new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 10

Asking Before Action: Gather Information in Embodied Decision Making with Language Models

With strong capabilities of reasoning and a generic understanding of the world, Large Language Models (LLMs) have shown great potential in building versatile embodied decision making agents capable of performing diverse tasks. However, when deployed to unfamiliar environments, we show that LLM agents face challenges in efficiently gathering necessary information, leading to suboptimal performance. On the other hand, in unfamiliar scenarios, human individuals often seek additional information from their peers before taking action, leveraging external knowledge to avoid unnecessary trial and error. Building upon this intuition, we propose Asking Before Action (ABA), a method that empowers the agent to proactively query external sources for pertinent information using natural language during their interactions in the environment. In this way, the agent is able to enhance its efficiency and performance by mitigating wasteful steps and circumventing the difficulties associated with exploration in unfamiliar environments. We empirically evaluate our method on an embodied decision making benchmark, ALFWorld, and demonstrate that despite modest modifications in prompts, our method exceeds baseline LLM agents by more than 40%. Further experiments on two variants of ALFWorld illustrate that by imitation learning, ABA effectively retains and reuses queried and known information in subsequent tasks, mitigating the need for repetitive inquiries. Both qualitative and quantitative results exhibit remarkable performance on tasks that previous methods struggle to solve.

  • 5 authors
·
May 25, 2023

Teaching Language Models To Gather Information Proactively

Large language models (LLMs) are increasingly expected to function as collaborative partners, engaging in back-and-forth dialogue to solve complex, ambiguous problems. However, current LLMs often falter in real-world settings, defaulting to passive responses or narrow clarifications when faced with incomplete or under-specified prompts, falling short of proactively gathering the missing information that is crucial for high-quality solutions. In this work, we introduce a new task paradigm: proactive information gathering, where LLMs must identify gaps in the provided context and strategically elicit implicit user knowledge through targeted questions. To systematically study and train this capability, we design a scalable framework that generates partially specified, real-world tasks, masking key information and simulating authentic ambiguity. Within this setup, our core innovation is a reinforcement finetuning strategy that rewards questions that elicit genuinely new, implicit user information -- such as hidden domain expertise or fine-grained requirements -- that would otherwise remain unspoken. Experiments demonstrate that our trained Qwen-2.5-7B model significantly outperforms o3-mini by 18% on automatic evaluation metrics. More importantly, human evaluation reveals that clarification questions and final outlines generated by our model are favored by human annotators by 42% and 28% respectively. Together, these results highlight the value of proactive clarification in elevating LLMs from passive text generators to genuinely collaborative thought partners.

  • 7 authors
·
Jul 28

SIGHT: A Large Annotated Dataset on Student Insights Gathered from Higher Education Transcripts

Lectures are a learning experience for both students and teachers. Students learn from teachers about the subject material, while teachers learn from students about how to refine their instruction. However, online student feedback is unstructured and abundant, making it challenging for teachers to learn and improve. We take a step towards tackling this challenge. First, we contribute a dataset for studying this problem: SIGHT is a large dataset of 288 math lecture transcripts and 15,784 comments collected from the Massachusetts Institute of Technology OpenCourseWare (MIT OCW) YouTube channel. Second, we develop a rubric for categorizing feedback types using qualitative analysis. Qualitative analysis methods are powerful in uncovering domain-specific insights, however they are costly to apply to large data sources. To overcome this challenge, we propose a set of best practices for using large language models (LLMs) to cheaply classify the comments at scale. We observe a striking correlation between the model's and humans' annotation: Categories with consistent human annotations (>0.9 inter-rater reliability, IRR) also display higher human-model agreement (>0.7), while categories with less consistent human annotations (0.7-0.8 IRR) correspondingly demonstrate lower human-model agreement (0.3-0.5). These techniques uncover useful student feedback from thousands of comments, costing around 0.002$ per comment. We conclude by discussing exciting future directions on using online student feedback and improving automated annotation techniques for qualitative research.

  • 4 authors
·
Jun 15, 2023