cartoons, and advertisements, complete with textual content such as captions derived from the METS/ALTO OCR, as well as image embeddings for fast image similarity querying. We report the results of running the pipeline on 16.3 million pages from the Chronicling America corpus and describe the resulting Newspaper Navigator dataset, the largest dataset of extracted visual content from historic newspapers ever produced. The Newspaper Navigator dataset, finetuned visual content recognition model, and all source code are placed in the public domain for unrestricted re-use. 9 authors · May 4, 2020
- ETHIC: Evaluating Large Language Models on Long-Context Tasks with High Information Coverage Recent advancements in large language models (LLM) capable of processing extremely long texts highlight the need for a dedicated evaluation benchmark to assess their long-context capabilities. However, existing methods, like the needle-in-a-haystack test, do not effectively assess whether these models fully utilize contextual information, raising concerns about the reliability of current evaluation techniques. To thoroughly examine the effectiveness of existing benchmarks, we introduce a new metric called information coverage (IC), which quantifies the proportion of the input context necessary for answering queries. Our findings indicate that current benchmarks exhibit low IC; although the input context may be extensive, the actual usable context is often limited. To address this, we present ETHIC, a novel benchmark designed to assess LLMs' ability to leverage the entire context. Our benchmark comprises 2,648 test instances spanning four long-context tasks with high IC scores in the domains of books, debates, medicine, and law. Our evaluations reveal significant performance drops in contemporary LLMs, highlighting a critical challenge in managing long contexts. Our benchmark is available at https://github.com/dmis-lab/ETHIC. 7 authors · Oct 22, 2024
- Increasing the Robustness of the Fine-tuned Multilingual Machine-Generated Text Detectors Since the proliferation of LLMs, there have been concerns about their misuse for harmful content creation and spreading. Recent studies justify such fears, providing evidence of LLM vulnerabilities and high potential of their misuse. Humans are no longer able to distinguish between high-quality machine-generated and authentic human-written texts. Therefore, it is crucial to develop automated means to accurately detect machine-generated content. It would enable to identify such content in online information space, thus providing an additional information about its credibility. This work addresses the problem by proposing a robust fine-tuning process of LLMs for the detection task, making the detectors more robust against obfuscation and more generalizable to out-of-distribution data. 3 authors · Mar 19
- A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding We provide a literature review about Automatic Text Summarization (ATS) systems. We consider a citation-based approach. We start with some popular and well-known papers that we have in hand about each topic we want to cover and we have tracked the "backward citations" (papers that are cited by the set of papers we knew beforehand) and the "forward citations" (newer papers that cite the set of papers we knew beforehand). In order to organize the different methods, we present the diverse approaches to ATS guided by the mechanisms they use to generate a summary. Besides presenting the methods, we also present an extensive review of the datasets available for summarization tasks and the methods used to evaluate the quality of the summaries. Finally, we present an empirical exploration of these methods using the CNN Corpus dataset that provides golden summaries for extractive and abstractive methods. 7 authors · Jan 4, 2023
- Vision-Braille: An End-to-End Tool for Chinese Braille Image-to-Text Translation Visually impaired people are a large group who can only use braille for reading and writing. However, the lack of special educational resources is the bottleneck for educating them. Educational equity is a reflection of the level of social civilization, cultural equality, and individual dignity. Facilitating and improving lifelong learning channels for the visually impaired is of great significance. Their written braille homework or exam papers cannot be understood by sighted teachers, because of the lack of a highly accurate braille translation system, especially in Chinese which has tone marks. braille writers often omit tone marks to save space, leading to confusion when braille with the same consonants and vowels is translated into Chinese. Previous algorithms were insufficient in extracting contextual information, resulting in low accuracy of braille translations into Chinese. This project informatively fine-tuned the mT5 model with an Encoder-decoder architecture for braille to Chinese character conversion. This research created a training set of braille and corresponding Chinese text from the Leipzig Corpora. This project significantly reduced the confusion in braille, achieving 62.4 and 62.3 BLEU scores in the validation and test sets, with a curriculum learning fine-tuning method. By incorporating the braille recognition algorithm, this project is the first publicly available braille translation system and can benefit lots of visually impaired students and families who are preparing for the Chinese College Test and help to propel their college dreams in the future. There is a demo on our homepage\url{https://vision-braille.com/}. 3 authors · Jul 8, 2024
- SpaceQA: Answering Questions about the Design of Space Missions and Space Craft Concepts We present SpaceQA, to the best of our knowledge the first open-domain QA system in Space mission design. SpaceQA is part of an initiative by the European Space Agency (ESA) to facilitate the access, sharing and reuse of information about Space mission design within the agency and with the public. We adopt a state-of-the-art architecture consisting of a dense retriever and a neural reader and opt for an approach based on transfer learning rather than fine-tuning due to the lack of domain-specific annotated data. Our evaluation on a test set produced by ESA is largely consistent with the results originally reported by the evaluated retrievers and confirms the need of fine tuning for reading comprehension. As of writing this paper, ESA is piloting SpaceQA internally. 6 authors · Oct 7, 2022
4 Word Form Matters: LLMs' Semantic Reconstruction under Typoglycemia Human readers can efficiently comprehend scrambled words, a phenomenon known as Typoglycemia, primarily by relying on word form; if word form alone is insufficient, they further utilize contextual cues for interpretation. While advanced large language models (LLMs) exhibit similar abilities, the underlying mechanisms remain unclear. To investigate this, we conduct controlled experiments to analyze the roles of word form and contextual information in semantic reconstruction and examine LLM attention patterns. Specifically, we first propose SemRecScore, a reliable metric to quantify the degree of semantic reconstruction, and validate its effectiveness. Using this metric, we study how word form and contextual information influence LLMs' semantic reconstruction ability, identifying word form as the core factor in this process. Furthermore, we analyze how LLMs utilize word form and find that they rely on specialized attention heads to extract and process word form information, with this mechanism remaining stable across varying levels of word scrambling. This distinction between LLMs' fixed attention patterns primarily focused on word form and human readers' adaptive strategy in balancing word form and contextual information provides insights into enhancing LLM performance by incorporating human-like, context-aware mechanisms. 6 authors · Mar 3 2
1 QUEST: A Retrieval Dataset of Entity-Seeking Queries with Implicit Set Operations Formulating selective information needs results in queries that implicitly specify set operations, such as intersection, union, and difference. For instance, one might search for "shorebirds that are not sandpipers" or "science-fiction films shot in England". To study the ability of retrieval systems to meet such information needs, we construct QUEST, a dataset of 3357 natural language queries with implicit set operations, that map to a set of entities corresponding to Wikipedia documents. The dataset challenges models to match multiple constraints mentioned in queries with corresponding evidence in documents and correctly perform various set operations. The dataset is constructed semi-automatically using Wikipedia category names. Queries are automatically composed from individual categories, then paraphrased and further validated for naturalness and fluency by crowdworkers. Crowdworkers also assess the relevance of entities based on their documents and highlight attribution of query constraints to spans of document text. We analyze several modern retrieval systems, finding that they often struggle on such queries. Queries involving negation and conjunction are particularly challenging and systems are further challenged with combinations of these operations. 5 authors · May 19, 2023
- FineCIR: Explicit Parsing of Fine-Grained Modification Semantics for Composed Image Retrieval Composed Image Retrieval (CIR) facilitates image retrieval through a multimodal query consisting of a reference image and modification text. The reference image defines the retrieval context, while the modification text specifies desired alterations. However, existing CIR datasets predominantly employ coarse-grained modification text (CoarseMT), which inadequately captures fine-grained retrieval intents. This limitation introduces two key challenges: (1) ignoring detailed differences leads to imprecise positive samples, and (2) greater ambiguity arises when retrieving visually similar images. These issues degrade retrieval accuracy, necessitating manual result filtering or repeated queries. To address these limitations, we develop a robust fine-grained CIR data annotation pipeline that minimizes imprecise positive samples and enhances CIR systems' ability to discern modification intents accurately. Using this pipeline, we refine the FashionIQ and CIRR datasets to create two fine-grained CIR datasets: Fine-FashionIQ and Fine-CIRR. Furthermore, we introduce FineCIR, the first CIR framework explicitly designed to parse the modification text. FineCIR effectively captures fine-grained modification semantics and aligns them with ambiguous visual entities, enhancing retrieval precision. Extensive experiments demonstrate that FineCIR consistently outperforms state-of-the-art CIR baselines on both fine-grained and traditional CIR benchmark datasets. Our FineCIR code and fine-grained CIR datasets are available at https://github.com/SDU-L/FineCIR.git. 6 authors · Mar 27
- Beyond Labels: Leveraging Deep Learning and LLMs for Content Metadata Content metadata plays a very important role in movie recommender systems as it provides valuable information about various aspects of a movie such as genre, cast, plot synopsis, box office summary, etc. Analyzing the metadata can help understand the user preferences to generate personalized recommendations and item cold starting. In this talk, we will focus on one particular type of metadata - genre labels. Genre labels associated with a movie or a TV series help categorize a collection of titles into different themes and correspondingly setting up the audience expectation. We present some of the challenges associated with using genre label information and propose a new way of examining the genre information that we call as the Genre Spectrum. The Genre Spectrum helps capture the various nuanced genres in a title and our offline and online experiments corroborate the effectiveness of the approach. Furthermore, we also talk about applications of LLMs in augmenting content metadata which could eventually be used to achieve effective organization of recommendations in user's 2-D home-grid. 3 authors · Sep 15, 2023
- Listen to the Context: Towards Faithful Large Language Models for Retrieval Augmented Generation on Climate Questions Large language models that use retrieval augmented generation have the potential to unlock valuable knowledge for researchers, policymakers, and the public by making long and technical climate-related documents more accessible. While this approach can help alleviate factual hallucinations by relying on retrieved passages as additional context, its effectiveness depends on whether the model's output remains faithful to these passages. To address this, we explore the automatic assessment of faithfulness of different models in this setting. We then focus on ClimateGPT, a large language model specialised in climate science, to examine which factors in its instruction fine-tuning impact the model's faithfulness. By excluding unfaithful subsets of the model's training data, we develop ClimateGPT Faithful+, which achieves an improvement in faithfulness from 30% to 57% in supported atomic claims according to our automatic metric. 4 authors · May 21
4 Fine-Tuning LLaMA for Multi-Stage Text Retrieval The effectiveness of multi-stage text retrieval has been solidly demonstrated since before the era of pre-trained language models. However, most existing studies utilize models that predate recent advances in large language models (LLMs). This study seeks to explore potential improvements that state-of-the-art LLMs can bring. We conduct a comprehensive study, fine-tuning the latest LLaMA model both as a dense retriever (RepLLaMA) and as a pointwise reranker (RankLLaMA) for both passage retrieval and document retrieval using the MS MARCO datasets. Our findings demonstrate that the effectiveness of large language models indeed surpasses that of smaller models. Additionally, since LLMs can inherently handle longer contexts, they can represent entire documents holistically, obviating the need for traditional segmenting and pooling strategies. Furthermore, evaluations on BEIR demonstrate that our RepLLaMA-RankLLaMA pipeline exhibits strong zero-shot effectiveness. Model checkpoints from this study are available on HuggingFace. 5 authors · Oct 12, 2023
- Time Awareness in Large Language Models: Benchmarking Fact Recall Across Time Who is the US President? The answer changes depending on when the question is asked. While large language models (LLMs) are evaluated on various reasoning tasks, they often miss a crucial dimension: time. In real-world scenarios, the correctness of answers is frequently tied to temporal context. In this paper, we introduce a novel dataset designed to rigorously test LLMs' ability to handle time-sensitive facts. Our benchmark offers a systematic way to measure how well LLMs align their knowledge with the correct time context, filling a key gap in current evaluation methods and offering a valuable tool for improving real-world applicability in future models. 3 authors · Sep 20, 2024
- Benchmarking Abstractive Summarisation: A Dataset of Human-authored Summaries of Norwegian News Articles We introduce a dataset of high-quality human-authored summaries of news articles in Norwegian. The dataset is intended for benchmarking the abstractive summarisation capabilities of generative language models. Each document in the dataset is provided with three different candidate gold-standard summaries written by native Norwegian speakers, and all summaries are provided in both of the written variants of Norwegian -- Bokm{\aa}l and Nynorsk. The paper describes details on the data creation effort as well as an evaluation of existing open LLMs for Norwegian on the dataset. We also provide insights from a manual human evaluation, comparing human-authored to model-generated summaries. Our results indicate that the dataset provides a challenging LLM benchmark for Norwegian summarisation capabilities 5 authors · Jan 13
- BERT-QE: Contextualized Query Expansion for Document Re-ranking Query expansion aims to mitigate the mismatch between the language used in a query and in a document. However, query expansion methods can suffer from introducing non-relevant information when expanding the query. To bridge this gap, inspired by recent advances in applying contextualized models like BERT to the document retrieval task, this paper proposes a novel query expansion model that leverages the strength of the BERT model to select relevant document chunks for expansion. In evaluation on the standard TREC Robust04 and GOV2 test collections, the proposed BERT-QE model significantly outperforms BERT-Large models. 6 authors · Sep 15, 2020
2 A Quantitative Review on Language Model Efficiency Research Language models (LMs) are being scaled and becoming powerful. Improving their efficiency is one of the core research topics in neural information processing systems. Tay et al. (2022) provided a comprehensive overview of efficient Transformers that have become an indispensable staple in the field of NLP. However, in the section of "On Evaluation", they left an open question "which fundamental efficient Transformer one should consider," answered by "still a mystery" because "many research papers select their own benchmarks." Unfortunately, there was not quantitative analysis about the performances of Transformers on any benchmarks. Moreover, state space models (SSMs) have demonstrated their abilities of modeling long-range sequences with non-attention mechanisms, which were not discussed in the prior review. This article makes a meta analysis on the results from a set of papers on efficient Transformers as well as those on SSMs. It provides a quantitative review on LM efficiency research and gives suggestions for future research. 3 authors · May 28, 2023
1 MS MARCO: A Human Generated MAchine Reading COmprehension Dataset We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questions---sampled from Bing's search query logs---each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages---extracted from 3,563,535 web documents retrieved by Bing---that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models. 15 authors · Nov 28, 2016
6 Dense Retrievers Can Fail on Simple Queries: Revealing The Granularity Dilemma of Embeddings This work focuses on an observed limitation of text encoders: embeddings may not be able to recognize fine-grained entities or events within the semantics, resulting in failed dense retrieval on even simple cases. To examine such behaviors, we first introduce a new evaluation dataset in Chinese, named CapRetrieval, whose passages are image captions, and queries are phrases inquiring entities or events in various forms. Zero-shot evaluation suggests that encoders may fail on these fine-grained matching, regardless of training sources or model sizes. Aiming for enhancement, we proceed to finetune encoders with our proposed data generation strategies, which obtains the best performance on CapRetrieval. Within this process, we further identify an issue of granularity dilemma, a challenge for embeddings to express fine-grained salience while aligning with overall semantics. Our dataset, code and models in this work are publicly released at https://github.com/lxucs/CapRetrieval. 6 authors · Jun 10 2
- CURE: Clinical Understanding & Retrieval Evaluation Given the dominance of dense retrievers that do not generalize well beyond their training dataset distributions, domain-specific test sets are essential in evaluating retrieval. There are few test datasets for retrieval systems intended for use by healthcare providers in a point-of-care setting. To fill this gap we have collaborated with medical professionals to create CURE, an ad-hoc retrieval test dataset for passage ranking with 2000 queries spanning 10 medical domains with a monolingual (English) and two cross-lingual (French/Spanish -> English) conditions. In this paper, we describe how CURE was constructed and provide baseline results to showcase its effectiveness as an evaluation tool. CURE is published with a Creative Commons Attribution Non Commercial 4.0 license and can be accessed on Hugging Face. 6 authors · Dec 9, 2024
1 The Distracting Effect: Understanding Irrelevant Passages in RAG A well-known issue with Retrieval Augmented Generation (RAG) is that retrieved passages that are irrelevant to the query sometimes distract the answer-generating LLM, causing it to provide an incorrect response. In this paper, we shed light on this core issue and formulate the distracting effect of a passage w.r.t. a query (and an LLM). We provide a quantifiable measure of the distracting effect of a passage and demonstrate its robustness across LLMs. Our research introduces novel methods for identifying and using hard distracting passages to improve RAG systems. By fine-tuning LLMs with these carefully selected distracting passages, we achieve up to a 7.5% increase in answering accuracy compared to counterparts fine-tuned on conventional RAG datasets. Our contribution is two-fold: first, we move beyond the simple binary classification of irrelevant passages as either completely unrelated vs. distracting, and second, we develop and analyze multiple methods for finding hard distracting passages. To our knowledge, no other research has provided such a comprehensive framework for identifying and utilizing hard distracting passages. 4 authors · May 11 2
- SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs Large language models (LLMs) have made significant advancements in various natural language processing tasks, including question answering (QA) tasks. While incorporating new information with the retrieval of relevant passages is a promising way to improve QA with LLMs, the existing methods often require additional fine-tuning which becomes infeasible with recent LLMs. Augmenting retrieved passages via prompting has the potential to address this limitation, but this direction has been limitedly explored. To this end, we design a simple yet effective framework to enhance open-domain QA (ODQA) with LLMs, based on the summarized retrieval (SuRe). SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval that could be viewed as an explicit rationale extracted from the retrieved passages. Specifically, SuRe first constructs summaries of the retrieved passages for each of the multiple answer candidates. Then, SuRe confirms the most plausible answer from the candidate set by evaluating the validity and ranking of the generated summaries. Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches. SuRe also can be integrated with a broad range of retrieval methods and LLMs. Finally, the generated summaries from SuRe show additional advantages to measure the importance of retrieved passages and serve as more preferred rationales by models and humans. 8 authors · Apr 16, 2024
- CEERS Epoch 1 NIRCam Imaging: Reduction Methods and Simulations Enabling Early JWST Science Results We present the data release and data reduction process for the Epoch 1 NIRCam observations for the Cosmic Evolution Early Release Science Survey (CEERS). These data consist of NIRCam imaging in six broadband filters (F115W, F150W, F200W, F277W, F356W and F444W) and one medium band filter (F410M) over four pointings, obtained in parallel with primary CEERS MIRI observations (Yang et al. in prep). We reduced the NIRCam imaging with the JWST Calibration Pipeline, with custom modifications and reduction steps designed to address additional features and challenges with the data. Here we provide a detailed description of each step in our reduction and a discussion of future expected improvements. Our reduction process includes corrections for known pre-launch issues such as 1/f noise, as well as in-flight issues including snowballs, wisps, and astrometric alignment. Many of our custom reduction processes were first developed with pre-launch simulated NIRCam imaging over the full 10 CEERS NIRCam pointings. We present a description of the creation and reduction of this simulated dataset in the Appendix. We provide mosaics of the real images in a public release, as well as our reduction scripts with detailed explanations to allow users to reproduce our final data products. These represent one of the first official public datasets released from the Directors Discretionary Early Release Science (DD-ERS) program. 37 authors · Nov 4, 2022
11 Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data? Despite the power of Large Language Models (LLMs) like GPT-4, they still struggle with tasks that require generating complex, structured outputs. In this study, we assess the capability of Current LLMs in generating complex structured data and propose a structure-aware fine-tuning approach as a solution to improve this ability. To perform a comprehensive evaluation, we propose Struc-Bench, include five representative LLMs (i.e., GPT-NeoX 20B, GPT-3.5, GPT-4, and Vicuna) and evaluate them on our carefully constructed datasets spanning raw text, HTML, and LaTeX tables. Based on our analysis of current model performance, we identify specific common formatting errors and areas of potential improvement. To address complex formatting requirements, we utilize FormatCoT (Chain-of-Thought) to generate format instructions from target outputs. Our experiments show that our structure-aware fine-tuning method, when applied to LLaMA-7B, significantly improves adherence to natural language constraints, outperforming other evaluated LLMs. Based on these results, we present an ability map of model capabilities from six dimensions (i.e., coverage, formatting, reasoning, comprehension, pragmatics, and hallucination). This map highlights the weaknesses of LLMs in handling complex structured outputs and suggests promising directions for future work. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench. 5 authors · Sep 16, 2023 1
- The Multi-Range Theory of Translation Quality Measurement: MQM scoring models and Statistical Quality Control The year 2024 marks the 10th anniversary of the Multidimensional Quality Metrics (MQM) framework for analytic translation quality evaluation. The MQM error typology has been widely used by practitioners in the translation and localization industry and has served as the basis for many derivative projects. The annual Conference on Machine Translation (WMT) shared tasks on both human and automatic translation quality evaluations used the MQM error typology. The metric stands on two pillars: error typology and the scoring model. The scoring model calculates the quality score from annotation data, detailing how to convert error type and severity counts into numeric scores to determine if the content meets specifications. Previously, only the raw scoring model had been published. This April, the MQM Council published the Linear Calibrated Scoring Model, officially presented herein, along with the Non-Linear Scoring Model, which had not been published before. This paper details the latest MQM developments and presents a universal approach to translation quality measurement across three sample size ranges. It also explains why Statistical Quality Control should be used for very small sample sizes, starting from a single sentence. 13 authors · May 27, 2024
- A Bias Aware News Recommendation System In this era of fake news and political polarization, it is desirable to have a system to enable users to access balanced news content. Current solutions focus on top down, server based approaches to decide whether a news article is fake or biased, and display only trusted news to the end users. In this paper, we follow a different approach to help the users make informed choices about which news they want to read, making users aware in real time of the bias in news articles they were browsing and recommending news articles from other sources on the same topic with different levels of bias. We use a recent Pew research report to collect news sources that readers with varying political inclinations prefer to read. We then scrape news articles on a variety of topics from these varied news sources. After this, we perform clustering to find similar topics of the articles, as well as calculate a bias score for each article. For a news article the user is currently reading, we display the bias score and also display other articles on the same topic, out of the previously collected articles, from different news sources. This we present to the user. This approach, we hope, would make it possible for users to access more balanced articles on given news topics. We present the implementation details of the system along with some preliminary results on news articles. 3 authors · Mar 9, 2018
1 Attention Sorting Combats Recency Bias In Long Context Language Models Current language models often fail to incorporate long contexts efficiently during generation. We show that a major contributor to this issue are attention priors that are likely learned during pre-training: relevant information located earlier in context is attended to less on average. Yet even when models fail to use the information from a relevant document in their response, they still pay preferential attention to that document compared to an irrelevant document at the same position. We leverage this fact to introduce ``attention sorting'': perform one step of decoding, sort documents by the attention they receive (highest attention going last), repeat the process, generate the answer with the newly sorted context. We find that attention sorting improves performance of long context models. Our findings highlight some challenges in using off-the-shelf language models for retrieval augmented generation. 2 authors · Sep 28, 2023
- ArxEval: Evaluating Retrieval and Generation in Language Models for Scientific Literature Language Models [LMs] are now playing an increasingly large role in information generation and synthesis; the representation of scientific knowledge in these systems needs to be highly accurate. A prime challenge is hallucination; that is, generating apparently plausible but actually false information, including invented citations and nonexistent research papers. This kind of inaccuracy is dangerous in all the domains that require high levels of factual correctness, such as academia and education. This work presents a pipeline for evaluating the frequency with which language models hallucinate in generating responses in the scientific literature. We propose ArxEval, an evaluation pipeline with two tasks using ArXiv as a repository: Jumbled Titles and Mixed Titles. Our evaluation includes fifteen widely used language models and provides comparative insights into their reliability in handling scientific literature. 4 authors · Jan 17
- Don't Retrieve, Generate: Prompting LLMs for Synthetic Training Data in Dense Retrieval Training effective dense retrieval models often relies on hard negative (HN) examples mined from the document corpus via methods like BM25 or cross-encoders (CE), processes that can be computationally demanding and require full corpus access. This paper introduces a different approach, an end-to-end pipeline where a Large Language Model (LLM) first generates a query from a passage, and then generates a hard negative example using only that query text. This corpus-free negative generation contrasts with standard mining techniques. We evaluated this LLM Query rightarrow LLM HN approach against traditional LLM Query rightarrow BM25 HN and LLM Query rightarrow CE HN pipelines using E5-Base and GTE-Base models on several BEIR benchmark datasets. Our results show the proposed all-LLM pipeline achieves performance identical to both the BM25 and the computationally intensive CE baselines across nDCG@10, Precision@10, and Recall@100 metrics. This demonstrates that our corpus-free negative generation method matches the effectiveness of complex, corpus-dependent mining techniques, offering a potentially simpler and more efficient pathway for training high-performance retrievers without sacrificing results. We make the dataset including the queries and the hard-negatives for all three methods publicly available https://huggingface.co/collections/chungimungi/arxiv-hard-negatives-68027bbc601ff6cc8eb1f449. 1 authors · Apr 20
- Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities With the advent of large language models, methods for abstractive summarization have made great strides, creating potential for use in applications to aid knowledge workers processing unwieldy document collections. One such setting is the Civil Rights Litigation Clearinghouse (CRLC) (https://clearinghouse.net),which posts information about large-scale civil rights lawsuits, serving lawyers, scholars, and the general public. Today, summarization in the CRLC requires extensive training of lawyers and law students who spend hours per case understanding multiple relevant documents in order to produce high-quality summaries of key events and outcomes. Motivated by this ongoing real-world summarization effort, we introduce Multi-LexSum, a collection of 9,280 expert-authored summaries drawn from ongoing CRLC writing. Multi-LexSum presents a challenging multi-document summarization task given the length of the source documents, often exceeding two hundred pages per case. Furthermore, Multi-LexSum is distinct from other datasets in its multiple target summaries, each at a different granularity (ranging from one-sentence "extreme" summaries to multi-paragraph narrations of over five hundred words). We present extensive analysis demonstrating that despite the high-quality summaries in the training data (adhering to strict content and style guidelines), state-of-the-art summarization models perform poorly on this task. We release Multi-LexSum for further research in summarization methods as well as to facilitate development of applications to assist in the CRLC's mission at https://multilexsum.github.io. 6 authors · Jun 22, 2022
2 LitLLMs, LLMs for Literature Review: Are we there yet? Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io. 8 authors · Dec 14, 2024
- FACT: Examining the Effectiveness of Iterative Context Rewriting for Multi-fact Retrieval Large Language Models (LLMs) are proficient at retrieving single facts from extended contexts, yet they struggle with tasks requiring the simultaneous retrieval of multiple facts, especially during generation. This paper identifies a novel "lost-in-the-middle" phenomenon, where LLMs progressively lose track of critical information throughout the generation process, resulting in incomplete or inaccurate retrieval. To address this challenge, we introduce Find All Crucial Texts (FACT), an iterative retrieval method that refines context through successive rounds of rewriting. This approach enables models to capture essential facts incrementally, which are often overlooked in single-pass retrieval. Experiments demonstrate that FACT substantially enhances multi-fact retrieval performance across various tasks, though improvements are less notable in general-purpose QA scenarios. Our findings shed light on the limitations of LLMs in multi-fact retrieval and underscore the need for more resilient long-context retrieval strategies. 7 authors · Oct 28, 2024