Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMulti-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation
Multi-modality image fusion and segmentation play a vital role in autonomous driving and robotic operation. Early efforts focus on boosting the performance for only one task, e.g., fusion or segmentation, making it hard to reach~`Best of Both Worlds'. To overcome this issue, in this paper, we propose a Multi-interactive Feature learning architecture for image fusion and Segmentation, namely SegMiF, and exploit dual-task correlation to promote the performance of both tasks. The SegMiF is of a cascade structure, containing a fusion sub-network and a commonly used segmentation sub-network. By slickly bridging intermediate features between two components, the knowledge learned from the segmentation task can effectively assist the fusion task. Also, the benefited fusion network supports the segmentation one to perform more pretentiously. Besides, a hierarchical interactive attention block is established to ensure fine-grained mapping of all the vital information between two tasks, so that the modality/semantic features can be fully mutual-interactive. In addition, a dynamic weight factor is introduced to automatically adjust the corresponding weights of each task, which can balance the interactive feature correspondence and break through the limitation of laborious tuning. Furthermore, we construct a smart multi-wave binocular imaging system and collect a full-time multi-modality benchmark with 15 annotated pixel-level categories for image fusion and segmentation. Extensive experiments on several public datasets and our benchmark demonstrate that the proposed method outputs visually appealing fused images and perform averagely 7.66% higher segmentation mIoU in the real-world scene than the state-of-the-art approaches. The source code and benchmark are available at https://github.com/JinyuanLiu-CV/SegMiF.
Fast FullSubNet: Accelerate Full-band and Sub-band Fusion Model for Single-channel Speech Enhancement
FullSubNet is our recently proposed real-time single-channel speech enhancement network that achieves outstanding performance on the Deep Noise Suppression (DNS) Challenge dataset. A number of variants of FullSubNet have been proposed, but they all focus on the structure design towards better performance and are rarely concerned with computational efficiency. For many speech enhancement applications, a key feature is that system runs on a real-time, latency-sensitive, battery-powered platform, which strictly limits the algorithm latency and computational complexity. In this work, we propose a new architecture named Fast FullSubNet dedicated to accelerating the computation of FullSubNet. Specifically, Fast FullSubNet processes sub-band speech spectra in the mel-frequency domain by using cascaded linear-to-mel full-band, sub-band, and mel-to-linear full-band models such that frequencies involved in the sub-band computation are vastly reduced. After that, a down-sampling operation is proposed for the sub-band input sequence to further reduce the computational complexity along the time axis. Experimental results show that, compared to FullSubNet, Fast FullSubNet has only 13\% computational complexity and 16\% processing time, and achieves comparable or even better performance. Code and audio samples are available at https://github.com/Audio-WestlakeU/FullSubNet.
QMambaBSR: Burst Image Super-Resolution with Query State Space Model
Burst super-resolution aims to reconstruct high-resolution images with higher quality and richer details by fusing the sub-pixel information from multiple burst low-resolution frames. In BusrtSR, the key challenge lies in extracting the base frame's content complementary sub-pixel details while simultaneously suppressing high-frequency noise disturbance. Existing methods attempt to extract sub-pixels by modeling inter-frame relationships frame by frame while overlooking the mutual correlations among multi-current frames and neglecting the intra-frame interactions, leading to inaccurate and noisy sub-pixels for base frame super-resolution. Further, existing methods mainly employ static upsampling with fixed parameters to improve spatial resolution for all scenes, failing to perceive the sub-pixel distribution difference across multiple frames and cannot balance the fusion weights of different frames, resulting in over-smoothed details and artifacts. To address these limitations, we introduce a novel Query Mamba Burst Super-Resolution (QMambaBSR) network, which incorporates a Query State Space Model (QSSM) and Adaptive Up-sampling module (AdaUp). Specifically, based on the observation that sub-pixels have consistent spatial distribution while random noise is inconsistently distributed, a novel QSSM is proposed to efficiently extract sub-pixels through inter-frame querying and intra-frame scanning while mitigating noise interference in a single step. Moreover, AdaUp is designed to dynamically adjust the upsampling kernel based on the spatial distribution of multi-frame sub-pixel information in the different burst scenes, thereby facilitating the reconstruction of the spatial arrangement of high-resolution details. Extensive experiments on four popular synthetic and real-world benchmarks demonstrate that our method achieves a new state-of-the-art performance.
A Hardware-Aware System for Accelerating Deep Neural Network Optimization
Recent advances in Neural Architecture Search (NAS) which extract specialized hardware-aware configurations (a.k.a. "sub-networks") from a hardware-agnostic "super-network" have become increasingly popular. While considerable effort has been employed towards improving the first stage, namely, the training of the super-network, the search for derivative high-performing sub-networks is still largely under-explored. For example, some recent network morphism techniques allow a super-network to be trained once and then have hardware-specific networks extracted from it as needed. These methods decouple the super-network training from the sub-network search and thus decrease the computational burden of specializing to different hardware platforms. We propose a comprehensive system that automatically and efficiently finds sub-networks from a pre-trained super-network that are optimized to different performance metrics and hardware configurations. By combining novel search tactics and algorithms with intelligent use of predictors, we significantly decrease the time needed to find optimal sub-networks from a given super-network. Further, our approach does not require the super-network to be refined for the target task a priori, thus allowing it to interface with any super-network. We demonstrate through extensive experiments that our system works seamlessly with existing state-of-the-art super-network training methods in multiple domains. Moreover, we show how novel search tactics paired with evolutionary algorithms can accelerate the search process for ResNet50, MobileNetV3 and Transformer while maintaining objective space Pareto front diversity and demonstrate an 8x faster search result than the state-of-the-art Bayesian optimization WeakNAS approach.
Transformer Fusion with Optimal Transport
Fusion is a technique for merging multiple independently-trained neural networks in order to combine their capabilities. Past attempts have been restricted to the case of fully-connected, convolutional, and residual networks. In this paper, we present a systematic approach for fusing two or more transformer-based networks exploiting Optimal Transport to (soft-)align the various architectural components. We flesh out an abstraction for layer alignment, that can generalize to arbitrary architectures -- in principle -- and we apply this to the key ingredients of Transformers such as multi-head self-attention, layer-normalization, and residual connections, and we discuss how to handle them via various ablation studies. Furthermore, our method allows the fusion of models of different sizes (heterogeneous fusion), providing a new and efficient way for compression of Transformers. The proposed approach is evaluated on both image classification tasks via Vision Transformer and natural language modeling tasks using BERT. Our approach consistently outperforms vanilla fusion, and, after a surprisingly short finetuning, also outperforms the individual converged parent models. In our analysis, we uncover intriguing insights about the significant role of soft alignment in the case of Transformers. Our results showcase the potential of fusing multiple Transformers, thus compounding their expertise, in the budding paradigm of model fusion and recombination.
Ensemble One-dimensional Convolution Neural Networks for Skeleton-based Action Recognition
In this paper, we proposed a effective but extensible residual one-dimensional convolution neural network as base network, based on the this network, we proposed four subnets to explore the features of skeleton sequences from each aspect. Given a skeleton sequences, the spatial information are encoded into the skeleton joints coordinate in a frame and the temporal information are present by multiple frames. Limited by the skeleton sequence representations, two-dimensional convolution neural network cannot be used directly, we chose one-dimensional convolution layer as the basic layer. Each sub network could extract discriminative features from different aspects. Our first subnet is a two-stream network which could explore both temporal and spatial information. The second is a body-parted network, which could gain micro spatial features and macro temporal features. The third one is an attention network, the main contribution of which is to focus the key frames and feature channels which high related with the action classes in a skeleton sequence. One frame-difference network, as the last subnet, mainly processes the joints changes between the consecutive frames. Four subnets ensemble together by late fusion, the key problem of ensemble method is each subnet should have a certain performance and between the subnets, there are diversity existing. Each subnet shares a wellperformance basenet and differences between subnets guaranteed the diversity. Experimental results show that the ensemble network gets a state-of-the-art performance on three widely used datasets.
Applying Graph Explanation to Operator Fusion
Layer fusion techniques are critical to improving the inference efficiency of deep neural networks (DNN) for deployment. Fusion aims to lower inference costs by reducing data transactions between an accelerator's on-chip buffer and DRAM. This is accomplished by grouped execution of multiple operations like convolution and activations together into single execution units - fusion groups. However, on-chip buffer capacity limits fusion group size and optimizing fusion on whole DNNs requires partitioning into multiple fusion groups. Finding the optimal groups is a complex problem where the presence of invalid solutions hampers traditional search algorithms and demands robust approaches. In this paper we incorporate Explainable AI, specifically Graph Explanation Techniques (GET), into layer fusion. Given an invalid fusion group, we identify the operations most responsible for group invalidity, then use this knowledge to recursively split the original fusion group via a greedy tree-based algorithm to minimize DRAM access. We pair our scheme with common algorithms and optimize DNNs on two types of layer fusion: Line-Buffer Depth First (LBDF) and Branch Requirement Reduction (BRR). Experiments demonstrate the efficacy of our scheme on several popular and classical convolutional neural networks like ResNets and MobileNets. Our scheme achieves over 20% DRAM Access reduction on EfficientNet-B3.
Low-rank lottery tickets: finding efficient low-rank neural networks via matrix differential equations
Neural networks have achieved tremendous success in a large variety of applications. However, their memory footprint and computational demand can render them impractical in application settings with limited hardware or energy resources. In this work, we propose a novel algorithm to find efficient low-rank subnetworks. Remarkably, these subnetworks are determined and adapted already during the training phase and the overall time and memory resources required by both training and evaluating them are significantly reduced. The main idea is to restrict the weight matrices to a low-rank manifold and to update the low-rank factors rather than the full matrix during training. To derive training updates that are restricted to the prescribed manifold, we employ techniques from dynamic model order reduction for matrix differential equations. This allows us to provide approximation, stability, and descent guarantees. Moreover, our method automatically and dynamically adapts the ranks during training to achieve the desired approximation accuracy. The efficiency of the proposed method is demonstrated through a variety of numerical experiments on fully-connected and convolutional networks.
DRESS: Dynamic REal-time Sparse Subnets
The limited and dynamically varied resources on edge devices motivate us to deploy an optimized deep neural network that can adapt its sub-networks to fit in different resource constraints. However, existing works often build sub-networks through searching different network architectures in a hand-crafted sampling space, which not only can result in a subpar performance but also may cause on-device re-configuration overhead. In this paper, we propose a novel training algorithm, Dynamic REal-time Sparse Subnets (DRESS). DRESS samples multiple sub-networks from the same backbone network through row-based unstructured sparsity, and jointly trains these sub-networks in parallel with weighted loss. DRESS also exploits strategies including parameter reusing and row-based fine-grained sampling for efficient storage consumption and efficient on-device adaptation. Extensive experiments on public vision datasets show that DRESS yields significantly higher accuracy than state-of-the-art sub-networks.
A Hardware-Aware Framework for Accelerating Neural Architecture Search Across Modalities
Recent advances in Neural Architecture Search (NAS) such as one-shot NAS offer the ability to extract specialized hardware-aware sub-network configurations from a task-specific super-network. While considerable effort has been employed towards improving the first stage, namely, the training of the super-network, the search for derivative high-performing sub-networks is still under-explored. Popular methods decouple the super-network training from the sub-network search and use performance predictors to reduce the computational burden of searching on different hardware platforms. We propose a flexible search framework that automatically and efficiently finds optimal sub-networks that are optimized for different performance metrics and hardware configurations. Specifically, we show how evolutionary algorithms can be paired with lightly trained objective predictors in an iterative cycle to accelerate architecture search in a multi-objective setting for various modalities including machine translation and image classification.
Target-aware Dual Adversarial Learning and a Multi-scenario Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection
This study addresses the issue of fusing infrared and visible images that appear differently for object detection. Aiming at generating an image of high visual quality, previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks. These approaches neglect that modality differences implying the complementary information are extremely important for both fusion and subsequent detection task. This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network. The fusion network with one generator and dual discriminators seeks commons while learning from differences, which preserves structural information of targets from the infrared and textural details from the visible. Furthermore, we build a synchronized imaging system with calibrated infrared and optical sensors, and collect currently the most comprehensive benchmark covering a wide range of scenarios. Extensive experiments on several public datasets and our benchmark demonstrate that our method outputs not only visually appealing fusion but also higher detection mAP than the state-of-the-art approaches.
Searching for Efficient Multi-Stage Vision Transformers
Vision Transformer (ViT) demonstrates that Transformer for natural language processing can be applied to computer vision tasks and result in comparable performance to convolutional neural networks (CNN), which have been studied and adopted in computer vision for years. This naturally raises the question of how the performance of ViT can be advanced with design techniques of CNN. To this end, we propose to incorporate two techniques and present ViT-ResNAS, an efficient multi-stage ViT architecture designed with neural architecture search (NAS). First, we propose residual spatial reduction to decrease sequence lengths for deeper layers and utilize a multi-stage architecture. When reducing lengths, we add skip connections to improve performance and stabilize training deeper networks. Second, we propose weight-sharing NAS with multi-architectural sampling. We enlarge a network and utilize its sub-networks to define a search space. A super-network covering all sub-networks is then trained for fast evaluation of their performance. To efficiently train the super-network, we propose to sample and train multiple sub-networks with one forward-backward pass. After that, evolutionary search is performed to discover high-performance network architectures. Experiments on ImageNet demonstrate that ViT-ResNAS achieves better accuracy-MACs and accuracy-throughput trade-offs than the original DeiT and other strong baselines of ViT. Code is available at https://github.com/yilunliao/vit-search.
SortedNet, a Place for Every Network and Every Network in its Place: Towards a Generalized Solution for Training Many-in-One Neural Networks
As the size of deep learning models continues to grow, finding optimal models under memory and computation constraints becomes increasingly more important. Although usually the architecture and constituent building blocks of neural networks allow them to be used in a modular way, their training process is not aware of this modularity. Consequently, conventional neural network training lacks the flexibility to adapt the computational load of the model during inference. This paper proposes SortedNet, a generalized and scalable solution to harness the inherent modularity of deep neural networks across various dimensions for efficient dynamic inference. Our training considers a nested architecture for the sub-models with shared parameters and trains them together with the main model in a sorted and probabilistic manner. This sorted training of sub-networks enables us to scale the number of sub-networks to hundreds using a single round of training. We utilize a novel updating scheme during training that combines random sampling of sub-networks with gradient accumulation to improve training efficiency. Furthermore, the sorted nature of our training leads to a search-free sub-network selection at inference time; and the nested architecture of the resulting sub-networks leads to minimal storage requirement and efficient switching between sub-networks at inference. Our general dynamic training approach is demonstrated across various architectures and tasks, including large language models and pre-trained vision models. Experimental results show the efficacy of the proposed approach in achieving efficient sub-networks while outperforming state-of-the-art dynamic training approaches. Our findings demonstrate the feasibility of training up to 160 different sub-models simultaneously, showcasing the extensive scalability of our proposed method while maintaining 96% of the model performance.
Fusion is Not Enough: Single Modal Attacks on Fusion Models for 3D Object Detection
Multi-sensor fusion (MSF) is widely used in autonomous vehicles (AVs) for perception, particularly for 3D object detection with camera and LiDAR sensors. The purpose of fusion is to capitalize on the advantages of each modality while minimizing its weaknesses. Advanced deep neural network (DNN)-based fusion techniques have demonstrated the exceptional and industry-leading performance. Due to the redundant information in multiple modalities, MSF is also recognized as a general defence strategy against adversarial attacks. In this paper, we attack fusion models from the camera modality that is considered to be of lesser importance in fusion but is more affordable for attackers. We argue that the weakest link of fusion models depends on their most vulnerable modality, and propose an attack framework that targets advanced camera-LiDAR fusion-based 3D object detection models through camera-only adversarial attacks. Our approach employs a two-stage optimization-based strategy that first thoroughly evaluates vulnerable image areas under adversarial attacks, and then applies dedicated attack strategies for different fusion models to generate deployable patches. The evaluations with six advanced camera-LiDAR fusion models and one camera-only model indicate that our attacks successfully compromise all of them. Our approach can either decrease the mean average precision (mAP) of detection performance from 0.824 to 0.353, or degrade the detection score of a target object from 0.728 to 0.156, demonstrating the efficacy of our proposed attack framework. Code is available.
Once-for-All: Train One Network and Specialize it for Efficient Deployment
We address the challenging problem of efficient inference across many devices and resource constraints, especially on edge devices. Conventional approaches either manually design or use neural architecture search (NAS) to find a specialized neural network and train it from scratch for each case, which is computationally prohibitive (causing CO_2 emission as much as 5 cars' lifetime) thus unscalable. In this work, we propose to train a once-for-all (OFA) network that supports diverse architectural settings by decoupling training and search, to reduce the cost. We can quickly get a specialized sub-network by selecting from the OFA network without additional training. To efficiently train OFA networks, we also propose a novel progressive shrinking algorithm, a generalized pruning method that reduces the model size across many more dimensions than pruning (depth, width, kernel size, and resolution). It can obtain a surprisingly large number of sub-networks (> 10^{19}) that can fit different hardware platforms and latency constraints while maintaining the same level of accuracy as training independently. On diverse edge devices, OFA consistently outperforms state-of-the-art (SOTA) NAS methods (up to 4.0% ImageNet top1 accuracy improvement over MobileNetV3, or same accuracy but 1.5x faster than MobileNetV3, 2.6x faster than EfficientNet w.r.t measured latency) while reducing many orders of magnitude GPU hours and CO_2 emission. In particular, OFA achieves a new SOTA 80.0% ImageNet top-1 accuracy under the mobile setting (<600M MACs). OFA is the winning solution for the 3rd Low Power Computer Vision Challenge (LPCVC), DSP classification track and the 4th LPCVC, both classification track and detection track. Code and 50 pre-trained models (for many devices & many latency constraints) are released at https://github.com/mit-han-lab/once-for-all.
Leveraging Frequency Domain Learning in 3D Vessel Segmentation
Coronary microvascular disease constitutes a substantial risk to human health. Employing computer-aided analysis and diagnostic systems, medical professionals can intervene early in disease progression, with 3D vessel segmentation serving as a crucial component. Nevertheless, conventional U-Net architectures tend to yield incoherent and imprecise segmentation outcomes, particularly for small vessel structures. While models with attention mechanisms, such as Transformers and large convolutional kernels, demonstrate superior performance, their extensive computational demands during training and inference lead to increased time complexity. In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models, which can reduce computational expenses while preserving global receptive fields within the network. Furthermore, a zero-parameter frequency domain fusion method is designed to improve the skip connections in U-Net architecture. Experimental results on a public dataset and an in-house dataset indicate that our novel Fourier transformation-based network achieves remarkable dice performance (84.37\% on ASACA500 and 80.32\% on ImageCAS) in tubular vessel segmentation tasks and substantially reduces computational requirements without compromising global receptive fields.
DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs
This paper revives Densely Connected Convolutional Networks (DenseNets) and reveals the underrated effectiveness over predominant ResNet-style architectures. We believe DenseNets' potential was overlooked due to untouched training methods and traditional design elements not fully revealing their capabilities. Our pilot study shows dense connections through concatenation are strong, demonstrating that DenseNets can be revitalized to compete with modern architectures. We methodically refine suboptimal components - architectural adjustments, block redesign, and improved training recipes towards widening DenseNets and boosting memory efficiency while keeping concatenation shortcuts. Our models, employing simple architectural elements, ultimately surpass Swin Transformer, ConvNeXt, and DeiT-III - key architectures in the residual learning lineage. Furthermore, our models exhibit near state-of-the-art performance on ImageNet-1K, competing with the very recent models and downstream tasks, ADE20k semantic segmentation, and COCO object detection/instance segmentation. Finally, we provide empirical analyses that uncover the merits of the concatenation over additive shortcuts, steering a renewed preference towards DenseNet-style designs. Our code is available at https://github.com/naver-ai/rdnet.
Model Fusion via Optimal Transport
Combining different models is a widely used paradigm in machine learning applications. While the most common approach is to form an ensemble of models and average their individual predictions, this approach is often rendered infeasible by given resource constraints in terms of memory and computation, which grow linearly with the number of models. We present a layer-wise model fusion algorithm for neural networks that utilizes optimal transport to (soft-) align neurons across the models before averaging their associated parameters. We show that this can successfully yield "one-shot" knowledge transfer (i.e, without requiring any retraining) between neural networks trained on heterogeneous non-i.i.d. data. In both i.i.d. and non-i.i.d. settings , we illustrate that our approach significantly outperforms vanilla averaging, as well as how it can serve as an efficient replacement for the ensemble with moderate fine-tuning, for standard convolutional networks (like VGG11), residual networks (like ResNet18), and multi-layer perceptrons on CIFAR10, CIFAR100, and MNIST. Finally, our approach also provides a principled way to combine the parameters of neural networks with different widths, and we explore its application for model compression. The code is available at the following link, https://github.com/sidak/otfusion.
ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning
Pretraining has been shown to scale well with compute, data size and data diversity. Multitask learning trains on a mixture of supervised datasets and produces improved performance compared to self-supervised pretraining. Until now, massively multitask learning required simultaneous access to all datasets in the mixture and heavy compute resources that are only available to well-resourced teams. In this paper, we propose ColD Fusion, a method that provides the benefits of multitask learning but leverages distributed computation and requires limited communication and no sharing of data. Consequentially, ColD Fusion can create a synergistic loop, where finetuned models can be recycled to continually improve the pretrained model they are based on. We show that ColD Fusion yields comparable benefits to multitask pretraining by producing a model that (a) attains strong performance on all of the datasets it was multitask trained on and (b) is a better starting point for finetuning on unseen datasets. We find ColD Fusion outperforms RoBERTa and even previous multitask models. Specifically, when training and testing on 35 diverse datasets, ColD Fusion-based model outperforms RoBERTa by 2.45 points in average without any changes to the architecture.
RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection
Feature pyramid networks (FPN) are widely exploited for multi-scale feature fusion in existing advanced object detection frameworks. Numerous previous works have developed various structures for bidirectional feature fusion, all of which are shown to improve the detection performance effectively. We observe that these complicated network structures require feature pyramids to be stacked in a fixed order, which introduces longer pipelines and reduces the inference speed. Moreover, semantics from non-adjacent levels are diluted in the feature pyramid since only features at adjacent pyramid levels are merged by the local fusion operation in a sequence manner. To address these issues, we propose a novel architecture named RCNet, which consists of Reverse Feature Pyramid (RevFP) and Cross-scale Shift Network (CSN). RevFP utilizes local bidirectional feature fusion to simplify the bidirectional pyramid inference pipeline. CSN directly propagates representations to both adjacent and non-adjacent levels to enable multi-scale features more correlative. Extensive experiments on the MS COCO dataset demonstrate RCNet can consistently bring significant improvements over both one-stage and two-stage detectors with subtle extra computational overhead. In particular, RetinaNet is boosted to 40.2 AP, which is 3.7 points higher than baseline, by replacing FPN with our proposed model. On COCO test-dev, RCNet can achieve very competitive performance with a single-model single-scale 50.5 AP. Codes will be made available.
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
Transformers use the dense self-attention mechanism which gives a lot of flexibility for long-range connectivity. Over multiple layers of a deep transformer, the number of possible connectivity patterns increases exponentially. However, very few of these contribute to the performance of the network, and even fewer are essential. We hypothesize that there are sparsely connected sub-networks within a transformer, called information pathways which can be trained independently. However, the dynamic (i.e., input-dependent) nature of these pathways makes it difficult to prune dense self-attention during training. But the overall distribution of these pathways is often predictable. We take advantage of this fact to propose Stochastically Subsampled self-Attention (SSA) - a general-purpose training strategy for transformers that can reduce both the memory and computational cost of self-attention by 4 to 8 times during training while also serving as a regularization method - improving generalization over dense training. We show that an ensemble of sub-models can be formed from the subsampled pathways within a network, which can achieve better performance than its densely attended counterpart. We perform experiments on a variety of NLP, computer vision and graph learning tasks in both generative and discriminative settings to provide empirical evidence for our claims and show the effectiveness of the proposed method.
DRAW: Defending Camera-shooted RAW against Image Manipulation
RAW files are the initial measurement of scene radiance widely used in most cameras, and the ubiquitously-used RGB images are converted from RAW data through Image Signal Processing (ISP) pipelines. Nowadays, digital images are risky of being nefariously manipulated. Inspired by the fact that innate immunity is the first line of body defense, we propose DRAW, a novel scheme of defending images against manipulation by protecting their sources, i.e., camera-shooted RAWs. Specifically, we design a lightweight Multi-frequency Partial Fusion Network (MPF-Net) friendly to devices with limited computing resources by frequency learning and partial feature fusion. It introduces invisible watermarks as protective signal into the RAW data. The protection capability can not only be transferred into the rendered RGB images regardless of the applied ISP pipeline, but also is resilient to post-processing operations such as blurring or compression. Once the image is manipulated, we can accurately identify the forged areas with a localization network. Extensive experiments on several famous RAW datasets, e.g., RAISE, FiveK and SIDD, indicate the effectiveness of our method. We hope that this technique can be used in future cameras as an option for image protection, which could effectively restrict image manipulation at the source.
Non-deep Networks
Depth is the hallmark of deep neural networks. But more depth means more sequential computation and higher latency. This begs the question -- is it possible to build high-performing "non-deep" neural networks? We show that it is. To do so, we use parallel subnetworks instead of stacking one layer after another. This helps effectively reduce depth while maintaining high performance. By utilizing parallel substructures, we show, for the first time, that a network with a depth of just 12 can achieve top-1 accuracy over 80% on ImageNet, 96% on CIFAR10, and 81% on CIFAR100. We also show that a network with a low-depth (12) backbone can achieve an AP of 48% on MS-COCO. We analyze the scaling rules for our design and show how to increase performance without changing the network's depth. Finally, we provide a proof of concept for how non-deep networks could be used to build low-latency recognition systems. Code is available at https://github.com/imankgoyal/NonDeepNetworks.
MEFLUT: Unsupervised 1D Lookup Tables for Multi-exposure Image Fusion
In this paper, we introduce a new approach for high-quality multi-exposure image fusion (MEF). We show that the fusion weights of an exposure can be encoded into a 1D lookup table (LUT), which takes pixel intensity value as input and produces fusion weight as output. We learn one 1D LUT for each exposure, then all the pixels from different exposures can query 1D LUT of that exposure independently for high-quality and efficient fusion. Specifically, to learn these 1D LUTs, we involve attention mechanism in various dimensions including frame, channel and spatial ones into the MEF task so as to bring us significant quality improvement over the state-of-the-art (SOTA). In addition, we collect a new MEF dataset consisting of 960 samples, 155 of which are manually tuned by professionals as ground-truth for evaluation. Our network is trained by this dataset in an unsupervised manner. Extensive experiments are conducted to demonstrate the effectiveness of all the newly proposed components, and results show that our approach outperforms the SOTA in our and another representative dataset SICE, both qualitatively and quantitatively. Moreover, our 1D LUT approach takes less than 4ms to run a 4K image on a PC GPU. Given its high quality, efficiency and robustness, our method has been shipped into millions of Android mobiles across multiple brands world-wide. Code is available at: https://github.com/Hedlen/MEFLUT.
InstaTune: Instantaneous Neural Architecture Search During Fine-Tuning
One-Shot Neural Architecture Search (NAS) algorithms often rely on training a hardware agnostic super-network for a domain specific task. Optimal sub-networks are then extracted from the trained super-network for different hardware platforms. However, training super-networks from scratch can be extremely time consuming and compute intensive especially for large models that rely on a two-stage training process of pre-training and fine-tuning. State of the art pre-trained models are available for a wide range of tasks, but their large sizes significantly limits their applicability on various hardware platforms. We propose InstaTune, a method that leverages off-the-shelf pre-trained weights for large models and generates a super-network during the fine-tuning stage. InstaTune has multiple benefits. Firstly, since the process happens during fine-tuning, it minimizes the overall time and compute resources required for NAS. Secondly, the sub-networks extracted are optimized for the target task, unlike prior work that optimizes on the pre-training objective. Finally, InstaTune is easy to "plug and play" in existing frameworks. By using multi-objective evolutionary search algorithms along with lightly trained predictors, we find Pareto-optimal sub-networks that outperform their respective baselines across different performance objectives such as accuracy and MACs. Specifically, we demonstrate that our approach performs well across both unimodal (ViT and BERT) and multi-modal (BEiT-3) transformer based architectures.
On Cross-Layer Alignment for Model Fusion of Heterogeneous Neural Networks
Layer-wise model fusion via optimal transport, named OTFusion, applies soft neuron association for unifying different pre-trained networks to save computational resources. While enjoying its success, OTFusion requires the input networks to have the same number of layers. To address this issue, we propose a novel model fusion framework, named CLAFusion, to fuse neural networks with a different number of layers, which we refer to as heterogeneous neural networks, via cross-layer alignment. The cross-layer alignment problem, which is an unbalanced assignment problem, can be solved efficiently using dynamic programming. Based on the cross-layer alignment, our framework balances the number of layers of neural networks before applying layer-wise model fusion. Our experiments indicate that CLAFusion, with an extra finetuning process, improves the accuracy of residual networks on the CIFAR10, CIFAR100, and Tiny-ImageNet datasets. Furthermore, we explore its practical usage for model compression and knowledge distillation when applying to the teacher-student setting.
Unity is Strength: Unifying Convolutional and Transformeral Features for Better Person Re-Identification
Person Re-identification (ReID) aims to retrieve the specific person across non-overlapping cameras, which greatly helps intelligent transportation systems. As we all know, Convolutional Neural Networks (CNNs) and Transformers have the unique strengths to extract local and global features, respectively. Considering this fact, we focus on the mutual fusion between them to learn more comprehensive representations for persons. In particular, we utilize the complementary integration of deep features from different model structures. We propose a novel fusion framework called FusionReID to unify the strengths of CNNs and Transformers for image-based person ReID. More specifically, we first deploy a Dual-branch Feature Extraction (DFE) to extract features through CNNs and Transformers from a single image. Moreover, we design a novel Dual-attention Mutual Fusion (DMF) to achieve sufficient feature fusions. The DMF comprises Local Refinement Units (LRU) and Heterogenous Transmission Modules (HTM). LRU utilizes depth-separable convolutions to align deep features in channel dimensions and spatial sizes. HTM consists of a Shared Encoding Unit (SEU) and two Mutual Fusion Units (MFU). Through the continuous stacking of HTM, deep features after LRU are repeatedly utilized to generate more discriminative features. Extensive experiments on three public ReID benchmarks demonstrate that our method can attain superior performances than most state-of-the-arts. The source code is available at https://github.com/924973292/FusionReID.
Contextual Fusion For Adversarial Robustness
Mammalian brains handle complex reasoning tasks in a gestalt manner by integrating information from regions of the brain that are specialised to individual sensory modalities. This allows for improved robustness and better generalisation ability. In contrast, deep neural networks are usually designed to process one particular information stream and susceptible to various types of adversarial perturbations. While many methods exist for detecting and defending against adversarial attacks, they do not generalise across a range of attacks and negatively affect performance on clean, unperturbed data. We developed a fusion model using a combination of background and foreground features extracted in parallel from Places-CNN and Imagenet-CNN. We tested the benefits of the fusion approach on preserving adversarial robustness for human perceivable (e.g., Gaussian blur) and network perceivable (e.g., gradient-based) attacks for CIFAR-10 and MS COCO data sets. For gradient based attacks, our results show that fusion allows for significant improvements in classification without decreasing performance on unperturbed data and without need to perform adversarial retraining. Our fused model revealed improvements for Gaussian blur type perturbations as well. The increase in performance from fusion approach depended on the variability of the image contexts; larger increases were seen for classes of images with larger differences in their contexts. We also demonstrate the effect of regularization to bias the classifier decision in the presence of a known adversary. We propose that this biologically inspired approach to integrate information across multiple modalities provides a new way to improve adversarial robustness that can be complementary to current state of the art approaches.
MIS-FM: 3D Medical Image Segmentation using Foundation Models Pretrained on a Large-Scale Unannotated Dataset
Pretraining with large-scale 3D volumes has a potential for improving the segmentation performance on a target medical image dataset where the training images and annotations are limited. Due to the high cost of acquiring pixel-level segmentation annotations on the large-scale pretraining dataset, pretraining with unannotated images is highly desirable. In this work, we propose a novel self-supervised learning strategy named Volume Fusion (VF) for pretraining 3D segmentation models. It fuses several random patches from a foreground sub-volume to a background sub-volume based on a predefined set of discrete fusion coefficients, and forces the model to predict the fusion coefficient of each voxel, which is formulated as a self-supervised segmentation task without manual annotations. Additionally, we propose a novel network architecture based on parallel convolution and transformer blocks that is suitable to be transferred to different downstream segmentation tasks with various scales of organs and lesions. The proposed model was pretrained with 110k unannotated 3D CT volumes, and experiments with different downstream segmentation targets including head and neck organs, thoracic/abdominal organs showed that our pretrained model largely outperformed training from scratch and several state-of-the-art self-supervised training methods and segmentation models. The code and pretrained model are available at https://github.com/openmedlab/MIS-FM.
Bifurcated backbone strategy for RGB-D salient object detection
Multi-level feature fusion is a fundamental topic in computer vision. It has been exploited to detect, segment and classify objects at various scales. When multi-level features meet multi-modal cues, the optimal feature aggregation and multi-modal learning strategy become a hot potato. In this paper, we leverage the inherent multi-modal and multi-level nature of RGB-D salient object detection to devise a novel cascaded refinement network. In particular, first, we propose to regroup the multi-level features into teacher and student features using a bifurcated backbone strategy (BBS). Second, we introduce a depth-enhanced module (DEM) to excavate informative depth cues from the channel and spatial views. Then, RGB and depth modalities are fused in a complementary way. Our architecture, named Bifurcated Backbone Strategy Network (BBS-Net), is simple, efficient, and backbone-independent. Extensive experiments show that BBS-Net significantly outperforms eighteen SOTA models on eight challenging datasets under five evaluation measures, demonstrating the superiority of our approach (sim 4 % improvement in S-measure vs. the top-ranked model: DMRA-iccv2019). In addition, we provide a comprehensive analysis on the generalization ability of different RGB-D datasets and provide a powerful training set for future research.
Deep Layer Aggregation
Visual recognition requires rich representations that span levels from low to high, scales from small to large, and resolutions from fine to coarse. Even with the depth of features in a convolutional network, a layer in isolation is not enough: compounding and aggregating these representations improves inference of what and where. Architectural efforts are exploring many dimensions for network backbones, designing deeper or wider architectures, but how to best aggregate layers and blocks across a network deserves further attention. Although skip connections have been incorporated to combine layers, these connections have been "shallow" themselves, and only fuse by simple, one-step operations. We augment standard architectures with deeper aggregation to better fuse information across layers. Our deep layer aggregation structures iteratively and hierarchically merge the feature hierarchy to make networks with better accuracy and fewer parameters. Experiments across architectures and tasks show that deep layer aggregation improves recognition and resolution compared to existing branching and merging schemes. The code is at https://github.com/ucbdrive/dla.
Towards Meta-Pruning via Optimal Transport
Structural pruning of neural networks conventionally relies on identifying and discarding less important neurons, a practice often resulting in significant accuracy loss that necessitates subsequent fine-tuning efforts. This paper introduces a novel approach named Intra-Fusion, challenging this prevailing pruning paradigm. Unlike existing methods that focus on designing meaningful neuron importance metrics, Intra-Fusion redefines the overlying pruning procedure. Through utilizing the concepts of model fusion and Optimal Transport, we leverage an agnostically given importance metric to arrive at a more effective sparse model representation. Notably, our approach achieves substantial accuracy recovery without the need for resource-intensive fine-tuning, making it an efficient and promising tool for neural network compression. Additionally, we explore how fusion can be added to the pruning process to significantly decrease the training time while maintaining competitive performance. We benchmark our results for various networks on commonly used datasets such as CIFAR-10, CIFAR-100, and ImageNet. More broadly, we hope that the proposed Intra-Fusion approach invigorates exploration into a fresh alternative to the predominant compression approaches. Our code is available here: https://github.com/alexandertheus/Intra-Fusion.
OTOv3: Automatic Architecture-Agnostic Neural Network Training and Compression from Structured Pruning to Erasing Operators
Compressing a predefined deep neural network (DNN) into a compact sub-network with competitive performance is crucial in the efficient machine learning realm. This topic spans various techniques, from structured pruning to neural architecture search, encompassing both pruning and erasing operators perspectives. Despite advancements, existing methods suffers from complex, multi-stage processes that demand substantial engineering and domain knowledge, limiting their broader applications. We introduce the third-generation Only-Train-Once (OTOv3), which first automatically trains and compresses a general DNN through pruning and erasing operations, creating a compact and competitive sub-network without the need of fine-tuning. OTOv3 simplifies and automates the training and compression process, minimizes the engineering efforts required from users. It offers key technological advancements: (i) automatic search space construction for general DNNs based on dependency graph analysis; (ii) Dual Half-Space Projected Gradient (DHSPG) and its enhanced version with hierarchical search (H2SPG) to reliably solve (hierarchical) structured sparsity problems and ensure sub-network validity; and (iii) automated sub-network construction using solutions from DHSPG/H2SPG and dependency graphs. Our empirical results demonstrate the efficacy of OTOv3 across various benchmarks in structured pruning and neural architecture search. OTOv3 produces sub-networks that match or exceed the state-of-the-arts. The source code will be available at https://github.com/tianyic/only_train_once.
Fast Muon Tracking with Machine Learning Implemented in FPGA
In this work, we present a new approach for fast tracking on multiwire proportional chambers with neural networks. The tracking networks are developed and adapted for the first-level trigger at hadron collider experiments. We use Monte Carlo samples generated by Geant4 with a custom muon chamber, which resembles part of the thin gap chambers from the ATLAS experiment, for training and performance evaluations. The chamber has a total of seven gas gaps, where the first and last gas gaps are displaced by ~1.5 m. Each gas gap has 50 channels with a size of 18-20 mm. Two neural network models are developed and presented: a convolutional neural network and a neural network optimized for the detector configuration of this study. In the latter network, a convolution layer is provided for each of three groups formed from 2-3 gas gaps of the chamber, and the outputs are fed into multilayer perceptrons in sequence. Both networks are transformed into hardware description language and implemented in Virtex UltraScale+ FPGA. The angular resolution is 2 mrad, which is comparable to the maximum resolution of the detector estimated by the minimum chi2 method. The latency achieved by the implemented firmware is less than 100 ns, and the throughput rate is 160 MHz.
FSATFusion: Frequency-Spatial Attention Transformer for Infrared and Visible Image Fusion
The infrared and visible images fusion (IVIF) is receiving increasing attention from both the research community and industry due to its excellent results in downstream applications. Existing deep learning approaches often utilize convolutional neural networks to extract image features. However, the inherently capacity of convolution operations to capture global context can lead to information loss, thereby restricting fusion performance. To address this limitation, we propose an end-to-end fusion network named the Frequency-Spatial Attention Transformer Fusion Network (FSATFusion). The FSATFusion contains a frequency-spatial attention Transformer (FSAT) module designed to effectively capture discriminate features from source images. This FSAT module includes a frequency-spatial attention mechanism (FSAM) capable of extracting significant features from feature maps. Additionally, we propose an improved Transformer module (ITM) to enhance the ability to extract global context information of vanilla Transformer. We conducted both qualitative and quantitative comparative experiments, demonstrating the superior fusion quality and efficiency of FSATFusion compared to other state-of-the-art methods. Furthermore, our network was tested on two additional tasks without any modifications, to verify the excellent generalization capability of FSATFusion. Finally, the object detection experiment demonstrated the superiority of FSATFusion in downstream visual tasks. Our code is available at https://github.com/Lmmh058/FSATFusion.
Dynamic Neural Network for Multi-Task Learning Searching across Diverse Network Topologies
In this paper, we present a new MTL framework that searches for structures optimized for multiple tasks with diverse graph topologies and shares features among tasks. We design a restricted DAG-based central network with read-in/read-out layers to build topologically diverse task-adaptive structures while limiting search space and time. We search for a single optimized network that serves as multiple task adaptive sub-networks using our three-stage training process. To make the network compact and discretized, we propose a flow-based reduction algorithm and a squeeze loss used in the training process. We evaluate our optimized network on various public MTL datasets and show ours achieves state-of-the-art performance. An extensive ablation study experimentally validates the effectiveness of the sub-module and schemes in our framework.
Dual Mutual Learning Network with Global-local Awareness for RGB-D Salient Object Detection
RGB-D salient object detection (SOD), aiming to highlight prominent regions of a given scene by jointly modeling RGB and depth information, is one of the challenging pixel-level prediction tasks. Recently, the dual-attention mechanism has been devoted to this area due to its ability to strengthen the detection process. However, most existing methods directly fuse attentional cross-modality features under a manual-mandatory fusion paradigm without considering the inherent discrepancy between the RGB and depth, which may lead to a reduction in performance. Moreover, the long-range dependencies derived from global and local information make it difficult to leverage a unified efficient fusion strategy. Hence, in this paper, we propose the GL-DMNet, a novel dual mutual learning network with global-local awareness. Specifically, we present a position mutual fusion module and a channel mutual fusion module to exploit the interdependencies among different modalities in spatial and channel dimensions. Besides, we adopt an efficient decoder based on cascade transformer-infused reconstruction to integrate multi-level fusion features jointly. Extensive experiments on six benchmark datasets demonstrate that our proposed GL-DMNet performs better than 24 RGB-D SOD methods, achieving an average improvement of ~3% across four evaluation metrics compared to the second-best model (S3Net). Codes and results are available at https://github.com/kingkung2016/GL-DMNet.
Decoupling the Depth and Scope of Graph Neural Networks
State-of-the-art Graph Neural Networks (GNNs) have limited scalability with respect to the graph and model sizes. On large graphs, increasing the model depth often means exponential expansion of the scope (i.e., receptive field). Beyond just a few layers, two fundamental challenges emerge: 1. degraded expressivity due to oversmoothing, and 2. expensive computation due to neighborhood explosion. We propose a design principle to decouple the depth and scope of GNNs -- to generate representation of a target entity (i.e., a node or an edge), we first extract a localized subgraph as the bounded-size scope, and then apply a GNN of arbitrary depth on top of the subgraph. A properly extracted subgraph consists of a small number of critical neighbors, while excluding irrelevant ones. The GNN, no matter how deep it is, smooths the local neighborhood into informative representation rather than oversmoothing the global graph into "white noise". Theoretically, decoupling improves the GNN expressive power from the perspectives of graph signal processing (GCN), function approximation (GraphSAGE) and topological learning (GIN). Empirically, on seven graphs (with up to 110M nodes) and six backbone GNN architectures, our design achieves significant accuracy improvement with orders of magnitude reduction in computation and hardware cost.
Continuous Convolutional Neural Networks for Disruption Prediction in Nuclear Fusion Plasmas
Grid decarbonization for climate change requires dispatchable carbon-free energy like nuclear fusion. The tokamak concept offers a promising path for fusion, but one of the foremost challenges in implementation is the occurrence of energetic plasma disruptions. In this study, we delve into Machine Learning approaches to predict plasma state outcomes. Our contributions are twofold: (1) We present a novel application of Continuous Convolutional Neural Networks for disruption prediction and (2) We examine the advantages and disadvantages of continuous models over discrete models for disruption prediction by comparing our model with the previous, discrete state of the art, and show that continuous models offer significantly better performance (Area Under the Receiver Operating Characteristic Curve = 0.974 v.s. 0.799) with fewer parameters
Spike-driven Transformer V2: Meta Spiking Neural Network Architecture Inspiring the Design of Next-generation Neuromorphic Chips
Neuromorphic computing, which exploits Spiking Neural Networks (SNNs) on neuromorphic chips, is a promising energy-efficient alternative to traditional AI. CNN-based SNNs are the current mainstream of neuromorphic computing. By contrast, no neuromorphic chips are designed especially for Transformer-based SNNs, which have just emerged, and their performance is only on par with CNN-based SNNs, offering no distinct advantage. In this work, we propose a general Transformer-based SNN architecture, termed as ``Meta-SpikeFormer", whose goals are: 1) Lower-power, supports the spike-driven paradigm that there is only sparse addition in the network; 2) Versatility, handles various vision tasks; 3) High-performance, shows overwhelming performance advantages over CNN-based SNNs; 4) Meta-architecture, provides inspiration for future next-generation Transformer-based neuromorphic chip designs. Specifically, we extend the Spike-driven Transformer in yao2023spike into a meta architecture, and explore the impact of structure, spike-driven self-attention, and skip connection on its performance. On ImageNet-1K, Meta-SpikeFormer achieves 80.0\% top-1 accuracy (55M), surpassing the current state-of-the-art (SOTA) SNN baselines (66M) by 3.7\%. This is the first direct training SNN backbone that can simultaneously supports classification, detection, and segmentation, obtaining SOTA results in SNNs. Finally, we discuss the inspiration of the meta SNN architecture for neuromorphic chip design. Source code and models are available at https://github.com/BICLab/Spike-Driven-Transformer-V2.
ShiftNAS: Improving One-shot NAS via Probability Shift
One-shot Neural architecture search (One-shot NAS) has been proposed as a time-efficient approach to obtain optimal subnet architectures and weights under different complexity cases by training only once. However, the subnet performance obtained by weight sharing is often inferior to the performance achieved by retraining. In this paper, we investigate the performance gap and attribute it to the use of uniform sampling, which is a common approach in supernet training. Uniform sampling concentrates training resources on subnets with intermediate computational resources, which are sampled with high probability. However, subnets with different complexity regions require different optimal training strategies for optimal performance. To address the problem of uniform sampling, we propose ShiftNAS, a method that can adjust the sampling probability based on the complexity of subnets. We achieve this by evaluating the performance variation of subnets with different complexity and designing an architecture generator that can accurately and efficiently provide subnets with the desired complexity. Both the sampling probability and the architecture generator can be trained end-to-end in a gradient-based manner. With ShiftNAS, we can directly obtain the optimal model architecture and parameters for a given computational complexity. We evaluate our approach on multiple visual network models, including convolutional neural networks (CNNs) and vision transformers (ViTs), and demonstrate that ShiftNAS is model-agnostic. Experimental results on ImageNet show that ShiftNAS can improve the performance of one-shot NAS without additional consumption. Source codes are available at https://github.com/bestfleer/ShiftNAS.
SimQ-NAS: Simultaneous Quantization Policy and Neural Architecture Search
Recent one-shot Neural Architecture Search algorithms rely on training a hardware-agnostic super-network tailored to a specific task and then extracting efficient sub-networks for different hardware platforms. Popular approaches separate the training of super-networks from the search for sub-networks, often employing predictors to alleviate the computational overhead associated with search. Additionally, certain methods also incorporate the quantization policy within the search space. However, while the quantization policy search for convolutional neural networks is well studied, the extension of these methods to transformers and especially foundation models remains under-explored. In this paper, we demonstrate that by using multi-objective search algorithms paired with lightly trained predictors, we can efficiently search for both the sub-network architecture and the corresponding quantization policy and outperform their respective baselines across different performance objectives such as accuracy, model size, and latency. Specifically, we demonstrate that our approach performs well across both uni-modal (ViT and BERT) and multi-modal (BEiT-3) transformer-based architectures as well as convolutional architectures (ResNet). For certain networks, we demonstrate an improvement of up to 4.80x and 3.44x for latency and model size respectively, without degradation in accuracy compared to the fully quantized INT8 baselines.
DeMo: Decoupled Momentum Optimization
Training large neural networks typically requires sharing gradients between accelerators through specialized high-speed interconnects. Drawing from the signal processing principles of frequency decomposition and energy compaction, we demonstrate that synchronizing full optimizer states and model parameters during training is unnecessary. By decoupling momentum updates and allowing controlled divergence in optimizer states across accelerators, we achieve improved convergence compared to state-of-the-art optimizers. We introduce {De}coupled {Mo}mentum (DeMo), a fused optimizer and data parallel algorithm that reduces inter-accelerator communication requirements by several orders of magnitude. This enables training of large neural networks even with limited network bandwidth and heterogeneous hardware. Our method is topology-agnostic and architecture-independent and supports scalable clock-synchronous distributed training with negligible compute and memory overhead. Empirical results show that models trained with DeMo match or exceed the performance of equivalent models trained with AdamW, while eliminating the need for high-speed interconnects when pre-training large scale foundation models. An open source reference PyTorch implementation is published on GitHub at https://github.com/bloc97/DeMo
Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with Architecture-Routed Mixture-of-Experts
Weight-sharing supernet has become a vital component for performance estimation in the state-of-the-art (SOTA) neural architecture search (NAS) frameworks. Although supernet can directly generate different subnetworks without retraining, there is no guarantee for the quality of these subnetworks because of weight sharing. In NLP tasks such as machine translation and pre-trained language modeling, we observe that given the same model architecture, there is a large performance gap between supernet and training from scratch. Hence, supernet cannot be directly used and retraining is necessary after finding the optimal architectures. In this work, we propose mixture-of-supernets, a generalized supernet formulation where mixture-of-experts (MoE) is adopted to enhance the expressive power of the supernet model, with negligible training overhead. In this way, different subnetworks do not share the model weights directly, but through an architecture-based routing mechanism. As a result, model weights of different subnetworks are customized towards their specific architectures and the weight generation is learned by gradient descent. Compared to existing weight-sharing supernet for NLP, our method can minimize the retraining time, greatly improving training efficiency. In addition, the proposed method achieves the SOTA performance in NAS for building fast machine translation models, yielding better latency-BLEU tradeoff compared to HAT, state-of-the-art NAS for MT. We also achieve the SOTA performance in NAS for building memory-efficient task-agnostic BERT models, outperforming NAS-BERT and AutoDistil in various model sizes.
EfficientViM: Efficient Vision Mamba with Hidden State Mixer based State Space Duality
For the deployment of neural networks in resource-constrained environments, prior works have built lightweight architectures with convolution and attention for capturing local and global dependencies, respectively. Recently, the state space model has emerged as an effective global token interaction with its favorable linear computational cost in the number of tokens. Yet, efficient vision backbones built with SSM have been explored less. In this paper, we introduce Efficient Vision Mamba (EfficientViM), a novel architecture built on hidden state mixer-based state space duality (HSM-SSD) that efficiently captures global dependencies with further reduced computational cost. In the HSM-SSD layer, we redesign the previous SSD layer to enable the channel mixing operation within hidden states. Additionally, we propose multi-stage hidden state fusion to further reinforce the representation power of hidden states, and provide the design alleviating the bottleneck caused by the memory-bound operations. As a result, the EfficientViM family achieves a new state-of-the-art speed-accuracy trade-off on ImageNet-1k, offering up to a 0.7% performance improvement over the second-best model SHViT with faster speed. Further, we observe significant improvements in throughput and accuracy compared to prior works, when scaling images or employing distillation training. Code is available at https://github.com/mlvlab/EfficientViM.
Sensor Fusion by Spatial Encoding for Autonomous Driving
Sensor fusion is critical to perception systems for task domains such as autonomous driving and robotics. Recently, the Transformer integrated with CNN has demonstrated high performance in sensor fusion for various perception tasks. In this work, we introduce a method for fusing data from camera and LiDAR. By employing Transformer modules at multiple resolutions, proposed method effectively combines local and global contextual relationships. The performance of the proposed method is validated by extensive experiments with two adversarial benchmarks with lengthy routes and high-density traffics. The proposed method outperforms previous approaches with the most challenging benchmarks, achieving significantly higher driving and infraction scores. Compared with TransFuser, it achieves 8% and 19% improvement in driving scores for the Longest6 and Town05 Long benchmarks, respectively.
A full-resolution training framework for Sentinel-2 image fusion
This work presents a new unsupervised framework for training deep learning models for super-resolution of Sentinel-2 images by fusion of its 10-m and 20-m bands. The proposed scheme avoids the resolution downgrade process needed to generate training data in the supervised case. On the other hand, a proper loss that accounts for cycle-consistency between the network prediction and the input components to be fused is proposed. Despite its unsupervised nature, in our preliminary experiments the proposed scheme has shown promising results in comparison to the supervised approach. Besides, by construction of the proposed loss, the resulting trained network can be ascribed to the class of multi-resolution analysis methods.
RT-X Net: RGB-Thermal cross attention network for Low-Light Image Enhancement
In nighttime conditions, high noise levels and bright illumination sources degrade image quality, making low-light image enhancement challenging. Thermal images provide complementary information, offering richer textures and structural details. We propose RT-X Net, a cross-attention network that fuses RGB and thermal images for nighttime image enhancement. We leverage self-attention networks for feature extraction and a cross-attention mechanism for fusion to effectively integrate information from both modalities. To support research in this domain, we introduce the Visible-Thermal Image Enhancement Evaluation (V-TIEE) dataset, comprising 50 co-located visible and thermal images captured under diverse nighttime conditions. Extensive evaluations on the publicly available LLVIP dataset and our V-TIEE dataset demonstrate that RT-X Net outperforms state-of-the-art methods in low-light image enhancement. The code and the V-TIEE can be found here https://github.com/jhakrraman/rt-xnet.
Unlocking the potential of two-point cells for energy-efficient and resilient training of deep nets
Context-sensitive two-point layer 5 pyramidal cells (L5PCs) were discovered as long ago as 1999. However, the potential of this discovery to provide useful neural computation has yet to be demonstrated. Here we show for the first time how a transformative L5PCs-driven deep neural network (DNN), termed the multisensory cooperative computing (MCC) architecture, can effectively process large amounts of heterogeneous real-world audio-visual (AV) data, using far less energy compared to best available 'point' neuron-driven DNNs. A novel highly-distributed parallel implementation on a Xilinx UltraScale+ MPSoC device estimates energy savings up to 245759 times 50000 muJ (i.e., 62% less than the baseline model in a semi-supervised learning setup) where a single synapse consumes 8e^{-5}muJ. In a supervised learning setup, the energy-saving can potentially reach up to 1250x less (per feedforward transmission) than the baseline model. The significantly reduced neural activity in MCC leads to inherently fast learning and resilience against sudden neural damage. This remarkable performance in pilot experiments demonstrates the embodied neuromorphic intelligence of our proposed cooperative L5PC that receives input from diverse neighbouring neurons as context to amplify the transmission of most salient and relevant information for onward transmission, from overwhelmingly large multimodal information utilised at the early stages of on-chip training. Our proposed approach opens new cross-disciplinary avenues for future on-chip DNN training implementations and posits a radical shift in current neuromorphic computing paradigms.
SuperTickets: Drawing Task-Agnostic Lottery Tickets from Supernets via Jointly Architecture Searching and Parameter Pruning
Neural architecture search (NAS) has demonstrated amazing success in searching for efficient deep neural networks (DNNs) from a given supernet. In parallel, the lottery ticket hypothesis has shown that DNNs contain small subnetworks that can be trained from scratch to achieve a comparable or higher accuracy than original DNNs. As such, it is currently a common practice to develop efficient DNNs via a pipeline of first search and then prune. Nevertheless, doing so often requires a search-train-prune-retrain process and thus prohibitive computational cost. In this paper, we discover for the first time that both efficient DNNs and their lottery subnetworks (i.e., lottery tickets) can be directly identified from a supernet, which we term as SuperTickets, via a two-in-one training scheme with jointly architecture searching and parameter pruning. Moreover, we develop a progressive and unified SuperTickets identification strategy that allows the connectivity of subnetworks to change during supernet training, achieving better accuracy and efficiency trade-offs than conventional sparse training. Finally, we evaluate whether such identified SuperTickets drawn from one task can transfer well to other tasks, validating their potential of handling multiple tasks simultaneously. Extensive experiments and ablation studies on three tasks and four benchmark datasets validate that our proposed SuperTickets achieve boosted accuracy and efficiency trade-offs than both typical NAS and pruning pipelines, regardless of having retraining or not. Codes and pretrained models are available at https://github.com/RICE-EIC/SuperTickets.
Towards Generalization in Subitizing with Neuro-Symbolic Loss using Holographic Reduced Representations
While deep learning has enjoyed significant success in computer vision tasks over the past decade, many shortcomings still exist from a Cognitive Science (CogSci) perspective. In particular, the ability to subitize, i.e., quickly and accurately identify the small (less than 6) count of items, is not well learned by current Convolutional Neural Networks (CNNs) or Vision Transformers (ViTs) when using a standard cross-entropy (CE) loss. In this paper, we demonstrate that adapting tools used in CogSci research can improve the subitizing generalization of CNNs and ViTs by developing an alternative loss function using Holographic Reduced Representations (HRRs). We investigate how this neuro-symbolic approach to learning affects the subitizing capability of CNNs and ViTs, and so we focus on specially crafted problems that isolate generalization to specific aspects of subitizing. Via saliency maps and out-of-distribution performance, we are able to empirically observe that the proposed HRR loss improves subitizing generalization though it does not completely solve the problem. In addition, we find that ViTs perform considerably worse compared to CNNs in most respects on subitizing, except on one axis where an HRR-based loss provides improvement.
PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant Semantic Segmentation
Infrared and visible image fusion is a powerful technique that combines complementary information from different modalities for downstream semantic perception tasks. Existing learning-based methods show remarkable performance, but are suffering from the inherent vulnerability of adversarial attacks, causing a significant decrease in accuracy. In this work, a perception-aware fusion framework is proposed to promote segmentation robustness in adversarial scenes. We first conduct systematic analyses about the components of image fusion, investigating the correlation with segmentation robustness under adversarial perturbations. Based on these analyses, we propose a harmonized architecture search with a decomposition-based structure to balance standard accuracy and robustness. We also propose an adaptive learning strategy to improve the parameter robustness of image fusion, which can learn effective feature extraction under diverse adversarial perturbations. Thus, the goals of image fusion (i.e., extracting complementary features from source modalities and defending attack) can be realized from the perspectives of architectural and learning strategies. Extensive experimental results demonstrate that our scheme substantially enhances the robustness, with gains of 15.3% mIOU of segmentation in the adversarial scene, compared with advanced competitors. The source codes are available at https://github.com/LiuZhu-CV/PAIF.
Lightweight Image Super-Resolution with Adaptive Weighted Learning Network
Deep learning has been successfully applied to the single-image super-resolution (SISR) task with great performance in recent years. However, most convolutional neural network based SR models require heavy computation, which limit their real-world applications. In this work, a lightweight SR network, named Adaptive Weighted Super-Resolution Network (AWSRN), is proposed for SISR to address this issue. A novel local fusion block (LFB) is designed in AWSRN for efficient residual learning, which consists of stacked adaptive weighted residual units (AWRU) and a local residual fusion unit (LRFU). Moreover, an adaptive weighted multi-scale (AWMS) module is proposed to make full use of features in reconstruction layer. AWMS consists of several different scale convolutions, and the redundancy scale branch can be removed according to the contribution of adaptive weights in AWMS for lightweight network. The experimental results on the commonly used datasets show that the proposed lightweight AWSRN achieves superior performance on x2, x3, x4, and x8 scale factors to state-of-the-art methods with similar parameters and computational overhead. Code is avaliable at: https://github.com/ChaofWang/AWSRN
AlphaNet: Improved Training of Supernets with Alpha-Divergence
Weight-sharing neural architecture search (NAS) is an effective technique for automating efficient neural architecture design. Weight-sharing NAS builds a supernet that assembles all the architectures as its sub-networks and jointly trains the supernet with the sub-networks. The success of weight-sharing NAS heavily relies on distilling the knowledge of the supernet to the sub-networks. However, we find that the widely used distillation divergence, i.e., KL divergence, may lead to student sub-networks that over-estimate or under-estimate the uncertainty of the teacher supernet, leading to inferior performance of the sub-networks. In this work, we propose to improve the supernet training with a more generalized alpha-divergence. By adaptively selecting the alpha-divergence, we simultaneously prevent the over-estimation or under-estimation of the uncertainty of the teacher model. We apply the proposed alpha-divergence based supernets training to both slimmable neural networks and weight-sharing NAS, and demonstrate significant improvements. Specifically, our discovered model family, AlphaNet, outperforms prior-art models on a wide range of FLOPs regimes, including BigNAS, Once-for-All networks, and AttentiveNAS. We achieve ImageNet top-1 accuracy of 80.0% with only 444M FLOPs. Our code and pretrained models are available at https://github.com/facebookresearch/AlphaNet.
MixPath: A Unified Approach for One-shot Neural Architecture Search
Blending multiple convolutional kernels is proved advantageous in neural architecture design. However, current two-stage neural architecture search methods are mainly limited to single-path search spaces. How to efficiently search models of multi-path structures remains a difficult problem. In this paper, we are motivated to train a one-shot multi-path supernet to accurately evaluate the candidate architectures. Specifically, we discover that in the studied search spaces, feature vectors summed from multiple paths are nearly multiples of those from a single path. Such disparity perturbs the supernet training and its ranking ability. Therefore, we propose a novel mechanism called Shadow Batch Normalization (SBN) to regularize the disparate feature statistics. Extensive experiments prove that SBNs are capable of stabilizing the optimization and improving ranking performance. We call our unified multi-path one-shot approach as MixPath, which generates a series of models that achieve state-of-the-art results on ImageNet.
Efficient Subgraph GNNs by Learning Effective Selection Policies
Subgraph GNNs are provably expressive neural architectures that learn graph representations from sets of subgraphs. Unfortunately, their applicability is hampered by the computational complexity associated with performing message passing on many subgraphs. In this paper, we consider the problem of learning to select a small subset of the large set of possible subgraphs in a data-driven fashion. We first motivate the problem by proving that there are families of WL-indistinguishable graphs for which there exist efficient subgraph selection policies: small subsets of subgraphs that can already identify all the graphs within the family. We then propose a new approach, called Policy-Learn, that learns how to select subgraphs in an iterative manner. We prove that, unlike popular random policies and prior work addressing the same problem, our architecture is able to learn the efficient policies mentioned above. Our experimental results demonstrate that Policy-Learn outperforms existing baselines across a wide range of datasets.
U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection
In this paper, we design a simple yet powerful deep network architecture, U^2-Net, for salient object detection (SOD). The architecture of our U^2-Net is a two-level nested U-structure. The design has the following advantages: (1) it is able to capture more contextual information from different scales thanks to the mixture of receptive fields of different sizes in our proposed ReSidual U-blocks (RSU), (2) it increases the depth of the whole architecture without significantly increasing the computational cost because of the pooling operations used in these RSU blocks. This architecture enables us to train a deep network from scratch without using backbones from image classification tasks. We instantiate two models of the proposed architecture, U^2-Net (176.3 MB, 30 FPS on GTX 1080Ti GPU) and U^2-Net^{dagger} (4.7 MB, 40 FPS), to facilitate the usage in different environments. Both models achieve competitive performance on six SOD datasets. The code is available: https://github.com/NathanUA/U-2-Net.
RG-Attn: Radian Glue Attention for Multi-modality Multi-agent Cooperative Perception
Cooperative perception offers an optimal solution to overcome the perception limitations of single-agent systems by leveraging Vehicle-to-Everything (V2X) communication for data sharing and fusion across multiple agents. However, most existing approaches focus on single-modality data exchange, limiting the potential of both homogeneous and heterogeneous fusion across agents. This overlooks the opportunity to utilize multi-modality data per agent, restricting the system's performance. In the automotive industry, manufacturers adopt diverse sensor configurations, resulting in heterogeneous combinations of sensor modalities across agents. To harness the potential of every possible data source for optimal performance, we design a robust LiDAR and camera cross-modality fusion module, Radian-Glue-Attention (RG-Attn), applicable to both intra-agent cross-modality fusion and inter-agent cross-modality fusion scenarios, owing to the convenient coordinate conversion by transformation matrix and the unified sampling/inversion mechanism. We also propose two different architectures, named Paint-To-Puzzle (PTP) and Co-Sketching-Co-Coloring (CoS-CoCo), for conducting cooperative perception. PTP aims for maximum precision performance and achieves smaller data packet size by limiting cross-agent fusion to a single instance, but requiring all participants to be equipped with LiDAR. In contrast, CoS-CoCo supports agents with any configuration-LiDAR-only, camera-only, or LiDAR-camera-both, presenting more generalization ability. Our approach achieves state-of-the-art (SOTA) performance on both real and simulated cooperative perception datasets. The code is now available at GitHub.
A Complete Expressiveness Hierarchy for Subgraph GNNs via Subgraph Weisfeiler-Lehman Tests
Recently, subgraph GNNs have emerged as an important direction for developing expressive graph neural networks (GNNs). While numerous architectures have been proposed, so far there is still a limited understanding of how various design paradigms differ in terms of expressive power, nor is it clear what design principle achieves maximal expressiveness with minimal architectural complexity. To address these fundamental questions, this paper conducts a systematic study of general node-based subgraph GNNs through the lens of Subgraph Weisfeiler-Lehman Tests (SWL). Our central result is to build a complete hierarchy of SWL with strictly growing expressivity. Concretely, we prove that any node-based subgraph GNN falls into one of the six SWL equivalence classes, among which SSWL achieves the maximal expressive power. We also study how these equivalence classes differ in terms of their practical expressiveness such as encoding graph distance and biconnectivity. Furthermore, we give a tight expressivity upper bound of all SWL algorithms by establishing a close relation with localized versions of WL and Folklore WL (FWL) tests. Our results provide insights into the power of existing subgraph GNNs, guide the design of new architectures, and point out their limitations by revealing an inherent gap with the 2-FWL test. Finally, experiments demonstrate that SSWL-inspired subgraph GNNs can significantly outperform prior architectures on multiple benchmarks despite great simplicity.
Fusion of Infrared and Visible Images based on Spatial-Channel Attentional Mechanism
In the study, we present AMFusionNet, an innovative approach to infrared and visible image fusion (IVIF), harnessing the power of multiple kernel sizes and attention mechanisms. By assimilating thermal details from infrared images with texture features from visible sources, our method produces images enriched with comprehensive information. Distinct from prevailing deep learning methodologies, our model encompasses a fusion mechanism powered by multiple convolutional kernels, facilitating the robust capture of a wide feature spectrum. Notably, we incorporate parallel attention mechanisms to emphasize and retain pivotal target details in the resultant images. Moreover, the integration of the multi-scale structural similarity (MS-SSIM) loss function refines network training, optimizing the model for IVIF task. Experimental results demonstrate that our method outperforms state-of-the-art algorithms in terms of quality and quantity. The performance metrics on publicly available datasets also show significant improvement
On the Efficiency of Convolutional Neural Networks
Since the breakthrough performance of AlexNet in 2012, convolutional neural networks (convnets) have grown into extremely powerful vision models. Deep learning researchers have used convnets to perform vision tasks with accuracy that was unachievable a decade ago. Confronted with the immense computation that convnets use, deep learning researchers also became interested in efficiency. However, the engineers who deployed efficient convnets soon realized that they were slower than the previous generation, despite using fewer operations. Many reverted to older models that ran faster. Hence researchers switched the objective of their search from arithmetic complexity to latency and produced a new wave of models that performed better. Paradoxically, these models also used more operations. Skepticism grew among researchers and engineers alike about the relevance of arithmetic complexity. Contrary to the prevailing view that latency and arithmetic complexity are irreconcilable, a simple formula relates both through computational efficiency. This insight enabled us to co-optimize the separate factors that determine latency. We observed that the degenerate conv2d layers that produce the best accuracy--complexity trade-off also use significant memory resources and have low computational efficiency. We devised block fusion algorithms to implement all the layers of a residual block in a single kernel, thereby creating temporal locality, avoiding communication, and reducing workspace size. Our ConvFirst model with block-fusion kernels has less arithmetic complexity and greater computational efficiency than baseline models and kernels, and ran approximately four times as fast as ConvNeXt. We also created novel tools, including efficiency gap plots and waterline analysis. Our unified approach to convnet efficiency envisions a new era of models and kernels that achieve greater accuracy at lower cost.
DAMO-YOLO : A Report on Real-Time Object Detection Design
In this report, we present a fast and accurate object detection method dubbed DAMO-YOLO, which achieves higher performance than the state-of-the-art YOLO series. DAMO-YOLO is extended from YOLO with some new technologies, including Neural Architecture Search (NAS), efficient Reparameterized Generalized-FPN (RepGFPN), a lightweight head with AlignedOTA label assignment, and distillation enhancement. In particular, we use MAE-NAS, a method guided by the principle of maximum entropy, to search our detection backbone under the constraints of low latency and high performance, producing ResNet-like / CSP-like structures with spatial pyramid pooling and focus modules. In the design of necks and heads, we follow the rule of "large neck, small head". We import Generalized-FPN with accelerated queen-fusion to build the detector neck and upgrade its CSPNet with efficient layer aggregation networks (ELAN) and reparameterization. Then we investigate how detector head size affects detection performance and find that a heavy neck with only one task projection layer would yield better results. In addition, AlignedOTA is proposed to solve the misalignment problem in label assignment. And a distillation schema is introduced to improve performance to a higher level. Based on these new techs, we build a suite of models at various scales to meet the needs of different scenarios, i.e., DAMO-YOLO-Tiny/Small/Medium. They can achieve 43.0/46.8/50.0 mAPs on COCO with the latency of 2.78/3.83/5.62 ms on T4 GPUs respectively. The code is available at https://github.com/tinyvision/damo-yolo.
NAS-LID: Efficient Neural Architecture Search with Local Intrinsic Dimension
One-shot neural architecture search (NAS) substantially improves the search efficiency by training one supernet to estimate the performance of every possible child architecture (i.e., subnet). However, the inconsistency of characteristics among subnets incurs serious interference in the optimization, resulting in poor performance ranking correlation of subnets. Subsequent explorations decompose supernet weights via a particular criterion, e.g., gradient matching, to reduce the interference; yet they suffer from huge computational cost and low space separability. In this work, we propose a lightweight and effective local intrinsic dimension (LID)-based method NAS-LID. NAS-LID evaluates the geometrical properties of architectures by calculating the low-cost LID features layer-by-layer, and the similarity characterized by LID enjoys better separability compared with gradients, which thus effectively reduces the interference among subnets. Extensive experiments on NASBench-201 indicate that NAS-LID achieves superior performance with better efficiency. Specifically, compared to the gradient-driven method, NAS-LID can save up to 86% of GPU memory overhead when searching on NASBench-201. We also demonstrate the effectiveness of NAS-LID on ProxylessNAS and OFA spaces. Source code: https://github.com/marsggbo/NAS-LID.
PIGEON: Optimizing CUDA Code Generator for End-to-End Training and Inference of Relational Graph Neural Networks
Relational graph neural networks (RGNNs) are graph neural networks (GNNs) with dedicated structures for modeling the different types of nodes and/or edges in heterogeneous graphs. While RGNNs have been increasingly adopted in many real-world applications due to their versatility and accuracy, they pose performance and system design challenges due to their inherent computation patterns, gap between the programming interface and kernel APIs, and heavy programming efforts in optimizing kernels caused by their coupling with data layout and heterogeneity. To systematically address these challenges, we propose Pigeon, a novel two-level intermediate representation (IR) and its code generator framework, that (a) represents the key properties of the RGNN models to bridge the gap between the programming interface and kernel APIs, (b) decouples model semantics, data layout, and operators-specific optimization from each other to reduce programming efforts, (c) expresses and leverages optimization opportunities in inter-operator transforms, data layout, and operator-specific schedules. By building on one general matrix multiply (GEMM) template and a node/edge traversal template, Pigeon achieves up to 7.8x speed-up in inference and 5.6x speed-up in training compared with the state-of-the-art public systems in select models, i.e., RGCN, RGAT, HGT, when running heterogeneous graphs provided by Deep Graph Library (DGL) and Open Graph Benchmark (OGB). Pigeon also triggers fewer out-of-memory (OOM) errors. In addition, we propose linear operator fusion and compact materialization to further accelerate the system by up to 2.2x.
Personalized Subgraph Federated Learning
Subgraphs of a larger global graph may be distributed across multiple devices, and only locally accessible due to privacy restrictions, although there may be links between subgraphs. Recently proposed subgraph Federated Learning (FL) methods deal with those missing links across local subgraphs while distributively training Graph Neural Networks (GNNs) on them. However, they have overlooked the inevitable heterogeneity between subgraphs comprising different communities of a global graph, consequently collapsing the incompatible knowledge from local GNN models. To this end, we introduce a new subgraph FL problem, personalized subgraph FL, which focuses on the joint improvement of the interrelated local GNNs rather than learning a single global model, and propose a novel framework, FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it. Since the server cannot access the subgraph in each client, FED-PUB utilizes functional embeddings of the local GNNs using random graphs as inputs to compute similarities between them, and use the similarities to perform weighted averaging for server-side aggregation. Further, it learns a personalized sparse mask at each client to select and update only the subgraph-relevant subset of the aggregated parameters. We validate our FED-PUB for its subgraph FL performance on six datasets, considering both non-overlapping and overlapping subgraphs, on which it significantly outperforms relevant baselines. Our code is available at https://github.com/JinheonBaek/FED-PUB.
EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications
In the pursuit of achieving ever-increasing accuracy, large and complex neural networks are usually developed. Such models demand high computational resources and therefore cannot be deployed on edge devices. It is of great interest to build resource-efficient general purpose networks due to their usefulness in several application areas. In this work, we strive to effectively combine the strengths of both CNN and Transformer models and propose a new efficient hybrid architecture EdgeNeXt. Specifically in EdgeNeXt, we introduce split depth-wise transpose attention (STDA) encoder that splits input tensors into multiple channel groups and utilizes depth-wise convolution along with self-attention across channel dimensions to implicitly increase the receptive field and encode multi-scale features. Our extensive experiments on classification, detection and segmentation tasks, reveal the merits of the proposed approach, outperforming state-of-the-art methods with comparatively lower compute requirements. Our EdgeNeXt model with 1.3M parameters achieves 71.2% top-1 accuracy on ImageNet-1K, outperforming MobileViT with an absolute gain of 2.2% with 28% reduction in FLOPs. Further, our EdgeNeXt model with 5.6M parameters achieves 79.4% top-1 accuracy on ImageNet-1K. The code and models are available at https://t.ly/_Vu9.
Time Evidence Fusion Network: Multi-source View in Long-Term Time Series Forecasting
In practical scenarios, time series forecasting necessitates not only accuracy but also efficiency. Consequently, the exploration of model architectures remains a perennially trending topic in research. To address these challenges, we propose a novel backbone architecture named Time Evidence Fusion Network (TEFN) from the perspective of information fusion. Specifically, we introduce the Basic Probability Assignment (BPA) Module based on evidence theory to capture the uncertainty of multivariate time series data from both channel and time dimensions. Additionally, we develop a novel multi-source information fusion method to effectively integrate the two distinct dimensions from BPA output, leading to improved forecasting accuracy. Lastly, we conduct extensive experiments to demonstrate that TEFN achieves performance comparable to state-of-the-art methods while maintaining significantly lower complexity and reduced training time. Also, our experiments show that TEFN exhibits high robustness, with minimal error fluctuations during hyperparameter selection. Furthermore, due to the fact that BPA is derived from fuzzy theory, TEFN offers a high degree of interpretability. Therefore, the proposed TEFN balances accuracy, efficiency, stability, and interpretability, making it a desirable solution for time series forecasting.
Network In Network
We propose a novel deep network structure called "Network In Network" (NIN) to enhance model discriminability for local patches within the receptive field. The conventional convolutional layer uses linear filters followed by a nonlinear activation function to scan the input. Instead, we build micro neural networks with more complex structures to abstract the data within the receptive field. We instantiate the micro neural network with a multilayer perceptron, which is a potent function approximator. The feature maps are obtained by sliding the micro networks over the input in a similar manner as CNN; they are then fed into the next layer. Deep NIN can be implemented by stacking mutiple of the above described structure. With enhanced local modeling via the micro network, we are able to utilize global average pooling over feature maps in the classification layer, which is easier to interpret and less prone to overfitting than traditional fully connected layers. We demonstrated the state-of-the-art classification performances with NIN on CIFAR-10 and CIFAR-100, and reasonable performances on SVHN and MNIST datasets.
V2XPnP: Vehicle-to-Everything Spatio-Temporal Fusion for Multi-Agent Perception and Prediction
Vehicle-to-everything (V2X) technologies offer a promising paradigm to mitigate the limitations of constrained observability in single-vehicle systems. Prior work primarily focuses on single-frame cooperative perception, which fuses agents' information across different spatial locations but ignores temporal cues and temporal tasks (e.g., temporal perception and prediction). In this paper, we focus on the spatio-temporal fusion in V2X scenarios and design one-step and multi-step communication strategies (when to transmit) as well as examine their integration with three fusion strategies - early, late, and intermediate (what to transmit), providing comprehensive benchmarks with 11 fusion models (how to fuse). Furthermore, we propose V2XPnP, a novel intermediate fusion framework within one-step communication for end-to-end perception and prediction. Our framework employs a unified Transformer-based architecture to effectively model complex spatio-temporal relationships across multiple agents, frames, and high-definition map. Moreover, we introduce the V2XPnP Sequential Dataset that supports all V2X collaboration modes and addresses the limitations of existing real-world datasets, which are restricted to single-frame or single-mode cooperation. Extensive experiments demonstrate our framework outperforms state-of-the-art methods in both perception and prediction tasks. The codebase and dataset will be released to facilitate future V2X research.
Federated Reconnaissance: Efficient, Distributed, Class-Incremental Learning
We describe federated reconnaissance, a class of learning problems in which distributed clients learn new concepts independently and communicate that knowledge efficiently. In particular, we propose an evaluation framework and methodological baseline for a system in which each client is expected to learn a growing set of classes and communicate knowledge of those classes efficiently with other clients, such that, after knowledge merging, the clients should be able to accurately discriminate between classes in the superset of classes observed by the set of clients. We compare a range of learning algorithms for this problem and find that prototypical networks are a strong approach in that they are robust to catastrophic forgetting while incorporating new information efficiently. Furthermore, we show that the online averaging of prototype vectors is effective for client model merging and requires only a small amount of communication overhead, memory, and update time per class with no gradient-based learning or hyperparameter tuning. Additionally, to put our results in context, we find that a simple, prototypical network with four convolutional layers significantly outperforms complex, state of the art continual learning algorithms, increasing the accuracy by over 22% after learning 600 Omniglot classes and over 33% after learning 20 mini-ImageNet classes incrementally. These results have important implications for federated reconnaissance and continual learning more generally by demonstrating that communicating feature vectors is an efficient, robust, and effective means for distributed, continual learning.
EfficientTDNN: Efficient Architecture Search for Speaker Recognition
Convolutional neural networks (CNNs), such as the time-delay neural network (TDNN), have shown their remarkable capability in learning speaker embedding. However, they meanwhile bring a huge computational cost in storage size, processing, and memory. Discovering the specialized CNN that meets a specific constraint requires a substantial effort of human experts. Compared with hand-designed approaches, neural architecture search (NAS) appears as a practical technique in automating the manual architecture design process and has attracted increasing interest in spoken language processing tasks such as speaker recognition. In this paper, we propose EfficientTDNN, an efficient architecture search framework consisting of a TDNN-based supernet and a TDNN-NAS algorithm. The proposed supernet introduces temporal convolution of different ranges of the receptive field and feature aggregation of various resolutions from different layers to TDNN. On top of it, the TDNN-NAS algorithm quickly searches for the desired TDNN architecture via weight-sharing subnets, which surprisingly reduces computation while handling the vast number of devices with various resources requirements. Experimental results on the VoxCeleb dataset show the proposed EfficientTDNN enables approximate 10^{13} architectures concerning depth, kernel, and width. Considering different computation constraints, it achieves a 2.20% equal error rate (EER) with 204M multiply-accumulate operations (MACs), 1.41% EER with 571M MACs as well as 0.94% EER with 1.45G MACs. Comprehensive investigations suggest that the trained supernet generalizes subnets not sampled during training and obtains a favorable trade-off between accuracy and efficiency.
Balanced Mixture of SuperNets for Learning the CNN Pooling Architecture
Downsampling layers, including pooling and strided convolutions, are crucial components of the convolutional neural network architecture that determine both the granularity/scale of image feature analysis as well as the receptive field size of a given layer. To fully understand this problem, we analyse the performance of models independently trained with each pooling configurations on CIFAR10, using a ResNet20 network, and show that the position of the downsampling layers can highly influence the performance of a network and predefined downsampling configurations are not optimal. Network Architecture Search (NAS) might be used to optimize downsampling configurations as an hyperparameter. However, we find that common one-shot NAS based on a single SuperNet does not work for this problem. We argue that this is because a SuperNet trained for finding the optimal pooling configuration fully shares its parameters among all pooling configurations. This makes its training hard, because learning some configurations can harm the performance of others. Therefore, we propose a balanced mixture of SuperNets that automatically associates pooling configurations to different weight models and helps to reduce the weight-sharing and inter-influence of pooling configurations on the SuperNet parameters. We evaluate our proposed approach on CIFAR10, CIFAR100, as well as Food101 and show that in all cases, our model outperforms other approaches and improves over the default pooling configurations.
Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates
In this paper, we describe a phenomenon, which we named "super-convergence", where neural networks can be trained an order of magnitude faster than with standard training methods. The existence of super-convergence is relevant to understanding why deep networks generalize well. One of the key elements of super-convergence is training with one learning rate cycle and a large maximum learning rate. A primary insight that allows super-convergence training is that large learning rates regularize the training, hence requiring a reduction of all other forms of regularization in order to preserve an optimal regularization balance. We also derive a simplification of the Hessian Free optimization method to compute an estimate of the optimal learning rate. Experiments demonstrate super-convergence for Cifar-10/100, MNIST and Imagenet datasets, and resnet, wide-resnet, densenet, and inception architectures. In addition, we show that super-convergence provides a greater boost in performance relative to standard training when the amount of labeled training data is limited. The architectures and code to replicate the figures in this paper are available at github.com/lnsmith54/super-convergence. See http://www.fast.ai/2018/04/30/dawnbench-fastai/ for an application of super-convergence to win the DAWNBench challenge (see https://dawn.cs.stanford.edu/benchmark/).
In-Sensor Radio Frequency Computing for Energy-Efficient Intelligent Radar
Radio Frequency Neural Networks (RFNNs) have demonstrated advantages in realizing intelligent applications across various domains. However, as the model size of deep neural networks rapidly increases, implementing large-scale RFNN in practice requires an extensive number of RF interferometers and consumes a substantial amount of energy. To address this challenge, we propose to utilize low-rank decomposition to transform a large-scale RFNN into a compact RFNN while almost preserving its accuracy. Specifically, we develop a Tensor-Train RFNN (TT-RFNN) where each layer comprises a sequence of low-rank third-order tensors, leading to a notable reduction in parameter count, thereby optimizing RF interferometer utilization in comparison to the original large-scale RFNN. Additionally, considering the inherent physical errors when mapping TT-RFNN to RF device parameters in real-world deployment, from a general perspective, we construct the Robust TT-RFNN (RTT-RFNN) by incorporating a robustness solver on TT-RFNN to enhance its robustness. To adapt the RTT-RFNN to varying requirements of reshaping operations, we further provide a reconfigurable reshaping solution employing RF switch matrices. Empirical evaluations conducted on MNIST and CIFAR-10 datasets show the effectiveness of our proposed method.
Rewrite the Stars
Recent studies have drawn attention to the untapped potential of the "star operation" (element-wise multiplication) in network design. While intuitive explanations abound, the foundational rationale behind its application remains largely unexplored. Our study attempts to reveal the star operation's ability to map inputs into high-dimensional, non-linear feature spaces -- akin to kernel tricks -- without widening the network. We further introduce StarNet, a simple yet powerful prototype, demonstrating impressive performance and low latency under compact network structure and efficient budget. Like stars in the sky, the star operation appears unremarkable but holds a vast universe of potential. Our work encourages further exploration across tasks, with codes available at https://github.com/ma-xu/Rewrite-the-Stars.
Decoding Human Activities: Analyzing Wearable Accelerometer and Gyroscope Data for Activity Recognition
A person's movement or relative positioning effectively generates raw electrical signals that can be read by computing machines to apply various manipulative techniques for the classification of different human activities. In this paper, a stratified multi-structural approach based on a Residual network ensembled with Residual MobileNet is proposed, termed as FusionActNet. The proposed method involves using carefully designed Residual blocks for classifying the static and dynamic activities separately because they have clear and distinct characteristics that set them apart. These networks are trained independently, resulting in two specialized and highly accurate models. These models excel at recognizing activities within a specific superclass by taking advantage of the unique algorithmic benefits of architectural adjustments. Afterward, these two ResNets are passed through a weighted ensemble-based Residual MobileNet. Subsequently, this ensemble proficiently discriminates between a specific static and a specific dynamic activity, which were previously identified based on their distinct feature characteristics in the earlier stage. The proposed model is evaluated using two publicly accessible datasets; namely, UCI HAR and Motion-Sense. Therein, it successfully handled the highly confusing cases of data overlap. Therefore, the proposed approach achieves a state-of-the-art accuracy of 96.71% and 95.35% in the UCI HAR and Motion-Sense datasets respectively.
PairingNet: A Learning-based Pair-searching and -matching Network for Image Fragments
In this paper, we propose a learning-based image fragment pair-searching and -matching approach to solve the challenging restoration problem. Existing works use rule-based methods to match similar contour shapes or textures, which are always difficult to tune hyperparameters for extensive data and computationally time-consuming. Therefore, we propose a neural network that can effectively utilize neighbor textures with contour shape information to fundamentally improve performance. First, we employ a graph-based network to extract the local contour and texture features of fragments. Then, for the pair-searching task, we adopt a linear transformer-based module to integrate these local features and use contrastive loss to encode the global features of each fragment. For the pair-matching task, we design a weighted fusion module to dynamically fuse extracted local contour and texture features, and formulate a similarity matrix for each pair of fragments to calculate the matching score and infer the adjacent segment of contours. To faithfully evaluate our proposed network, we created a new image fragment dataset through an algorithm we designed that tears complete images into irregular fragments. The experimental results show that our proposed network achieves excellent pair-searching accuracy, reduces matching errors, and significantly reduces computational time. Details, sourcecode, and data are available in our supplementary material.
Real-time Neural Network Inference on Extremely Weak Devices: Agile Offloading with Explainable AI
With the wide adoption of AI applications, there is a pressing need of enabling real-time neural network (NN) inference on small embedded devices, but deploying NNs and achieving high performance of NN inference on these small devices is challenging due to their extremely weak capabilities. Although NN partitioning and offloading can contribute to such deployment, they are incapable of minimizing the local costs at embedded devices. Instead, we suggest to address this challenge via agile NN offloading, which migrates the required computations in NN offloading from online inference to offline learning. In this paper, we present AgileNN, a new NN offloading technique that achieves real-time NN inference on weak embedded devices by leveraging eXplainable AI techniques, so as to explicitly enforce feature sparsity during the training phase and minimize the online computation and communication costs. Experiment results show that AgileNN's inference latency is >6x lower than the existing schemes, ensuring that sensory data on embedded devices can be timely consumed. It also reduces the local device's resource consumption by >8x, without impairing the inference accuracy.
Multispectral Fusion for Object Detection with Cyclic Fuse-and-Refine Blocks
Multispectral images (e.g. visible and infrared) may be particularly useful when detecting objects with the same model in different environments (e.g. day/night outdoor scenes). To effectively use the different spectra, the main technical problem resides in the information fusion process. In this paper, we propose a new halfway feature fusion method for neural networks that leverages the complementary/consistency balance existing in multispectral features by adding to the network architecture, a particular module that cyclically fuses and refines each spectral feature. We evaluate the effectiveness of our fusion method on two challenging multispectral datasets for object detection. Our results show that implementing our Cyclic Fuse-and-Refine module in any network improves the performance on both datasets compared to other state-of-the-art multispectral object detection methods.
Densely Connected Convolutional Networks
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections - one between each layer and its subsequent layer - our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet .
Gate-Shift-Pose: Enhancing Action Recognition in Sports with Skeleton Information
This paper introduces Gate-Shift-Pose, an enhanced version of Gate-Shift-Fuse networks, designed for athlete fall classification in figure skating by integrating skeleton pose data alongside RGB frames. We evaluate two fusion strategies: early-fusion, which combines RGB frames with Gaussian heatmaps of pose keypoints at the input stage, and late-fusion, which employs a multi-stream architecture with attention mechanisms to combine RGB and pose features. Experiments on the FR-FS dataset demonstrate that Gate-Shift-Pose significantly outperforms the RGB-only baseline, improving accuracy by up to 40% with ResNet18 and 20% with ResNet50. Early-fusion achieves the highest accuracy (98.08%) with ResNet50, leveraging the model's capacity for effective multimodal integration, while late-fusion is better suited for lighter backbones like ResNet18. These results highlight the potential of multimodal architectures for sports action recognition and the critical role of skeleton pose information in capturing complex motion patterns.
Randomly Initialized Subnetworks with Iterative Weight Recycling
The Multi-Prize Lottery Ticket Hypothesis posits that randomly initialized neural networks contain several subnetworks that achieve comparable accuracy to fully trained models of the same architecture. However, current methods require that the network is sufficiently overparameterized. In this work, we propose a modification to two state-of-the-art algorithms (Edge-Popup and Biprop) that finds high-accuracy subnetworks with no additional storage cost or scaling. The algorithm, Iterative Weight Recycling, identifies subsets of important weights within a randomly initialized network for intra-layer reuse. Empirically we show improvements on smaller network architectures and higher prune rates, finding that model sparsity can be increased through the "recycling" of existing weights. In addition to Iterative Weight Recycling, we complement the Multi-Prize Lottery Ticket Hypothesis with a reciprocal finding: high-accuracy, randomly initialized subnetwork's produce diverse masks, despite being generated with the same hyperparameter's and pruning strategy. We explore the landscapes of these masks, which show high variability.
Interpret Vision Transformers as ConvNets with Dynamic Convolutions
There has been a debate about the superiority between vision Transformers and ConvNets, serving as the backbone of computer vision models. Although they are usually considered as two completely different architectures, in this paper, we interpret vision Transformers as ConvNets with dynamic convolutions, which enables us to characterize existing Transformers and dynamic ConvNets in a unified framework and compare their design choices side by side. In addition, our interpretation can also guide the network design as researchers now can consider vision Transformers from the design space of ConvNets and vice versa. We demonstrate such potential through two specific studies. First, we inspect the role of softmax in vision Transformers as the activation function and find it can be replaced by commonly used ConvNets modules, such as ReLU and Layer Normalization, which results in a faster convergence rate and better performance. Second, following the design of depth-wise convolution, we create a corresponding depth-wise vision Transformer that is more efficient with comparable performance. The potential of the proposed unified interpretation is not limited to the given examples and we hope it can inspire the community and give rise to more advanced network architectures.
CSPNet: A New Backbone that can Enhance Learning Capability of CNN
Neural networks have enabled state-of-the-art approaches to achieve incredible results on computer vision tasks such as object detection. However, such success greatly relies on costly computation resources, which hinders people with cheap devices from appreciating the advanced technology. In this paper, we propose Cross Stage Partial Network (CSPNet) to mitigate the problem that previous works require heavy inference computations from the network architecture perspective. We attribute the problem to the duplicate gradient information within network optimization. The proposed networks respect the variability of the gradients by integrating feature maps from the beginning and the end of a network stage, which, in our experiments, reduces computations by 20% with equivalent or even superior accuracy on the ImageNet dataset, and significantly outperforms state-of-the-art approaches in terms of AP50 on the MS COCO object detection dataset. The CSPNet is easy to implement and general enough to cope with architectures based on ResNet, ResNeXt, and DenseNet. Source code is at https://github.com/WongKinYiu/CrossStagePartialNetworks.
Single Image Reflection Separation via Component Synergy
The reflection superposition phenomenon is complex and widely distributed in the real world, which derives various simplified linear and nonlinear formulations of the problem. In this paper, based on the investigation of the weaknesses of existing models, we propose a more general form of the superposition model by introducing a learnable residue term, which can effectively capture residual information during decomposition, guiding the separated layers to be complete. In order to fully capitalize on its advantages, we further design the network structure elaborately, including a novel dual-stream interaction mechanism and a powerful decomposition network with a semantic pyramid encoder. Extensive experiments and ablation studies are conducted to verify our superiority over state-of-the-art approaches on multiple real-world benchmark datasets. Our code is publicly available at https://github.com/mingcv/DSRNet.
FuseGPT: Learnable Layers Fusion of Generative Pre-trained Transformers
Generative Pre-trained Transformers (GPTs) have demonstrated remarkable performance across diverse domains through the extensive scaling of model parameters. Recent works observe the redundancy across the transformer blocks and develop compression methods by structured pruning of the unimportant blocks. However, such straightforward elimination will always provide irreversible performance degradation. In this paper, we propose FuseGPT, a novel methodology to recycle the pruned transformer blocks to further recover the model performance. Firstly we introduce a new importance detection metric, Macro Influence (MI), to detect the long-term influence of each transformer block by calculating their loss of information after removal. Then we propose group-level layers fusion, which adopts the parameters in layers of the unimportant blocks and injects them into the corresponding layers inside the neighboring blocks. The fusion is not one-off but through iterative parameter updates by lightweight group-level fine-tuning. Specifically, these injected parameters are frozen but weighted with learnable rank decomposition matrices to reduce the overhead during fine-tuning. Our approach not only works well on large language models but also on large multimodal models. The experiments have shown that, by using modest amounts of data, FuseGPT can outperform previous works in both perplexity and zero-shot task performance.
CoAtNet: Marrying Convolution and Attention for All Data Sizes
Transformers have attracted increasing interests in computer vision, but they still fall behind state-of-the-art convolutional networks. In this work, we show that while Transformers tend to have larger model capacity, their generalization can be worse than convolutional networks due to the lack of the right inductive bias. To effectively combine the strengths from both architectures, we present CoAtNets(pronounced "coat" nets), a family of hybrid models built from two key insights: (1) depthwise Convolution and self-Attention can be naturally unified via simple relative attention; (2) vertically stacking convolution layers and attention layers in a principled way is surprisingly effective in improving generalization, capacity and efficiency. Experiments show that our CoAtNets achieve state-of-the-art performance under different resource constraints across various datasets: Without extra data, CoAtNet achieves 86.0% ImageNet top-1 accuracy; When pre-trained with 13M images from ImageNet-21K, our CoAtNet achieves 88.56% top-1 accuracy, matching ViT-huge pre-trained with 300M images from JFT-300M while using 23x less data; Notably, when we further scale up CoAtNet with JFT-3B, it achieves 90.88% top-1 accuracy on ImageNet, establishing a new state-of-the-art result.
DεpS: Delayed ε-Shrinking for Faster Once-For-All Training
CNNs are increasingly deployed across different hardware, dynamic environments, and low-power embedded devices. This has led to the design and training of CNN architectures with the goal of maximizing accuracy subject to such variable deployment constraints. As the number of deployment scenarios grows, there is a need to find scalable solutions to design and train specialized CNNs. Once-for-all training has emerged as a scalable approach that jointly co-trains many models (subnets) at once with a constant training cost and finds specialized CNNs later. The scalability is achieved by training the full model and simultaneously reducing it to smaller subnets that share model weights (weight-shared shrinking). However, existing once-for-all training approaches incur huge training costs reaching 1200 GPU hours. We argue this is because they either start the process of shrinking the full model too early or too late. Hence, we propose Delayed epsilon-Shrinking (DepsilonpS) that starts the process of shrinking the full model when it is partially trained (~50%) which leads to training cost improvement and better in-place knowledge distillation to smaller models. The proposed approach also consists of novel heuristics that dynamically adjust subnet learning rates incrementally (E), leading to improved weight-shared knowledge distillation from larger to smaller subnets as well. As a result, DEpS outperforms state-of-the-art once-for-all training techniques across different datasets including CIFAR10/100, ImageNet-100, and ImageNet-1k on accuracy and cost. It achieves 1.83% higher ImageNet-1k top1 accuracy or the same accuracy with 1.3x reduction in FLOPs and 2.5x drop in training cost (GPU*hrs)
UniFork: Exploring Modality Alignment for Unified Multimodal Understanding and Generation
Unified image understanding and generation has emerged as a promising paradigm in multimodal artificial intelligence. Despite recent progress, the optimal architectural design for such unified models remains an open challenge. In this work, we start by analyzing the modality alignment behaviors of task-specific expert models for understanding and generation, as well as current unified models. Our analysis reveals a crucial observation: understanding tasks benefit from a progressively increasing modality alignment across network depth, which helps build up semantic information for better comprehension; In contrast, generation tasks follow a different trend: modality alignment increases in the early layers but decreases in the deep layers to recover spatial details. These divergent alignment patterns create a fundamental conflict in fully shared Transformer backbones, where a uniform representational flow often leads to performance compromises across two tasks. Motivated by this finding, we introduce UniFork, a novel Y-shaped architecture that shares the shallow layers for cross-task representation learning, while employing task-specific branches in deeper layers to avoid task interference. This design effectively balances shared learning and task specialization. Through extensive ablation experiments, we demonstrate that Unifork consistently outperforms conventional fully shared Transformer architectures, and achieves performance on par with or better than task-specific models.
HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation
Convolutional neural networks (CNNs) have been the consensus for medical image segmentation tasks. However, they suffer from the limitation in modeling long-range dependencies and spatial correlations due to the nature of convolution operation. Although transformers were first developed to address this issue, they fail to capture low-level features. In contrast, it is demonstrated that both local and global features are crucial for dense prediction, such as segmenting in challenging contexts. In this paper, we propose HiFormer, a novel method that efficiently bridges a CNN and a transformer for medical image segmentation. Specifically, we design two multi-scale feature representations using the seminal Swin Transformer module and a CNN-based encoder. To secure a fine fusion of global and local features obtained from the two aforementioned representations, we propose a Double-Level Fusion (DLF) module in the skip connection of the encoder-decoder structure. Extensive experiments on various medical image segmentation datasets demonstrate the effectiveness of HiFormer over other CNN-based, transformer-based, and hybrid methods in terms of computational complexity, and quantitative and qualitative results. Our code is publicly available at: https://github.com/amirhossein-kz/HiFormer
Towards Understanding Mixture of Experts in Deep Learning
The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a router, has achieved great success in deep learning. However, the understanding of such architecture remains elusive. In this paper, we formally study how the MoE layer improves the performance of neural network learning and why the mixture model will not collapse into a single model. Our empirical results suggest that the cluster structure of the underlying problem and the non-linearity of the expert are pivotal to the success of MoE. To further understand this, we consider a challenging classification problem with intrinsic cluster structures, which is hard to learn using a single expert. Yet with the MoE layer, by choosing the experts as two-layer nonlinear convolutional neural networks (CNNs), we show that the problem can be learned successfully. Furthermore, our theory shows that the router can learn the cluster-center features, which helps divide the input complex problem into simpler linear classification sub-problems that individual experts can conquer. To our knowledge, this is the first result towards formally understanding the mechanism of the MoE layer for deep learning.
Deep Neuromorphic Networks with Superconducting Single Flux Quanta
Conventional semiconductor-based integrated circuits are gradually approaching fundamental scaling limits. Many prospective solutions have recently emerged to supplement or replace both the technology on which basic devices are built and the architecture of data processing. Neuromorphic circuits are a promising approach to computing where techniques used by the brain to achieve high efficiency are exploited. Many existing neuromorphic circuits rely on unconventional and useful properties of novel technologies to better mimic the operation of the brain. One such technology is single flux quantum (SFQ) logic -- a cryogenic superconductive technology in which the data are represented by quanta of magnetic flux (fluxons) produced and processed by Josephson junctions embedded within inductive loops. The movement of a fluxon within a circuit produces a quantized voltage pulse (SFQ pulse), resembling a neuronal spiking event. These circuits routinely operate at clock frequencies of tens to hundreds of gigahertz, making SFQ a natural technology for processing high frequency pulse trains. Prior proposals for SFQ neural networks often require energy-expensive fluxon conversions, involve heterogeneous technologies, or exclusively focus on device level behavior. In this paper, a design methodology for deep single flux quantum neuromorphic networks is presented. Synaptic and neuronal circuits based on SFQ technology are presented and characterized. Based on these primitives, a deep neuromorphic XOR network is evaluated as a case study, both at the architectural and circuit levels, achieving wide classification margins. The proposed methodology does not employ unconventional superconductive devices or semiconductor transistors. The resulting networks are tunable by an external current, making this proposed system an effective approach for scalable cryogenic neuromorphic computing.
UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems
Single-stage neural combinatorial optimization solvers have achieved near-optimal results on various small-scale combinatorial optimization (CO) problems without requiring expert knowledge. However, these solvers exhibit significant performance degradation when applied to large-scale CO problems. Recently, two-stage neural methods motivated by divide-and-conquer strategies have shown efficiency in addressing large-scale CO problems. Nevertheless, the performance of these methods highly relies on problem-specific heuristics in either the dividing or the conquering procedure, which limits their applicability to general CO problems. Moreover, these methods employ separate training schemes and ignore the interdependencies between the dividing and conquering strategies, often leading to sub-optimal solutions. To tackle these drawbacks, this article develops a unified neural divide-and-conquer framework (i.e., UDC) for solving general large-scale CO problems. UDC offers a Divide-Conquer-Reunion (DCR) training method to eliminate the negative impact of a sub-optimal dividing policy. Employing a high-efficiency Graph Neural Network (GNN) for global instance dividing and a fixed-length sub-path solver for conquering divided sub-problems, the proposed UDC framework demonstrates extensive applicability, achieving superior performance in 10 representative large-scale CO problems. The code is available at https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/UDC-Large-scale-CO-master.
Multi-task Self-Supervised Visual Learning
We investigate methods for combining multiple self-supervised tasks--i.e., supervised tasks where data can be collected without manual labeling--in order to train a single visual representation. First, we provide an apples-to-apples comparison of four different self-supervised tasks using the very deep ResNet-101 architecture. We then combine tasks to jointly train a network. We also explore lasso regularization to encourage the network to factorize the information in its representation, and methods for "harmonizing" network inputs in order to learn a more unified representation. We evaluate all methods on ImageNet classification, PASCAL VOC detection, and NYU depth prediction. Our results show that deeper networks work better, and that combining tasks--even via a naive multi-head architecture--always improves performance. Our best joint network nearly matches the PASCAL performance of a model pre-trained on ImageNet classification, and matches the ImageNet network on NYU depth prediction.
Single Path One-Shot Neural Architecture Search with Uniform Sampling
We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.
vGamba: Attentive State Space Bottleneck for efficient Long-range Dependencies in Visual Recognition
Capturing long-range dependencies efficiently is essential for visual recognition tasks, yet existing methods face limitations. Convolutional neural networks (CNNs) struggle with restricted receptive fields, while Vision Transformers (ViTs) achieve global context and long-range modeling at a high computational cost. State-space models (SSMs) offer an alternative, but their application in vision remains underexplored. This work introduces vGamba, a hybrid vision backbone that integrates SSMs with attention mechanisms to enhance efficiency and expressiveness. At its core, the Gamba bottleneck block that includes, Gamba Cell, an adaptation of Mamba for 2D spatial structures, alongside a Multi-Head Self-Attention (MHSA) mechanism and a Gated Fusion Module for effective feature representation. The interplay of these components ensures that vGamba leverages the low computational demands of SSMs while maintaining the accuracy of attention mechanisms for modeling long-range dependencies in vision tasks. Additionally, the Fusion module enables seamless interaction between these components. Extensive experiments on classification, detection, and segmentation tasks demonstrate that vGamba achieves a superior trade-off between accuracy and computational efficiency, outperforming several existing models.
Subgraph Permutation Equivariant Networks
In this work we develop a new method, named Sub-graph Permutation Equivariant Networks (SPEN), which provides a framework for building graph neural networks that operate on sub-graphs, while using a base update function that is permutation equivariant, that are equivariant to a novel choice of automorphism group. Message passing neural networks have been shown to be limited in their expressive power and recent approaches to over come this either lack scalability or require structural information to be encoded into the feature space. The general framework presented here overcomes the scalability issues associated with global permutation equivariance by operating more locally on sub-graphs. In addition, through operating on sub-graphs the expressive power of higher-dimensional global permutation equivariant networks is improved; this is due to fact that two non-distinguishable graphs often contain distinguishable sub-graphs. Furthermore, the proposed framework only requires a choice of k-hops for creating ego-network sub-graphs and a choice of representation space to be used for each layer, which makes the method easily applicable across a range of graph based domains. We experimentally validate the method on a range of graph benchmark classification tasks, demonstrating statistically indistinguishable results from the state-of-the-art on six out of seven benchmarks. Further, we demonstrate that the use of local update functions offers a significant improvement in GPU memory over global methods.
Weight-Entanglement Meets Gradient-Based Neural Architecture Search
Weight sharing is a fundamental concept in neural architecture search (NAS), enabling gradient-based methods to explore cell-based architecture spaces significantly faster than traditional blackbox approaches. In parallel, weight entanglement has emerged as a technique for intricate parameter sharing among architectures within macro-level search spaces. %However, the macro structure of such spaces poses compatibility challenges for gradient-based NAS methods. %As a result, blackbox optimization methods have been commonly employed, particularly in conjunction with supernet training, to maintain search efficiency. %Due to the inherent differences in the structure of these search spaces, these Since weight-entanglement poses compatibility challenges for gradient-based NAS methods, these two paradigms have largely developed independently in parallel sub-communities. This paper aims to bridge the gap between these sub-communities by proposing a novel scheme to adapt gradient-based methods for weight-entangled spaces. This enables us to conduct an in-depth comparative assessment and analysis of the performance of gradient-based NAS in weight-entangled search spaces. Our findings reveal that this integration of weight-entanglement and gradient-based NAS brings forth the various benefits of gradient-based methods (enhanced performance, improved supernet training properties and superior any-time performance), while preserving the memory efficiency of weight-entangled spaces. The code for our work is openly accessible https://anonymous.4open.science/r/TangleNAS-527C{here}
Stacked tensorial neural networks for reduced-order modeling of a parametric partial differential equation
Tensorial neural networks (TNNs) combine the successes of multilinear algebra with those of deep learning to enable extremely efficient reduced-order models of high-dimensional problems. Here, I describe a deep neural network architecture that fuses multiple TNNs into a larger network, intended to solve a broader class of problems than a single TNN. I evaluate this architecture, referred to as a "stacked tensorial neural network" (STNN), on a parametric PDE with three independent variables and three parameters. The three parameters correspond to one PDE coefficient and two quantities describing the domain geometry. The STNN provides an accurate reduced-order description of the solution manifold over a wide range of parameters. There is also evidence of meaningful generalization to parameter values outside its training data. Finally, while the STNN architecture is relatively simple and problem agnostic, it can be regularized to incorporate problem-specific features like symmetries and physical modeling assumptions.
LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion
LiDAR-camera fusion methods have shown impressive performance in 3D object detection. Recent advanced multi-modal methods mainly perform global fusion, where image features and point cloud features are fused across the whole scene. Such practice lacks fine-grained region-level information, yielding suboptimal fusion performance. In this paper, we present the novel Local-to-Global fusion network (LoGoNet), which performs LiDAR-camera fusion at both local and global levels. Concretely, the Global Fusion (GoF) of LoGoNet is built upon previous literature, while we exclusively use point centroids to more precisely represent the position of voxel features, thus achieving better cross-modal alignment. As to the Local Fusion (LoF), we first divide each proposal into uniform grids and then project these grid centers to the images. The image features around the projected grid points are sampled to be fused with position-decorated point cloud features, maximally utilizing the rich contextual information around the proposals. The Feature Dynamic Aggregation (FDA) module is further proposed to achieve information interaction between these locally and globally fused features, thus producing more informative multi-modal features. Extensive experiments on both Waymo Open Dataset (WOD) and KITTI datasets show that LoGoNet outperforms all state-of-the-art 3D detection methods. Notably, LoGoNet ranks 1st on Waymo 3D object detection leaderboard and obtains 81.02 mAPH (L2) detection performance. It is noteworthy that, for the first time, the detection performance on three classes surpasses 80 APH (L2) simultaneously. Code will be available at https://github.com/sankin97/LoGoNet.
Dual Aggregation Transformer for Image Super-Resolution
Transformer has recently gained considerable popularity in low-level vision tasks, including image super-resolution (SR). These networks utilize self-attention along different dimensions, spatial or channel, and achieve impressive performance. This inspires us to combine the two dimensions in Transformer for a more powerful representation capability. Based on the above idea, we propose a novel Transformer model, Dual Aggregation Transformer (DAT), for image SR. Our DAT aggregates features across spatial and channel dimensions, in the inter-block and intra-block dual manner. Specifically, we alternately apply spatial and channel self-attention in consecutive Transformer blocks. The alternate strategy enables DAT to capture the global context and realize inter-block feature aggregation. Furthermore, we propose the adaptive interaction module (AIM) and the spatial-gate feed-forward network (SGFN) to achieve intra-block feature aggregation. AIM complements two self-attention mechanisms from corresponding dimensions. Meanwhile, SGFN introduces additional non-linear spatial information in the feed-forward network. Extensive experiments show that our DAT surpasses current methods. Code and models are obtainable at https://github.com/zhengchen1999/DAT.
Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network
In recent years, deep learning methods have been successfully applied to single-image super-resolution tasks. Despite their great performances, deep learning methods cannot be easily applied to real-world applications due to the requirement of heavy computation. In this paper, we address this issue by proposing an accurate and lightweight deep network for image super-resolution. In detail, we design an architecture that implements a cascading mechanism upon a residual network. We also present variant models of the proposed cascading residual network to further improve efficiency. Our extensive experiments show that even with much fewer parameters and operations, our models achieve performance comparable to that of state-of-the-art methods.
A Robust Stacking Framework for Training Deep Graph Models with Multifaceted Node Features
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data. However the numerical node features utilized by GNNs are commonly extracted from raw data which is of text or tabular (numeric/categorical) type in most real-world applications. The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not simple neural network layers and thus are not easily incorporated into a GNN. Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data, which are ensembled and stacked in multiple layers. Our layer-wise framework leverages bagging and stacking strategies to enjoy strong generalization, in a manner which effectively mitigates label leakage and overfitting. Across a variety of graph datasets with tabular/text node features, our method achieves comparable or superior performance relative to both tabular/text and graph neural network models, as well as existing state-of-the-art hybrid strategies that combine the two.
Scalable Neural Network Kernels
We introduce the concept of scalable neural network kernels (SNNKs), the replacements of regular feedforward layers (FFLs), capable of approximating the latter, but with favorable computational properties. SNNKs effectively disentangle the inputs from the parameters of the neural network in the FFL, only to connect them in the final computation via the dot-product kernel. They are also strictly more expressive, as allowing to model complicated relationships beyond the functions of the dot-products of parameter-input vectors. We also introduce the neural network bundling process that applies SNNKs to compactify deep neural network architectures, resulting in additional compression gains. In its extreme version, it leads to the fully bundled network whose optimal parameters can be expressed via explicit formulae for several loss functions (e.g. mean squared error), opening a possibility to bypass backpropagation. As a by-product of our analysis, we introduce the mechanism of the universal random features (or URFs), applied to instantiate several SNNK variants, and interesting on its own in the context of scalable kernel methods. We provide rigorous theoretical analysis of all these concepts as well as an extensive empirical evaluation, ranging from point-wise kernel estimation to Transformers' fine-tuning with novel adapter layers inspired by SNNKs. Our mechanism provides up to 5x reduction in the number of trainable parameters, while maintaining competitive accuracy.
Subhomogeneous Deep Equilibrium Models
Implicit-depth neural networks have grown as powerful alternatives to traditional networks in various applications in recent years. However, these models often lack guarantees of existence and uniqueness, raising stability, performance, and reproducibility issues. In this paper, we present a new analysis of the existence and uniqueness of fixed points for implicit-depth neural networks based on the concept of subhomogeneous operators and the nonlinear Perron-Frobenius theory. Compared to previous similar analyses, our theory allows for weaker assumptions on the parameter matrices, thus yielding a more flexible framework for well-defined implicit networks. We illustrate the performance of the resulting subhomogeneous networks on feedforward, convolutional, and graph neural network examples.
Multi-Granularity Distillation Scheme Towards Lightweight Semi-Supervised Semantic Segmentation
Albeit with varying degrees of progress in the field of Semi-Supervised Semantic Segmentation, most of its recent successes are involved in unwieldy models and the lightweight solution is still not yet explored. We find that existing knowledge distillation techniques pay more attention to pixel-level concepts from labeled data, which fails to take more informative cues within unlabeled data into account. Consequently, we offer the first attempt to provide lightweight SSSS models via a novel multi-granularity distillation (MGD) scheme, where multi-granularity is captured from three aspects: i) complementary teacher structure; ii) labeled-unlabeled data cooperative distillation; iii) hierarchical and multi-levels loss setting. Specifically, MGD is formulated as a labeled-unlabeled data cooperative distillation scheme, which helps to take full advantage of diverse data characteristics that are essential in the semi-supervised setting. Image-level semantic-sensitive loss, region-level content-aware loss, and pixel-level consistency loss are set up to enrich hierarchical distillation abstraction via structurally complementary teachers. Experimental results on PASCAL VOC2012 and Cityscapes reveal that MGD can outperform the competitive approaches by a large margin under diverse partition protocols. For example, the performance of ResNet-18 and MobileNet-v2 backbone is boosted by 11.5% and 4.6% respectively under 1/16 partition protocol on Cityscapes. Although the FLOPs of the model backbone is compressed by 3.4-5.3x (ResNet-18) and 38.7-59.6x (MobileNetv2), the model manages to achieve satisfactory segmentation results.
Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization
The extensive need for computational resources poses a significant obstacle to deploying large-scale Deep Neural Networks (DNN) on devices with constrained resources. At the same time, studies have demonstrated that a significant number of these DNN parameters are redundant and extraneous. In this paper, we introduce a novel approach for learning structured sparse neural networks, aimed at bridging the DNN hardware deployment challenges. We develop a novel regularization technique, termed Weighted Group Sparse Envelope Function (WGSEF), generalizing the Sparse Envelop Function (SEF), to select (or nullify) neuron groups, thereby reducing redundancy and enhancing computational efficiency. The method speeds up inference time and aims to reduce memory demand and power consumption, thanks to its adaptability which lets any hardware specify group definitions, such as filters, channels, filter shapes, layer depths, a single parameter (unstructured), etc. The properties of the WGSEF enable the pre-definition of a desired sparsity level to be achieved at the training convergence. In the case of redundant parameters, this approach maintains negligible network accuracy degradation or can even lead to improvements in accuracy. Our method efficiently computes the WGSEF regularizer and its proximal operator, in a worst-case linear complexity relative to the number of group variables. Employing a proximal-gradient-based optimization technique, to train the model, it tackles the non-convex minimization problem incorporating the neural network loss and the WGSEF. Finally, we experiment and illustrate the efficiency of our proposed method in terms of the compression ratio, accuracy, and inference latency.
Dual Path Networks
In this work, we present a simple, highly efficient and modularized Dual Path Network (DPN) for image classification which presents a new topology of connection paths internally. By revealing the equivalence of the state-of-the-art Residual Network (ResNet) and Densely Convolutional Network (DenseNet) within the HORNN framework, we find that ResNet enables feature re-usage while DenseNet enables new features exploration which are both important for learning good representations. To enjoy the benefits from both path topologies, our proposed Dual Path Network shares common features while maintaining the flexibility to explore new features through dual path architectures. Extensive experiments on three benchmark datasets, ImagNet-1k, Places365 and PASCAL VOC, clearly demonstrate superior performance of the proposed DPN over state-of-the-arts. In particular, on the ImagNet-1k dataset, a shallow DPN surpasses the best ResNeXt-101(64x4d) with 26% smaller model size, 25% less computational cost and 8% lower memory consumption, and a deeper DPN (DPN-131) further pushes the state-of-the-art single model performance with about 2 times faster training speed. Experiments on the Places365 large-scale scene dataset, PASCAL VOC detection dataset, and PASCAL VOC segmentation dataset also demonstrate its consistently better performance than DenseNet, ResNet and the latest ResNeXt model over various applications.
A DeNoising FPN With Transformer R-CNN for Tiny Object Detection
Despite notable advancements in the field of computer vision, the precise detection of tiny objects continues to pose a significant challenge, largely owing to the minuscule pixel representation allocated to these objects in imagery data. This challenge resonates profoundly in the domain of geoscience and remote sensing, where high-fidelity detection of tiny objects can facilitate a myriad of applications ranging from urban planning to environmental monitoring. In this paper, we propose a new framework, namely, DeNoising FPN with Trans R-CNN (DNTR), to improve the performance of tiny object detection. DNTR consists of an easy plug-in design, DeNoising FPN (DN-FPN), and an effective Transformer-based detector, Trans R-CNN. Specifically, feature fusion in the feature pyramid network is important for detecting multiscale objects. However, noisy features may be produced during the fusion process since there is no regularization between the features of different scales. Therefore, we introduce a DN-FPN module that utilizes contrastive learning to suppress noise in each level's features in the top-down path of FPN. Second, based on the two-stage framework, we replace the obsolete R-CNN detector with a novel Trans R-CNN detector to focus on the representation of tiny objects with self-attention. Experimental results manifest that our DNTR outperforms the baselines by at least 17.4% in terms of APvt on the AI-TOD dataset and 9.6% in terms of AP on the VisDrone dataset, respectively. Our code will be available at https://github.com/hoiliu-0801/DNTR.
Activation Space Selectable Kolmogorov-Arnold Networks
The multilayer perceptron (MLP), a fundamental paradigm in current artificial intelligence, is widely applied in fields such as computer vision and natural language processing. However, the recently proposed Kolmogorov-Arnold Network (KAN), based on nonlinear additive connections, has been proven to achieve performance comparable to MLPs with significantly fewer parameters. Despite this potential, the use of a single activation function space results in reduced performance of KAN and related works across different tasks. To address this issue, we propose an activation space Selectable KAN (S-KAN). S-KAN employs an adaptive strategy to choose the possible activation mode for data at each feedforward KAN node. Our approach outperforms baseline methods in seven representative function fitting tasks and significantly surpasses MLP methods with the same level of parameters. Furthermore, we extend the structure of S-KAN and propose an activation space selectable Convolutional KAN (S-ConvKAN), which achieves leading results on four general image classification datasets. Our method mitigates the performance variability of the original KAN across different tasks and demonstrates through extensive experiments that feedforward KANs with selectable activations can achieve or even exceed the performance of MLP-based methods. This work contributes to the understanding of the data-centric design of new AI paradigms and provides a foundational reference for innovations in KAN-based network architectures.
Improving satellite imagery segmentation using multiple Sentinel-2 revisits
In recent years, analysis of remote sensing data has benefited immensely from borrowing techniques from the broader field of computer vision, such as the use of shared models pre-trained on large and diverse datasets. However, satellite imagery has unique features that are not accounted for in traditional computer vision, such as the existence of multiple revisits of the same location. Here, we explore the best way to use revisits in the framework of fine-tuning pre-trained remote sensing models. We focus on an applied research question of relevance to climate change mitigation -- power substation segmentation -- that is representative of applied uses of pre-trained models more generally. Through extensive tests of different multi-temporal input schemes across diverse model architectures, we find that fusing representations from multiple revisits in the model latent space is superior to other methods of using revisits, including as a form of data augmentation. We also find that a SWIN Transformer-based architecture performs better than U-nets and ViT-based models. We verify the generality of our results on a separate building density estimation task.
FractalNet: Ultra-Deep Neural Networks without Residuals
We introduce a design strategy for neural network macro-architecture based on self-similarity. Repeated application of a simple expansion rule generates deep networks whose structural layouts are precisely truncated fractals. These networks contain interacting subpaths of different lengths, but do not include any pass-through or residual connections; every internal signal is transformed by a filter and nonlinearity before being seen by subsequent layers. In experiments, fractal networks match the excellent performance of standard residual networks on both CIFAR and ImageNet classification tasks, thereby demonstrating that residual representations may not be fundamental to the success of extremely deep convolutional neural networks. Rather, the key may be the ability to transition, during training, from effectively shallow to deep. We note similarities with student-teacher behavior and develop drop-path, a natural extension of dropout, to regularize co-adaptation of subpaths in fractal architectures. Such regularization allows extraction of high-performance fixed-depth subnetworks. Additionally, fractal networks exhibit an anytime property: shallow subnetworks provide a quick answer, while deeper subnetworks, with higher latency, provide a more accurate answer.
HiT-SR: Hierarchical Transformer for Efficient Image Super-Resolution
Transformers have exhibited promising performance in computer vision tasks including image super-resolution (SR). However, popular transformer-based SR methods often employ window self-attention with quadratic computational complexity to window sizes, resulting in fixed small windows with limited receptive fields. In this paper, we present a general strategy to convert transformer-based SR networks to hierarchical transformers (HiT-SR), boosting SR performance with multi-scale features while maintaining an efficient design. Specifically, we first replace the commonly used fixed small windows with expanding hierarchical windows to aggregate features at different scales and establish long-range dependencies. Considering the intensive computation required for large windows, we further design a spatial-channel correlation method with linear complexity to window sizes, efficiently gathering spatial and channel information from hierarchical windows. Extensive experiments verify the effectiveness and efficiency of our HiT-SR, and our improved versions of SwinIR-Light, SwinIR-NG, and SRFormer-Light yield state-of-the-art SR results with fewer parameters, FLOPs, and faster speeds (sim7times).
Masked Spiking Transformer
The combination of Spiking Neural Networks (SNNs) and Transformers has attracted significant attention due to their potential for high energy efficiency and high-performance nature. However, existing works on this topic typically rely on direct training, which can lead to suboptimal performance. To address this issue, we propose to leverage the benefits of the ANN-to-SNN conversion method to combine SNNs and Transformers, resulting in significantly improved performance over existing state-of-the-art SNN models. Furthermore, inspired by the quantal synaptic failures observed in the nervous system, which reduces the number of spikes transmitted across synapses, we introduce a novel Masked Spiking Transformer (MST) framework that incorporates a Random Spike Masking (RSM) method to prune redundant spikes and reduce energy consumption without sacrificing performance. Our experimental results demonstrate that the proposed MST model achieves a significant reduction of 26.8% in power consumption when the masking ratio is 75% while maintaining the same level of performance as the unmasked model.
Revisiting the Integration of Convolution and Attention for Vision Backbone
Convolutions (Convs) and multi-head self-attentions (MHSAs) are typically considered alternatives to each other for building vision backbones. Although some works try to integrate both, they apply the two operators simultaneously at the finest pixel granularity. With Convs responsible for per-pixel feature extraction already, the question is whether we still need to include the heavy MHSAs at such a fine-grained level. In fact, this is the root cause of the scalability issue w.r.t. the input resolution for vision transformers. To address this important problem, we propose in this work to use MSHAs and Convs in parallel at different granularity levels instead. Specifically, in each layer, we use two different ways to represent an image: a fine-grained regular grid and a coarse-grained set of semantic slots. We apply different operations to these two representations: Convs to the grid for local features, and MHSAs to the slots for global features. A pair of fully differentiable soft clustering and dispatching modules is introduced to bridge the grid and set representations, thus enabling local-global fusion. Through extensive experiments on various vision tasks, we empirically verify the potential of the proposed integration scheme, named GLMix: by offloading the burden of fine-grained features to light-weight Convs, it is sufficient to use MHSAs in a few (e.g., 64) semantic slots to match the performance of recent state-of-the-art backbones, while being more efficient. Our visualization results also demonstrate that the soft clustering module produces a meaningful semantic grouping effect with only IN1k classification supervision, which may induce better interpretability and inspire new weakly-supervised semantic segmentation approaches. Code will be available at https://github.com/rayleizhu/GLMix.
Path-Level Network Transformation for Efficient Architecture Search
We introduce a new function-preserving transformation for efficient neural architecture search. This network transformation allows reusing previously trained networks and existing successful architectures that improves sample efficiency. We aim to address the limitation of current network transformation operations that can only perform layer-level architecture modifications, such as adding (pruning) filters or inserting (removing) a layer, which fails to change the topology of connection paths. Our proposed path-level transformation operations enable the meta-controller to modify the path topology of the given network while keeping the merits of reusing weights, and thus allow efficiently designing effective structures with complex path topologies like Inception models. We further propose a bidirectional tree-structured reinforcement learning meta-controller to explore a simple yet highly expressive tree-structured architecture space that can be viewed as a generalization of multi-branch architectures. We experimented on the image classification datasets with limited computational resources (about 200 GPU-hours), where we observed improved parameter efficiency and better test results (97.70% test accuracy on CIFAR-10 with 14.3M parameters and 74.6% top-1 accuracy on ImageNet in the mobile setting), demonstrating the effectiveness and transferability of our designed architectures.
Inter-Scale Dependency Modeling for Skin Lesion Segmentation with Transformer-based Networks
Melanoma is a dangerous form of skin cancer caused by the abnormal growth of skin cells. Fully Convolutional Network (FCN) approaches, including the U-Net architecture, can automatically segment skin lesions to aid diagnosis. The symmetrical U-Net model has shown outstanding results, but its use of a convolutional operation limits its ability to capture long-range dependencies, which are essential for accurate medical image segmentation. In addition, the U-shaped structure suffers from the semantic gaps between the encoder and decoder. In this study, we developed and evaluated a U-shaped hierarchical Transformer-based structure for skin lesion segmentation while we proposed an Inter-scale Context Fusion (ISCF) to utilize the attention correlations in each stage of the encoder to adaptively combine the contexts coming from each stage to hinder the semantic gaps. The preliminary results of the skin lesion segmentation benchmark endorse the applicability and efficacy of the ISCF module.
CrackNex: a Few-shot Low-light Crack Segmentation Model Based on Retinex Theory for UAV Inspections
Routine visual inspections of concrete structures are imperative for upholding the safety and integrity of critical infrastructure. Such visual inspections sometimes happen under low-light conditions, e.g., checking for bridge health. Crack segmentation under such conditions is challenging due to the poor contrast between cracks and their surroundings. However, most deep learning methods are designed for well-illuminated crack images and hence their performance drops dramatically in low-light scenes. In addition, conventional approaches require many annotated low-light crack images which is time-consuming. In this paper, we address these challenges by proposing CrackNex, a framework that utilizes reflectance information based on Retinex Theory to help the model learn a unified illumination-invariant representation. Furthermore, we utilize few-shot segmentation to solve the inefficient training data problem. In CrackNex, both a support prototype and a reflectance prototype are extracted from the support set. Then, a prototype fusion module is designed to integrate the features from both prototypes. CrackNex outperforms the SOTA methods on multiple datasets. Additionally, we present the first benchmark dataset, LCSD, for low-light crack segmentation. LCSD consists of 102 well-illuminated crack images and 41 low-light crack images. The dataset and code are available at https://github.com/zy1296/CrackNex.
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features---using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model, our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism
In the past years, YOLO-series models have emerged as the leading approaches in the area of real-time object detection. Many studies pushed up the baseline to a higher level by modifying the architecture, augmenting data and designing new losses. However, we find previous models still suffer from information fusion problem, although Feature Pyramid Network (FPN) and Path Aggregation Network (PANet) have alleviated this. Therefore, this study provides an advanced Gatherand-Distribute mechanism (GD) mechanism, which is realized with convolution and self-attention operations. This new designed model named as Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales. Additionally, we implement MAE-style pretraining in the YOLO-series for the first time, allowing YOLOseries models could be to benefit from unsupervised pretraining. Gold-YOLO-N attains an outstanding 39.9% AP on the COCO val2017 datasets and 1030 FPS on a T4 GPU, which outperforms the previous SOTA model YOLOv6-3.0-N with similar FPS by +2.4%. The PyTorch code is available at https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO, and the MindSpore code is available at https://gitee.com/mindspore/models/tree/master/research/cv/Gold_YOLO.
Stabilizing DARTS with Amended Gradient Estimation on Architectural Parameters
DARTS is a popular algorithm for neural architecture search (NAS). Despite its great advantage in search efficiency, DARTS often suffers weak stability, which reflects in the large variation among individual trials as well as the sensitivity to the hyper-parameters of the search process. This paper owes such instability to an optimization gap between the super-network and its sub-networks, namely, improving the validation accuracy of the super-network does not necessarily lead to a higher expectation on the performance of the sampled sub-networks. Then, we point out that the gap is due to the inaccurate estimation of the architectural gradients, based on which we propose an amended estimation method. Mathematically, our method guarantees a bounded error from the true gradients while the original estimation does not. Our approach bridges the gap from two aspects, namely, amending the estimation on the architectural gradients, and unifying the hyper-parameter settings in the search and re-training stages. Experiments on CIFAR10 and ImageNet demonstrate that our approach largely improves search stability and, more importantly, enables DARTS-based approaches to explore much larger search spaces that have not been investigated before.
FFN Fusion: Rethinking Sequential Computation in Large Language Models
We introduce FFN Fusion, an architectural optimization technique that reduces sequential computation in large language models by identifying and exploiting natural opportunities for parallelization. Our key insight is that sequences of Feed-Forward Network (FFN) layers, particularly those remaining after the removal of specific attention layers, can often be parallelized with minimal accuracy impact. We develop a principled methodology for identifying and fusing such sequences, transforming them into parallel operations that significantly reduce inference latency while preserving model behavior. Applying these techniques to Llama-3.1-405B-Instruct, we create Llama-Nemotron-Ultra-253B-Base (Ultra-253B-Base), an efficient and soon-to-be publicly available model that achieves a 1.71X speedup in inference latency and 35X lower per-token cost while maintaining strong performance across benchmarks. Through extensive experiments on models from 49B to 253B parameters, we demonstrate that FFN Fusion becomes increasingly effective at larger scales and can complement existing optimization techniques like quantization and pruning. Most intriguingly, we find that even full transformer blocks containing both attention and FFN layers can sometimes be parallelized, suggesting new directions for neural architecture design.
Deep Learning Fusion For Effective Malware Detection: Leveraging Visual Features
Malware has become a formidable threat as it has been growing exponentially in number and sophistication, thus, it is imperative to have a solution that is easy to implement, reliable, and effective. While recent research has introduced deep learning multi-feature fusion algorithms, they lack a proper explanation. In this work, we investigate the power of fusing Convolutional Neural Network models trained on different modalities of a malware executable. We are proposing a novel multimodal fusion algorithm, leveraging three different visual malware features: Grayscale Image, Entropy Graph, and SimHash Image, with which we conducted exhaustive experiments independently on each feature and combinations of all three of them using fusion operators such as average, maximum, add, and concatenate for effective malware detection and classification. The proposed strategy has a detection rate of 1.00 (on a scale of 0-1) in identifying malware in the given dataset. We explained its interpretability with visualization techniques such as t-SNE and Grad-CAM. Experimental results show the model works even for a highly imbalanced dataset. We also assessed the effectiveness of the proposed method on obfuscated malware and achieved state-of-the-art results. The proposed methodology is more reliable as our findings prove VGG16 model can detect and classify malware in a matter of seconds in real-time.
CPDR: Towards Highly-Efficient Salient Object Detection via Crossed Post-decoder Refinement
Most of the current salient object detection approaches use deeper networks with large backbones to produce more accurate predictions, which results in a significant increase in computational complexity. A great number of network designs follow the pure UNet and Feature Pyramid Network (FPN) architecture which has limited feature extraction and aggregation ability which motivated us to design a lightweight post-decoder refinement module, the crossed post-decoder refinement (CPDR) to enhance the feature representation of a standard FPN or U-Net framework. Specifically, we introduce the Attention Down Sample Fusion (ADF), which employs channel attention mechanisms with attention maps generated by high-level representation to refine the low-level features, and Attention Up Sample Fusion (AUF), leveraging the low-level information to guide the high-level features through spatial attention. Additionally, we proposed the Dual Attention Cross Fusion (DACF) upon ADFs and AUFs, which reduces the number of parameters while maintaining the performance. Experiments on five benchmark datasets demonstrate that our method outperforms previous state-of-the-art approaches.
ConTNet: Why not use convolution and transformer at the same time?
Although convolutional networks (ConvNets) have enjoyed great success in computer vision (CV), it suffers from capturing global information crucial to dense prediction tasks such as object detection and segmentation. In this work, we innovatively propose ConTNet (ConvolutionTransformer Network), combining transformer with ConvNet architectures to provide large receptive fields. Unlike the recently-proposed transformer-based models (e.g., ViT, DeiT) that are sensitive to hyper-parameters and extremely dependent on a pile of data augmentations when trained from scratch on a midsize dataset (e.g., ImageNet1k), ConTNet can be optimized like normal ConvNets (e.g., ResNet) and preserve an outstanding robustness. It is also worth pointing that, given identical strong data augmentations, the performance improvement of ConTNet is more remarkable than that of ResNet. We present its superiority and effectiveness on image classification and downstream tasks. For example, our ConTNet achieves 81.8% top-1 accuracy on ImageNet which is the same as DeiT-B with less than 40% computational complexity. ConTNet-M also outperforms ResNet50 as the backbone of both Faster-RCNN (by 2.6%) and Mask-RCNN (by 3.2%) on COCO2017 dataset. We hope that ConTNet could serve as a useful backbone for CV tasks and bring new ideas for model design
Incorporating brain-inspired mechanisms for multimodal learning in artificial intelligence
Multimodal learning enhances the perceptual capabilities of cognitive systems by integrating information from different sensory modalities. However, existing multimodal fusion research typically assumes static integration, not fully incorporating key dynamic mechanisms found in the brain. Specifically, the brain exhibits an inverse effectiveness phenomenon, wherein weaker unimodal cues yield stronger multisensory integration benefits; conversely, when individual modal cues are stronger, the effect of fusion is diminished. This mechanism enables biological systems to achieve robust cognition even with scarce or noisy perceptual cues. Inspired by this biological mechanism, we explore the relationship between multimodal output and information from individual modalities, proposing an inverse effectiveness driven multimodal fusion (IEMF) strategy. By incorporating this strategy into neural networks, we achieve more efficient integration with improved model performance and computational efficiency, demonstrating up to 50% reduction in computational cost across diverse fusion methods. We conduct experiments on audio-visual classification, continual learning, and question answering tasks to validate our method. Results consistently demonstrate that our method performs excellently in these tasks. To verify universality and generalization, we also conduct experiments on Artificial Neural Networks (ANN) and Spiking Neural Networks (SNN), with results showing good adaptability to both network types. Our research emphasizes the potential of incorporating biologically inspired mechanisms into multimodal networks and provides promising directions for the future development of multimodal artificial intelligence. The code is available at https://github.com/Brain-Cog-Lab/IEMF.
FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability stemming from two factors: 1) limited annotated image-event-depth datasets causing insufficient cross-modal supervision, and 2) inherent frequency mismatches between static images and dynamic event streams with distinct spatiotemporal patterns, leading to ineffective feature fusion. To address this dual challenge, we propose Frequency-decoupled Unified Self-supervised Encoder (FUSE) with two synergistic components: The Parameter-efficient Self-supervised Transfer (PST) establishes cross-modal knowledge transfer through latent space alignment with image foundation models, effectively mitigating data scarcity by enabling joint encoding without depth ground truth. Complementing this, we propose the Frequency-Decoupled Fusion module (FreDFuse) to explicitly decouple high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches through physics-aware fusion. This combined approach enables FUSE to construct a universal image-event encoder that only requires lightweight decoder adaptation for target datasets. Extensive experiments demonstrate state-of-the-art performance with 14% and 24.9% improvements in Abs.Rel on MVSEC and DENSE datasets. The framework exhibits remarkable zero-shot adaptability to challenging scenarios including extreme lighting and motion blur, significantly advancing real-world deployment capabilities. The source code for our method is publicly available at: https://github.com/sunpihai-up/FUSE
D-DARTS: Distributed Differentiable Architecture Search
Differentiable ARchiTecture Search (DARTS) is one of the most trending Neural Architecture Search (NAS) methods. It drastically reduces search cost by resorting to weight-sharing. However, it also dramatically reduces the search space, thus excluding potential promising architectures. In this article, we propose D-DARTS, a solution that addresses this problem by nesting neural networks at the cell level instead of using weight-sharing to produce more diversified and specialized architectures. Moreover, we introduce a novel algorithm that can derive deeper architectures from a few trained cells, increasing performance and saving computation time. In addition, we also present an alternative search space (DARTOpti) in which we optimize existing handcrafted architectures (e.g., ResNet) rather than starting from scratch. This approach is accompanied by a novel metric that measures the distance between architectures inside our custom search space. Our solution reaches competitive performance on multiple computer vision tasks. Code and pretrained models can be accessed at https://github.com/aheuillet/D-DARTS.
ElasticViT: Conflict-aware Supernet Training for Deploying Fast Vision Transformer on Diverse Mobile Devices
Neural Architecture Search (NAS) has shown promising performance in the automatic design of vision transformers (ViT) exceeding 1G FLOPs. However, designing lightweight and low-latency ViT models for diverse mobile devices remains a big challenge. In this work, we propose ElasticViT, a two-stage NAS approach that trains a high-quality ViT supernet over a very large search space that supports a wide range of mobile devices, and then searches an optimal sub-network (subnet) for direct deployment. However, prior supernet training methods that rely on uniform sampling suffer from the gradient conflict issue: the sampled subnets can have vastly different model sizes (e.g., 50M vs. 2G FLOPs), leading to different optimization directions and inferior performance. To address this challenge, we propose two novel sampling techniques: complexity-aware sampling and performance-aware sampling. Complexity-aware sampling limits the FLOPs difference among the subnets sampled across adjacent training steps, while covering different-sized subnets in the search space. Performance-aware sampling further selects subnets that have good accuracy, which can reduce gradient conflicts and improve supernet quality. Our discovered models, ElasticViT models, achieve top-1 accuracy from 67.2% to 80.0% on ImageNet from 60M to 800M FLOPs without extra retraining, outperforming all prior CNNs and ViTs in terms of accuracy and latency. Our tiny and small models are also the first ViT models that surpass state-of-the-art CNNs with significantly lower latency on mobile devices. For instance, ElasticViT-S1 runs 2.62x faster than EfficientNet-B0 with 0.1% higher accuracy.
FusionVision: A comprehensive approach of 3D object reconstruction and segmentation from RGB-D cameras using YOLO and fast segment anything
In the realm of computer vision, the integration of advanced techniques into the processing of RGB-D camera inputs poses a significant challenge, given the inherent complexities arising from diverse environmental conditions and varying object appearances. Therefore, this paper introduces FusionVision, an exhaustive pipeline adapted for the robust 3D segmentation of objects in RGB-D imagery. Traditional computer vision systems face limitations in simultaneously capturing precise object boundaries and achieving high-precision object detection on depth map as they are mainly proposed for RGB cameras. To address this challenge, FusionVision adopts an integrated approach by merging state-of-the-art object detection techniques, with advanced instance segmentation methods. The integration of these components enables a holistic (unified analysis of information obtained from both color RGB and depth D channels) interpretation of RGB-D data, facilitating the extraction of comprehensive and accurate object information. The proposed FusionVision pipeline employs YOLO for identifying objects within the RGB image domain. Subsequently, FastSAM, an innovative semantic segmentation model, is applied to delineate object boundaries, yielding refined segmentation masks. The synergy between these components and their integration into 3D scene understanding ensures a cohesive fusion of object detection and segmentation, enhancing overall precision in 3D object segmentation. The code and pre-trained models are publicly available at https://github.com/safouaneelg/FusionVision/.
Isomer: Isomerous Transformer for Zero-shot Video Object Segmentation
Recent leading zero-shot video object segmentation (ZVOS) works devote to integrating appearance and motion information by elaborately designing feature fusion modules and identically applying them in multiple feature stages. Our preliminary experiments show that with the strong long-range dependency modeling capacity of Transformer, simply concatenating the two modality features and feeding them to vanilla Transformers for feature fusion can distinctly benefit the performance but at a cost of heavy computation. Through further empirical analysis, we find that attention dependencies learned in Transformer in different stages exhibit completely different properties: global query-independent dependency in the low-level stages and semantic-specific dependency in the high-level stages. Motivated by the observations, we propose two Transformer variants: i) Context-Sharing Transformer (CST) that learns the global-shared contextual information within image frames with a lightweight computation. ii) Semantic Gathering-Scattering Transformer (SGST) that models the semantic correlation separately for the foreground and background and reduces the computation cost with a soft token merging mechanism. We apply CST and SGST for low-level and high-level feature fusions, respectively, formulating a level-isomerous Transformer framework for ZVOS task. Compared with the baseline that uses vanilla Transformers for multi-stage fusion, ours significantly increase the speed by 13 times and achieves new state-of-the-art ZVOS performance. Code is available at https://github.com/DLUT-yyc/Isomer.
Generative Model for Models: Rapid DNN Customization for Diverse Tasks and Resource Constraints
Unlike cloud-based deep learning models that are often large and uniform, edge-deployed models usually demand customization for domain-specific tasks and resource-limited environments. Such customization processes can be costly and time-consuming due to the diversity of edge scenarios and the training load for each scenario. Although various approaches have been proposed for rapid resource-oriented customization and task-oriented customization respectively, achieving both of them at the same time is challenging. Drawing inspiration from the generative AI and the modular composability of neural networks, we introduce NN-Factory, an one-for-all framework to generate customized lightweight models for diverse edge scenarios. The key idea is to use a generative model to directly produce the customized models, instead of training them. The main components of NN-Factory include a modular supernet with pretrained modules that can be conditionally activated to accomplish different tasks and a generative module assembler that manipulate the modules according to task and sparsity requirements. Given an edge scenario, NN-Factory can efficiently customize a compact model specialized in the edge task while satisfying the edge resource constraints by searching for the optimal strategy to assemble the modules. Based on experiments on image classification and object detection tasks with different edge devices, NN-Factory is able to generate high-quality task- and resource-specific models within few seconds, faster than conventional model customization approaches by orders of magnitude.
Graph Metanetworks for Processing Diverse Neural Architectures
Neural networks efficiently encode learned information within their parameters. Consequently, many tasks can be unified by treating neural networks themselves as input data. When doing so, recent studies demonstrated the importance of accounting for the symmetries and geometry of parameter spaces. However, those works developed architectures tailored to specific networks such as MLPs and CNNs without normalization layers, and generalizing such architectures to other types of networks can be challenging. In this work, we overcome these challenges by building new metanetworks - neural networks that take weights from other neural networks as input. Put simply, we carefully build graphs representing the input neural networks and process the graphs using graph neural networks. Our approach, Graph Metanetworks (GMNs), generalizes to neural architectures where competing methods struggle, such as multi-head attention layers, normalization layers, convolutional layers, ResNet blocks, and group-equivariant linear layers. We prove that GMNs are expressive and equivariant to parameter permutation symmetries that leave the input neural network functions unchanged. We validate the effectiveness of our method on several metanetwork tasks over diverse neural network architectures.
LSNet: See Large, Focus Small
Vision network designs, including Convolutional Neural Networks and Vision Transformers, have significantly advanced the field of computer vision. Yet, their complex computations pose challenges for practical deployments, particularly in real-time applications. To tackle this issue, researchers have explored various lightweight and efficient network designs. However, existing lightweight models predominantly leverage self-attention mechanisms and convolutions for token mixing. This dependence brings limitations in effectiveness and efficiency in the perception and aggregation processes of lightweight networks, hindering the balance between performance and efficiency under limited computational budgets. In this paper, we draw inspiration from the dynamic heteroscale vision ability inherent in the efficient human vision system and propose a ``See Large, Focus Small'' strategy for lightweight vision network design. We introduce LS (Large-Small) convolution, which combines large-kernel perception and small-kernel aggregation. It can efficiently capture a wide range of perceptual information and achieve precise feature aggregation for dynamic and complex visual representations, thus enabling proficient processing of visual information. Based on LS convolution, we present LSNet, a new family of lightweight models. Extensive experiments demonstrate that LSNet achieves superior performance and efficiency over existing lightweight networks in various vision tasks. Codes and models are available at https://github.com/jameslahm/lsnet.
DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation
As acquiring pixel-wise annotations of real-world images for semantic segmentation is a costly process, a model can instead be trained with more accessible synthetic data and adapted to real images without requiring their annotations. This process is studied in unsupervised domain adaptation (UDA). Even though a large number of methods propose new adaptation strategies, they are mostly based on outdated network architectures. As the influence of recent network architectures has not been systematically studied, we first benchmark different network architectures for UDA and newly reveal the potential of Transformers for UDA semantic segmentation. Based on the findings, we propose a novel UDA method, DAFormer. The network architecture of DAFormer consists of a Transformer encoder and a multi-level context-aware feature fusion decoder. It is enabled by three simple but crucial training strategies to stabilize the training and to avoid overfitting to the source domain: While (1) Rare Class Sampling on the source domain improves the quality of the pseudo-labels by mitigating the confirmation bias of self-training toward common classes, (2) a Thing-Class ImageNet Feature Distance and (3) a learning rate warmup promote feature transfer from ImageNet pretraining. DAFormer represents a major advance in UDA. It improves the state of the art by 10.8 mIoU for GTA-to-Cityscapes and 5.4 mIoU for Synthia-to-Cityscapes and enables learning even difficult classes such as train, bus, and truck well. The implementation is available at https://github.com/lhoyer/DAFormer.
Generalizing Few-Shot NAS with Gradient Matching
Efficient performance estimation of architectures drawn from large search spaces is essential to Neural Architecture Search. One-Shot methods tackle this challenge by training one supernet to approximate the performance of every architecture in the search space via weight-sharing, thereby drastically reducing the search cost. However, due to coupled optimization between child architectures caused by weight-sharing, One-Shot supernet's performance estimation could be inaccurate, leading to degraded search outcomes. To address this issue, Few-Shot NAS reduces the level of weight-sharing by splitting the One-Shot supernet into multiple separated sub-supernets via edge-wise (layer-wise) exhaustive partitioning. Since each partition of the supernet is not equally important, it necessitates the design of a more effective splitting criterion. In this work, we propose a gradient matching score (GM) that leverages gradient information at the shared weight for making informed splitting decisions. Intuitively, gradients from different child models can be used to identify whether they agree on how to update the shared modules, and subsequently to decide if they should share the same weight. Compared with exhaustive partitioning, the proposed criterion significantly reduces the branching factor per edge. This allows us to split more edges (layers) for a given budget, resulting in substantially improved performance as NAS search spaces usually include dozens of edges (layers). Extensive empirical evaluations of the proposed method on a wide range of search spaces (NASBench-201, DARTS, MobileNet Space), datasets (cifar10, cifar100, ImageNet) and search algorithms (DARTS, SNAS, RSPS, ProxylessNAS, OFA) demonstrate that it significantly outperforms its Few-Shot counterparts while surpassing previous comparable methods in terms of the accuracy of derived architectures.
SENetV2: Aggregated dense layer for channelwise and global representations
Convolutional Neural Networks (CNNs) have revolutionized image classification by extracting spatial features and enabling state-of-the-art accuracy in vision-based tasks. The squeeze and excitation network proposed module gathers channelwise representations of the input. Multilayer perceptrons (MLP) learn global representation from the data and in most image classification models used to learn extracted features of the image. In this paper, we introduce a novel aggregated multilayer perceptron, a multi-branch dense layer, within the Squeeze excitation residual module designed to surpass the performance of existing architectures. Our approach leverages a combination of squeeze excitation network module with dense layers. This fusion enhances the network's ability to capture channel-wise patterns and have global knowledge, leading to a better feature representation. This proposed model has a negligible increase in parameters when compared to SENet. We conduct extensive experiments on benchmark datasets to validate the model and compare them with established architectures. Experimental results demonstrate a remarkable increase in the classification accuracy of the proposed model.
Quantifying the Knowledge in GNNs for Reliable Distillation into MLPs
To bridge the gaps between topology-aware Graph Neural Networks (GNNs) and inference-efficient Multi-Layer Perceptron (MLPs), GLNN proposes to distill knowledge from a well-trained teacher GNN into a student MLP. Despite their great progress, comparatively little work has been done to explore the reliability of different knowledge points (nodes) in GNNs, especially their roles played during distillation. In this paper, we first quantify the knowledge reliability in GNN by measuring the invariance of their information entropy to noise perturbations, from which we observe that different knowledge points (1) show different distillation speeds (temporally); (2) are differentially distributed in the graph (spatially). To achieve reliable distillation, we propose an effective approach, namely Knowledge-inspired Reliable Distillation (KRD), that models the probability of each node being an informative and reliable knowledge point, based on which we sample a set of additional reliable knowledge points as supervision for training student MLPs. Extensive experiments show that KRD improves over the vanilla MLPs by 12.62% and outperforms its corresponding teacher GNNs by 2.16% averaged over 7 datasets and 3 GNN architectures.
Scale-Aware Modulation Meet Transformer
This paper presents a new vision Transformer, Scale-Aware Modulation Transformer (SMT), that can handle various downstream tasks efficiently by combining the convolutional network and vision Transformer. The proposed Scale-Aware Modulation (SAM) in the SMT includes two primary novel designs. Firstly, we introduce the Multi-Head Mixed Convolution (MHMC) module, which can capture multi-scale features and expand the receptive field. Secondly, we propose the Scale-Aware Aggregation (SAA) module, which is lightweight but effective, enabling information fusion across different heads. By leveraging these two modules, convolutional modulation is further enhanced. Furthermore, in contrast to prior works that utilized modulations throughout all stages to build an attention-free network, we propose an Evolutionary Hybrid Network (EHN), which can effectively simulate the shift from capturing local to global dependencies as the network becomes deeper, resulting in superior performance. Extensive experiments demonstrate that SMT significantly outperforms existing state-of-the-art models across a wide range of visual tasks. Specifically, SMT with 11.5M / 2.4GFLOPs and 32M / 7.7GFLOPs can achieve 82.2% and 84.3% top-1 accuracy on ImageNet-1K, respectively. After pretrained on ImageNet-22K in 224^2 resolution, it attains 87.1% and 88.1% top-1 accuracy when finetuned with resolution 224^2 and 384^2, respectively. For object detection with Mask R-CNN, the SMT base trained with 1x and 3x schedule outperforms the Swin Transformer counterpart by 4.2 and 1.3 mAP on COCO, respectively. For semantic segmentation with UPerNet, the SMT base test at single- and multi-scale surpasses Swin by 2.0 and 1.1 mIoU respectively on the ADE20K.
OL-Transformer: A Fast and Universal Surrogate Simulator for Optical Multilayer Thin Film Structures
Deep learning-based methods have recently been established as fast and accurate surrogate simulators for optical multilayer thin film structures. However, existing methods only work for limited types of structures with different material arrangements, preventing their applications towards diverse and universal structures. Here, we propose the Opto-Layer (OL) Transformer to act as a universal surrogate simulator for enormous types of structures. Combined with the technique of structure serialization, our model can predict accurate reflection and transmission spectra for up to 10^{25} different multilayer structures, while still achieving a six-fold degradation in simulation time compared to physical solvers. Further investigation reveals that the general learning ability comes from the fact that our model first learns the physical embeddings and then uses the self-attention mechanism to capture the hidden relationship of light-matter interaction between each layer.
Forget-free Continual Learning with Soft-Winning SubNetworks
Inspired by Regularized Lottery Ticket Hypothesis (RLTH), which states that competitive smooth (non-binary) subnetworks exist within a dense network in continual learning tasks, we investigate two proposed architecture-based continual learning methods which sequentially learn and select adaptive binary- (WSN) and non-binary Soft-Subnetworks (SoftNet) for each task. WSN and SoftNet jointly learn the regularized model weights and task-adaptive non-binary masks of subnetworks associated with each task whilst attempting to select a small set of weights to be activated (winning ticket) by reusing weights of the prior subnetworks. Our proposed WSN and SoftNet are inherently immune to catastrophic forgetting as each selected subnetwork model does not infringe upon other subnetworks in Task Incremental Learning (TIL). In TIL, binary masks spawned per winning ticket are encoded into one N-bit binary digit mask, then compressed using Huffman coding for a sub-linear increase in network capacity to the number of tasks. Surprisingly, in the inference step, SoftNet generated by injecting small noises to the backgrounds of acquired WSN (holding the foregrounds of WSN) provides excellent forward transfer power for future tasks in TIL. SoftNet shows its effectiveness over WSN in regularizing parameters to tackle the overfitting, to a few examples in Few-shot Class Incremental Learning (FSCIL).
A Neural ODE Interpretation of Transformer Layers
Transformer layers, which use an alternating pattern of multi-head attention and multi-layer perceptron (MLP) layers, provide an effective tool for a variety of machine learning problems. As the transformer layers use residual connections to avoid the problem of vanishing gradients, they can be viewed as the numerical integration of a differential equation. In this extended abstract, we build upon this connection and propose a modification of the internal architecture of a transformer layer. The proposed model places the multi-head attention sublayer and the MLP sublayer parallel to each other. Our experiments show that this simple modification improves the performance of transformer networks in multiple tasks. Moreover, for the image classification task, we show that using neural ODE solvers with a sophisticated integration scheme further improves performance.
RRWNet: Recursive Refinement Network for effective retinal artery/vein segmentation and classification
The caliber and configuration of retinal blood vessels serve as important biomarkers for various diseases and medical conditions. A thorough analysis of the retinal vasculature requires the segmentation of the blood vessels and their classification into arteries and veins, typically performed on color fundus images obtained by retinography. However, manually performing these tasks is labor-intensive and prone to human error. While several automated methods have been proposed to address this task, the current state of art faces challenges due to manifest classification errors affecting the topological consistency of segmentation maps. In this work, we introduce RRWNet, a novel end-to-end deep learning framework that addresses this limitation. The framework consists of a fully convolutional neural network that recursively refines semantic segmentation maps, correcting manifest classification errors and thus improving topological consistency. In particular, RRWNet is composed of two specialized subnetworks: a Base subnetwork that generates base segmentation maps from the input images, and a Recursive Refinement subnetwork that iteratively and recursively improves these maps. Evaluation on three different public datasets demonstrates the state-of-the-art performance of the proposed method, yielding more topologically consistent segmentation maps with fewer manifest classification errors than existing approaches. In addition, the Recursive Refinement module within RRWNet proves effective in post-processing segmentation maps from other methods, further demonstrating its potential. The model code, weights, and predictions will be publicly available at https://github.com/j-morano/rrwnet.
UMoE: Unifying Attention and FFN with Shared Experts
Sparse Mixture of Experts (MoE) architectures have emerged as a promising approach for scaling Transformer models. While initial works primarily incorporated MoE into feed-forward network (FFN) layers, recent studies have explored extending the MoE paradigm to attention layers to enhance model performance. However, existing attention-based MoE layers require specialized implementations and demonstrate suboptimal performance compared to their FFN-based counterparts. In this paper, we aim to unify the MoE designs in attention and FFN layers by introducing a novel reformulation of the attention mechanism, revealing an underlying FFN-like structure within attention modules. Our proposed architecture, UMoE, achieves superior performance through attention-based MoE layers while enabling efficient parameter sharing between FFN and attention components.
Fully 1times1 Convolutional Network for Lightweight Image Super-Resolution
Deep models have achieved significant process on single image super-resolution (SISR) tasks, in particular large models with large kernel (3times3 or more). However, the heavy computational footprint of such models prevents their deployment in real-time, resource-constrained environments. Conversely, 1times1 convolutions bring substantial computational efficiency, but struggle with aggregating local spatial representations, an essential capability to SISR models. In response to this dichotomy, we propose to harmonize the merits of both 3times3 and 1times1 kernels, and exploit a great potential for lightweight SISR tasks. Specifically, we propose a simple yet effective fully 1times1 convolutional network, named Shift-Conv-based Network (SCNet). By incorporating a parameter-free spatial-shift operation, it equips the fully 1times1 convolutional network with powerful representation capability while impressive computational efficiency. Extensive experiments demonstrate that SCNets, despite its fully 1times1 convolutional structure, consistently matches or even surpasses the performance of existing lightweight SR models that employ regular convolutions.
Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review
Cancer has relational information residing at varying scales, modalities, and resolutions of the acquired data, such as radiology, pathology, genomics, proteomics, and clinical records. Integrating diverse data types can improve the accuracy and reliability of cancer diagnosis and treatment. There can be disease-related information that is too subtle for humans or existing technological tools to discern visually. Traditional methods typically focus on partial or unimodal information about biological systems at individual scales and fail to encapsulate the complete spectrum of the heterogeneous nature of data. Deep neural networks have facilitated the development of sophisticated multimodal data fusion approaches that can extract and integrate relevant information from multiple sources. Recent deep learning frameworks such as Graph Neural Networks (GNNs) and Transformers have shown remarkable success in multimodal learning. This review article provides an in-depth analysis of the state-of-the-art in GNNs and Transformers for multimodal data fusion in oncology settings, highlighting notable research studies and their findings. We also discuss the foundations of multimodal learning, inherent challenges, and opportunities for integrative learning in oncology. By examining the current state and potential future developments of multimodal data integration in oncology, we aim to demonstrate the promising role that multimodal neural networks can play in cancer prevention, early detection, and treatment through informed oncology practices in personalized settings.
RevBiFPN: The Fully Reversible Bidirectional Feature Pyramid Network
This work introduces RevSilo, the first reversible bidirectional multi-scale feature fusion module. Like other reversible methods, RevSilo eliminates the need to store hidden activations by recomputing them. However, existing reversible methods do not apply to multi-scale feature fusion and are, therefore, not applicable to a large class of networks. Bidirectional multi-scale feature fusion promotes local and global coherence and has become a de facto design principle for networks targeting spatially sensitive tasks, e.g., HRNet (Sun et al., 2019a) and EfficientDet (Tan et al., 2020). These networks achieve state-of-the-art results across various computer vision tasks when paired with high-resolution inputs. However, training them requires substantial accelerator memory for saving large, multi-resolution activations. These memory requirements inherently cap the size of neural networks, limiting improvements that come from scale. Operating across resolution scales, RevSilo alleviates these issues. Stacking RevSilos, we create RevBiFPN, a fully reversible bidirectional feature pyramid network. RevBiFPN is competitive with networks such as EfficientNet while using up to 19.8x lesser training memory for image classification. When fine-tuned on MS COCO, RevBiFPN provides up to a 2.5% boost in AP over HRNet using fewer MACs and a 2.4x reduction in training-time memory.
Union of Experts: Adapting Hierarchical Routing to Equivalently Decomposed Transformer
Mixture-of-Experts (MoE) enhances model performance while maintaining computational efficiency, making it well-suited for large-scale applications. However, expert in exist MoE paradigm works as an individual, thereby lacking high-quality expert interactions. Moreover, they have not been effectively extended to attention block, which constrains further efficiency improvements. To tackle these issues, we propose Union-of-Experts (UoE), which decomposes transformer into an equitant group of experts, and then implement dynamic routing on input data and experts. Our approach advances MoE design with three key innovations: (1) We conducted equitant expert decomposition on both MLP blocks and attention blocks based on matrix partition in tensor parallelism. (2) We developed two routing paradigms: patch wise data selection and expert selection, to apply routing across different levels. (3) We design the architecture of UoE model, including Selective Multi-Head Attention (SMHA) and Union-of-MLP-Experts (UoME). (4) We develop parallel implementation of UoE's routing and computation operation, and optimize efficiency based on the hardware processing analysis. The experiments demonstrate that the model employed with UoE surpass Full Attention, state-of-art MoEs and efficient transformers in several tasks across image and natural language domains. The source codes are available at https://github.com/YujiaoYang-work/UoE.
Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy
Sparsely activated Mixture-of-Experts (SMoE) has shown promise to scale up the learning capacity of neural networks, however, they have issues like (a) High Memory Usage, due to duplication of the network layers into multiple copies as experts; and (b) Redundancy in Experts, as common learning-based routing policies suffer from representational collapse. Therefore, vanilla SMoE models are memory inefficient and non-scalable, especially for resource-constrained downstream scenarios. In this paper, we ask: Can we craft a compact SMoE model by consolidating expert information? What is the best recipe to merge multiple experts into fewer but more knowledgeable experts? Our pilot investigation reveals that conventional model merging methods fail to be effective in such expert merging for SMoE. The potential reasons are: (1) redundant information overshadows critical experts; (2) appropriate neuron permutation for each expert is missing to bring all of them in alignment. To address this, we propose M-SMoE, which leverages routing statistics to guide expert merging. Specifically, it starts with neuron permutation alignment for experts; then, dominant experts and their "group members" are formed; lastly, every expert group is merged into a single expert by utilizing each expert's activation frequency as their weight for merging, thus diminishing the impact of insignificant experts. Moreover, we observed that our proposed merging promotes a low dimensionality in the merged expert's weight space, naturally paving the way for additional compression. Hence, our final method, MC-SMoE (i.e., Merge, then Compress SMoE), further decomposes the merged experts into low-rank and structural sparse alternatives. Extensive experiments across 8 benchmarks validate the effectiveness of MC-SMoE. For instance, our MC-SMoE achieves up to 80% memory and a 20% FLOPs reduction, with virtually no loss in performance.
MAFormer: A Transformer Network with Multi-scale Attention Fusion for Visual Recognition
Vision Transformer and its variants have demonstrated great potential in various computer vision tasks. But conventional vision transformers often focus on global dependency at a coarse level, which suffer from a learning challenge on global relationships and fine-grained representation at a token level. In this paper, we introduce Multi-scale Attention Fusion into transformer (MAFormer), which explores local aggregation and global feature extraction in a dual-stream framework for visual recognition. We develop a simple but effective module to explore the full potential of transformers for visual representation by learning fine-grained and coarse-grained features at a token level and dynamically fusing them. Our Multi-scale Attention Fusion (MAF) block consists of: i) a local window attention branch that learns short-range interactions within windows, aggregating fine-grained local features; ii) global feature extraction through a novel Global Learning with Down-sampling (GLD) operation to efficiently capture long-range context information within the whole image; iii) a fusion module that self-explores the integration of both features via attention. Our MAFormer achieves state-of-the-art performance on common vision tasks. In particular, MAFormer-L achieves 85.9% Top-1 accuracy on ImageNet, surpassing CSWin-B and LV-ViT-L by 1.7% and 0.6% respectively. On MSCOCO, MAFormer outperforms the prior art CSWin by 1.7% mAPs on object detection and 1.4% on instance segmentation with similar-sized parameters, demonstrating the potential to be a general backbone network.
An Enhanced Res2Net with Local and Global Feature Fusion for Speaker Verification
Effective fusion of multi-scale features is crucial for improving speaker verification performance. While most existing methods aggregate multi-scale features in a layer-wise manner via simple operations, such as summation or concatenation. This paper proposes a novel architecture called Enhanced Res2Net (ERes2Net), which incorporates both local and global feature fusion techniques to improve the performance. The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal. The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal. To facilitate effective feature fusion in both LFF and GFF, an attentional feature fusion module is employed in the ERes2Net architecture, replacing summation or concatenation operations. A range of experiments conducted on the VoxCeleb datasets demonstrate the superiority of the ERes2Net in speaker verification. Code has been made publicly available at https://github.com/alibaba-damo-academy/3D-Speaker.
Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
We consider the problem of detecting out-of-distribution images in neural networks. We propose ODIN, a simple and effective method that does not require any change to a pre-trained neural network. Our method is based on the observation that using temperature scaling and adding small perturbations to the input can separate the softmax score distributions between in- and out-of-distribution images, allowing for more effective detection. We show in a series of experiments that ODIN is compatible with diverse network architectures and datasets. It consistently outperforms the baseline approach by a large margin, establishing a new state-of-the-art performance on this task. For example, ODIN reduces the false positive rate from the baseline 34.7% to 4.3% on the DenseNet (applied to CIFAR-10) when the true positive rate is 95%.
MHAF-YOLO: Multi-Branch Heterogeneous Auxiliary Fusion YOLO for accurate object detection
Due to the effective multi-scale feature fusion capabilities of the Path Aggregation FPN (PAFPN), it has become a widely adopted component in YOLO-based detectors. However, PAFPN struggles to integrate high-level semantic cues with low-level spatial details, limiting its performance in real-world applications, especially with significant scale variations. In this paper, we propose MHAF-YOLO, a novel detection framework featuring a versatile neck design called the Multi-Branch Auxiliary FPN (MAFPN), which consists of two key modules: the Superficial Assisted Fusion (SAF) and Advanced Assisted Fusion (AAF). The SAF bridges the backbone and the neck by fusing shallow features, effectively transferring crucial low-level spatial information with high fidelity. Meanwhile, the AAF integrates multi-scale feature information at deeper neck layers, delivering richer gradient information to the output layer and further enhancing the model learning capacity. To complement MAFPN, we introduce the Global Heterogeneous Flexible Kernel Selection (GHFKS) mechanism and the Reparameterized Heterogeneous Multi-Scale (RepHMS) module to enhance feature fusion. RepHMS is globally integrated into the network, utilizing GHFKS to select larger convolutional kernels for various feature layers, expanding the vertical receptive field and capturing contextual information across spatial hierarchies. Locally, it optimizes convolution by processing both large and small kernels within the same layer, broadening the lateral receptive field and preserving crucial details for detecting smaller targets. The source code of this work is available at: https://github.com/yang-0201/MHAF-YOLO.
Mantis Shrimp: Exploring Photometric Band Utilization in Computer Vision Networks for Photometric Redshift Estimation
We present Mantis Shrimp, a multi-survey deep learning model for photometric redshift estimation that fuses ultra-violet (GALEX), optical (PanSTARRS), and infrared (UnWISE) imagery. Machine learning is now an established approach for photometric redshift estimation, with generally acknowledged higher performance in areas with a high density of spectroscopically identified galaxies over template-based methods. Multiple works have shown that image-based convolutional neural networks can outperform tabular-based color/magnitude models. In comparison to tabular models, image models have additional design complexities: it is largely unknown how to fuse inputs from different instruments which have different resolutions or noise properties. The Mantis Shrimp model estimates the conditional density estimate of redshift using cutout images. The density estimates are well calibrated and the point estimates perform well in the distribution of available spectroscopically confirmed galaxies with (bias = 1e-2), scatter (NMAD = 2.44e-2) and catastrophic outlier rate (eta=17.53%). We find that early fusion approaches (e.g., resampling and stacking images from different instruments) match the performance of late fusion approaches (e.g., concatenating latent space representations), so that the design choice ultimately is left to the user. Finally, we study how the models learn to use information across bands, finding evidence that our models successfully incorporates information from all surveys. The applicability of our model to the analysis of large populations of galaxies is limited by the speed of downloading cutouts from external servers; however, our model could be useful in smaller studies such as generating priors over redshift for stellar population synthesis.
ParZC: Parametric Zero-Cost Proxies for Efficient NAS
Recent advancements in Zero-shot Neural Architecture Search (NAS) highlight the efficacy of zero-cost proxies in various NAS benchmarks. Several studies propose the automated design of zero-cost proxies to achieve SOTA performance but require tedious searching progress. Furthermore, we identify a critical issue with current zero-cost proxies: they aggregate node-wise zero-cost statistics without considering the fact that not all nodes in a neural network equally impact performance estimation. Our observations reveal that node-wise zero-cost statistics significantly vary in their contributions to performance, with each node exhibiting a degree of uncertainty. Based on this insight, we introduce a novel method called Parametric Zero-Cost Proxies (ParZC) framework to enhance the adaptability of zero-cost proxies through parameterization. To address the node indiscrimination, we propose a Mixer Architecture with Bayesian Network (MABN) to explore the node-wise zero-cost statistics and estimate node-specific uncertainty. Moreover, we propose DiffKendall as a loss function to directly optimize Kendall's Tau coefficient in a differentiable manner so that our ParZC can better handle the discrepancies in ranking architectures. Comprehensive experiments on NAS-Bench-101, 201, and NDS demonstrate the superiority of our proposed ParZC compared to existing zero-shot NAS methods. Additionally, we demonstrate the versatility and adaptability of ParZC by transferring it to the Vision Transformer search space.
Are More Layers Beneficial to Graph Transformers?
Despite that going deep has proven successful in many neural architectures, the existing graph transformers are relatively shallow. In this work, we explore whether more layers are beneficial to graph transformers, and find that current graph transformers suffer from the bottleneck of improving performance by increasing depth. Our further analysis reveals the reason is that deep graph transformers are limited by the vanishing capacity of global attention, restricting the graph transformer from focusing on the critical substructure and obtaining expressive features. To this end, we propose a novel graph transformer model named DeepGraph that explicitly employs substructure tokens in the encoded representation, and applies local attention on related nodes to obtain substructure based attention encoding. Our model enhances the ability of the global attention to focus on substructures and promotes the expressiveness of the representations, addressing the limitation of self-attention as the graph transformer deepens. Experiments show that our method unblocks the depth limitation of graph transformers and results in state-of-the-art performance across various graph benchmarks with deeper models.
PreNAS: Preferred One-Shot Learning Towards Efficient Neural Architecture Search
The wide application of pre-trained models is driving the trend of once-for-all training in one-shot neural architecture search (NAS). However, training within a huge sample space damages the performance of individual subnets and requires much computation to search for an optimal model. In this paper, we present PreNAS, a search-free NAS approach that accentuates target models in one-shot training. Specifically, the sample space is dramatically reduced in advance by a zero-cost selector, and weight-sharing one-shot training is performed on the preferred architectures to alleviate update conflicts. Extensive experiments have demonstrated that PreNAS consistently outperforms state-of-the-art one-shot NAS competitors for both Vision Transformer and convolutional architectures, and importantly, enables instant specialization with zero search cost. Our code is available at https://github.com/tinyvision/PreNAS.
Convergent Learning: Do different neural networks learn the same representations?
Recent success in training deep neural networks have prompted active investigation into the features learned on their intermediate layers. Such research is difficult because it requires making sense of non-linear computations performed by millions of parameters, but valuable because it increases our ability to understand current models and create improved versions of them. In this paper we investigate the extent to which neural networks exhibit what we call convergent learning, which is when the representations learned by multiple nets converge to a set of features which are either individually similar between networks or where subsets of features span similar low-dimensional spaces. We propose a specific method of probing representations: training multiple networks and then comparing and contrasting their individual, learned representations at the level of neurons or groups of neurons. We begin research into this question using three techniques to approximately align different neural networks on a feature level: a bipartite matching approach that makes one-to-one assignments between neurons, a sparse prediction approach that finds one-to-many mappings, and a spectral clustering approach that finds many-to-many mappings. This initial investigation reveals a few previously unknown properties of neural networks, and we argue that future research into the question of convergent learning will yield many more. The insights described here include (1) that some features are learned reliably in multiple networks, yet other features are not consistently learned; (2) that units learn to span low-dimensional subspaces and, while these subspaces are common to multiple networks, the specific basis vectors learned are not; (3) that the representation codes show evidence of being a mix between a local code and slightly, but not fully, distributed codes across multiple units.
MerA: Merging Pretrained Adapters For Few-Shot Learning
Adapter tuning, which updates only a few parameters, has become a mainstream method for fine-tuning pretrained language models to downstream tasks. However, it often yields subpar results in few-shot learning. AdapterFusion, which assembles pretrained adapters using composition layers tailored to specific tasks, is a possible solution but significantly increases trainable parameters and deployment costs. Despite this, our preliminary study reveals that even single adapters can outperform Adapterfusion in few-shot learning, urging us to propose \texttt{Merging Pretrained Adapters} (MerA) that efficiently incorporates pretrained adapters to a single model through model fusion. Extensive experiments on two PLMs demonstrate that MerA achieves substantial improvements compared to both single adapters and AdapterFusion. To further enhance the capacity of MerA, we also introduce a simple yet effective technique, referred to as the "same-track" setting, that merges adapters from the same track of pretraining tasks. With the implementation of the "same-track" setting, we observe even more impressive gains, surpassing the performance of both full fine-tuning and adapter tuning by a substantial margin, e.g., 3.5\% in MRPC and 5.0\% in MNLI.
Understanding and Improving Transformer From a Multi-Particle Dynamic System Point of View
The Transformer architecture is widely used in natural language processing. Despite its success, the design principle of the Transformer remains elusive. In this paper, we provide a novel perspective towards understanding the architecture: we show that the Transformer can be mathematically interpreted as a numerical Ordinary Differential Equation (ODE) solver for a convection-diffusion equation in a multi-particle dynamic system. In particular, how words in a sentence are abstracted into contexts by passing through the layers of the Transformer can be interpreted as approximating multiple particles' movement in the space using the Lie-Trotter splitting scheme and the Euler's method. Given this ODE's perspective, the rich literature of numerical analysis can be brought to guide us in designing effective structures beyond the Transformer. As an example, we propose to replace the Lie-Trotter splitting scheme by the Strang-Marchuk splitting scheme, a scheme that is more commonly used and with much lower local truncation errors. The Strang-Marchuk splitting scheme suggests that the self-attention and position-wise feed-forward network (FFN) sub-layers should not be treated equally. Instead, in each layer, two position-wise FFN sub-layers should be used, and the self-attention sub-layer is placed in between. This leads to a brand new architecture. Such an FFN-attention-FFN layer is "Macaron-like", and thus we call the network with this new architecture the Macaron Net. Through extensive experiments, we show that the Macaron Net is superior to the Transformer on both supervised and unsupervised learning tasks. The reproducible codes and pretrained models can be found at https://github.com/zhuohan123/macaron-net
NASRec: Weight Sharing Neural Architecture Search for Recommender Systems
The rise of deep neural networks offers new opportunities in optimizing recommender systems. However, optimizing recommender systems using deep neural networks requires delicate architecture fabrication. We propose NASRec, a paradigm that trains a single supernet and efficiently produces abundant models/sub-architectures by weight sharing. To overcome the data multi-modality and architecture heterogeneity challenges in the recommendation domain, NASRec establishes a large supernet (i.e., search space) to search the full architectures. The supernet incorporates versatile choice of operators and dense connectivity to minimize human efforts for finding priors. The scale and heterogeneity in NASRec impose several challenges, such as training inefficiency, operator-imbalance, and degraded rank correlation. We tackle these challenges by proposing single-operator any-connection sampling, operator-balancing interaction modules, and post-training fine-tuning. Our crafted models, NASRecNet, show promising results on three Click-Through Rates (CTR) prediction benchmarks, indicating that NASRec outperforms both manually designed models and existing NAS methods with state-of-the-art performance. Our work is publicly available at https://github.com/facebookresearch/NasRec.
Magnitude Invariant Parametrizations Improve Hypernetwork Learning
Hypernetworks, neural networks that predict the parameters of another neural network, are powerful models that have been successfully used in diverse applications from image generation to multi-task learning. Unfortunately, existing hypernetworks are often challenging to train. Training typically converges far more slowly than for non-hypernetwork models, and the rate of convergence can be very sensitive to hyperparameter choices. In this work, we identify a fundamental and previously unidentified problem that contributes to the challenge of training hypernetworks: a magnitude proportionality between the inputs and outputs of the hypernetwork. We demonstrate both analytically and empirically that this can lead to unstable optimization, thereby slowing down convergence, and sometimes even preventing any learning. We present a simple solution to this problem using a revised hypernetwork formulation that we call Magnitude Invariant Parametrizations (MIP). We demonstrate the proposed solution on several hypernetwork tasks, where it consistently stabilizes training and achieves faster convergence. Furthermore, we perform a comprehensive ablation study including choices of activation function, normalization strategies, input dimensionality, and hypernetwork architecture; and find that MIP improves training in all scenarios. We provide easy-to-use code that can turn existing networks into MIP-based hypernetworks.
Distill n' Explain: explaining graph neural networks using simple surrogates
Explaining node predictions in graph neural networks (GNNs) often boils down to finding graph substructures that preserve predictions. Finding these structures usually implies back-propagating through the GNN, bonding the complexity (e.g., number of layers) of the GNN to the cost of explaining it. This naturally begs the question: Can we break this bond by explaining a simpler surrogate GNN? To answer the question, we propose Distill n' Explain (DnX). First, DnX learns a surrogate GNN via knowledge distillation. Then, DnX extracts node or edge-level explanations by solving a simple convex program. We also propose FastDnX, a faster version of DnX that leverages the linear decomposition of our surrogate model. Experiments show that DnX and FastDnX often outperform state-of-the-art GNN explainers while being orders of magnitude faster. Additionally, we support our empirical findings with theoretical results linking the quality of the surrogate model (i.e., distillation error) to the faithfulness of explanations.
Is Vanilla MLP in Neural Radiance Field Enough for Few-shot View Synthesis?
Neural Radiance Field (NeRF) has achieved superior performance for novel view synthesis by modeling the scene with a Multi-Layer Perception (MLP) and a volume rendering procedure, however, when fewer known views are given (i.e., few-shot view synthesis), the model is prone to overfit the given views. To handle this issue, previous efforts have been made towards leveraging learned priors or introducing additional regularizations. In contrast, in this paper, we for the first time provide an orthogonal method from the perspective of network structure. Given the observation that trivially reducing the number of model parameters alleviates the overfitting issue, but at the cost of missing details, we propose the multi-input MLP (mi-MLP) that incorporates the inputs (i.e., location and viewing direction) of the vanilla MLP into each layer to prevent the overfitting issue without harming detailed synthesis. To further reduce the artifacts, we propose to model colors and volume density separately and present two regularization terms. Extensive experiments on multiple datasets demonstrate that: 1) although the proposed mi-MLP is easy to implement, it is surprisingly effective as it boosts the PSNR of the baseline from 14.73 to 24.23. 2) the overall framework achieves state-of-the-art results on a wide range of benchmarks. We will release the code upon publication.
Hopfield Networks is All You Need
We introduce a modern Hopfield network with continuous states and a corresponding update rule. The new Hopfield network can store exponentially (with the dimension of the associative space) many patterns, retrieves the pattern with one update, and has exponentially small retrieval errors. It has three types of energy minima (fixed points of the update): (1) global fixed point averaging over all patterns, (2) metastable states averaging over a subset of patterns, and (3) fixed points which store a single pattern. The new update rule is equivalent to the attention mechanism used in transformers. This equivalence enables a characterization of the heads of transformer models. These heads perform in the first layers preferably global averaging and in higher layers partial averaging via metastable states. The new modern Hopfield network can be integrated into deep learning architectures as layers to allow the storage of and access to raw input data, intermediate results, or learned prototypes. These Hopfield layers enable new ways of deep learning, beyond fully-connected, convolutional, or recurrent networks, and provide pooling, memory, association, and attention mechanisms. We demonstrate the broad applicability of the Hopfield layers across various domains. Hopfield layers improved state-of-the-art on three out of four considered multiple instance learning problems as well as on immune repertoire classification with several hundreds of thousands of instances. On the UCI benchmark collections of small classification tasks, where deep learning methods typically struggle, Hopfield layers yielded a new state-of-the-art when compared to different machine learning methods. Finally, Hopfield layers achieved state-of-the-art on two drug design datasets. The implementation is available at: https://github.com/ml-jku/hopfield-layers
Learning GFlowNets from partial episodes for improved convergence and stability
Generative flow networks (GFlowNets) are a family of algorithms for training a sequential sampler of discrete objects under an unnormalized target density and have been successfully used for various probabilistic modeling tasks. Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory. We argue that these alternatives represent opposite ends of a gradient bias-variance tradeoff and propose a way to exploit this tradeoff to mitigate its harmful effects. Inspired by the TD(lambda) algorithm in reinforcement learning, we introduce subtrajectory balance or SubTB(lambda), a GFlowNet training objective that can learn from partial action subsequences of varying lengths. We show that SubTB(lambda) accelerates sampler convergence in previously studied and new environments and enables training GFlowNets in environments with longer action sequences and sparser reward landscapes than what was possible before. We also perform a comparative analysis of stochastic gradient dynamics, shedding light on the bias-variance tradeoff in GFlowNet training and the advantages of subtrajectory balance.
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction
We propose split-brain autoencoders, a straightforward modification of the traditional autoencoder architecture, for unsupervised representation learning. The method adds a split to the network, resulting in two disjoint sub-networks. Each sub-network is trained to perform a difficult task -- predicting one subset of the data channels from another. Together, the sub-networks extract features from the entire input signal. By forcing the network to solve cross-channel prediction tasks, we induce a representation within the network which transfers well to other, unseen tasks. This method achieves state-of-the-art performance on several large-scale transfer learning benchmarks.
Concrete Subspace Learning based Interference Elimination for Multi-task Model Fusion
Merging models fine-tuned from a common, extensively pre-trained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multi-task model that performs well across diverse tasks. Recent research, exemplified by task arithmetic, highlights that this multi-task model can be derived through arithmetic operations on task vectors. Nevertheless, current merging techniques frequently resolve potential conflicts among parameters from task-specific models by evaluating individual attributes, such as the parameters' magnitude or sign, overlooking their collective impact on the overall functionality of the model. In this work, we propose the CONtinuous relaxation of disCRETE (Concrete) subspace learning method to identify a common low-dimensional subspace and utilize its shared information to track the interference problem without sacrificing much performance. Specifically, we model the problem as a bi-level optimization problem and introduce a meta-learning framework to find the Concrete subspace mask through gradient-based techniques. At the upper level, we focus on learning a shared Concrete mask to identify the subspace, while at the inner level, model merging is performed to maximize the performance of the merged model. We conduct extensive experiments on both vision domain and language domain, and the results demonstrate the effectiveness of our method. The code is available at https://github.com/tanganke/subspace_fusion
Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding
Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8times faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available https://github.com/google-research/nested-transformer.
Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple Tasks
Neural Architecture Search (NAS) has demonstrated its power on various AI accelerating platforms such as Field Programmable Gate Arrays (FPGAs) and Graphic Processing Units (GPUs). However, it remains an open problem, how to integrate NAS with Application-Specific Integrated Circuits (ASICs), despite them being the most powerful AI accelerating platforms. The major bottleneck comes from the large design freedom associated with ASIC designs. Moreover, with the consideration that multiple DNNs will run in parallel for different workloads with diverse layer operations and sizes, integrating heterogeneous ASIC sub-accelerators for distinct DNNs in one design can significantly boost performance, and at the same time further complicate the design space. To address these challenges, in this paper we build ASIC template set based on existing successful designs, described by their unique dataflows, so that the design space is significantly reduced. Based on the templates, we further propose a framework, namely NASAIC, which can simultaneously identify multiple DNN architectures and the associated heterogeneous ASIC accelerator design, such that the design specifications (specs) can be satisfied, while the accuracy can be maximized. Experimental results show that compared with successive NAS and ASIC design optimizations which lead to design spec violations, NASAIC can guarantee the results to meet the design specs with 17.77%, 2.49x, and 2.32x reductions on latency, energy, and area and with 0.76% accuracy loss. To the best of the authors' knowledge, this is the first work on neural architecture and ASIC accelerator design co-exploration.
An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection
As DenseNet conserves intermediate features with diverse receptive fields by aggregating them with dense connection, it shows good performance on the object detection task. Although feature reuse enables DenseNet to produce strong features with a small number of model parameters and FLOPs, the detector with DenseNet backbone shows rather slow speed and low energy efficiency. We find the linearly increasing input channel by dense connection leads to heavy memory access cost, which causes computation overhead and more energy consumption. To solve the inefficiency of DenseNet, we propose an energy and computation efficient architecture called VoVNet comprised of One-Shot Aggregation (OSA). The OSA not only adopts the strength of DenseNet that represents diversified features with multi receptive fields but also overcomes the inefficiency of dense connection by aggregating all features only once in the last feature maps. To validate the effectiveness of VoVNet as a backbone network, we design both lightweight and large-scale VoVNet and apply them to one-stage and two-stage object detectors. Our VoVNet based detectors outperform DenseNet based ones with 2x faster speed and the energy consumptions are reduced by 1.6x - 4.1x. In addition to DenseNet, VoVNet also outperforms widely used ResNet backbone with faster speed and better energy efficiency. In particular, the small object detection performance has been significantly improved over DenseNet and ResNet.
Towards Real-World Burst Image Super-Resolution: Benchmark and Method
Despite substantial advances, single-image super-resolution (SISR) is always in a dilemma to reconstruct high-quality images with limited information from one input image, especially in realistic scenarios. In this paper, we establish a large-scale real-world burst super-resolution dataset, i.e., RealBSR, to explore the faithful reconstruction of image details from multiple frames. Furthermore, we introduce a Federated Burst Affinity network (FBAnet) to investigate non-trivial pixel-wise displacements among images under real-world image degradation. Specifically, rather than using pixel-wise alignment, our FBAnet employs a simple homography alignment from a structural geometry aspect and a Federated Affinity Fusion (FAF) strategy to aggregate the complementary information among frames. Those fused informative representations are fed to a Transformer-based module of burst representation decoding. Besides, we have conducted extensive experiments on two versions of our datasets, i.e., RealBSR-RAW and RealBSR-RGB. Experimental results demonstrate that our FBAnet outperforms existing state-of-the-art burst SR methods and also achieves visually-pleasant SR image predictions with model details. Our dataset, codes, and models are publicly available at https://github.com/yjsunnn/FBANet.
A Brief Review of Hypernetworks in Deep Learning
Hypernetworks, or hypernets in short, are neural networks that generate weights for another neural network, known as the target network. They have emerged as a powerful deep learning technique that allows for greater flexibility, adaptability, dynamism, faster training, information sharing, and model compression etc. Hypernets have shown promising results in a variety of deep learning problems, including continual learning, causal inference, transfer learning, weight pruning, uncertainty quantification, zero-shot learning, natural language processing, and reinforcement learning etc. Despite their success across different problem settings, currently, there is no review available to inform the researchers about the developments and to help in utilizing hypernets. To fill this gap, we review the progress in hypernets. We present an illustrative example to train deep neural networks using hypernets and propose categorizing hypernets based on five design criteria as inputs, outputs, variability of inputs and outputs, and architecture of hypernets. We also review applications of hypernets across different deep learning problem settings, followed by a discussion of general scenarios where hypernets can be effectively employed. Finally, we discuss the challenges and future directions that remain under-explored in the field of hypernets. We believe that hypernetworks have the potential to revolutionize the field of deep learning. They offer a new way to design and train neural networks, and they have the potential to improve the performance of deep learning models on a variety of tasks. Through this review, we aim to inspire further advancements in deep learning through hypernetworks.
Multi-modal Evidential Fusion Network for Trusted PET/CT Tumor Segmentation
Accurate segmentation of tumors in PET/CT images is important in computer-aided diagnosis and treatment of cancer. The key issue of such a segmentation problem lies in the effective integration of complementary information from PET and CT images. However, the quality of PET and CT images varies widely in clinical settings, which leads to uncertainty in the modality information extracted by networks. To take the uncertainty into account in multi-modal information fusion, this paper proposes a novel Multi-modal Evidential Fusion Network (MEFN) comprising a Cross-Modal Feature Learning (CFL) module and a Multi-modal Trusted Fusion (MTF) module. The CFL module reduces the domain gap upon modality conversion and highlights common tumor features, thereby alleviating the needs of the segmentation module to handle modality specificity. The MTF module utilizes mutual attention mechanisms and an uncertainty calibrator to fuse modality features based on modality uncertainty and then fuse the segmentation results under the guidance of Dempster-Shafer Theory. Besides, a new uncertainty perceptual loss is introduced to force the model focusing on uncertain features and hence improve its ability to extract trusted modality information. Extensive comparative experiments are conducted on two publicly available PET/CT datasets to evaluate the performance of our proposed method whose results demonstrate that our MEFN significantly outperforms state-of-the-art methods with improvements of 2.15% and 3.23% in DSC scores on the AutoPET dataset and the Hecktor dataset, respectively. More importantly, our model can provide radiologists with credible uncertainty of the segmentation results for their decision in accepting or rejecting the automatic segmentation results, which is particularly important for clinical applications. Our code will be available at https://github.com/QPaws/MEFN.
DyCL: Dynamic Neural Network Compilation Via Program Rewriting and Graph Optimization
DL compiler's primary function is to translate DNN programs written in high-level DL frameworks such as PyTorch and TensorFlow into portable executables. These executables can then be flexibly executed by the deployed host programs. However, existing DL compilers rely on a tracing mechanism, which involves feeding a runtime input to a neural network program and tracing the program execution paths to generate the computational graph necessary for compilation. Unfortunately, this mechanism falls short when dealing with modern dynamic neural networks (DyNNs) that possess varying computational graphs depending on the inputs. Consequently, conventional DL compilers struggle to accurately compile DyNNs into executable code. To address this limitation, we propose \tool, a general approach that enables any existing DL compiler to successfully compile DyNNs. \tool tackles the dynamic nature of DyNNs by introducing a compilation mechanism that redistributes the control and data flow of the original DNN programs during the compilation process. Specifically, \tool develops program analysis and program transformation techniques to convert a dynamic neural network into multiple sub-neural networks. Each sub-neural network is devoid of conditional statements and is compiled independently. Furthermore, \tool synthesizes a host module that models the control flow of the DyNNs and facilitates the invocation of the sub-neural networks. Our evaluation demonstrates the effectiveness of \tool, achieving a 100\% success rate in compiling all dynamic neural networks. Moreover, the compiled executables generated by \tool exhibit significantly improved performance, running between 1.12times and 20.21times faster than the original DyNNs executed on general-purpose DL frameworks.
From promise to practice: realizing high-performance decentralized training
Decentralized training of deep neural networks has attracted significant attention for its theoretically superior scalability over synchronous data-parallel methods like All-Reduce. However, realizing this potential in multi-node training is challenging due to the complex design space that involves communication topologies, computation patterns, and optimization algorithms. This paper identifies three key factors that can lead to speedups over All-Reduce training and constructs a runtime model to determine when, how, and to what degree decentralization can yield shorter per-iteration runtimes. Furthermore, to support the decentralized training of transformer-based models, we study a decentralized Adam algorithm that allows for overlapping communications and computations, prove its convergence, and propose an accumulation technique to mitigate the high variance caused by small local batch sizes. We deploy the proposed approach in clusters with up to 64 GPUs and demonstrate its practicality and advantages in both runtime and generalization performance under a fixed iteration budget.
HyperShot: Few-Shot Learning by Kernel HyperNetworks
Few-shot models aim at making predictions using a minimal number of labeled examples from a given task. The main challenge in this area is the one-shot setting where only one element represents each class. We propose HyperShot - the fusion of kernels and hypernetwork paradigm. Compared to reference approaches that apply a gradient-based adjustment of the parameters, our model aims to switch the classification module parameters depending on the task's embedding. In practice, we utilize a hypernetwork, which takes the aggregated information from support data and returns the classifier's parameters handcrafted for the considered problem. Moreover, we introduce the kernel-based representation of the support examples delivered to hypernetwork to create the parameters of the classification module. Consequently, we rely on relations between embeddings of the support examples instead of direct feature values provided by the backbone models. Thanks to this approach, our model can adapt to highly different tasks.
Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks
Quantized neural networks typically require smaller memory footprints and lower computation complexity, which is crucial for efficient deployment. However, quantization inevitably leads to a distribution divergence from the original network, which generally degrades the performance. To tackle this issue, massive efforts have been made, but most existing approaches lack statistical considerations and depend on several manual configurations. In this paper, we present an adaptive-mapping quantization method to learn an optimal latent sub-distribution that is inherent within models and smoothly approximated with a concrete Gaussian Mixture (GM). In particular, the network weights are projected in compliance with the GM-approximated sub-distribution. This sub-distribution evolves along with the weight update in a co-tuning schema guided by the direct task-objective optimization. Sufficient experiments on image classification and object detection over various modern architectures demonstrate the effectiveness, generalization property, and transferability of the proposed method. Besides, an efficient deployment flow for the mobile CPU is developed, achieving up to 7.46times inference acceleration on an octa-core ARM CPU. Our codes have been publicly released at https://github.com/RunpeiDong/DGMS.