Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeHOOD: Hierarchical Graphs for Generalized Modelling of Clothing Dynamics
We propose a method that leverages graph neural networks, multi-level message passing, and unsupervised training to enable real-time prediction of realistic clothing dynamics. Whereas existing methods based on linear blend skinning must be trained for specific garments, our method is agnostic to body shape and applies to tight-fitting garments as well as loose, free-flowing clothing. Our method furthermore handles changes in topology (e.g., garments with buttons or zippers) and material properties at inference time. As one key contribution, we propose a hierarchical message-passing scheme that efficiently propagates stiff stretching modes while preserving local detail. We empirically show that our method outperforms strong baselines quantitatively and that its results are perceived as more realistic than state-of-the-art methods.
3D Semantic Segmentation in the Wild: Learning Generalized Models for Adverse-Condition Point Clouds
Robust point cloud parsing under all-weather conditions is crucial to level-5 autonomy in autonomous driving. However, how to learn a universal 3D semantic segmentation (3DSS) model is largely neglected as most existing benchmarks are dominated by point clouds captured under normal weather. We introduce SemanticSTF, an adverse-weather point cloud dataset that provides dense point-level annotations and allows to study 3DSS under various adverse weather conditions. We study all-weather 3DSS modeling under two setups: 1) domain adaptive 3DSS that adapts from normal-weather data to adverse-weather data; 2) domain generalizable 3DSS that learns all-weather 3DSS models from normal-weather data. Our studies reveal the challenge while existing 3DSS methods encounter adverse-weather data, showing the great value of SemanticSTF in steering the future endeavor along this very meaningful research direction. In addition, we design a domain randomization technique that alternatively randomizes the geometry styles of point clouds and aggregates their embeddings, ultimately leading to a generalizable model that can improve 3DSS under various adverse weather effectively. The SemanticSTF and related codes are available at https://github.com/xiaoaoran/SemanticSTF.
AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized Phishing URL Detection
The escalating reliance on revolutionary online web services has introduced heightened security risks, with persistent challenges posed by phishing despite extensive security measures. Traditional phishing systems, reliant on machine learning and manual features, struggle with evolving tactics. Recent advances in deep learning offer promising avenues for tackling novel phishing challenges and malicious URLs. This paper introduces a two-phase stack generalized model named AntiPhishStack, designed to detect phishing sites. The model leverages the learning of URLs and character-level TF-IDF features symmetrically, enhancing its ability to combat emerging phishing threats. In Phase I, features are trained on a base machine learning classifier, employing K-fold cross-validation for robust mean prediction. Phase II employs a two-layered stacked-based LSTM network with five adaptive optimizers for dynamic compilation, ensuring premier prediction on these features. Additionally, the symmetrical predictions from both phases are optimized and integrated to train a meta-XGBoost classifier, contributing to a final robust prediction. The significance of this work lies in advancing phishing detection with AntiPhishStack, operating without prior phishing-specific feature knowledge. Experimental validation on two benchmark datasets, comprising benign and phishing or malicious URLs, demonstrates the model's exceptional performance, achieving a notable 96.04% accuracy compared to existing studies. This research adds value to the ongoing discourse on symmetry and asymmetry in information security and provides a forward-thinking solution for enhancing network security in the face of evolving cyber threats.
A study of a deterministic model for meningitis epidemic
A compartmental deterministic model that allows (1) immunity from two stages of infection and carriage, and (2) disease induced death, is used in studying the dynamics of meningitis epidemic process in a closed population. It allows for difference in the transmission rate of infection to a susceptible by a carrier and an infective. It is generalized to allow a proportion ({\phi}) of those susceptibles infected to progress directly to infectives in stage I. Both models are used in this study. The threshold conditions for the spread of carrier and infectives in stage I are derived for the two models. Sensitivity analysis is performed on the reproductive number derived from the next generation matrix. The case-carrier ratio profile for various parameters and threshold values are shown. So also are the graphs of the total number ever infected as influenced by {\epsilon} and {\phi}. The infection transmission rate (eta), the odds in favor of a carrier, over an infective, in transmitting an infection to a susceptible ({\epsilon}) and the carrier conversion rate ({\phi}) to an infective in stage I, are identified as key parameters that should be subject of attention for any control intervention strategy. The case-carrier ratio profiles provide evidence of a critical case-carrier ratio attained before the number of reported cases grows to an epidemic level. They also provide visual evidence of epidemiological context, in this case, epidemic incidence (in later part of dry season) and endemic incidence (during rainy season). Results from total proportion ever infected suggest that the model, in which {\phi}=0 obtained, can adequately represent, in essence, the generalized model for this study.
Real-Time Flying Object Detection with YOLOv8
This paper presents a generalized model for real-time detection of flying objects that can be used for transfer learning and further research, as well as a refined model that is ready for implementation. We achieve this by training our first generalized model on a data set containing 40 different classes of flying objects, forcing the model to extract abstract feature representations. We then perform transfer learning with these learned parameters on a data set more representative of real world environments (i.e., higher frequency of occlusion, small spatial sizes, rotations, etc.) to generate our refined model. Object detection of flying objects remains challenging due to large variance object spatial sizes/aspect ratios, rate of speed, occlusion, and clustered backgrounds. To address some of the presented challenges while simultaneously maximizing performance, we utilize the current state of the art single-shot detector, YOLOv8, in an attempt to find the best tradeoff between inference speed and mAP. While YOLOv8 is being regarded as the new state-of-the-art, an official paper has not been provided. Thus, we provide an in-depth explanation of the new architecture and functionality that YOLOv8 has adapted. Our final generalized model achieves an mAP50-95 of 0.685 and average inference speed on 1080p videos of 50 fps. Our final refined model maintains this inference speed and achieves an improved mAP50-95 of 0.835.
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
UNICE: Training A Universal Image Contrast Enhancer
Existing image contrast enhancement methods are typically designed for specific tasks such as under-/over-exposure correction, low-light and backlit image enhancement, etc. The learned models, however, exhibit poor generalization performance across different tasks, even across different datasets of a specific task. It is important to explore whether we can learn a universal and generalized model for various contrast enhancement tasks. In this work, we observe that the common key factor of these tasks lies in the need of exposure and contrast adjustment, which can be well-addressed if high-dynamic range (HDR) inputs are available. We hence collect 46,928 HDR raw images from public sources, and render 328,496 sRGB images to build multi-exposure sequences (MES) and the corresponding pseudo sRGB ground-truths via multi-exposure fusion. Consequently, we train a network to generate an MES from a single sRGB image, followed by training another network to fuse the generated MES into an enhanced image. Our proposed method, namely UNiversal Image Contrast Enhancer (UNICE), is free of costly human labeling. However, it demonstrates significantly stronger generalization performance than existing image contrast enhancement methods across and within different tasks, even outperforming manually created ground-truths in multiple no-reference image quality metrics. The dataset, code and model are available at https://github.com/BeyondHeaven/UNICE.
Training-Free Open-Ended Object Detection and Segmentation via Attention as Prompts
Existing perception models achieve great success by learning from large amounts of labeled data, but they still struggle with open-world scenarios. To alleviate this issue, researchers introduce open-set perception tasks to detect or segment unseen objects in the training set. However, these models require predefined object categories as inputs during inference, which are not available in real-world scenarios. Recently, researchers pose a new and more practical problem, i.e., open-ended object detection, which discovers unseen objects without any object categories as inputs. In this paper, we present VL-SAM, a training-free framework that combines the generalized object recognition model (i.e., Vision-Language Model) with the generalized object localization model (i.e., Segment-Anything Model), to address the open-ended object detection and segmentation task. Without additional training, we connect these two generalized models with attention maps as the prompts. Specifically, we design an attention map generation module by employing head aggregation and a regularized attention flow to aggregate and propagate attention maps across all heads and layers in VLM, yielding high-quality attention maps. Then, we iteratively sample positive and negative points from the attention maps with a prompt generation module and send the sampled points to SAM to segment corresponding objects. Experimental results on the long-tail instance segmentation dataset (LVIS) show that our method surpasses the previous open-ended method on the object detection task and can provide additional instance segmentation masks. Besides, VL-SAM achieves favorable performance on the corner case object detection dataset (CODA), demonstrating the effectiveness of VL-SAM in real-world applications. Moreover, VL-SAM exhibits good model generalization that can incorporate various VLMs and SAMs.
Beyond Finite Data: Towards Data-free Out-of-distribution Generalization via Extrapolation
Out-of-distribution (OOD) generalization is a favorable yet challenging property for deep neural networks. The core challenges lie in the limited availability of source domains that help models learn an invariant representation from the spurious features. Various domain augmentation have been proposed but largely rely on interpolating existing domains and frequently face difficulties in creating truly "novel" domains. Humans, on the other hand, can easily extrapolate novel domains, thus, an intriguing question arises: How can neural networks extrapolate like humans and achieve OOD generalization? We introduce a novel approach to domain extrapolation that leverages reasoning ability and the extensive knowledge encapsulated within large language models (LLMs) to synthesize entirely new domains. Starting with the class of interest, we query the LLMs to extract relevant knowledge for these novel domains. We then bridge the gap between the text-centric knowledge derived from LLMs and the pixel input space of the model using text-to-image generation techniques. By augmenting the training set of domain generalization datasets with high-fidelity, photo-realistic images of these new domains, we achieve significant improvements over all existing methods, as demonstrated in both single and multi-domain generalization across various benchmarks. With the ability to extrapolate any domains for any class, our method has the potential to learn a generalized model for any task without any data. To illustrate, we put forth a much more difficult setting termed, data-free domain generalization, that aims to learn a generalized model in the absence of any collected data. Our empirical findings support the above argument and our methods exhibit commendable performance in this setting, even surpassing the supervised setting by approximately 1-2\% on datasets such as VLCS.
FSAR: Federated Skeleton-based Action Recognition with Adaptive Topology Structure and Knowledge Distillation
Existing skeleton-based action recognition methods typically follow a centralized learning paradigm, which can pose privacy concerns when exposing human-related videos. Federated Learning (FL) has attracted much attention due to its outstanding advantages in privacy-preserving. However, directly applying FL approaches to skeleton videos suffers from unstable training. In this paper, we investigate and discover that the heterogeneous human topology graph structure is the crucial factor hindering training stability. To address this limitation, we pioneer a novel Federated Skeleton-based Action Recognition (FSAR) paradigm, which enables the construction of a globally generalized model without accessing local sensitive data. Specifically, we introduce an Adaptive Topology Structure (ATS), separating generalization and personalization by learning a domain-invariant topology shared across clients and a domain-specific topology decoupled from global model aggregation.Furthermore, we explore Multi-grain Knowledge Distillation (MKD) to mitigate the discrepancy between clients and server caused by distinct updating patterns through aligning shallow block-wise motion features. Extensive experiments on multiple datasets demonstrate that FSAR outperforms state-of-the-art FL-based methods while inherently protecting privacy.
Generalized Gaussian Model for Learned Image Compression
In learned image compression, probabilistic models play an essential role in characterizing the distribution of latent variables. The Gaussian model with mean and scale parameters has been widely used for its simplicity and effectiveness. Probabilistic models with more parameters, such as the Gaussian mixture models, can fit the distribution of latent variables more precisely, but the corresponding complexity will also be higher. To balance between compression performance and complexity, we extend the Gaussian model to the generalized Gaussian model for more flexible latent distribution modeling, introducing only one additional shape parameter, beta, than the Gaussian model. To enhance the performance of the generalized Gaussian model by alleviating the train-test mismatch, we propose improved training methods, including beta-dependent lower bounds for scale parameters and gradient rectification. Our proposed generalized Gaussian model, coupled with the improved training methods, is demonstrated to outperform the Gaussian and Gaussian mixture models on a variety of learned image compression methods.
Generalized Additive Modeling of TRPM4-Ribo Transcriptional Space in Prostate Cancer
TRPM4 is overexpressed in prostate cancer (PCa) associated with metastasis or recurrence. There is paucity of information pertaining to TRPM4 characterization and functions at single-cell level in PCa. In this study, generalized additive model (GAM) was utilized to model the relationship between TRPM4 and genes shortlisted using Spearman-Kendall dual-filter in aggressive PCa and benign prostate (BP) control cells derived from scRNA-seq dataset. Seven ribosomal genes (RPL10, RPL27, RPL28, RPS2, RPS8, RPS12, and RPS26; averaged into Ribo as the gene set), passed the dual-filter specifically in PCa cells. GAM modeling of TRPM4-Ribo significantly outperformed TRPM4 modeling with alternative cancer gene sets (GSK-3B, mTOR, NF-KB, PI3K/AKT, and Wnt). Cell explanatory power (CEP) classification was devised and verified by cross-validation to identify individual PCa cells most well-predicted by the model. CEP classification binarized PCa cells into top-ranked explanatory power (TREP; more well-predicted by the model) and non-TREP cells. In TRPM4-Ribo GAM plots, distribution pattern of TREP cells shifted at an inflection point (IP) i.e., the specific TRPM4 expression value that further binarized the plot into pre-IP (TRPM4 values below IP) and post-IP (TRPM4 values above IP) regions, producing a quadrant of TREP versus non-TREP cells for each PCa patient. Gene Ontology (GO) enrichment analysis showed that pre-IP TREP cells enriched for immune-related GOs, while post-IP TREP cells enriched for ribosomal, translation, and cell adhesion GOs. In conclusion, the CEP-IP framework based on pairwise genes produces quadrants of cancer cell subpopulations, enabling the identification of distinctive biology with potential therapeutic implications.
Generalized Predictive Model for Autonomous Driving
In this paper, we introduce the first large-scale video prediction model in the autonomous driving discipline. To eliminate the restriction of high-cost data collection and empower the generalization ability of our model, we acquire massive data from the web and pair it with diverse and high-quality text descriptions. The resultant dataset accumulates over 2000 hours of driving videos, spanning areas all over the world with diverse weather conditions and traffic scenarios. Inheriting the merits from recent latent diffusion models, our model, dubbed GenAD, handles the challenging dynamics in driving scenes with novel temporal reasoning blocks. We showcase that it can generalize to various unseen driving datasets in a zero-shot manner, surpassing general or driving-specific video prediction counterparts. Furthermore, GenAD can be adapted into an action-conditioned prediction model or a motion planner, holding great potential for real-world driving applications.
Generalized Correctness Models: Learning Calibrated and Model-Agnostic Correctness Predictors from Historical Patterns
Generating accurate and calibrated confidence estimates is critical for deploying LLMs in high-stakes or user-facing applications, and remains an open challenge. Prior research has often framed confidence as a problem of eliciting a model's "self-knowledge", i.e., the ability of an LLM to judge whether its own answers are correct; this approach implicitly assumes that there is some privileged information about the answer's correctness that is accessible to the model itself. However, our experiments reveal that an LLM attempting to predict the correctness of its own outputs generally performs no better than an unrelated LLM. Moreover, we hypothesize that a key factor in building a "Correctness Model" (CM) is exposure to a target model's historical predictions. We propose multiple methods to inject this historical correctness information, creating a Generalized Correctness Model (GCM). We first show that GCMs can be trained on the correctness data from many LLMs and learn patterns for correctness prediction applicable across datasets and models. We then use CMs as a lens for studying the source of correctness prediction ability and its generalization, systematically controlling their training data and finding that answer phrasing is a strong predictor for correctness. We further explore alternative methods of injecting history without training an LLM, finding that including history as in-context examples can help improve correctness prediction, and post-hoc calibration can provide complementary reductions in calibration error. We evaluate GCMs based on Qwen3-8B across 5 model families and the MMLU and TriviaQA datasets, as well as on a downstream selective prediction task, finding that reliable LLM confidence estimation is a generalizable and model-agnostic skill learned by systematically encoding correctness history rather than a model-specific skill reliant on self-introspection.
Transferable Reinforcement Learning via Generalized Occupancy Models
Intelligent agents must be generalists - showing the ability to quickly adapt and generalize to varying tasks. Within the framework of reinforcement learning (RL), model-based RL algorithms learn a task-agnostic dynamics model of the world, in principle allowing them to generalize to arbitrary rewards. However, one-step models naturally suffer from compounding errors, making them ineffective for problems with long horizons and large state spaces. In this work, we propose a novel class of models - generalized occupancy models (GOMs) - that retain the generality of model-based RL while avoiding compounding error. The key idea behind GOMs is to model the distribution of all possible long-term outcomes from a given state under the coverage of a stationary dataset, along with a policy that realizes a particular outcome from the given state. These models can then quickly be used to select the optimal action for arbitrary new tasks, without having to redo policy optimization. By directly modeling long-term outcomes, GOMs avoid compounding error while retaining generality across arbitrary reward functions. We provide a practical instantiation of GOMs using diffusion models and show its efficacy as a new class of transferable models, both theoretically and empirically across a variety of simulated robotics problems. Videos and code at https://weirdlabuw.github.io/gom/.
One-hot Generalized Linear Model for Switching Brain State Discovery
Exposing meaningful and interpretable neural interactions is critical to understanding neural circuits. Inferred neural interactions from neural signals primarily reflect functional interactions. In a long experiment, subject animals may experience different stages defined by the experiment, stimuli, or behavioral states, and hence functional interactions can change over time. To model dynamically changing functional interactions, prior work employs state-switching generalized linear models with hidden Markov models (i.e., HMM-GLMs). However, we argue they lack biological plausibility, as functional interactions are shaped and confined by the underlying anatomical connectome. Here, we propose a novel prior-informed state-switching GLM. We introduce both a Gaussian prior and a one-hot prior over the GLM in each state. The priors are learnable. We will show that the learned prior should capture the state-constant interaction, shedding light on the underlying anatomical connectome and revealing more likely physical neuron interactions. The state-dependent interaction modeled by each GLM offers traceability to capture functional variations across multiple brain states. Our methods effectively recover true interaction structures in simulated data, achieve the highest predictive likelihood with real neural datasets, and render interaction structures and hidden states more interpretable when applied to real neural data.
Platypus: A Generalized Specialist Model for Reading Text in Various Forms
Reading text from images (either natural scenes or documents) has been a long-standing research topic for decades, due to the high technical challenge and wide application range. Previously, individual specialist models are developed to tackle the sub-tasks of text reading (e.g., scene text recognition, handwritten text recognition and mathematical expression recognition). However, such specialist models usually cannot effectively generalize across different sub-tasks. Recently, generalist models (such as GPT-4V), trained on tremendous data in a unified way, have shown enormous potential in reading text in various scenarios, but with the drawbacks of limited accuracy and low efficiency. In this work, we propose Platypus, a generalized specialist model for text reading. Specifically, Platypus combines the best of both worlds: being able to recognize text of various forms with a single unified architecture, while achieving excellent accuracy and high efficiency. To better exploit the advantage of Platypus, we also construct a text reading dataset (called Worms), the images of which are curated from previous datasets and partially re-labeled. Experiments on standard benchmarks demonstrate the effectiveness and superiority of the proposed Platypus model. Model and data will be made publicly available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/Platypus.
A Generalized Language Model as the Combination of Skipped n-grams and Modified Kneser-Ney Smoothing
We introduce a novel approach for building language models based on a systematic, recursive exploration of skip n-gram models which are interpolated using modified Kneser-Ney smoothing. Our approach generalizes language models as it contains the classical interpolation with lower order models as a special case. In this paper we motivate, formalize and present our approach. In an extensive empirical experiment over English text corpora we demonstrate that our generalized language models lead to a substantial reduction of perplexity between 3.1% and 12.7% in comparison to traditional language models using modified Kneser-Ney smoothing. Furthermore, we investigate the behaviour over three other languages and a domain specific corpus where we observed consistent improvements. Finally, we also show that the strength of our approach lies in its ability to cope in particular with sparse training data. Using a very small training data set of only 736 KB text we yield improvements of even 25.7% reduction of perplexity.
NegVSR: Augmenting Negatives for Generalized Noise Modeling in Real-World Video Super-Resolution
The capability of video super-resolution (VSR) to synthesize high-resolution (HR) video from ideal datasets has been demonstrated in many works. However, applying the VSR model to real-world video with unknown and complex degradation remains a challenging task. First, existing degradation metrics in most VSR methods are not able to effectively simulate real-world noise and blur. On the contrary, simple combinations of classical degradation are used for real-world noise modeling, which led to the VSR model often being violated by out-of-distribution noise. Second, many SR models focus on noise simulation and transfer. Nevertheless, the sampled noise is monotonous and limited. To address the aforementioned problems, we propose a Negatives augmentation strategy for generalized noise modeling in Video Super-Resolution (NegVSR) task. Specifically, we first propose sequential noise generation toward real-world data to extract practical noise sequences. Then, the degeneration domain is widely expanded by negative augmentation to build up various yet challenging real-world noise sets. We further propose the augmented negative guidance loss to learn robust features among augmented negatives effectively. Extensive experiments on real-world datasets (e.g., VideoLQ and FLIR) show that our method outperforms state-of-the-art methods with clear margins, especially in visual quality.
GAM Changer: Editing Generalized Additive Models with Interactive Visualization
Recent strides in interpretable machine learning (ML) research reveal that models exploit undesirable patterns in the data to make predictions, which potentially causes harms in deployment. However, it is unclear how we can fix these models. We present our ongoing work, GAM Changer, an open-source interactive system to help data scientists and domain experts easily and responsibly edit their Generalized Additive Models (GAMs). With novel visualization techniques, our tool puts interpretability into action -- empowering human users to analyze, validate, and align model behaviors with their knowledge and values. Built using modern web technologies, our tool runs locally in users' computational notebooks or web browsers without requiring extra compute resources, lowering the barrier to creating more responsible ML models. GAM Changer is available at https://interpret.ml/gam-changer.
InDRiVE: Intrinsic Disagreement based Reinforcement for Vehicle Exploration through Curiosity Driven Generalized World Model
Model-based Reinforcement Learning (MBRL) has emerged as a promising paradigm for autonomous driving, where data efficiency and robustness are critical. Yet, existing solutions often rely on carefully crafted, task specific extrinsic rewards, limiting generalization to new tasks or environments. In this paper, we propose InDRiVE (Intrinsic Disagreement based Reinforcement for Vehicle Exploration), a method that leverages purely intrinsic, disagreement based rewards within a Dreamer based MBRL framework. By training an ensemble of world models, the agent actively explores high uncertainty regions of environments without any task specific feedback. This approach yields a task agnostic latent representation, allowing for rapid zero shot or few shot fine tuning on downstream driving tasks such as lane following and collision avoidance. Experimental results in both seen and unseen environments demonstrate that InDRiVE achieves higher success rates and fewer infractions compared to DreamerV2 and DreamerV3 baselines despite using significantly fewer training steps. Our findings highlight the effectiveness of purely intrinsic exploration for learning robust vehicle control behaviors, paving the way for more scalable and adaptable autonomous driving systems.
Fast Simultaneous Training of Generalized Linear Models (FaSTGLZ)
We present an efficient algorithm for simultaneously training sparse generalized linear models across many related problems, which may arise from bootstrapping, cross-validation and nonparametric permutation testing. Our approach leverages the redundancies across problems to obtain significant computational improvements relative to solving the problems sequentially by a conventional algorithm. We demonstrate our fast simultaneous training of generalized linear models (FaSTGLZ) algorithm on a number of real-world datasets, and we run otherwise computationally intensive bootstrapping and permutation test analyses that are typically necessary for obtaining statistically rigorous classification results and meaningful interpretation. Code is freely available at http://liinc.bme.columbia.edu/fastglz.
It Takes a Good Model to Train a Good Model: Generalized Gaussian Priors for Optimized LLMs
Despite rapid advancements in the research and deployment of large language models (LLMs), the statistical distribution of model parameters, as well as their influence on initialization, training dynamics, and downstream efficiency, has received surprisingly little attention. A recent work introduced BackSlash, a training-time compression algorithm. It first demonstrated that pre-trained LLM parameters follow generalized Gaussian distributions (GGDs) better. By optimizing GG priors during training, BackSlash can reduce parameters by up to 90\% with minimal performance loss. Building on this foundational insight, we propose a unified, end-to-end framework for LLM optimization based on the GG model. Our contributions are threefold: (1) GG-based initialization scheme that aligns with the statistical structure of trained models, resulting in faster convergence and improved accuracy; (2) DeepShape, a post-training regularization method that reshapes weight distributions to match a GG profile, improving compressibility with minimized degradation in performance; and (3) RF8, a compact and hardware-efficient 8-bit floating-point format designed for GG-distributed-initialized BackSlash training, enabling low-cost inference without compromising accuracy. Experiments across diverse model architectures show that our framework consistently yields smaller and faster models that match or outperform standard training baselines. By grounding LLM development in principled statistical modeling, this work forges a new path toward efficient, scalable, and hardware-aware AI systems. The code is available on our project page: https://huggingface.co/spaces/shifeng3711/gg_prior.
Regression with Label Permutation in Generalized Linear Model
The assumption that response and predictor belong to the same statistical unit may be violated in practice. Unbiased estimation and recovery of true label ordering based on unlabeled data are challenging tasks and have attracted increasing attentions in the recent literature. In this paper, we present a relatively complete analysis of label permutation problem for the generalized linear model with multivariate responses. The theory is established under different scenarios, with knowledge of true parameters, with partial knowledge of underlying label permutation matrix and without any knowledge. Our results remove the stringent conditions required by the current literature and are further extended to the missing observation setting which has never been considered in the field of label permutation problem. On computational side, we propose two methods, "maximum likelihood estimation" algorithm and "two-step estimation" algorithm, to accommodate for different settings. When the proportion of permuted labels is moderate, both methods work effectively. Multiple numerical experiments are provided and corroborate our theoretical findings.
SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model
AI agents built on large language models (LLMs) hold enormous promise, but current practice focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also suffers from the fundamental limitations of autoregressive LLMs. On the other hand, humans are general agents who reason by mentally simulating the outcomes of their actions and plans. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of optimal agent in any environment, \modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation. The generalized world model is implemented using LLM, which can flexibly plan in a wide range of environments using the concept-rich latent space of natural language. Experiments on difficult web browsing tasks show that \modelname improves the success of flight search from 0\% to 32.2\%. World-model-based planning, in particular, shows consistent advantage of up to 124\% over autoregressive planning, demonstrating the advantage of world model simulation as a reasoning paradigm. We are excited about the possibility for training a single, general agent model based on LLMs that can act superintelligently in all environments. To start, we make SimuRA, a web-browsing agent built on \modelname with pretrained LLMs, available as a research demo for public testing.
Generalized Decoding for Pixel, Image, and Language
We present X-Decoder, a generalized decoding model that can predict pixel-level segmentation and language tokens seamlessly. X-Decodert takes as input two types of queries: (i) generic non-semantic queries and (ii) semantic queries induced from text inputs, to decode different pixel-level and token-level outputs in the same semantic space. With such a novel design, X-Decoder is the first work that provides a unified way to support all types of image segmentation and a variety of vision-language (VL) tasks. Further, our design enables seamless interactions across tasks at different granularities and brings mutual benefits by learning a common and rich pixel-level visual-semantic understanding space, without any pseudo-labeling. After pretraining on a mixed set of a limited amount of segmentation data and millions of image-text pairs, X-Decoder exhibits strong transferability to a wide range of downstream tasks in both zero-shot and finetuning settings. Notably, it achieves (1) state-of-the-art results on open-vocabulary segmentation and referring segmentation on eight datasets; (2) better or competitive finetuned performance to other generalist and specialist models on segmentation and VL tasks; and (3) flexibility for efficient finetuning and novel task composition (e.g., referring captioning and image editing). Code, demo, video, and visualization are available at https://x-decoder-vl.github.io.
Concentration of Measure for Distributions Generated via Diffusion Models
We show via a combination of mathematical arguments and empirical evidence that data distributions sampled from diffusion models satisfy a Concentration of Measure Property saying that any Lipschitz 1-dimensional projection of a random vector is not too far from its mean with high probability. This implies that such models are quite restrictive and gives an explanation for a fact previously observed in the literature that conventional diffusion models cannot capture "heavy-tailed" data (i.e. data x for which the norm |x|_2 does not possess a sub-Gaussian tail) well. We then proceed to train a generalized linear model using stochastic gradient descent (SGD) on the diffusion-generated data for a multiclass classification task and observe empirically that a Gaussian universality result holds for the test error. In other words, the test error depends only on the first and second order statistics of the diffusion-generated data in the linear setting. Results of such forms are desirable because they allow one to assume the data itself is Gaussian for analyzing performance of the trained classifier. Finally, we note that current approaches to proving universality do not apply to this case as the covariance matrices of the data tend to have vanishing minimum singular values for the diffusion-generated data, while the current proofs assume that this is not the case (see Subsection 3.4 for more details). This leaves extending previous mathematical universality results as an intriguing open question.
Fragile Mastery: Are Domain-Specific Trade-Offs Undermining On-Device Language Models?
The application of on-device language models (ODLMs) on resource-constrained edge devices is a multi-dimensional problem that strikes a fine balance between computational effectiveness, memory, power usage, and linguistic capacity across heterogeneous tasks. This holistic study conducts a thorough investigation of the trade-offs between domain-specific optimization and cross-domain robustness, culminating in the proposal of the Generalized Edge Model (GEM), a new architecture that aims to balance specialization and generalization in a harmonious manner. With a rigorous experimental approach testing 47 well-chosen benchmarks in eight domains--healthcare, law, finance, STEM, commonsense, conversational AI, multilingual, and domain-adaptive tasks--we show that conventional optimization techniques decrease target task perplexity by 18-25% but result in a precipitous decline in general-task performance with F1 scores decreasing by 12-29%, as reported by Liu et al. GEM employs a Sparse Cross-Attention Router (SCAR) to dynamically allocate computation to a variable number of computing resources with a cross-domain F1 accuracy of 0.89 on less than 100ms latency across Raspberry Pi 4, Pixel 6, iPhone 13, and bespoke custom neural processing units (NPUs). Compared to GPT-4 Lite, GEM enhances the general-task level by 7% with respect and parity in domain-specific performance. We propose three new measurement tools--Domain Specialization Index (DSI), Generalization Gap (GG), and Cross-Domain Transfer Ratio (CDTR)--which show strong correlation between model compression intensity and brittleness.
STanHop: Sparse Tandem Hopfield Model for Memory-Enhanced Time Series Prediction
We present STanHop-Net (Sparse Tandem Hopfield Network) for multivariate time series prediction with memory-enhanced capabilities. At the heart of our approach is STanHop, a novel Hopfield-based neural network block, which sparsely learns and stores both temporal and cross-series representations in a data-dependent fashion. In essence, STanHop sequentially learn temporal representation and cross-series representation using two tandem sparse Hopfield layers. In addition, StanHop incorporates two additional external memory modules: a Plug-and-Play module and a Tune-and-Play module for train-less and task-aware memory-enhancements, respectively. They allow StanHop-Net to swiftly respond to certain sudden events. Methodologically, we construct the StanHop-Net by stacking STanHop blocks in a hierarchical fashion, enabling multi-resolution feature extraction with resolution-specific sparsity. Theoretically, we introduce a sparse extension of the modern Hopfield model (Generalized Sparse Modern Hopfield Model) and show that it endows a tighter memory retrieval error compared to the dense counterpart without sacrificing memory capacity. Empirically, we validate the efficacy of our framework on both synthetic and real-world settings.
Emb-GAM: an Interpretable and Efficient Predictor using Pre-trained Language Models
Deep learning models have achieved impressive prediction performance but often sacrifice interpretability, a critical consideration in high-stakes domains such as healthcare or policymaking. In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings for each input before learning a linear model in the embedding space. The final model (which we call Emb-GAM) is a transparent, linear function of its input features and feature interactions. Leveraging the language model allows Emb-GAM to learn far fewer linear coefficients, model larger interactions, and generalize well to novel inputs (e.g. unseen ngrams in text). Across a variety of natural-language-processing datasets, Emb-GAM achieves strong prediction performance without sacrificing interpretability. All code is made available on Github.
MIRepNet: A Pipeline and Foundation Model for EEG-Based Motor Imagery Classification
Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices. Recent EEG foundation models aim to learn generalized representations across diverse BCI paradigms. However, these approaches overlook fundamental paradigm-specific neurophysiological distinctions, limiting their generalization ability. Importantly, in practical BCI deployments, the specific paradigm such as motor imagery (MI) for stroke rehabilitation or assistive robotics, is generally determined prior to data acquisition. This paper proposes MIRepNet, the first EEG foundation model tailored for the MI paradigm. MIRepNet comprises a high-quality EEG preprocessing pipeline incorporating a neurophysiologically-informed channel template, adaptable to EEG headsets with arbitrary electrode configurations. Furthermore, we introduce a hybrid pretraining strategy that combines self-supervised masked token reconstruction and supervised MI classification, facilitating rapid adaptation and accurate decoding on novel downstream MI tasks with fewer than 30 trials per class. Extensive evaluations across five public MI datasets demonstrated that MIRepNet consistently achieved state-of-the-art performance, significantly outperforming both specialized and generalized EEG models. Our code will be available on GitHubhttps://github.com/staraink/MIRepNet.
Optimal Online Generalized Linear Regression with Stochastic Noise and Its Application to Heteroscedastic Bandits
We study the problem of online generalized linear regression in the stochastic setting, where the label is generated from a generalized linear model with possibly unbounded additive noise. We provide a sharp analysis of the classical follow-the-regularized-leader (FTRL) algorithm to cope with the label noise. More specifically, for sigma-sub-Gaussian label noise, our analysis provides a regret upper bound of O(sigma^2 d log T) + o(log T), where d is the dimension of the input vector, T is the total number of rounds. We also prove a Omega(sigma^2dlog(T/d)) lower bound for stochastic online linear regression, which indicates that our upper bound is nearly optimal. In addition, we extend our analysis to a more refined Bernstein noise condition. As an application, we study generalized linear bandits with heteroscedastic noise and propose an algorithm based on FTRL to achieve the first variance-aware regret bound.
Interpretability, Then What? Editing Machine Learning Models to Reflect Human Knowledge and Values
Machine learning (ML) interpretability techniques can reveal undesirable patterns in data that models exploit to make predictions--potentially causing harms once deployed. However, how to take action to address these patterns is not always clear. In a collaboration between ML and human-computer interaction researchers, physicians, and data scientists, we develop GAM Changer, the first interactive system to help domain experts and data scientists easily and responsibly edit Generalized Additive Models (GAMs) and fix problematic patterns. With novel interaction techniques, our tool puts interpretability into action--empowering users to analyze, validate, and align model behaviors with their knowledge and values. Physicians have started to use our tool to investigate and fix pneumonia and sepsis risk prediction models, and an evaluation with 7 data scientists working in diverse domains highlights that our tool is easy to use, meets their model editing needs, and fits into their current workflows. Built with modern web technologies, our tool runs locally in users' web browsers or computational notebooks, lowering the barrier to use. GAM Changer is available at the following public demo link: https://interpret.ml/gam-changer.
Value of the Teaching Career and Factors in Its Path in Peru
The teaching career shares common global characteristics, such as internal promotion, performance evaluation, recruitment of top candidates, continuous training, specialization, and peer learning. This study aims to describe the factors associated with the value placed on the teaching career in Peru. A total of 28217 public school teachers were analyzed using data from the 2020 National Teacher Survey. A variable measuring the "value of the teaching career" was constructed using eight indicators and categorized as low, medium, or high. Another variable, vision of the future, was classified as pessimistic, conformist, or optimistic. This observational, cross-sectional, and analytical study included variables related to in-service training, working conditions, professional recognition, and sociodemographic characteristics. Among the teachers surveyed, 45.8 % expressed an optimistic outlook on the future of the profession, 48 % held a conformist view, and only 6.2 % reported a pessimistic perspective. A generalized linear model revealed that the value placed on the teaching career was significantly associated with male gender (p = 0.002), a professional career (p < 0.001), an optimistic outlook (p = 0.033), and working at the primary level (p < 0.001). It was concluded that Peruvian teachers predominantly hold conformist or optimistic views of their profession. This highlights the need to reinforce merit-based advancement, competency-based training, intrinsic motivation, and ongoing professional development
Text-to-Decision Agent: Offline Meta-Reinforcement Learning from Natural Language Supervision
Offline meta-RL usually tackles generalization by inferring task beliefs from high-quality samples or warmup explorations. The restricted form limits their generality and usability since these supervision signals are expensive and even infeasible to acquire in advance for unseen tasks. Learning directly from the raw text about decision tasks is a promising alternative to leverage a much broader source of supervision. In the paper, we propose Text-to-Decision Agent (T2DA), a simple and scalable framework that supervises offline meta-RL with natural language. We first introduce a generalized world model to encode multi-task decision data into a dynamics-aware embedding space. Then, inspired by CLIP, we predict which textual description goes with which decision embedding, effectively bridging their semantic gap via contrastive language-decision pre-training and aligning the text embeddings to comprehend the environment dynamics. After training the text-conditioned generalist policy, the agent can directly realize zero-shot text-to-decision generation in response to language instructions. Comprehensive experiments on MuJoCo and Meta-World benchmarks show that T2DA facilitates high-capacity zero-shot generalization and outperforms various types of baselines. Our code is available at https://github.com/NJU-RL/T2DA.
Editing 3D Scenes via Text Prompts without Retraining
Numerous diffusion models have recently been applied to image synthesis and editing. However, editing 3D scenes is still in its early stages. It poses various challenges, such as the requirement to design specific methods for different editing types, retraining new models for various 3D scenes, and the absence of convenient human interaction during editing. To tackle these issues, we introduce a text-driven editing method, termed DN2N, which allows for the direct acquisition of a NeRF model with universal editing capabilities, eliminating the requirement for retraining. Our method employs off-the-shelf text-based editing models of 2D images to modify the 3D scene images, followed by a filtering process to discard poorly edited images that disrupt 3D consistency. We then consider the remaining inconsistency as a problem of removing noise perturbation, which can be solved by generating training data with similar perturbation characteristics for training. We further propose cross-view regularization terms to help the generalized NeRF model mitigate these perturbations. Our text-driven method allows users to edit a 3D scene with their desired description, which is more friendly, intuitive, and practical than prior works. Empirical results show that our method achieves multiple editing types, including but not limited to appearance editing, weather transition, material changing, and style transfer. Most importantly, our method generalizes well with editing abilities shared among a set of model parameters without requiring a customized editing model for some specific scenes, thus inferring novel views with editing effects directly from user input. The project website is available at https://sk-fun.fun/DN2N
Compliance Checking with NLI: Privacy Policies vs. Regulations
A privacy policy is a document that states how a company intends to handle and manage their customers' personal data. One of the problems that arises with these privacy policies is that their content might violate data privacy regulations. Because of the enormous number of privacy policies that exist, the only realistic way to check for legal inconsistencies in all of them is through an automated method. In this work, we use Natural Language Inference (NLI) techniques to compare privacy regulations against sections of privacy policies from a selection of large companies. Our NLI model uses pre-trained embeddings, along with BiLSTM in its attention mechanism. We tried two versions of our model: one that was trained on the Stanford Natural Language Inference (SNLI) and the second on the Multi-Genre Natural Language Inference (MNLI) dataset. We found that our test accuracy was higher on our model trained on the SNLI, but when actually doing NLI tasks on real world privacy policies, the model trained on MNLI generalized and performed much better.
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise
Standard diffusion models involve an image transform -- adding Gaussian noise -- and an image restoration operator that inverts this degradation. We observe that the generative behavior of diffusion models is not strongly dependent on the choice of image degradation, and in fact an entire family of generative models can be constructed by varying this choice. Even when using completely deterministic degradations (e.g., blur, masking, and more), the training and test-time update rules that underlie diffusion models can be easily generalized to create generative models. The success of these fully deterministic models calls into question the community's understanding of diffusion models, which relies on noise in either gradient Langevin dynamics or variational inference, and paves the way for generalized diffusion models that invert arbitrary processes. Our code is available at https://github.com/arpitbansal297/Cold-Diffusion-Models
Noise Distribution Adaptive Self-Supervised Image Denoising using Tweedie Distribution and Score Matching
Tweedie distributions are a special case of exponential dispersion models, which are often used in classical statistics as distributions for generalized linear models. Here, we reveal that Tweedie distributions also play key roles in modern deep learning era, leading to a distribution independent self-supervised image denoising formula without clean reference images. Specifically, by combining with the recent Noise2Score self-supervised image denoising approach and the saddle point approximation of Tweedie distribution, we can provide a general closed-form denoising formula that can be used for large classes of noise distributions without ever knowing the underlying noise distribution. Similar to the original Noise2Score, the new approach is composed of two successive steps: score matching using perturbed noisy images, followed by a closed form image denoising formula via distribution-independent Tweedie's formula. This also suggests a systematic algorithm to estimate the noise model and noise parameters for a given noisy image data set. Through extensive experiments, we demonstrate that the proposed method can accurately estimate noise models and parameters, and provide the state-of-the-art self-supervised image denoising performance in the benchmark dataset and real-world dataset.
Forward $χ^2$ Divergence Based Variational Importance Sampling
Maximizing the log-likelihood is a crucial aspect of learning latent variable models, and variational inference (VI) stands as the commonly adopted method. However, VI can encounter challenges in achieving a high log-likelihood when dealing with complicated posterior distributions. In response to this limitation, we introduce a novel variational importance sampling (VIS) approach that directly estimates and maximizes the log-likelihood. VIS leverages the optimal proposal distribution, achieved by minimizing the forward chi^2 divergence, to enhance log-likelihood estimation. We apply VIS to various popular latent variable models, including mixture models, variational auto-encoders, and partially observable generalized linear models. Results demonstrate that our approach consistently outperforms state-of-the-art baselines, both in terms of log-likelihood and model parameter estimation.
FedCompass: Efficient Cross-Silo Federated Learning on Heterogeneous Client Devices using a Computing Power Aware Scheduler
Cross-silo federated learning offers a promising solution to collaboratively train robust and generalized AI models without compromising the privacy of local datasets, e.g., healthcare, financial, as well as scientific projects that lack a centralized data facility. Nonetheless, because of the disparity of computing resources among different clients (i.e., device heterogeneity), synchronous federated learning algorithms suffer from degraded efficiency when waiting for straggler clients. Similarly, asynchronous federated learning algorithms experience degradation in the convergence rate and final model accuracy on non-identically and independently distributed (non-IID) heterogeneous datasets due to stale local models and client drift. To address these limitations in cross-silo federated learning with heterogeneous clients and data, we propose FedCompass, an innovative semi-asynchronous federated learning algorithm with a computing power-aware scheduler on the server side, which adaptively assigns varying amounts of training tasks to different clients using the knowledge of the computing power of individual clients. FedCompass ensures that multiple locally trained models from clients are received almost simultaneously as a group for aggregation, effectively reducing the staleness of local models. At the same time, the overall training process remains asynchronous, eliminating prolonged waiting periods from straggler clients. Using diverse non-IID heterogeneous distributed datasets, we demonstrate that FedCompass achieves faster convergence and higher accuracy than other asynchronous algorithms while remaining more efficient than synchronous algorithms when performing federated learning on heterogeneous clients. The source code for FedCompass is available at https://github.com/APPFL/FedCompass.
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.
InterpretML: A Unified Framework for Machine Learning Interpretability
InterpretML is an open-source Python package which exposes machine learning interpretability algorithms to practitioners and researchers. InterpretML exposes two types of interpretability - glassbox models, which are machine learning models designed for interpretability (ex: linear models, rule lists, generalized additive models), and blackbox explainability techniques for explaining existing systems (ex: Partial Dependence, LIME). The package enables practitioners to easily compare interpretability algorithms by exposing multiple methods under a unified API, and by having a built-in, extensible visualization platform. InterpretML also includes the first implementation of the Explainable Boosting Machine, a powerful, interpretable, glassbox model that can be as accurate as many blackbox models. The MIT licensed source code can be downloaded from github.com/microsoft/interpret.
Length-Controlled AlpacaEval: A Simple Way to Debias Automatic Evaluators
LLM-based auto-annotators have become a key component of the LLM development process due to their cost-effectiveness and scalability compared to human-based evaluation. However, these auto-annotators can introduce complex biases that are hard to remove. Even simple, known confounders such as preference for longer outputs remain in existing automated evaluation metrics. We propose a simple regression analysis approach for controlling biases in auto-evaluations. As a real case study, we focus on reducing the length bias of AlpacaEval, a fast and affordable benchmark for chat LLMs that uses LLMs to estimate response quality. Despite being highly correlated with human preferences, AlpacaEval is known to favor models that generate longer outputs. We introduce a length-controlled AlpacaEval that aims to answer the counterfactual question: "What would the preference be if the model's and baseline's output had the same length?". To achieve this, we first fit a generalized linear model to predict the biased output of interest (auto-annotator preferences) based on the mediators we want to control for (length difference) and other relevant features. We then obtain length-controlled preferences by predicting preferences while conditioning the GLM with a zero difference in lengths. Length-controlling not only improves the robustness of the metric to manipulations in model verbosity, we also find that it increases the Spearman correlation with LMSYS' Chatbot Arena from 0.94 to 0.98. We release the code and leaderboard at https://tatsu-lab.github.io/alpaca_eval/ .
The probabilistic world
Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable.
Dueling RL: Reinforcement Learning with Trajectory Preferences
We consider the problem of preference based reinforcement learning (PbRL), where, unlike traditional reinforcement learning, an agent receives feedback only in terms of a 1 bit (0/1) preference over a trajectory pair instead of absolute rewards for them. The success of the traditional RL framework crucially relies on the underlying agent-reward model, which, however, depends on how accurately a system designer can express an appropriate reward function and often a non-trivial task. The main novelty of our framework is the ability to learn from preference-based trajectory feedback that eliminates the need to hand-craft numeric reward models. This paper sets up a formal framework for the PbRL problem with non-markovian rewards, where the trajectory preferences are encoded by a generalized linear model of dimension d. Assuming the transition model is known, we then propose an algorithm with almost optimal regret guarantee of mathcal{O}left( SH d log (T / delta) T right). We further, extend the above algorithm to the case of unknown transition dynamics, and provide an algorithm with near optimal regret guarantee mathcal{O}((d + H^2 + |S|)dT +|mathcal{S||A|TH} ). To the best of our knowledge, our work is one of the first to give tight regret guarantees for preference based RL problems with trajectory preferences.
Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits
Dueling bandits is a prominent framework for decision-making involving preferential feedback, a valuable feature that fits various applications involving human interaction, such as ranking, information retrieval, and recommendation systems. While substantial efforts have been made to minimize the cumulative regret in dueling bandits, a notable gap in the current research is the absence of regret bounds that account for the inherent uncertainty in pairwise comparisons between the dueling arms. Intuitively, greater uncertainty suggests a higher level of difficulty in the problem. To bridge this gap, this paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM). We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound tilde Obig(dsum_{t=1^Tsigma_t^2} + dbig), where sigma_t is the variance of the pairwise comparison in round t, d is the dimension of the context vectors, and T is the time horizon. Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an tilde O(d) regret. We perform empirical experiments on synthetic data to confirm the advantage of our method over previous variance-agnostic algorithms.
Fundamental limits of overparametrized shallow neural networks for supervised learning
We carry out an information-theoretical analysis of a two-layer neural network trained from input-output pairs generated by a teacher network with matching architecture, in overparametrized regimes. Our results come in the form of bounds relating i) the mutual information between training data and network weights, or ii) the Bayes-optimal generalization error, to the same quantities but for a simpler (generalized) linear model for which explicit expressions are rigorously known. Our bounds, which are expressed in terms of the number of training samples, input dimension and number of hidden units, thus yield fundamental performance limits for any neural network (and actually any learning procedure) trained from limited data generated according to our two-layer teacher neural network model. The proof relies on rigorous tools from spin glasses and is guided by ``Gaussian equivalence principles'' lying at the core of numerous recent analyses of neural networks. With respect to the existing literature, which is either non-rigorous or restricted to the case of the learning of the readout weights only, our results are information-theoretic (i.e. are not specific to any learning algorithm) and, importantly, cover a setting where all the network parameters are trained.
GAM Coach: Towards Interactive and User-centered Algorithmic Recourse
Machine learning (ML) recourse techniques are increasingly used in high-stakes domains, providing end users with actions to alter ML predictions, but they assume ML developers understand what input variables can be changed. However, a recourse plan's actionability is subjective and unlikely to match developers' expectations completely. We present GAM Coach, a novel open-source system that adapts integer linear programming to generate customizable counterfactual explanations for Generalized Additive Models (GAMs), and leverages interactive visualizations to enable end users to iteratively generate recourse plans meeting their needs. A quantitative user study with 41 participants shows our tool is usable and useful, and users prefer personalized recourse plans over generic plans. Through a log analysis, we explore how users discover satisfactory recourse plans, and provide empirical evidence that transparency can lead to more opportunities for everyday users to discover counterintuitive patterns in ML models. GAM Coach is available at: https://poloclub.github.io/gam-coach/.
Faster Rates of Convergence to Stationary Points in Differentially Private Optimization
We study the problem of approximating stationary points of Lipschitz and smooth functions under (varepsilon,delta)-differential privacy (DP) in both the finite-sum and stochastic settings. A point w is called an alpha-stationary point of a function F:R^drightarrowR if |nabla F(w)|leq alpha. We provide a new efficient algorithm that finds an Obig(big[sqrt{d}{nvarepsilon}big]^{2/3}big)-stationary point in the finite-sum setting, where n is the number of samples. This improves on the previous best rate of Obig(big[sqrt{d}{nvarepsilon}big]^{1/2}big). We also give a new construction that improves over the existing rates in the stochastic optimization setting, where the goal is to find approximate stationary points of the population risk. Our construction finds a Obig(1{n^{1/3}} + big[sqrt{d}{nvarepsilon}big]^{1/2}big)-stationary point of the population risk in time linear in n. Furthermore, under the additional assumption of convexity, we completely characterize the sample complexity of finding stationary points of the population risk (up to polylog factors) and show that the optimal rate on population stationarity is tilde Thetabig(1{n}+sqrt{d}{nvarepsilon}big). Finally, we show that our methods can be used to provide dimension-independent rates of Obig(1{n}+minbig(big[sqrt{rank}{nvarepsilon}big]^{2/3},1{(nvarepsilon)^{2/5}}big)big) on population stationarity for Generalized Linear Models (GLM), where rank is the rank of the design matrix, which improves upon the previous best known rate.
Scalable Language Model with Generalized Continual Learning
Continual learning has gained increasing importance as it facilitates the acquisition and refinement of scalable knowledge and skills in language models. However, existing methods typically encounter strict limitations and challenges in real-world scenarios, such as reliance on experience replay, optimization constraints, and inference task-ID. In this study, we introduce the Scalable Language Model (SLM) to overcome these limitations within a more challenging and generalized setting, representing a significant advancement toward practical applications for continual learning. Specifically, we propose the Joint Adaptive Re-Parameterization (JARe), integrated with Dynamic Task-related Knowledge Retrieval (DTKR), to enable adaptive adjustment of language models based on specific downstream tasks. This approach leverages the task distribution within the vector space, aiming to achieve a smooth and effortless continual learning process. Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting. Moreover, while prior research primarily focused on a single task type such as classification, our study goes beyond, with the large language model, i.e., LLaMA-2, to explore the effects across diverse domains and task types, such that a single language model can be decently scaled to broader applications.
Visual Large Language Models for Generalized and Specialized Applications
Visual-language models (VLM) have emerged as a powerful tool for learning a unified embedding space for vision and language. Inspired by large language models, which have demonstrated strong reasoning and multi-task capabilities, visual large language models (VLLMs) are gaining increasing attention for building general-purpose VLMs. Despite the significant progress made in VLLMs, the related literature remains limited, particularly from a comprehensive application perspective, encompassing generalized and specialized applications across vision (image, video, depth), action, and language modalities. In this survey, we focus on the diverse applications of VLLMs, examining their using scenarios, identifying ethics consideration and challenges, and discussing future directions for their development. By synthesizing these contents, we aim to provide a comprehensive guide that will pave the way for future innovations and broader applications of VLLMs. The paper list repository is available: https://github.com/JackYFL/awesome-VLLMs.
Hydra: Bidirectional State Space Models Through Generalized Matrix Mixers
A wide array of sequence models are built on a framework modeled after Transformers, comprising alternating sequence mixer and channel mixer layers. This paper studies a unifying matrix mixer view of sequence mixers that can be conceptualized as a linear map on the input sequence. This framework encompasses a broad range of well-known sequence models, including the self-attention of Transformers as well as recent strong alternatives such as structured state space models (SSMs), and allows understanding downstream characteristics such as efficiency and expressivity through properties of their structured matrix class. We identify a key axis of matrix parameterizations termed sequence alignment, which increases the flexibility and performance of matrix mixers, providing insights into the strong performance of Transformers and recent SSMs such as Mamba. Furthermore, the matrix mixer framework offers a systematic approach to developing sequence mixers with desired properties, allowing us to develop several new sub-quadratic sequence models. In particular, we propose a natural bidirectional extension of the Mamba model (Hydra), parameterized as a quasiseparable matrix mixer, which demonstrates superior performance over other sequence models including Transformers on non-causal tasks. As a drop-in replacement for attention layers, Hydra outperforms BERT by 0.8 points on the GLUE benchmark and ViT by 2% Top-1 accuracy on ImageNet.
Learning Semi-supervised Gaussian Mixture Models for Generalized Category Discovery
In this paper, we address the problem of generalized category discovery (GCD), \ie, given a set of images where part of them are labelled and the rest are not, the task is to automatically cluster the images in the unlabelled data, leveraging the information from the labelled data, while the unlabelled data contain images from the labelled classes and also new ones. GCD is similar to semi-supervised learning (SSL) but is more realistic and challenging, as SSL assumes all the unlabelled images are from the same classes as the labelled ones. We also do not assume the class number in the unlabelled data is known a-priori, making the GCD problem even harder. To tackle the problem of GCD without knowing the class number, we propose an EM-like framework that alternates between representation learning and class number estimation. We propose a semi-supervised variant of the Gaussian Mixture Model (GMM) with a stochastic splitting and merging mechanism to dynamically determine the prototypes by examining the cluster compactness and separability. With these prototypes, we leverage prototypical contrastive learning for representation learning on the partially labelled data subject to the constraints imposed by the labelled data. Our framework alternates between these two steps until convergence. The cluster assignment for an unlabelled instance can then be retrieved by identifying its nearest prototype. We comprehensively evaluate our framework on both generic image classification datasets and challenging fine-grained object recognition datasets, achieving state-of-the-art performance.
ChatRetriever: Adapting Large Language Models for Generalized and Robust Conversational Dense Retrieval
Conversational search requires accurate interpretation of user intent from complex multi-turn contexts. This paper presents ChatRetriever, which inherits the strong generalization capability of large language models to robustly represent complex conversational sessions for dense retrieval. To achieve this, we propose a simple and effective dual-learning approach that adapts LLM for retrieval via contrastive learning while enhancing the complex session understanding through masked instruction tuning on high-quality conversational instruction tuning data. Extensive experiments on five conversational search benchmarks demonstrate that ChatRetriever substantially outperforms existing conversational dense retrievers, achieving state-of-the-art performance on par with LLM-based rewriting approaches. Furthermore, ChatRetriever exhibits superior robustness in handling diverse conversational contexts. Our work highlights the potential of adapting LLMs for retrieval with complex inputs like conversational search sessions and proposes an effective approach to advance this research direction.
Boosting Diffusion-Based Text Image Super-Resolution Model Towards Generalized Real-World Scenarios
Restoring low-resolution text images presents a significant challenge, as it requires maintaining both the fidelity and stylistic realism of the text in restored images. Existing text image restoration methods often fall short in hard situations, as the traditional super-resolution models cannot guarantee clarity, while diffusion-based methods fail to maintain fidelity. In this paper, we introduce a novel framework aimed at improving the generalization ability of diffusion models for text image super-resolution (SR), especially promoting fidelity. First, we propose a progressive data sampling strategy that incorporates diverse image types at different stages of training, stabilizing the convergence and improving the generalization. For the network architecture, we leverage a pre-trained SR prior to provide robust spatial reasoning capabilities, enhancing the model's ability to preserve textual information. Additionally, we employ a cross-attention mechanism to better integrate textual priors. To further reduce errors in textual priors, we utilize confidence scores to dynamically adjust the importance of textual features during training. Extensive experiments on real-world datasets demonstrate that our approach not only produces text images with more realistic visual appearances but also improves the accuracy of text structure.
How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections
Linear time-invariant state space models (SSM) are a classical model from engineering and statistics, that have recently been shown to be very promising in machine learning through the Structured State Space sequence model (S4). A core component of S4 involves initializing the SSM state matrix to a particular matrix called a HiPPO matrix, which was empirically important for S4's ability to handle long sequences. However, the specific matrix that S4 uses was actually derived in previous work for a particular time-varying dynamical system, and the use of this matrix as a time-invariant SSM had no known mathematical interpretation. Consequently, the theoretical mechanism by which S4 models long-range dependencies actually remains unexplained. We derive a more general and intuitive formulation of the HiPPO framework, which provides a simple mathematical interpretation of S4 as a decomposition onto exponentially-warped Legendre polynomials, explaining its ability to capture long dependencies. Our generalization introduces a theoretically rich class of SSMs that also lets us derive more intuitive S4 variants for other bases such as the Fourier basis, and explains other aspects of training S4, such as how to initialize the important timescale parameter. These insights improve S4's performance to 86% on the Long Range Arena benchmark, with 96% on the most difficult Path-X task.
MaskGWM: A Generalizable Driving World Model with Video Mask Reconstruction
World models that forecast environmental changes from actions are vital for autonomous driving models with strong generalization. The prevailing driving world model mainly build on video prediction model. Although these models can produce high-fidelity video sequences with advanced diffusion-based generator, they are constrained by their predictive duration and overall generalization capabilities. In this paper, we explore to solve this problem by combining generation loss with MAE-style feature-level context learning. In particular, we instantiate this target with three key design: (1) A more scalable Diffusion Transformer (DiT) structure trained with extra mask construction task. (2) we devise diffusion-related mask tokens to deal with the fuzzy relations between mask reconstruction and generative diffusion process. (3) we extend mask construction task to spatial-temporal domain by utilizing row-wise mask for shifted self-attention rather than masked self-attention in MAE. Then, we adopt a row-wise cross-view module to align with this mask design. Based on above improvement, we propose MaskGWM: a Generalizable driving World Model embodied with Video Mask reconstruction. Our model contains two variants: MaskGWM-long, focusing on long-horizon prediction, and MaskGWM-mview, dedicated to multi-view generation. Comprehensive experiments on standard benchmarks validate the effectiveness of the proposed method, which contain normal validation of Nuscene dataset, long-horizon rollout of OpenDV-2K dataset and zero-shot validation of Waymo dataset. Quantitative metrics on these datasets show our method notably improving state-of-the-art driving world model.
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent approximate posterior distributions, and that acts as a stochastic encoder of the data. We develop stochastic back-propagation -- rules for back-propagation through stochastic variables -- and use this to develop an algorithm that allows for joint optimisation of the parameters of both the generative and recognition model. We demonstrate on several real-world data sets that the model generates realistic samples, provides accurate imputations of missing data and is a useful tool for high-dimensional data visualisation.
Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
Conventional uncertainty-aware temporal difference (TD) learning methods often rely on simplistic assumptions, typically including a zero-mean Gaussian distribution for TD errors. Such oversimplification can lead to inaccurate error representations and compromised uncertainty estimation. In this paper, we introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning, applicable to both discrete and continuous control settings. Our framework enhances the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis, thereby improving the estimation and mitigation of data-dependent noise, i.e., aleatoric uncertainty. We examine the influence of the shape parameter of the generalized Gaussian distribution (GGD) on aleatoric uncertainty and provide a closed-form expression that demonstrates an inverse relationship between uncertainty and the shape parameter. Additionally, we propose a theoretically grounded weighting scheme to fully leverage the GGD. To address epistemic uncertainty, we enhance the batch inverse variance weighting by incorporating bias reduction and kurtosis considerations, resulting in improved robustness. Extensive experimental evaluations using policy gradient algorithms demonstrate the consistent efficacy of our method, showcasing significant performance improvements.
The discrete generalized exchange-driven system
We study a discrete model for generalized exchange-driven growth in which the particle exchanged between two clusters is not limited to be of size one. This set of models include as special cases the usual exchange-driven growth system and the coagulation-fragmentation system with binary fragmentation. Under reasonable general condition on the rate coefficients we establish the existence of admissible solutions, meaning solutions that are obtained as appropriate limit of solutions to a finite-dimensional truncation of the infinite-dimensional ODE. For these solutions we prove that, in the class of models we call isolated both the total number of particles and the total mass are conserved, whereas in those models we can non-isolated only the mass is conserved. Additionally, under more restrictive growth conditions for the rate equations we obtain uniqueness of solutions to the initial value problems.
Repeat After Me: Transformers are Better than State Space Models at Copying
Transformers are the dominant architecture for sequence modeling, but there is growing interest in models that use a fixed-size latent state that does not depend on the sequence length, which we refer to as "generalized state space models" (GSSMs). In this paper we show that while GSSMs are promising in terms of inference-time efficiency, they are limited compared to transformer models on tasks that require copying from the input context. We start with a theoretical analysis of the simple task of string copying and prove that a two layer transformer can copy strings of exponential length while GSSMs are fundamentally limited by their fixed-size latent state. Empirically, we find that transformers outperform GSSMs in terms of efficiency and generalization on synthetic tasks that require copying the context. Finally, we evaluate pretrained large language models and find that transformer models dramatically outperform state space models at copying and retrieving information from context. Taken together, these results suggest a fundamental gap between transformers and GSSMs on tasks of practical interest.
Counterfactual Generation from Language Models
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to intervene on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as Generalized Structural-equation. Models using the Gumbel-max trick. This allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
DNAGPT: A Generalized Pre-trained Tool for Versatile DNA Sequence Analysis Tasks
Pre-trained large language models demonstrate potential in extracting information from DNA sequences, yet adapting to a variety of tasks and data modalities remains a challenge. To address this, we propose DNAGPT, a generalized DNA pre-training model trained on over 200 billion base pairs from all mammals. By enhancing the classic GPT model with a binary classification task (DNA sequence order), a numerical regression task (guanine-cytosine content prediction), and a comprehensive token language, DNAGPT can handle versatile DNA analysis tasks while processing both sequence and numerical data. Our evaluation of genomic signal and region recognition, mRNA abundance regression, and artificial genomes generation tasks demonstrates DNAGPT's superior performance compared to existing models designed for specific downstream tasks, benefiting from pre-training using the newly designed model structure.
Simplified and Generalized Masked Diffusion for Discrete Data
Masked (or absorbing) diffusion is actively explored as an alternative to autoregressive models for generative modeling of discrete data. However, existing work in this area has been hindered by unnecessarily complex model formulations and unclear relationships between different perspectives, leading to suboptimal parameterization, training objectives, and ad hoc adjustments to counteract these issues. In this work, we aim to provide a simple and general framework that unlocks the full potential of masked diffusion models. We show that the continuous-time variational objective of masked diffusion models is a simple weighted integral of cross-entropy losses. Our framework also enables training generalized masked diffusion models with state-dependent masking schedules. When evaluated by perplexity, our models trained on OpenWebText surpass prior diffusion language models at GPT-2 scale and demonstrate superior performance on 4 out of 5 zero-shot language modeling tasks. Furthermore, our models vastly outperform previous discrete diffusion models on pixel-level image modeling, achieving 2.78~(CIFAR-10) and 3.42 (ImageNet 64times64) bits per dimension that are comparable or better than autoregressive models of similar sizes.
Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging
Text embeddings are vital for tasks such as text retrieval and semantic textual similarity (STS). Recently, the advent of pretrained language models, along with unified benchmarks like the Massive Text Embedding Benchmark (MTEB), has facilitated the development of versatile general-purpose text embedding models. Advanced embedding models are typically developed using large-scale multi-task data and joint training across multiple tasks. However, our experimental analysis reveals two significant drawbacks of joint training: 1) Task Conflict: Gradients from different tasks interfere with each other, leading to negative transfer. 2) Data Imbalance: Disproportionate data distribution introduces biases that negatively impact performance across tasks. To overcome these challenges, we explore model merging-a technique that combines independently trained models to mitigate gradient conflicts and balance data distribution. We introduce a novel method, Self Positioning, which efficiently searches for optimal model combinations within the interpolation space of task vectors using stochastic gradient descent. Our experiments demonstrate that Self Positioning significantly enhances multi-task performance on the MTEB dataset, achieving an absolute improvement of 0.7 points. It outperforms traditional resampling methods while reducing computational costs. This work offers a robust approach to building generalized text embedding models with superior performance across diverse embedding-related tasks.
OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization
Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.
The Transformative Influence of Large Language Models on Software Development
The increasing adoption and commercialization of generalized Large Language Models (LLMs) have profoundly impacted various aspects of our daily lives. Initially embraced by the computer science community, the versatility of LLMs has found its way into diverse domains. In particular, the software engineering realm has witnessed the most transformative changes. With LLMs increasingly serving as AI Pair Programming Assistants spurred the development of specialized models aimed at aiding software engineers. Although this new paradigm offers numerous advantages, it also presents critical challenges and open problems. To identify the potential and prevailing obstacles, we systematically reviewed contemporary scholarly publications, emphasizing the perspectives of software developers and usability concerns. Preliminary findings underscore pressing concerns about data privacy, bias, and misinformation. Additionally, we identified several usability challenges, including prompt engineering, increased cognitive demands, and mistrust. Finally, we introduce 12 open problems that we have identified through our survey, covering these various domains.
Toward Generalized Image Quality Assessment: Relaxing the Perfect Reference Quality Assumption
Full-reference image quality assessment (FR-IQA) generally assumes that reference images are of perfect quality. However, this assumption is flawed due to the sensor and optical limitations of modern imaging systems. Moreover, recent generative enhancement methods are capable of producing images of higher quality than their original. All of these challenge the effectiveness and applicability of current FR-IQA models. To relax the assumption of perfect reference image quality, we build a large-scale IQA database, namely DiffIQA, containing approximately 180,000 images generated by a diffusion-based image enhancer with adjustable hyper-parameters. Each image is annotated by human subjects as either worse, similar, or better quality compared to its reference. Building on this, we present a generalized FR-IQA model, namely Adaptive Fidelity-Naturalness Evaluator (A-FINE), to accurately assess and adaptively combine the fidelity and naturalness of a test image. A-FINE aligns well with standard FR-IQA when the reference image is much more natural than the test image. We demonstrate by extensive experiments that A-FINE surpasses standard FR-IQA models on well-established IQA datasets and our newly created DiffIQA. To further validate A-FINE, we additionally construct a super-resolution IQA benchmark (SRIQA-Bench), encompassing test images derived from ten state-of-the-art SR methods with reliable human quality annotations. Tests on SRIQA-Bench re-affirm the advantages of A-FINE. The code and dataset are available at https://tianhewu.github.io/A-FINE-page.github.io/.
Adaptive Confidence Smoothing for Generalized Zero-Shot Learning
Generalized zero-shot learning (GZSL) is the problem of learning a classifier where some classes have samples and others are learned from side information, like semantic attributes or text description, in a zero-shot learning fashion (ZSL). Training a single model that operates in these two regimes simultaneously is challenging. Here we describe a probabilistic approach that breaks the model into three modular components, and then combines them in a consistent way. Specifically, our model consists of three classifiers: A "gating" model that makes soft decisions if a sample is from a "seen" class, and two experts: a ZSL expert, and an expert model for seen classes. We address two main difficulties in this approach: How to provide an accurate estimate of the gating probability without any training samples for unseen classes; and how to use expert predictions when it observes samples outside of its domain. The key insight to our approach is to pass information between the three models to improve each one's accuracy, while maintaining the modular structure. We test our approach, adaptive confidence smoothing (COSMO), on four standard GZSL benchmark datasets and find that it largely outperforms state-of-the-art GZSL models. COSMO is also the first model that closes the gap and surpasses the performance of generative models for GZSL, even-though it is a light-weight model that is much easier to train and tune. Notably, COSMO offers a new view for developing zero-shot models. Thanks to COSMO's modular structure, instead of trying to perform well both on seen and on unseen classes, models can focus on accurate classification of unseen classes, and later consider seen class models.
MentalGLM Series: Explainable Large Language Models for Mental Health Analysis on Chinese Social Media
As the prevalence of mental health challenges, social media has emerged as a key platform for individuals to express their emotions.Deep learning tends to be a promising solution for analyzing mental health on social media. However, black box models are often inflexible when switching between tasks, and their results typically lack explanations. With the rise of large language models (LLMs), their flexibility has introduced new approaches to the field. Also due to the generative nature, they can be prompted to explain decision-making processes. However, their performance on complex psychological analysis still lags behind deep learning. In this paper, we introduce the first multi-task Chinese Social Media Interpretable Mental Health Instructions (C-IMHI) dataset, consisting of 9K samples, which has been quality-controlled and manually validated. We also propose MentalGLM series models, the first open-source LLMs designed for explainable mental health analysis targeting Chinese social media, trained on a corpus of 50K instructions. The proposed models were evaluated on three downstream tasks and achieved better or comparable performance compared to deep learning models, generalized LLMs, and task fine-tuned LLMs. We validated a portion of the generated decision explanations with experts, showing promising results. We also evaluated the proposed models on a clinical dataset, where they outperformed other LLMs, indicating their potential applicability in the clinical field. Our models show strong performance, validated across tasks and perspectives. The decision explanations enhance usability and facilitate better understanding and practical application of the models. Both the constructed dataset and the models are publicly available via: https://github.com/zwzzzQAQ/MentalGLM.
Dynamic graph neural networks for enhanced volatility prediction in financial markets
Volatility forecasting is essential for risk management and decision-making in financial markets. Traditional models like Generalized Autoregressive Conditional Heteroskedasticity (GARCH) effectively capture volatility clustering but often fail to model complex, non-linear interdependencies between multiple indices. This paper proposes a novel approach using Graph Neural Networks (GNNs) to represent global financial markets as dynamic graphs. The Temporal Graph Attention Network (Temporal GAT) combines Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) to capture the temporal and structural dynamics of volatility spillovers. By utilizing correlation-based and volatility spillover indices, the Temporal GAT constructs directed graphs that enhance the accuracy of volatility predictions. Empirical results from a 15-year study of eight major global indices show that the Temporal GAT outperforms traditional GARCH models and other machine learning methods, particularly in short- to mid-term forecasts. The sensitivity and scenario-based analysis over a range of parameters and hyperparameters further demonstrate the significance of the proposed technique. Hence, this work highlights the potential of GNNs in modeling complex market behaviors, providing valuable insights for financial analysts and investors.
MEKER: Memory Efficient Knowledge Embedding Representation for Link Prediction and Question Answering
Knowledge Graphs (KGs) are symbolically structured storages of facts. The KG embedding contains concise data used in NLP tasks requiring implicit information about the real world. Furthermore, the size of KGs that may be useful in actual NLP assignments is enormous, and creating embedding over it has memory cost issues. We represent KG as a 3rd-order binary tensor and move beyond the standard CP decomposition by using a data-specific generalized version of it. The generalization of the standard CP-ALS algorithm allows obtaining optimization gradients without a backpropagation mechanism. It reduces the memory needed in training while providing computational benefits. We propose a MEKER, a memory-efficient KG embedding model, which yields SOTA-comparable performance on link prediction tasks and KG-based Question Answering.
E$^{2}$GAN: Efficient Training of Efficient GANs for Image-to-Image Translation
One highly promising direction for enabling flexible real-time on-device image editing is utilizing data distillation by leveraging large-scale text-to-image diffusion models to generate paired datasets used for training generative adversarial networks (GANs). This approach notably alleviates the stringent requirements typically imposed by high-end commercial GPUs for performing image editing with diffusion models. However, unlike text-to-image diffusion models, each distilled GAN is specialized for a specific image editing task, necessitating costly training efforts to obtain models for various concepts. In this work, we introduce and address a novel research direction: can the process of distilling GANs from diffusion models be made significantly more efficient? To achieve this goal, we propose a series of innovative techniques. First, we construct a base GAN model with generalized features, adaptable to different concepts through fine-tuning, eliminating the need for training from scratch. Second, we identify crucial layers within the base GAN model and employ Low-Rank Adaptation (LoRA) with a simple yet effective rank search process, rather than fine-tuning the entire base model. Third, we investigate the minimal amount of data necessary for fine-tuning, further reducing the overall training time. Extensive experiments show that we can efficiently empower GANs with the ability to perform real-time high-quality image editing on mobile devices with remarkably reduced training and storage costs for each concept.
Database-Agnostic Gait Enrollment using SetTransformers
Gait recognition has emerged as a powerful tool for unobtrusive and long-range identity analysis, with growing relevance in surveillance and monitoring applications. Although recent advances in deep learning and large-scale datasets have enabled highly accurate recognition under closed-set conditions, real-world deployment demands open-set gait enrollment, which means determining whether a new gait sample corresponds to a known identity or represents a previously unseen individual. In this work, we introduce a transformer-based framework for open-set gait enrollment that is both dataset-agnostic and recognition-architecture-agnostic. Our method leverages a SetTransformer to make enrollment decisions based on the embedding of a probe sample and a context set drawn from the gallery, without requiring task-specific thresholds or retraining for new environments. By decoupling enrollment from the main recognition pipeline, our model is generalized across different datasets, gallery sizes, and identity distributions. We propose an evaluation protocol that uses existing datasets in different ratios of identities and walks per identity. We instantiate our method using skeleton-based gait representations and evaluate it on two benchmark datasets (CASIA-B and PsyMo), using embeddings from three state-of-the-art recognition models (GaitGraph, GaitFormer, and GaitPT). We show that our method is flexible, is able to accurately perform enrollment in different scenarios, and scales better with data compared to traditional approaches. We will make the code and dataset scenarios publicly available.
Autoregressive Image Generation without Vector Quantization
Conventional wisdom holds that autoregressive models for image generation are typically accompanied by vector-quantized tokens. We observe that while a discrete-valued space can facilitate representing a categorical distribution, it is not a necessity for autoregressive modeling. In this work, we propose to model the per-token probability distribution using a diffusion procedure, which allows us to apply autoregressive models in a continuous-valued space. Rather than using categorical cross-entropy loss, we define a Diffusion Loss function to model the per-token probability. This approach eliminates the need for discrete-valued tokenizers. We evaluate its effectiveness across a wide range of cases, including standard autoregressive models and generalized masked autoregressive (MAR) variants. By removing vector quantization, our image generator achieves strong results while enjoying the speed advantage of sequence modeling. We hope this work will motivate the use of autoregressive generation in other continuous-valued domains and applications.
EmbodiedSAM: Online Segment Any 3D Thing in Real Time
Embodied tasks require the agent to fully understand 3D scenes simultaneously with its exploration, so an online, real-time, fine-grained and highly-generalized 3D perception model is desperately needed. Since high-quality 3D data is limited, directly training such a model in 3D is almost infeasible. Meanwhile, vision foundation models (VFM) has revolutionized the field of 2D computer vision with superior performance, which makes the use of VFM to assist embodied 3D perception a promising direction. However, most existing VFM-assisted 3D perception methods are either offline or too slow that cannot be applied in practical embodied tasks. In this paper, we aim to leverage Segment Anything Model (SAM) for real-time 3D instance segmentation in an online setting. This is a challenging problem since future frames are not available in the input streaming RGB-D video, and an instance may be observed in several frames so object matching between frames is required. To address these challenges, we first propose a geometric-aware query lifting module to represent the 2D masks generated by SAM by 3D-aware queries, which is then iteratively refined by a dual-level query decoder. In this way, the 2D masks are transferred to fine-grained shapes on 3D point clouds. Benefit from the query representation for 3D masks, we can compute the similarity matrix between the 3D masks from different views by efficient matrix operation, which enables real-time inference. Experiments on ScanNet, ScanNet200, SceneNN and 3RScan show our method achieves leading performance even compared with offline methods. Our method also demonstrates great generalization ability in several zero-shot dataset transferring experiments and show great potential in open-vocabulary and data-efficient setting. Code and demo are available at https://xuxw98.github.io/ESAM/, with only one RTX 3090 GPU required for training and evaluation.
MOS: Modeling Object-Scene Associations in Generalized Category Discovery
Generalized Category Discovery (GCD) is a classification task that aims to classify both base and novel classes in unlabeled images, using knowledge from a labeled dataset. In GCD, previous research overlooks scene information or treats it as noise, reducing its impact during model training. However, in this paper, we argue that scene information should be viewed as a strong prior for inferring novel classes. We attribute the misinterpretation of scene information to a key factor: the Ambiguity Challenge inherent in GCD. Specifically, novel objects in base scenes might be wrongly classified into base categories, while base objects in novel scenes might be mistakenly recognized as novel categories. Once the ambiguity challenge is addressed, scene information can reach its full potential, significantly enhancing the performance of GCD models. To more effectively leverage scene information, we propose the Modeling Object-Scene Associations (MOS) framework, which utilizes a simple MLP-based scene-awareness module to enhance GCD performance. It achieves an exceptional average accuracy improvement of 4% on the challenging fine-grained datasets compared to state-of-the-art methods, emphasizing its superior performance in fine-grained GCD. The code is publicly available at https://github.com/JethroPeng/MOS.
Generalized Mean Absolute Directional Loss as a Solution to Overfitting and High Transaction Costs in Machine Learning Models Used in High-Frequency Algorithmic Investment Strategies
Regardless of the selected asset class and the level of model complexity (Transformer versus LSTM versus Perceptron/RNN), the GMADL loss function produces superior results than standard MSE-type loss functions and has better numerical properties in the context of optimization than MADL. Better results mean the possibility of achieving a higher risk-weighted return based on buy and sell signals built on forecasts generated by a given theoretical model estimated using the GMADL versus MSE or MADL function. In practice, GMADL solves the problem of selecting the most preferable feature in both classification and regression problems, improving the performance of each estimation. What is important is that, through additional parameterization, GMADL also solves the problem of optimizing investment systems on high-frequency data in such a way that they focus on strategy variants that contain fewer transactions so that transaction costs do not reduce the effectiveness of a given strategy to zero. Moreover, the implementation leverages state-of-the-art machine learning tools, including frameworks for hyperparameter tuning, architecture testing, and walk-forward optimization, ensuring robust and scalable solutions for real-world algorithmic trading.
Generalized Few-shot 3D Point Cloud Segmentation with Vision-Language Model
Generalized few-shot 3D point cloud segmentation (GFS-PCS) adapts models to new classes with few support samples while retaining base class segmentation. Existing GFS-PCS methods enhance prototypes via interacting with support or query features but remain limited by sparse knowledge from few-shot samples. Meanwhile, 3D vision-language models (3D VLMs), generalizing across open-world novel classes, contain rich but noisy novel class knowledge. In this work, we introduce a GFS-PCS framework that synergizes dense but noisy pseudo-labels from 3D VLMs with precise yet sparse few-shot samples to maximize the strengths of both, named GFS-VL. Specifically, we present a prototype-guided pseudo-label selection to filter low-quality regions, followed by an adaptive infilling strategy that combines knowledge from pseudo-label contexts and few-shot samples to adaptively label the filtered, unlabeled areas. Additionally, we design a novel-base mix strategy to embed few-shot samples into training scenes, preserving essential context for improved novel class learning. Moreover, recognizing the limited diversity in current GFS-PCS benchmarks, we introduce two challenging benchmarks with diverse novel classes for comprehensive generalization evaluation. Experiments validate the effectiveness of our framework across models and datasets. Our approach and benchmarks provide a solid foundation for advancing GFS-PCS in the real world. The code is at https://github.com/ZhaochongAn/GFS-VL
FD2Talk: Towards Generalized Talking Head Generation with Facial Decoupled Diffusion Model
Talking head generation is a significant research topic that still faces numerous challenges. Previous works often adopt generative adversarial networks or regression models, which are plagued by generation quality and average facial shape problem. Although diffusion models show impressive generative ability, their exploration in talking head generation remains unsatisfactory. This is because they either solely use the diffusion model to obtain an intermediate representation and then employ another pre-trained renderer, or they overlook the feature decoupling of complex facial details, such as expressions, head poses and appearance textures. Therefore, we propose a Facial Decoupled Diffusion model for Talking head generation called FD2Talk, which fully leverages the advantages of diffusion models and decouples the complex facial details through multi-stages. Specifically, we separate facial details into motion and appearance. In the initial phase, we design the Diffusion Transformer to accurately predict motion coefficients from raw audio. These motions are highly decoupled from appearance, making them easier for the network to learn compared to high-dimensional RGB images. Subsequently, in the second phase, we encode the reference image to capture appearance textures. The predicted facial and head motions and encoded appearance then serve as the conditions for the Diffusion UNet, guiding the frame generation. Benefiting from decoupling facial details and fully leveraging diffusion models, extensive experiments substantiate that our approach excels in enhancing image quality and generating more accurate and diverse results compared to previous state-of-the-art methods.
Density Modeling of Images using a Generalized Normalization Transformation
We introduce a parametric nonlinear transformation that is well-suited for Gaussianizing data from natural images. The data are linearly transformed, and each component is then normalized by a pooled activity measure, computed by exponentiating a weighted sum of rectified and exponentiated components and a constant. We optimize the parameters of the full transformation (linear transform, exponents, weights, constant) over a database of natural images, directly minimizing the negentropy of the responses. The optimized transformation substantially Gaussianizes the data, achieving a significantly smaller mutual information between transformed components than alternative methods including ICA and radial Gaussianization. The transformation is differentiable and can be efficiently inverted, and thus induces a density model on images. We show that samples of this model are visually similar to samples of natural image patches. We demonstrate the use of the model as a prior probability density that can be used to remove additive noise. Finally, we show that the transformation can be cascaded, with each layer optimized using the same Gaussianization objective, thus offering an unsupervised method of optimizing a deep network architecture.
ToolAlpaca: Generalized Tool Learning for Language Models with 3000 Simulated Cases
Enabling large language models to utilize real-world tools effectively is crucial for achieving embodied intelligence. Existing approaches to tool learning have either primarily relied on extremely large language models, such as GPT-4, to attain generalized tool-use abilities in a zero-shot manner, or utilized supervised learning to train limited scopes of tools on compact models. However, it remains uncertain whether smaller language models can achieve generalized tool-use abilities without tool-specific training. To address this question, this paper introduces ToolAlpaca, a novel framework designed to automatically generate a diverse tool-use corpus and learn generalized tool-use abilities on compact language models with minimal human intervention. Specifically, ToolAlpaca first automatically creates a highly diversified tool-use corpus by building a multi-agent simulation environment. The corpus contains 3938 tool-use instances from more than 400 real-world tool APIs spanning 50 distinct categories. Subsequently, the constructed corpus is employed to fine-tune compact language models, resulting in two models, namely ToolAlpaca-7B and ToolAlpaca-13B, respectively. Finally, we evaluate the ability of these models to utilize previously unseen tools without specific training. Experimental results demonstrate that ToolAlpaca achieves effective generalized tool-use capabilities comparable to those of extremely large language models like GPT-3.5, demonstrating that learning generalized tool-use ability is feasible for compact language models.
Generalized Planning in PDDL Domains with Pretrained Large Language Models
Recent work has considered whether large language models (LLMs) can function as planners: given a task, generate a plan. We investigate whether LLMs can serve as generalized planners: given a domain and training tasks, generate a program that efficiently produces plans for other tasks in the domain. In particular, we consider PDDL domains and use GPT-4 to synthesize Python programs. We also consider (1) Chain-of-Thought (CoT) summarization, where the LLM is prompted to summarize the domain and propose a strategy in words before synthesizing the program; and (2) automated debugging, where the program is validated with respect to the training tasks, and in case of errors, the LLM is re-prompted with four types of feedback. We evaluate this approach in seven PDDL domains and compare it to four ablations and four baselines. Overall, we find that GPT-4 is a surprisingly powerful generalized planner. We also conclude that automated debugging is very important, that CoT summarization has non-uniform impact, that GPT-4 is far superior to GPT-3.5, and that just two training tasks are often sufficient for strong generalization.
Generalized Denoising Auto-Encoders as Generative Models
Recent work has shown how denoising and contractive autoencoders implicitly capture the structure of the data-generating density, in the case where the corruption noise is Gaussian, the reconstruction error is the squared error, and the data is continuous-valued. This has led to various proposals for sampling from this implicitly learned density function, using Langevin and Metropolis-Hastings MCMC. However, it remained unclear how to connect the training procedure of regularized auto-encoders to the implicit estimation of the underlying data-generating distribution when the data are discrete, or using other forms of corruption process and reconstruction errors. Another issue is the mathematical justification which is only valid in the limit of small corruption noise. We propose here a different attack on the problem, which deals with all these issues: arbitrary (but noisy enough) corruption, arbitrary reconstruction loss (seen as a log-likelihood), handling both discrete and continuous-valued variables, and removing the bias due to non-infinitesimal corruption noise (or non-infinitesimal contractive penalty).
mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval
We present systematic efforts in building long-context multilingual text representation model (TRM) and reranker from scratch for text retrieval. We first introduce a text encoder (base size) enhanced with RoPE and unpadding, pre-trained in a native 8192-token context (longer than 512 of previous multilingual encoders). Then we construct a hybrid TRM and a cross-encoder reranker by contrastive learning. Evaluations show that our text encoder outperforms the same-sized previous state-of-the-art XLM-R. Meanwhile, our TRM and reranker match the performance of large-sized state-of-the-art BGE-M3 models and achieve better results on long-context retrieval benchmarks. Further analysis demonstrate that our proposed models exhibit higher efficiency during both training and inference. We believe their efficiency and effectiveness could benefit various researches and industrial applications.
Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey
Detecting out-of-distribution (OOD) samples is crucial for ensuring the safety of machine learning systems and has shaped the field of OOD detection. Meanwhile, several other problems are closely related to OOD detection, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). To unify these problems, a generalized OOD detection framework was proposed, taxonomically categorizing these five problems. However, Vision Language Models (VLMs) such as CLIP have significantly changed the paradigm and blurred the boundaries between these fields, again confusing researchers. In this survey, we first present a generalized OOD detection v2, encapsulating the evolution of AD, ND, OSR, OOD detection, and OD in the VLM era. Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD. In addition, we also highlight the significant shift in the definition, problem settings, and benchmarks; we thus feature a comprehensive review of the methodology for OOD detection, including the discussion over other related tasks to clarify their relationship to OOD detection. Finally, we explore the advancements in the emerging Large Vision Language Model (LVLM) era, such as GPT-4V. We conclude this survey with open challenges and future directions.
YOLO9tr: A Lightweight Model for Pavement Damage Detection Utilizing a Generalized Efficient Layer Aggregation Network and Attention Mechanism
Maintaining road pavement integrity is crucial for ensuring safe and efficient transportation. Conventional methods for assessing pavement condition are often laborious and susceptible to human error. This paper proposes YOLO9tr, a novel lightweight object detection model for pavement damage detection, leveraging the advancements of deep learning. YOLO9tr is based on the YOLOv9 architecture, incorporating a partial attention block that enhances feature extraction and attention mechanisms, leading to improved detection performance in complex scenarios. The model is trained on a comprehensive dataset comprising road damage images from multiple countries, including an expanded set of damage categories beyond the standard four. This broadened classification range allows for a more accurate and realistic assessment of pavement conditions. Comparative analysis demonstrates YOLO9tr's superior precision and inference speed compared to state-of-the-art models like YOLO8, YOLO9 and YOLO10, achieving a balance between computational efficiency and detection accuracy. The model achieves a high frame rate of up to 136 FPS, making it suitable for real-time applications such as video surveillance and automated inspection systems. The research presents an ablation study to analyze the impact of architectural modifications and hyperparameter variations on model performance, further validating the effectiveness of the partial attention block. The results highlight YOLO9tr's potential for practical deployment in real-time pavement condition monitoring, contributing to the development of robust and efficient solutions for maintaining safe and functional road infrastructure.
EasyRef: Omni-Generalized Group Image Reference for Diffusion Models via Multimodal LLM
Significant achievements in personalization of diffusion models have been witnessed. Conventional tuning-free methods mostly encode multiple reference images by averaging their image embeddings as the injection condition, but such an image-independent operation cannot perform interaction among images to capture consistent visual elements within multiple references. Although the tuning-based Low-Rank Adaptation (LoRA) can effectively extract consistent elements within multiple images through the training process, it necessitates specific finetuning for each distinct image group. This paper introduces EasyRef, a novel plug-and-play adaptation method that enables diffusion models to be conditioned on multiple reference images and the text prompt. To effectively exploit consistent visual elements within multiple images, we leverage the multi-image comprehension and instruction-following capabilities of the multimodal large language model (MLLM), prompting it to capture consistent visual elements based on the instruction. Besides, injecting the MLLM's representations into the diffusion process through adapters can easily generalize to unseen domains, mining the consistent visual elements within unseen data. To mitigate computational costs and enhance fine-grained detail preservation, we introduce an efficient reference aggregation strategy and a progressive training scheme. Finally, we introduce MRBench, a new multi-reference image generation benchmark. Experimental results demonstrate EasyRef surpasses both tuning-free methods like IP-Adapter and tuning-based methods like LoRA, achieving superior aesthetic quality and robust zero-shot generalization across diverse domains.
A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily
Large Language Models (LLMs), such as ChatGPT and GPT-4, are designed to provide useful and safe responses. However, adversarial prompts known as 'jailbreaks' can circumvent safeguards, leading LLMs to generate potentially harmful content. Exploring jailbreak prompts can help to better reveal the weaknesses of LLMs and further steer us to secure them. Unfortunately, existing jailbreak methods either suffer from intricate manual design or require optimization on other white-box models, which compromises either generalization or efficiency. In this paper, we generalize jailbreak prompt attacks into two aspects: (1) Prompt Rewriting and (2) Scenario Nesting. Based on this, we propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts. Extensive experiments demonstrate that ReNeLLM significantly improves the attack success rate while greatly reducing the time cost compared to existing baselines. Our study also reveals the inadequacy of current defense methods in safeguarding LLMs. Finally, we analyze the failure of LLMs defense from the perspective of prompt execution priority, and propose corresponding defense strategies. We hope that our research can catalyze both the academic community and LLMs developers towards the provision of safer and more regulated LLMs. The code is available at https://github.com/NJUNLP/ReNeLLM.
Generalized Fisher-Weighted SVD: Scalable Kronecker-Factored Fisher Approximation for Compressing Large Language Models
The Fisher information is a fundamental concept for characterizing the sensitivity of parameters in neural networks. However, leveraging the full observed Fisher information is too expensive for large models, so most methods rely on simple diagonal approximations. While efficient, this approach ignores parameter correlations, often resulting in reduced performance on downstream tasks. In this work, we mitigate these limitations and propose Generalized Fisher-Weighted SVD (GFWSVD), a post-training LLM compression technique that accounts for both diagonal and off-diagonal elements of the Fisher information matrix, providing a more accurate reflection of parameter importance. To make the method tractable, we introduce a scalable adaptation of the Kronecker-factored approximation algorithm for the observed Fisher information. We demonstrate the effectiveness of our method on LLM compression, showing improvements over existing compression baselines. For example, at a 20 compression rate on the MMLU benchmark, our method outperforms FWSVD, which is based on a diagonal approximation of the Fisher information, by 5 percent, SVD-LLM by 3 percent, and ASVD by 6 percent compression rate.
KwaiAgents: Generalized Information-seeking Agent System with Large Language Models
Driven by curiosity, humans have continually sought to explore and understand the world around them, leading to the invention of various tools to satiate this inquisitiveness. Despite not having the capacity to process and memorize vast amounts of information in their brains, humans excel in critical thinking, planning, reflection, and harnessing available tools to interact with and interpret the world, enabling them to find answers efficiently. The recent advancements in large language models (LLMs) suggest that machines might also possess the aforementioned human-like capabilities, allowing them to exhibit powerful abilities even with a constrained parameter count. In this paper, we introduce KwaiAgents, a generalized information-seeking agent system based on LLMs. Within KwaiAgents, we propose an agent system that employs LLMs as its cognitive core, which is capable of understanding a user's query, behavior guidelines, and referencing external documents. The agent can also update and retrieve information from its internal memory, plan and execute actions using a time-aware search-browse toolkit, and ultimately provide a comprehensive response. We further investigate the system's performance when powered by LLMs less advanced than GPT-4, and introduce the Meta-Agent Tuning (MAT) framework, designed to ensure even an open-sourced 7B or 13B model performs well among many agent systems. We exploit both benchmark and human evaluations to systematically validate these capabilities. Extensive experiments show the superiority of our agent system compared to other autonomous agents and highlight the enhanced generalized agent-abilities of our fine-tuned LLMs.
FreeMorph: Tuning-Free Generalized Image Morphing with Diffusion Model
We present FreeMorph, the first tuning-free method for image morphing that accommodates inputs with different semantics or layouts. Unlike existing methods that rely on finetuning pre-trained diffusion models and are limited by time constraints and semantic/layout discrepancies, FreeMorph delivers high-fidelity image morphing without requiring per-instance training. Despite their efficiency and potential, tuning-free methods face challenges in maintaining high-quality results due to the non-linear nature of the multi-step denoising process and biases inherited from the pre-trained diffusion model. In this paper, we introduce FreeMorph to address these challenges by integrating two key innovations. 1) We first propose a guidance-aware spherical interpolation design that incorporates explicit guidance from the input images by modifying the self-attention modules, thereby addressing identity loss and ensuring directional transitions throughout the generated sequence. 2) We further introduce a step-oriented variation trend that blends self-attention modules derived from each input image to achieve controlled and consistent transitions that respect both inputs. Our extensive evaluations demonstrate that FreeMorph outperforms existing methods, being 10x ~ 50x faster and establishing a new state-of-the-art for image morphing.
GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints
Multi-query attention (MQA), which only uses a single key-value head, drastically speeds up decoder inference. However, MQA can lead to quality degradation, and moreover it may not be desirable to train a separate model just for faster inference. We (1) propose a recipe for uptraining existing multi-head language model checkpoints into models with MQA using 5% of original pre-training compute, and (2) introduce grouped-query attention (GQA), a generalization of multi-query attention which uses an intermediate (more than one, less than number of query heads) number of key-value heads. We show that uptrained GQA achieves quality close to multi-head attention with comparable speed to MQA.
Text-conditioned State Space Model For Domain-generalized Change Detection Visual Question Answering
The Earth's surface is constantly changing, and detecting these changes provides valuable insights that benefit various aspects of human society. While traditional change detection methods have been employed to detect changes from bi-temporal images, these approaches typically require expert knowledge for accurate interpretation. To enable broader and more flexible access to change information by non-expert users, the task of Change Detection Visual Question Answering (CDVQA) has been introduced. However, existing CDVQA methods have been developed under the assumption that training and testing datasets share similar distributions. This assumption does not hold in real-world applications, where domain shifts often occur. In this paper, the CDVQA task is revisited with a focus on addressing domain shift. To this end, a new multi-modal and multi-domain dataset, BrightVQA, is introduced to facilitate domain generalization research in CDVQA. Furthermore, a novel state space model, termed Text-Conditioned State Space Model (TCSSM), is proposed. The TCSSM framework is designed to leverage both bi-temporal imagery and geo-disaster-related textual information in an unified manner to extract domain-invariant features across domains. Input-dependent parameters existing in TCSSM are dynamically predicted by using both bi-temporal images and geo-disaster-related description, thereby facilitating the alignment between bi-temporal visual data and the associated textual descriptions. Extensive experiments are conducted to evaluate the proposed method against state-of-the-art models, and superior performance is consistently demonstrated. The code and dataset will be made publicly available upon acceptance at https://github.com/Elman295/TCSSM.
WeatherDG: LLM-assisted Diffusion Model for Procedural Weather Generation in Domain-Generalized Semantic Segmentation
In this work, we propose a novel approach, namely WeatherDG, that can generate realistic, weather-diverse, and driving-screen images based on the cooperation of two foundation models, i.e, Stable Diffusion (SD) and Large Language Model (LLM). Specifically, we first fine-tune the SD with source data, aligning the content and layout of generated samples with real-world driving scenarios. Then, we propose a procedural prompt generation method based on LLM, which can enrich scenario descriptions and help SD automatically generate more diverse, detailed images. In addition, we introduce a balanced generation strategy, which encourages the SD to generate high-quality objects of tailed classes under various weather conditions, such as riders and motorcycles. This segmentation-model-agnostic method can improve the generalization ability of existing models by additionally adapting them with the generated synthetic data. Experiments on three challenging datasets show that our method can significantly improve the segmentation performance of different state-of-the-art models on target domains. Notably, in the setting of ''Cityscapes to ACDC'', our method improves the baseline HRDA by 13.9% in mIoU.
Synthetic Data (Almost) from Scratch: Generalized Instruction Tuning for Language Models
We introduce Generalized Instruction Tuning (called GLAN), a general and scalable method for instruction tuning of Large Language Models (LLMs). Unlike prior work that relies on seed examples or existing datasets to construct instruction tuning data, GLAN exclusively utilizes a pre-curated taxonomy of human knowledge and capabilities as input and generates large-scale synthetic instruction data across all disciplines. Specifically, inspired by the systematic structure in human education system, we build the taxonomy by decomposing human knowledge and capabilities to various fields, sub-fields and ultimately, distinct disciplines semi-automatically, facilitated by LLMs. Subsequently, we generate a comprehensive list of subjects for every discipline and proceed to design a syllabus tailored to each subject, again utilizing LLMs. With the fine-grained key concepts detailed in every class session of the syllabus, we are able to generate diverse instructions with a broad coverage across the entire spectrum of human knowledge and skills. Extensive experiments on large language models (e.g., Mistral) demonstrate that GLAN excels in multiple dimensions from mathematical reasoning, coding, academic exams, logical reasoning to general instruction following without using task-specific training data of these tasks. In addition, GLAN allows for easy customization and new fields or skills can be added by simply incorporating a new node into our taxonomy.
Enhancing Small Language Models for Cross-Lingual Generalized Zero-Shot Classification with Soft Prompt Tuning
In NLP, Zero-Shot Classification (ZSC) has become essential for enabling models to classify text into categories unseen during training, particularly in low-resource languages and domains where labeled data is scarce. While pretrained language models (PLMs) have shown promise in ZSC, they often rely on large training datasets or external knowledge, limiting their applicability in multilingual and low-resource scenarios. Recent approaches leveraging natural language prompts reduce the dependence on large training datasets but struggle to effectively incorporate available labeled data from related classification tasks, especially when these datasets originate from different languages or distributions. Moreover, existing prompt-based methods typically rely on manually crafted prompts in a specific language, limiting their adaptability and effectiveness in cross-lingual settings. To address these challenges, we introduce RoSPrompt, a lightweight and data-efficient approach for training soft prompts that enhance cross-lingual ZSC while ensuring robust generalization across data distribution shifts. RoSPrompt is designed for small multilingual PLMs, enabling them to leverage high-resource languages to improve performance in low-resource settings without requiring extensive fine-tuning or high computational costs. We evaluate our approach on multiple multilingual PLMs across datasets covering 106 languages, demonstrating strong cross-lingual transfer performance and robust generalization capabilities over unseen classes.
FisherTune: Fisher-Guided Robust Tuning of Vision Foundation Models for Domain Generalized Segmentation
Vision Foundation Models (VFMs) excel in generalization due to large-scale pretraining, but fine-tuning them for Domain Generalized Semantic Segmentation (DGSS) while maintaining this ability remains challenging. Existing approaches either selectively fine-tune parameters or freeze the VFMs and update only the adapters, both of which may underutilize the VFMs' full potential in DGSS tasks. We observe that domain-sensitive parameters in VFMs, arising from task and distribution differences, can hinder generalization. To address this, we propose FisherTune, a robust fine-tuning method guided by the Domain-Related Fisher Information Matrix (DR-FIM). DR-FIM measures parameter sensitivity across tasks and domains, enabling selective updates that preserve generalization and enhance DGSS adaptability. FisherTune incorporates variational inference to stabilize DR-FIM estimation, treating parameters as Gaussian-distributed variables and leveraging pre-trained priors. Extensive experiments show that FisherTune achieves superior cross-domain segmentation while maintaining generalization, outperforming selective-parameter and adapter-based methods.
Mamba as a Bridge: Where Vision Foundation Models Meet Vision Language Models for Domain-Generalized Semantic Segmentation
Vision Foundation Models (VFMs) and Vision-Language Models (VLMs) have gained traction in Domain Generalized Semantic Segmentation (DGSS) due to their strong generalization capabilities. However, existing DGSS methods often rely exclusively on either VFMs or VLMs, overlooking their complementary strengths. VFMs (e.g., DINOv2) excel at capturing fine-grained features, while VLMs (e.g., CLIP) provide robust text alignment but struggle with coarse granularity. Despite their complementary strengths, effectively integrating VFMs and VLMs with attention mechanisms is challenging, as the increased patch tokens complicate long-sequence modeling. To address this, we propose MFuser, a novel Mamba-based fusion framework that efficiently combines the strengths of VFMs and VLMs while maintaining linear scalability in sequence length. MFuser consists of two key components: MVFuser, which acts as a co-adapter to jointly fine-tune the two models by capturing both sequential and spatial dynamics; and MTEnhancer, a hybrid attention-Mamba module that refines text embeddings by incorporating image priors. Our approach achieves precise feature locality and strong text alignment without incurring significant computational overhead. Extensive experiments demonstrate that MFuser significantly outperforms state-of-the-art DGSS methods, achieving 68.20 mIoU on synthetic-to-real and 71.87 mIoU on real-to-real benchmarks. The code is available at https://github.com/devinxzhang/MFuser.
Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control
We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning.
FRoG: Evaluating Fuzzy Reasoning of Generalized Quantifiers in Large Language Models
Fuzzy reasoning is vital due to the frequent use of imprecise information in daily contexts. However, the ability of current large language models (LLMs) to handle such reasoning remains largely uncharted. In this paper, we introduce a new benchmark, FRoG, for fuzzy reasoning, featuring real-world mathematical word problems that incorporate generalized quantifiers. Our experimental findings reveal that fuzzy reasoning continues to pose significant challenges for LLMs. Moreover, we find that existing methods designed to enhance reasoning do not consistently improve performance in tasks involving fuzzy logic. Additionally, our results show an inverse scaling effect in the performance of LLMs on FRoG. Interestingly, we also demonstrate that strong mathematical reasoning skills are not necessarily indicative of success on our benchmark.
Stronger, Fewer, & Superior: Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation
In this paper, we first assess and harness various Vision Foundation Models (VFMs) in the context of Domain Generalized Semantic Segmentation (DGSS). Driven by the motivation that Leveraging Stronger pre-trained models and Fewer trainable parameters for Superior generalizability, we introduce a robust fine-tuning approach, namely Rein, to parameter-efficiently harness VFMs for DGSS. Built upon a set of trainable tokens, each linked to distinct instances, Rein precisely refines and forwards the feature maps from each layer to the next layer within the backbone. This process produces diverse refinements for different categories within a single image. With fewer trainable parameters, Rein efficiently fine-tunes VFMs for DGSS tasks, surprisingly surpassing full parameter fine-tuning. Extensive experiments across various settings demonstrate that Rein significantly outperforms state-of-the-art methods. Remarkably, with just an extra 1% of trainable parameters within the frozen backbone, Rein achieves a mIoU of 78.4% on the Cityscapes, without accessing any real urban-scene datasets.Code is available at https://github.com/w1oves/Rein.git.
Generalized Lightness Adaptation with Channel Selective Normalization
Lightness adaptation is vital to the success of image processing to avoid unexpected visual deterioration, which covers multiple aspects, e.g., low-light image enhancement, image retouching, and inverse tone mapping. Existing methods typically work well on their trained lightness conditions but perform poorly in unknown ones due to their limited generalization ability. To address this limitation, we propose a novel generalized lightness adaptation algorithm that extends conventional normalization techniques through a channel filtering design, dubbed Channel Selective Normalization (CSNorm). The proposed CSNorm purposely normalizes the statistics of lightness-relevant channels and keeps other channels unchanged, so as to improve feature generalization and discrimination. To optimize CSNorm, we propose an alternating training strategy that effectively identifies lightness-relevant channels. The model equipped with our CSNorm only needs to be trained on one lightness condition and can be well generalized to unknown lightness conditions. Experimental results on multiple benchmark datasets demonstrate the effectiveness of CSNorm in enhancing the generalization ability for the existing lightness adaptation methods. Code is available at https://github.com/mdyao/CSNorm.
Diff9D: Diffusion-Based Domain-Generalized Category-Level 9-DoF Object Pose Estimation
Nine-degrees-of-freedom (9-DoF) object pose and size estimation is crucial for enabling augmented reality and robotic manipulation. Category-level methods have received extensive research attention due to their potential for generalization to intra-class unknown objects. However, these methods require manual collection and labeling of large-scale real-world training data. To address this problem, we introduce a diffusion-based paradigm for domain-generalized category-level 9-DoF object pose estimation. Our motivation is to leverage the latent generalization ability of the diffusion model to address the domain generalization challenge in object pose estimation. This entails training the model exclusively on rendered synthetic data to achieve generalization to real-world scenes. We propose an effective diffusion model to redefine 9-DoF object pose estimation from a generative perspective. Our model does not require any 3D shape priors during training or inference. By employing the Denoising Diffusion Implicit Model, we demonstrate that the reverse diffusion process can be executed in as few as 3 steps, achieving near real-time performance. Finally, we design a robotic grasping system comprising both hardware and software components. Through comprehensive experiments on two benchmark datasets and the real-world robotic system, we show that our method achieves state-of-the-art domain generalization performance. Our code will be made public at https://github.com/CNJianLiu/Diff9D.
BioT5+: Towards Generalized Biological Understanding with IUPAC Integration and Multi-task Tuning
Recent research trends in computational biology have increasingly focused on integrating text and bio-entity modeling, especially in the context of molecules and proteins. However, previous efforts like BioT5 faced challenges in generalizing across diverse tasks and lacked a nuanced understanding of molecular structures, particularly in their textual representations (e.g., IUPAC). This paper introduces BioT5+, an extension of the BioT5 framework, tailored to enhance biological research and drug discovery. BioT5+ incorporates several novel features: integration of IUPAC names for molecular understanding, inclusion of extensive bio-text and molecule data from sources like bioRxiv and PubChem, the multi-task instruction tuning for generality across tasks, and a novel numerical tokenization technique for improved processing of numerical data. These enhancements allow BioT5+ to bridge the gap between molecular representations and their textual descriptions, providing a more holistic understanding of biological entities, and largely improving the grounded reasoning of bio-text and bio-sequences. The model is pre-trained and fine-tuned with a large number of experiments, including 3 types of problems (classification, regression, generation), 15 kinds of tasks, and 21 total benchmark datasets, demonstrating the remarkable performance and state-of-the-art results in most cases. BioT5+ stands out for its ability to capture intricate relationships in biological data, thereby contributing significantly to bioinformatics and computational biology. Our code is available at https://github.com/QizhiPei/BioT5.
Generalized Multilingual Text-to-Speech Generation with Language-Aware Style Adaptation
Text-to-Speech (TTS) models can generate natural, human-like speech across multiple languages by transforming phonemes into waveforms. However, multilingual TTS remains challenging due to discrepancies in phoneme vocabularies and variations in prosody and speaking style across languages. Existing approaches either train separate models for each language, which achieve high performance at the cost of increased computational resources, or use a unified model for multiple languages that struggles to capture fine-grained, language-specific style variations. In this work, we propose LanStyleTTS, a non-autoregressive, language-aware style adaptive TTS framework that standardizes phoneme representations and enables fine-grained, phoneme-level style control across languages. This design supports a unified multilingual TTS model capable of producing accurate and high-quality speech without the need to train language-specific models. We evaluate LanStyleTTS by integrating it with several state-of-the-art non-autoregressive TTS architectures. Results show consistent performance improvements across different model backbones. Furthermore, we investigate a range of acoustic feature representations, including mel-spectrograms and autoencoder-derived latent features. Our experiments demonstrate that latent encodings can significantly reduce model size and computational cost while preserving high-quality speech generation.
Instance-Aware Generalized Referring Expression Segmentation
Recent works on Generalized Referring Expression Segmentation (GRES) struggle with handling complex expressions referring to multiple distinct objects. This is because these methods typically employ an end-to-end foreground-background segmentation and lack a mechanism to explicitly differentiate and associate different object instances to the text query. To this end, we propose InstAlign, a method that incorporates object-level reasoning into the segmentation process. Our model leverages both text and image inputs to extract a set of object-level tokens that capture both the semantic information in the input prompt and the objects within the image. By modeling the text-object alignment via instance-level supervision, each token uniquely represents an object segment in the image, while also aligning with relevant semantic information from the text. Extensive experiments on the gRefCOCO and Ref-ZOM benchmarks demonstrate that our method significantly advances state-of-the-art performance, setting a new standard for precise and flexible GRES.
A Generalized Bandsplit Neural Network for Cinematic Audio Source Separation
Cinematic audio source separation is a relatively new subtask of audio source separation, with the aim of extracting the dialogue, music, and effects stems from their mixture. In this work, we developed a model generalizing the Bandsplit RNN for any complete or overcomplete partitions of the frequency axis. Psychoacoustically motivated frequency scales were used to inform the band definitions which are now defined with redundancy for more reliable feature extraction. A loss function motivated by the signal-to-noise ratio and the sparsity-promoting property of the 1-norm was proposed. We additionally exploit the information-sharing property of a common-encoder setup to reduce computational complexity during both training and inference, improve separation performance for hard-to-generalize classes of sounds, and allow flexibility during inference time with detachable decoders. Our best model sets the state of the art on the Divide and Remaster dataset with performance above the ideal ratio mask for the dialogue stem.
On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes
Knowledge distillation (KD) is widely used for compressing a teacher model to reduce its inference cost and memory footprint, by training a smaller student model. However, current KD methods for auto-regressive sequence models suffer from distribution mismatch between output sequences seen during training and those generated by the student during inference. To address this issue, we introduce Generalized Knowledge Distillation (GKD). Instead of solely relying on a fixed set of output sequences, GKD trains the student on its self-generated output sequences by leveraging feedback from the teacher on such sequences. Unlike supervised KD approaches, GKD also offers the flexibility to employ alternative loss functions between the student and teacher, which can be useful when the student lacks the expressivity to mimic the teacher's distribution. Furthermore, GKD facilitates the seamless integration of distillation with RL fine-tuning (RLHF). We demonstrate the efficacy of GKD for distilling auto-regressive language models on summarization, translation, and arithmetic reasoning tasks, and task-agnostic distillation for instruction-tuning.
COSMIC: Generalized Refusal Direction Identification in LLM Activations
Large Language Models (LLMs) encode behaviors such as refusal within their activation space, yet identifying these behaviors remains a significant challenge. Existing methods often rely on predefined refusal templates detectable in output tokens or require manual analysis. We introduce COSMIC (Cosine Similarity Metrics for Inversion of Concepts), an automated framework for direction selection that identifies viable steering directions and target layers using cosine similarity - entirely independent of model outputs. COSMIC achieves steering performance comparable to prior methods without requiring assumptions about a model's refusal behavior, such as the presence of specific refusal tokens. It reliably identifies refusal directions in adversarial settings and weakly aligned models, and is capable of steering such models toward safer behavior with minimal increase in false refusals, demonstrating robustness across a wide range of alignment conditions.
Generalized Decoupled Learning for Enhancing Open-Vocabulary Dense Perception
Dense visual perception tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense perception often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. The context features are enhanced by jointly distilling semantic correlations from Vision Foundation Models (VFMs) and object integrity cues from diffusion models, thereby enhancing spatial consistency. In parallel, the content features are aligned with image crop representations and constrained by region correlations from VFMs to improve local discriminability. Extensive experiments demonstrate that DeCLIP establishes a solid foundation for open-vocabulary dense perception, consistently achieving state-of-the-art performance across a broad spectrum of tasks, including 2D detection and segmentation, 3D instance segmentation, video instance segmentation, and 6D object pose estimation. Code is available at https://github.com/xiaomoguhz/DeCLIP
Generalized Interpolating Discrete Diffusion
While state-of-the-art language models achieve impressive results through next-token prediction, they have inherent limitations such as the inability to revise already generated tokens. This has prompted exploration of alternative approaches such as discrete diffusion. However, masked diffusion, which has emerged as a popular choice due to its simplicity and effectiveness, reintroduces this inability to revise words. To overcome this, we generalize masked diffusion and derive the theoretical backbone of a family of general interpolating discrete diffusion (GIDD) processes offering greater flexibility in the design of the noising processes. Leveraging a novel diffusion ELBO, we achieve compute-matched state-of-the-art performance in diffusion language modeling. Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise, leading to improved sample quality and unlocking the ability for the model to correct its own mistakes, an area where autoregressive models notoriously have struggled. Our code and models are open-source: https://github.com/dvruette/gidd/
Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL
Most existing works focus on direct perturbations to the victim's state/action or the underlying transition dynamics to demonstrate the vulnerability of reinforcement learning agents to adversarial attacks. However, such direct manipulations may not be always realizable. In this paper, we consider a multi-agent setting where a well-trained victim agent nu is exploited by an attacker controlling another agent alpha with an adversarial policy. Previous models do not account for the possibility that the attacker may only have partial control over alpha or that the attack may produce easily detectable "abnormal" behaviors. Furthermore, there is a lack of provably efficient defenses against these adversarial policies. To address these limitations, we introduce a generalized attack framework that has the flexibility to model to what extent the adversary is able to control the agent, and allows the attacker to regulate the state distribution shift and produce stealthier adversarial policies. Moreover, we offer a provably efficient defense with polynomial convergence to the most robust victim policy through adversarial training with timescale separation. This stands in sharp contrast to supervised learning, where adversarial training typically provides only empirical defenses. Using the Robosumo competition experiments, we show that our generalized attack formulation results in much stealthier adversarial policies when maintaining the same winning rate as baselines. Additionally, our adversarial training approach yields stable learning dynamics and less exploitable victim policies.
Generalized Differentiable RANSAC
We propose nabla-RANSAC, a generalized differentiable RANSAC that allows learning the entire randomized robust estimation pipeline. The proposed approach enables the use of relaxation techniques for estimating the gradients in the sampling distribution, which are then propagated through a differentiable solver. The trainable quality function marginalizes over the scores from all the models estimated within nabla-RANSAC to guide the network learning accurate and useful inlier probabilities or to train feature detection and matching networks. Our method directly maximizes the probability of drawing a good hypothesis, allowing us to learn better sampling distribution. We test nabla-RANSAC on a number of real-world scenarios on fundamental and essential matrix estimation, both outdoors and indoors, with handcrafted and learning-based features. It is superior to the state-of-the-art in terms of accuracy while running at a similar speed to its less accurate alternatives. The code and trained models are available at https://github.com/weitong8591/differentiable_ransac.
DriveGEN: Generalized and Robust 3D Detection in Driving via Controllable Text-to-Image Diffusion Generation
In autonomous driving, vision-centric 3D detection aims to identify 3D objects from images. However, high data collection costs and diverse real-world scenarios limit the scale of training data. Once distribution shifts occur between training and test data, existing methods often suffer from performance degradation, known as Out-of-Distribution (OOD) problems. To address this, controllable Text-to-Image (T2I) diffusion offers a potential solution for training data enhancement, which is required to generate diverse OOD scenarios with precise 3D object geometry. Nevertheless, existing controllable T2I approaches are restricted by the limited scale of training data or struggle to preserve all annotated 3D objects. In this paper, we present DriveGEN, a method designed to improve the robustness of 3D detectors in Driving via Training-Free Controllable Text-to-Image Diffusion Generation. Without extra diffusion model training, DriveGEN consistently preserves objects with precise 3D geometry across diverse OOD generations, consisting of 2 stages: 1) Self-Prototype Extraction: We empirically find that self-attention features are semantic-aware but require accurate region selection for 3D objects. Thus, we extract precise object features via layouts to capture 3D object geometry, termed self-prototypes. 2) Prototype-Guided Diffusion: To preserve objects across various OOD scenarios, we perform semantic-aware feature alignment and shallow feature alignment during denoising. Extensive experiments demonstrate the effectiveness of DriveGEN in improving 3D detection. The code is available at https://github.com/Hongbin98/DriveGEN.
GOLD: Generalized Knowledge Distillation via Out-of-Distribution-Guided Language Data Generation
Knowledge distillation from LLMs is essential for the efficient deployment of language models. Prior works have proposed data generation using LLMs for preparing distilled models. We argue that generating data with LLMs is prone to sampling mainly from the center of original content distribution. This limitation hinders the distilled model from learning the true underlying data distribution and to forget the tails of the distributions (samples with lower probability). To this end, we propose GOLD, a task-agnostic data generation and knowledge distillation framework, which employs an iterative out-of-distribution-guided feedback mechanism for the LLM. As a result, the generated data improves the generalizability of distilled models. An energy-based OOD evaluation approach is also introduced to deal with noisy generated data. Our extensive experiments on 10 different classification and sequence-to-sequence tasks in NLP show that GOLD respectively outperforms prior arts and the LLM with an average improvement of 5% and 14%. We will also show that the proposed method is applicable to less explored and novel tasks. The code is available.
GSmoothFace: Generalized Smooth Talking Face Generation via Fine Grained 3D Face Guidance
Although existing speech-driven talking face generation methods achieve significant progress, they are far from real-world application due to the avatar-specific training demand and unstable lip movements. To address the above issues, we propose the GSmoothFace, a novel two-stage generalized talking face generation model guided by a fine-grained 3d face model, which can synthesize smooth lip dynamics while preserving the speaker's identity. Our proposed GSmoothFace model mainly consists of the Audio to Expression Prediction (A2EP) module and the Target Adaptive Face Translation (TAFT) module. Specifically, we first develop the A2EP module to predict expression parameters synchronized with the driven speech. It uses a transformer to capture the long-term audio context and learns the parameters from the fine-grained 3D facial vertices, resulting in accurate and smooth lip-synchronization performance. Afterward, the well-designed TAFT module, empowered by Morphology Augmented Face Blending (MAFB), takes the predicted expression parameters and target video as inputs to modify the facial region of the target video without distorting the background content. The TAFT effectively exploits the identity appearance and background context in the target video, which makes it possible to generalize to different speakers without retraining. Both quantitative and qualitative experiments confirm the superiority of our method in terms of realism, lip synchronization, and visual quality. See the project page for code, data, and request pre-trained models: https://zhanghm1995.github.io/GSmoothFace.
Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation
Enabling robots to autonomously navigate complex environments is essential for real-world deployment. Prior methods approach this problem by having the robot maintain an internal map of the world, and then use a localization and planning method to navigate through the internal map. However, these approaches often include a variety of assumptions, are computationally intensive, and do not learn from failures. In contrast, learning-based methods improve as the robot acts in the environment, but are difficult to deploy in the real-world due to their high sample complexity. To address the need to learn complex policies with few samples, we propose a generalized computation graph that subsumes value-based model-free methods and model-based methods, with specific instantiations interpolating between model-free and model-based. We then instantiate this graph to form a navigation model that learns from raw images and is sample efficient. Our simulated car experiments explore the design decisions of our navigation model, and show our approach outperforms single-step and N-step double Q-learning. We also evaluate our approach on a real-world RC car and show it can learn to navigate through a complex indoor environment with a few hours of fully autonomous, self-supervised training. Videos of the experiments and code can be found at github.com/gkahn13/gcg
R1-Onevision: Advancing Generalized Multimodal Reasoning through Cross-Modal Formalization
Large Language Models have demonstrated remarkable reasoning capability in complex textual tasks. However, multimodal reasoning, which requires integrating visual and textual information, remains a significant challenge. Existing visual-language models often struggle to effectively analyze and reason visual content, resulting in suboptimal performance on complex reasoning tasks. Moreover, the absence of comprehensive benchmarks hinders the accurate assessment of multimodal reasoning capabilities. In this paper, we introduce R1-Onevision, a multimodal reasoning model designed to bridge the gap between visual perception and deep reasoning. To achieve this, we propose a cross-modal reasoning pipeline that transforms images into formal textural representations, enabling precise language-based reasoning. Leveraging this pipeline, we construct the R1-Onevision dataset which provides detailed, step-by-step multimodal reasoning annotations across diverse domains. We further develop the R1-Onevision model through supervised fine-tuning and reinforcement learning to cultivate advanced reasoning and robust generalization abilities. To comprehensively evaluate multimodal reasoning performance across different grades, we introduce R1-Onevision-Bench, a benchmark aligned with human educational stages, covering exams from junior high school to university and beyond. Experimental results show that R1-Onevision achieves state-of-the-art performance, outperforming models such as GPT-4o and Qwen2.5-VL on multiple challenging multimodal reasoning benchmarks.
VisionGPT-3D: A Generalized Multimodal Agent for Enhanced 3D Vision Understanding
The evolution of text to visual components facilitates people's daily lives, such as generating image, videos from text and identifying the desired elements within the images. Computer vision models involving the multimodal abilities in the previous days are focused on image detection, classification based on well-defined objects. Large language models (LLMs) introduces the transformation from nature language to visual objects, which present the visual layout for text contexts. OpenAI GPT-4 has emerged as the pinnacle in LLMs, while the computer vision (CV) domain boasts a plethora of state-of-the-art (SOTA) models and algorithms to convert 2D images to their 3D representations. However, the mismatching between the algorithms with the problem could lead to undesired results. In response to this challenge, we propose an unified VisionGPT-3D framework to consolidate the state-of-the-art vision models, thereby facilitating the development of vision-oriented AI. VisionGPT-3D provides a versatile multimodal framework building upon the strengths of multimodal foundation models. It seamlessly integrates various SOTA vision models and brings the automation in the selection of SOTA vision models, identifies the suitable 3D mesh creation algorithms corresponding to 2D depth maps analysis, generates optimal results based on diverse multimodal inputs such as text prompts. Keywords: VisionGPT-3D, 3D vision understanding, Multimodal agent
GLIMMER: generalized late-interaction memory reranker
Memory-augmentation is a powerful approach for efficiently incorporating external information into language models, but leads to reduced performance relative to retrieving text. Recent work introduced LUMEN, a memory-retrieval hybrid that partially pre-computes memory and updates memory representations on the fly with a smaller live encoder. We propose GLIMMER, which improves on this approach through 1) exploiting free access to the powerful memory representations by applying a shallow reranker on top of memory to drastically improve retrieval quality at low cost, and 2) incorporating multi-task training to learn a general and higher quality memory and live encoder. GLIMMER achieves strong gains in performance at faster speeds compared to LUMEN and FiD on the KILT benchmark of knowledge-intensive tasks.
Improving LLMs' Generalized Reasoning Abilities by Graph Problems
Large Language Models (LLMs) have made remarkable strides in reasoning tasks, yet their performance often falters on novel and complex problems. Domain-specific continued pretraining (CPT) methods, such as those tailored for mathematical reasoning, have shown promise but lack transferability to broader reasoning tasks. In this work, we pioneer the use of Graph Problem Reasoning (GPR) to enhance the general reasoning capabilities of LLMs. GPR tasks, spanning pathfinding, network analysis, numerical computation, and topological reasoning, require sophisticated logical and relational reasoning, making them ideal for teaching diverse reasoning patterns. To achieve this, we introduce GraphPile, the first large-scale corpus specifically designed for CPT using GPR data. Spanning 10.9 billion tokens across 23 graph tasks, the dataset includes chain-of-thought, program-of-thought, trace of execution, and real-world graph data. Using GraphPile, we train GraphMind on popular base models Llama 3 and 3.1, as well as Gemma 2, achieving up to 4.9 percent higher accuracy in mathematical reasoning and up to 21.2 percent improvement in non-mathematical reasoning tasks such as logical and commonsense reasoning. By being the first to harness GPR for enhancing reasoning patterns and introducing the first dataset of its kind, our work bridges the gap between domain-specific pretraining and universal reasoning capabilities, advancing the adaptability and robustness of LLMs.
Language Models Use Trigonometry to Do Addition
Mathematical reasoning is an increasingly important indicator of large language model (LLM) capabilities, yet we lack understanding of how LLMs process even simple mathematical tasks. To address this, we reverse engineer how three mid-sized LLMs compute addition. We first discover that numbers are represented in these LLMs as a generalized helix, which is strongly causally implicated for the tasks of addition and subtraction, and is also causally relevant for integer division, multiplication, and modular arithmetic. We then propose that LLMs compute addition by manipulating this generalized helix using the "Clock" algorithm: to solve a+b, the helices for a and b are manipulated to produce the a+b answer helix which is then read out to model logits. We model influential MLP outputs, attention head outputs, and even individual neuron preactivations with these helices and verify our understanding with causal interventions. By demonstrating that LLMs represent numbers on a helix and manipulate this helix to perform addition, we present the first representation-level explanation of an LLM's mathematical capability.
XLNet: Generalized Autoregressive Pretraining for Language Understanding
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, under comparable experiment settings, XLNet outperforms BERT on 20 tasks, often by a large margin, including question answering, natural language inference, sentiment analysis, and document ranking.
GE2E-KWS: Generalized End-to-End Training and Evaluation for Zero-shot Keyword Spotting
We propose GE2E-KWS -- a generalized end-to-end training and evaluation framework for customized keyword spotting. Specifically, enrollment utterances are separated and grouped by keywords from the training batch and their embedding centroids are compared to all other test utterance embeddings to compute the loss. This simulates runtime enrollment and verification stages, and improves convergence stability and training speed by optimizing matrix operations compared to SOTA triplet loss approaches. To benchmark different models reliably, we propose an evaluation process that mimics the production environment and compute metrics that directly measure keyword matching accuracy. Trained with GE2E loss, our 419KB quantized conformer model beats a 7.5GB ASR encoder by 23.6% relative AUC, and beats a same size triplet loss model by 60.7% AUC. Our KWS models are natively streamable with low memory footprints, and designed to continuously run on-device with no retraining needed for new keywords (zero-shot).
Learning to Rewrite: Generalized LLM-Generated Text Detection
Large language models (LLMs) present significant risks when used to generate non-factual content and spread disinformation at scale. Detecting such LLM-generated content is crucial, yet current detectors often struggle to generalize in open-world contexts. We introduce Learning2Rewrite, a novel framework for detecting AI-generated text with exceptional generalization to unseen domains. Our method leverages the insight that LLMs inherently modify AI-generated content less than human-written text when tasked with rewriting. By training LLMs to minimize alterations on AI-generated inputs, we amplify this disparity, yielding a more distinguishable and generalizable edit distance across diverse text distributions. Extensive experiments on data from 21 independent domains and four major LLMs (GPT-3.5, GPT-4, Gemini, and Llama-3) demonstrate that our detector outperforms state-of-the-art detection methods by up to 23.04% in AUROC for in-distribution tests, 37.26% for out-of-distribution tests, and 48.66% under adversarial attacks. Our unique training objective ensures better generalizability compared to directly training for classification, when leveraging the same amount of parameters. Our findings suggest that reinforcing LLMs' inherent rewriting tendencies offers a robust and scalable solution for detecting AI-generated text.
Pragmatic Reasoning Unlocks Quantifier Semantics for Foundation Models
Generalized quantifiers (e.g., few, most) are used to indicate the proportions predicates are satisfied (for example, some apples are red). One way to interpret quantifier semantics is to explicitly bind these satisfactions with percentage scopes (e.g., 30%-40% of apples are red). This approach can be helpful for tasks like logic formalization and surface-form quantitative reasoning (Gordon and Schubert, 2010; Roy et al., 2015). However, it remains unclear if recent foundation models possess this ability, as they lack direct training signals. To explore this, we introduce QuRe, a crowd-sourced dataset of human-annotated generalized quantifiers in Wikipedia sentences featuring percentage-equipped predicates. We explore quantifier comprehension in language models using PRESQUE, a framework that combines natural language inference and the Rational Speech Acts framework. Experimental results on the HVD dataset and QuRe illustrate that PRESQUE, employing pragmatic reasoning, performs 20% better than a literal reasoning baseline when predicting quantifier percentage scopes, with no additional training required.
Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional Image Synthesis
Conditional generative models typically demand large annotated training sets to achieve high-quality synthesis. As a result, there has been significant interest in designing models that perform plug-and-play generation, i.e., to use a predefined or pretrained model, which is not explicitly trained on the generative task, to guide the generative process (e.g., using language). However, such guidance is typically useful only towards synthesizing high-level semantics rather than editing fine-grained details as in image-to-image translation tasks. To this end, and capitalizing on the powerful fine-grained generative control offered by the recent diffusion-based generative models, we introduce Steered Diffusion, a generalized framework for photorealistic zero-shot conditional image generation using a diffusion model trained for unconditional generation. The key idea is to steer the image generation of the diffusion model at inference time via designing a loss using a pre-trained inverse model that characterizes the conditional task. This loss modulates the sampling trajectory of the diffusion process. Our framework allows for easy incorporation of multiple conditions during inference. We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution. Our results demonstrate clear qualitative and quantitative improvements over state-of-the-art diffusion-based plug-and-play models while adding negligible additional computational cost.
Improving and generalizing flow-based generative models with minibatch optimal transport
Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have been held back by limitations in their simulation-based maximum likelihood training. We introduce the generalized conditional flow matching (CFM) technique, a family of simulation-free training objectives for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, CFM does not require the source distribution to be Gaussian or require evaluation of its density. A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Furthermore, we show that when the true OT plan is available, our OT-CFM method approximates dynamic OT. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks, such as inferring single cell dynamics, unsupervised image translation, and Schr\"odinger bridge inference.
Volatility Modeling of Stocks from Selected Sectors of the Indian Economy Using GARCH
Volatility clustering is an important characteristic that has a significant effect on the behavior of stock markets. However, designing robust models for accurate prediction of future volatilities of stock prices is a very challenging research problem. We present several volatility models based on generalized autoregressive conditional heteroscedasticity (GARCH) framework for modeling the volatility of ten stocks listed in the national stock exchange (NSE) of India. The stocks are selected from the auto sector and the banking sector of the Indian economy, and they have a significant impact on the sectoral index of their respective sectors in the NSE. The historical stock price records from Jan 1, 2010, to Apr 30, 2021, are scraped from the Yahoo Finance website using the DataReader API of the Pandas module in the Python programming language. The GARCH modules are built and fine-tuned on the training data and then tested on the out-of-sample data to evaluate the performance of the models. The analysis of the results shows that asymmetric GARCH models yield more accurate forecasts on the future volatility of stocks.
Generalized End-to-End Loss for Speaker Verification
In this paper, we propose a new loss function called generalized end-to-end (GE2E) loss, which makes the training of speaker verification models more efficient than our previous tuple-based end-to-end (TE2E) loss function. Unlike TE2E, the GE2E loss function updates the network in a way that emphasizes examples that are difficult to verify at each step of the training process. Additionally, the GE2E loss does not require an initial stage of example selection. With these properties, our model with the new loss function decreases speaker verification EER by more than 10%, while reducing the training time by 60% at the same time. We also introduce the MultiReader technique, which allows us to do domain adaptation - training a more accurate model that supports multiple keywords (i.e. "OK Google" and "Hey Google") as well as multiple dialects.
General agents need world models
Are world models a necessary ingredient for flexible, goal-directed behaviour, or is model-free learning sufficient? We provide a formal answer to this question, showing that any agent capable of generalizing to multi-step goal-directed tasks must have learned a predictive model of its environment. We show that this model can be extracted from the agent's policy, and that increasing the agents performance or the complexity of the goals it can achieve requires learning increasingly accurate world models. This has a number of consequences: from developing safe and general agents, to bounding agent capabilities in complex environments, and providing new algorithms for eliciting world models from agents.
AutoDiffusion: Training-Free Optimization of Time Steps and Architectures for Automated Diffusion Model Acceleration
Diffusion models are emerging expressive generative models, in which a large number of time steps (inference steps) are required for a single image generation. To accelerate such tedious process, reducing steps uniformly is considered as an undisputed principle of diffusion models. We consider that such a uniform assumption is not the optimal solution in practice; i.e., we can find different optimal time steps for different models. Therefore, we propose to search the optimal time steps sequence and compressed model architecture in a unified framework to achieve effective image generation for diffusion models without any further training. Specifically, we first design a unified search space that consists of all possible time steps and various architectures. Then, a two stage evolutionary algorithm is introduced to find the optimal solution in the designed search space. To further accelerate the search process, we employ FID score between generated and real samples to estimate the performance of the sampled examples. As a result, the proposed method is (i).training-free, obtaining the optimal time steps and model architecture without any training process; (ii). orthogonal to most advanced diffusion samplers and can be integrated to gain better sample quality. (iii). generalized, where the searched time steps and architectures can be directly applied on different diffusion models with the same guidance scale. Experimental results show that our method achieves excellent performance by using only a few time steps, e.g. 17.86 FID score on ImageNet 64 times 64 with only four steps, compared to 138.66 with DDIM. The code is available at https://github.com/lilijiangg/AutoDiffusion.
Large-Vocabulary 3D Diffusion Model with Transformer
Creating diverse and high-quality 3D assets with an automatic generative model is highly desirable. Despite extensive efforts on 3D generation, most existing works focus on the generation of a single category or a few categories. In this paper, we introduce a diffusion-based feed-forward framework for synthesizing massive categories of real-world 3D objects with a single generative model. Notably, there are three major challenges for this large-vocabulary 3D generation: a) the need for expressive yet efficient 3D representation; b) large diversity in geometry and texture across categories; c) complexity in the appearances of real-world objects. To this end, we propose a novel triplane-based 3D-aware Diffusion model with TransFormer, DiffTF, for handling challenges via three aspects. 1) Considering efficiency and robustness, we adopt a revised triplane representation and improve the fitting speed and accuracy. 2) To handle the drastic variations in geometry and texture, we regard the features of all 3D objects as a combination of generalized 3D knowledge and specialized 3D features. To extract generalized 3D knowledge from diverse categories, we propose a novel 3D-aware transformer with shared cross-plane attention. It learns the cross-plane relations across different planes and aggregates the generalized 3D knowledge with specialized 3D features. 3) In addition, we devise the 3D-aware encoder/decoder to enhance the generalized 3D knowledge in the encoded triplanes for handling categories with complex appearances. Extensive experiments on ShapeNet and OmniObject3D (over 200 diverse real-world categories) convincingly demonstrate that a single DiffTF model achieves state-of-the-art large-vocabulary 3D object generation performance with large diversity, rich semantics, and high quality.
Parametric Information Maximization for Generalized Category Discovery
We introduce a Parametric Information Maximization (PIM) model for the Generalized Category Discovery (GCD) problem. Specifically, we propose a bi-level optimization formulation, which explores a parameterized family of objective functions, each evaluating a weighted mutual information between the features and the latent labels, subject to supervision constraints from the labeled samples. Our formulation mitigates the class-balance bias encoded in standard information maximization approaches, thereby handling effectively both short-tailed and long-tailed data sets. We report extensive experiments and comparisons demonstrating that our PIM model consistently sets new state-of-the-art performances in GCD across six different datasets, more so when dealing with challenging fine-grained problems.
A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning
Real-world applications require the classification model to adapt to new classes without forgetting old ones. Correspondingly, Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement. Typical CIL methods tend to save representative exemplars from former classes to resist forgetting, while recent works find that storing models from history can substantially boost the performance. However, the stored models are not counted into the memory budget, which implicitly results in unfair comparisons. We find that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work, especially for the case with limited memory budgets. As a result, we need to holistically evaluate different CIL methods at different memory scales and simultaneously consider accuracy and memory size for measurement. On the other hand, we dive deeply into the construction of the memory buffer for memory efficiency. By analyzing the effect of different layers in the network, we find that shallow and deep layers have different characteristics in CIL. Motivated by this, we propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel. MEMO extends specialized layers based on the shared generalized representations, efficiently extracting diverse representations with modest cost and maintaining representative exemplars. Extensive experiments on benchmark datasets validate MEMO's competitive performance. Code is available at: https://github.com/wangkiw/ICLR23-MEMO
Towards Emergent Language Symbolic Semantic Segmentation and Model Interpretability
Recent advances in methods focused on the grounding problem have resulted in techniques that can be used to construct a symbolic language associated with a specific domain. Inspired by how humans communicate complex ideas through language, we developed a generalized Symbolic Semantic (S^2) framework for interpretable segmentation. Unlike adversarial models (e.g., GANs), we explicitly model cooperation between two agents, a Sender and a Receiver, that must cooperate to achieve a common goal. The Sender receives information from a high layer of a segmentation network and generates a symbolic sentence derived from a categorical distribution. The Receiver obtains the symbolic sentences and co-generates the segmentation mask. In order for the model to converge, the Sender and Receiver must learn to communicate using a private language. We apply our architecture to segment tumors in the TCGA dataset. A UNet-like architecture is used to generate input to the Sender network which produces a symbolic sentence, and a Receiver network co-generates the segmentation mask based on the sentence. Our Segmentation framework achieved similar or better performance compared with state-of-the-art segmentation methods. In addition, our results suggest direct interpretation of the symbolic sentences to discriminate between normal and tumor tissue, tumor morphology, and other image characteristics.
Generative Dual Adversarial Network for Generalized Zero-shot Learning
This paper studies the problem of generalized zero-shot learning which requires the model to train on image-label pairs from some seen classes and test on the task of classifying new images from both seen and unseen classes. Most previous models try to learn a fixed one-directional mapping between visual and semantic space, while some recently proposed generative methods try to generate image features for unseen classes so that the zero-shot learning problem becomes a traditional fully-supervised classification problem. In this paper, we propose a novel model that provides a unified framework for three different approaches: visual-> semantic mapping, semantic->visual mapping, and metric learning. Specifically, our proposed model consists of a feature generator that can generate various visual features given class embeddings as input, a regressor that maps each visual feature back to its corresponding class embedding, and a discriminator that learns to evaluate the closeness of an image feature and a class embedding. All three components are trained under the combination of cyclic consistency loss and dual adversarial loss. Experimental results show that our model not only preserves higher accuracy in classifying images from seen classes, but also performs better than existing state-of-the-art models in in classifying images from unseen classes.
AgentTuning: Enabling Generalized Agent Abilities for LLMs
Open large language models (LLMs) with great performance in various tasks have significantly advanced the development of LLMs. However, they are far inferior to commercial models such as ChatGPT and GPT-4 when acting as agents to tackle complex tasks in the real world. These agent tasks employ LLMs as the central controller responsible for planning, memorization, and tool utilization, necessitating both fine-grained prompting methods and robust LLMs to achieve satisfactory performance. Though many prompting methods have been proposed to complete particular agent tasks, there is lack of research focusing on improving the agent capabilities of LLMs themselves without compromising their general abilities. In this work, we present AgentTuning, a simple and general method to enhance the agent abilities of LLMs while maintaining their general LLM capabilities. We construct AgentInstruct, a lightweight instruction-tuning dataset containing high-quality interaction trajectories. We employ a hybrid instruction-tuning strategy by combining AgentInstruct with open-source instructions from general domains. AgentTuning is used to instruction-tune the Llama 2 series, resulting in AgentLM. Our evaluations show that AgentTuning enables LLMs' agent capabilities without compromising general abilities. The AgentLM-70B is comparable to GPT-3.5-turbo on unseen agent tasks, demonstrating generalized agent capabilities. We open source the AgentInstruct and AgentLM-7B, 13B, and 70B models at https://github.com/THUDM/AgentTuning , serving open and powerful alternatives to commercial LLMs for agent tasks.
OThink-MR1: Stimulating multimodal generalized reasoning capabilities via dynamic reinforcement learning
Multimodal Large Language Models (MLLMs) have gained significant traction for their ability to process diverse input data types and generate coherent, contextually relevant outputs across various applications. While supervised fine-tuning (SFT) has been the predominant approach to enhance MLLM capabilities in task-specific optimization, it often falls short in fostering crucial generalized reasoning abilities. Although reinforcement learning (RL) holds great promise in overcoming these limitations, it encounters two significant challenges: (1) its generalized capacities in multimodal tasks remain largely unexplored, and (2) its training constraints, including the constant Kullback-Leibler divergence or the clamp strategy, often result in suboptimal bottlenecks. To address these challenges, we propose OThink-MR1, an advanced MLLM equipped with profound comprehension and reasoning capabilities across multimodal tasks. Specifically, we introduce Group Relative Policy Optimization with a dynamic Kullback-Leibler strategy (GRPO-D), which markedly enhances reinforcement learning (RL) performance. For Qwen2-VL-2B-Instruct, GRPO-D achieves a relative improvement of more than 5.72% over SFT and more than 13.59% over GRPO in same-task evaluation on two adapted datasets. Furthermore, GRPO-D demonstrates remarkable cross-task generalization capabilities, with an average relative improvement of more than 61.63% over SFT in cross-task evaluation. These results highlight that the MLLM trained with GRPO-D on one multimodal task can be effectively transferred to another task, underscoring the superior generalized reasoning capabilities of our proposed OThink-MR1 model.
Improving Sample Quality of Diffusion Models Using Self-Attention Guidance
Denoising diffusion models (DDMs) have attracted attention for their exceptional generation quality and diversity. This success is largely attributed to the use of class- or text-conditional diffusion guidance methods, such as classifier and classifier-free guidance. In this paper, we present a more comprehensive perspective that goes beyond the traditional guidance methods. From this generalized perspective, we introduce novel condition- and training-free strategies to enhance the quality of generated images. As a simple solution, blur guidance improves the suitability of intermediate samples for their fine-scale information and structures, enabling diffusion models to generate higher quality samples with a moderate guidance scale. Improving upon this, Self-Attention Guidance (SAG) uses the intermediate self-attention maps of diffusion models to enhance their stability and efficacy. Specifically, SAG adversarially blurs only the regions that diffusion models attend to at each iteration and guides them accordingly. Our experimental results show that our SAG improves the performance of various diffusion models, including ADM, IDDPM, Stable Diffusion, and DiT. Moreover, combining SAG with conventional guidance methods leads to further improvement.
Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.
Generalized and Efficient 2D Gaussian Splatting for Arbitrary-scale Super-Resolution
Implicit Neural Representation (INR) has been successfully employed for Arbitrary-scale Super-Resolution (ASR). However, INR-based models need to query the multi-layer perceptron module numerous times and render a pixel in each query, resulting in insufficient representation capability and computational efficiency. Recently, Gaussian Splatting (GS) has shown its advantages over INR in both visual quality and rendering speed in 3D tasks, which motivates us to explore whether GS can be employed for the ASR task. However, directly applying GS to ASR is exceptionally challenging because the original GS is an optimization-based method through overfitting each single scene, while in ASR we aim to learn a single model that can generalize to different images and scaling factors. We overcome these challenges by developing two novel techniques. Firstly, to generalize GS for ASR, we elaborately design an architecture to predict the corresponding image-conditioned Gaussians of the input low-resolution image in a feed-forward manner. Each Gaussian can fit the shape and direction of an area of complex textures, showing powerful representation capability. Secondly, we implement an efficient differentiable 2D GPU/CUDA-based scale-aware rasterization to render super-resolved images by sampling discrete RGB values from the predicted continuous Gaussians. Via end-to-end training, our optimized network, namely GSASR, can perform ASR for any image and unseen scaling factors. Extensive experiments validate the effectiveness of our proposed method.
Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings
The excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation. To gain insights into this problem, we first conduct extensive empirical studies on the attention behaviors of MLLMs, and summarize three main inference stages in MLLMs: (i) Early fusion between tokens is first accomplished quickly. (ii) Intra-modality modeling then comes to play. (iii) Multimodal reasoning} resumes and lasts until the end of inference. In particular, we reveal that visual tokens will stop contributing to reasoning when the text tokens receive enough image information, yielding obvious visual redundancy. Based on these generalized observations, we propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE). DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer, thereby addressing the observed visual redundancy. To validate VTE, we apply it to a set of MLLMs, including LLaVA, VILA, Eagle and InternVL, and conduct extensive experiments on a bunch of benchmarks. The experiment results not only show the effectiveness of our VTE in improving MLLMs' efficiency, but also yield the general modeling patterns of MLLMs, well facilitating the in-depth understanding of MLLMs. Our code is anonymously released at https://github.com/DoubtedSteam/DyVTE.
GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding
Applying NeRF to downstream perception tasks for scene understanding and representation is becoming increasingly popular. Most existing methods treat semantic prediction as an additional rendering task, i.e., the "label rendering" task, to build semantic NeRFs. However, by rendering semantic/instance labels per pixel without considering the contextual information of the rendered image, these methods usually suffer from unclear boundary segmentation and abnormal segmentation of pixels within an object. To solve this problem, we propose Generalized Perception NeRF (GP-NeRF), a novel pipeline that makes the widely used segmentation model and NeRF work compatibly under a unified framework, for facilitating context-aware 3D scene perception. To accomplish this goal, we introduce transformers to aggregate radiance as well as semantic embedding fields jointly for novel views and facilitate the joint volumetric rendering of both fields. In addition, we propose two self-distillation mechanisms, i.e., the Semantic Distill Loss and the Depth-Guided Semantic Distill Loss, to enhance the discrimination and quality of the semantic field and the maintenance of geometric consistency. In evaluation, we conduct experimental comparisons under two perception tasks (i.e. semantic and instance segmentation) using both synthetic and real-world datasets. Notably, our method outperforms SOTA approaches by 6.94\%, 11.76\%, and 8.47\% on generalized semantic segmentation, finetuning semantic segmentation, and instance segmentation, respectively.
MedViT: A Robust Vision Transformer for Generalized Medical Image Classification
Convolutional Neural Networks (CNNs) have advanced existing medical systems for automatic disease diagnosis. However, there are still concerns about the reliability of deep medical diagnosis systems against the potential threats of adversarial attacks since inaccurate diagnosis could lead to disastrous consequences in the safety realm. In this study, we propose a highly robust yet efficient CNN-Transformer hybrid model which is equipped with the locality of CNNs as well as the global connectivity of vision Transformers. To mitigate the high quadratic complexity of the self-attention mechanism while jointly attending to information in various representation subspaces, we construct our attention mechanism by means of an efficient convolution operation. Moreover, to alleviate the fragility of our Transformer model against adversarial attacks, we attempt to learn smoother decision boundaries. To this end, we augment the shape information of an image in the high-level feature space by permuting the feature mean and variance within mini-batches. With less computational complexity, our proposed hybrid model demonstrates its high robustness and generalization ability compared to the state-of-the-art studies on a large-scale collection of standardized MedMNIST-2D datasets.
GODS: Generalized One-class Discriminative Subspaces for Anomaly Detection
One-class learning is the classic problem of fitting a model to data for which annotations are available only for a single class. In this paper, we propose a novel objective for one-class learning. Our key idea is to use a pair of orthonormal frames -- as subspaces -- to "sandwich" the labeled data via optimizing for two objectives jointly: i) minimize the distance between the origins of the two subspaces, and ii) to maximize the margin between the hyperplanes and the data, either subspace demanding the data to be in its positive and negative orthant respectively. Our proposed objective however leads to a non-convex optimization problem, to which we resort to Riemannian optimization schemes and derive an efficient conjugate gradient scheme on the Stiefel manifold. To study the effectiveness of our scheme, we propose a new dataset~Dash-Cam-Pose, consisting of clips with skeleton poses of humans seated in a car, the task being to classify the clips as normal or abnormal; the latter is when any human pose is out-of-position with regard to say an airbag deployment. Our experiments on the proposed Dash-Cam-Pose dataset, as well as several other standard anomaly/novelty detection benchmarks demonstrate the benefits of our scheme, achieving state-of-the-art one-class accuracy.
Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization
Recent advancements in timestep-distilled diffusion models have enabled high-quality image generation that rivals non-distilled multi-step models, but with significantly fewer inference steps. While such models are attractive for applications due to the low inference cost and latency, fine-tuning them with a naive diffusion objective would result in degraded and blurry outputs. An intuitive alternative is to repeat the diffusion distillation process with a fine-tuned teacher model, which produces good results but is cumbersome and computationally intensive; the distillation training usually requires magnitude higher of training compute compared to fine-tuning for specific image styles. In this paper, we present an algorithm named pairwise sample optimization (PSO), which enables the direct fine-tuning of an arbitrary timestep-distilled diffusion model. PSO introduces additional reference images sampled from the current time-step distilled model, and increases the relative likelihood margin between the training images and reference images. This enables the model to retain its few-step generation ability, while allowing for fine-tuning of its output distribution. We also demonstrate that PSO is a generalized formulation which can be flexibly extended to both offline-sampled and online-sampled pairwise data, covering various popular objectives for diffusion model preference optimization. We evaluate PSO in both preference optimization and other fine-tuning tasks, including style transfer and concept customization. We show that PSO can directly adapt distilled models to human-preferred generation with both offline and online-generated pairwise preference image data. PSO also demonstrates effectiveness in style transfer and concept customization by directly tuning timestep-distilled diffusion models.
SPTNet: An Efficient Alternative Framework for Generalized Category Discovery with Spatial Prompt Tuning
Generalized Category Discovery (GCD) aims to classify unlabelled images from both `seen' and `unseen' classes by transferring knowledge from a set of labelled `seen' class images. A key theme in existing GCD approaches is adapting large-scale pre-trained models for the GCD task. An alternate perspective, however, is to adapt the data representation itself for better alignment with the pre-trained model. As such, in this paper, we introduce a two-stage adaptation approach termed SPTNet, which iteratively optimizes model parameters (i.e., model-finetuning) and data parameters (i.e., prompt learning). Furthermore, we propose a novel spatial prompt tuning method (SPT) which considers the spatial property of image data, enabling the method to better focus on object parts, which can transfer between seen and unseen classes. We thoroughly evaluate our SPTNet on standard benchmarks and demonstrate that our method outperforms existing GCD methods. Notably, we find our method achieves an average accuracy of 61.4% on the SSB, surpassing prior state-of-the-art methods by approximately 10%. The improvement is particularly remarkable as our method yields extra parameters amounting to only 0.117% of those in the backbone architecture. Project page: https://visual-ai.github.io/sptnet.
InstructDET: Diversifying Referring Object Detection with Generalized Instructions
We propose InstructDET, a data-centric method for referring object detection (ROD) that localizes target objects based on user instructions. While deriving from referring expressions (REC), the instructions we leverage are greatly diversified to encompass common user intentions related to object detection. For one image, we produce tremendous instructions that refer to every single object and different combinations of multiple objects. Each instruction and its corresponding object bounding boxes (bbxs) constitute one training data pair. In order to encompass common detection expressions, we involve emerging vision-language model (VLM) and large language model (LLM) to generate instructions guided by text prompts and object bbxs, as the generalizations of foundation models are effective to produce human-like expressions (e.g., describing object property, category, and relationship). We name our constructed dataset as InDET. It contains images, bbxs and generalized instructions that are from foundation models. Our InDET is developed from existing REC datasets and object detection datasets, with the expanding potential that any image with object bbxs can be incorporated through using our InstructDET method. By using our InDET dataset, we show that a conventional ROD model surpasses existing methods on standard REC datasets and our InDET test set. Our data-centric method InstructDET, with automatic data expansion by leveraging foundation models, directs a promising field that ROD can be greatly diversified to execute common object detection instructions.
Is Imitation All You Need? Generalized Decision-Making with Dual-Phase Training
We introduce DualMind, a generalist agent designed to tackle various decision-making tasks that addresses challenges posed by current methods, such as overfitting behaviors and dependence on task-specific fine-tuning. DualMind uses a novel "Dual-phase" training strategy that emulates how humans learn to act in the world. The model first learns fundamental common knowledge through a self-supervised objective tailored for control tasks and then learns how to make decisions based on different contexts through imitating behaviors conditioned on given prompts. DualMind can handle tasks across domains, scenes, and embodiments using just a single set of model weights and can execute zero-shot prompting without requiring task-specific fine-tuning. We evaluate DualMind on MetaWorld and Habitat through extensive experiments and demonstrate its superior generalizability compared to previous techniques, outperforming other generalist agents by over 50% and 70% on Habitat and MetaWorld, respectively. On the 45 tasks in MetaWorld, DualMind achieves over 30 tasks at a 90% success rate.
Generalized chiral instabilities, linking numbers, and non-invertible symmetries
We demonstrate a universal mechanism of a class of instabilities in infrared regions for massless Abelian p-form gauge theories with topological interactions, which we call generalized chiral instabilities. Such instabilities occur in the presence of initial electric fields for the p-form gauge fields. We show that the dynamically generated magnetic fields tend to decrease the initial electric fields and result in configurations with linking numbers, which can be characterized by non-invertible global symmetries. The so-called chiral plasma instability and instabilities of the axion electrodynamics and (4+1)-dimensional Maxwell-Chern-Simons theory in electric fields can be described by the generalized chiral instabilities in a unified manner. We also illustrate this mechanism in the (2+1)-dimensional Goldstone-Maxwell model in electric field.
Incremental Generalized Category Discovery
We explore the problem of Incremental Generalized Category Discovery (IGCD). This is a challenging category incremental learning setting where the goal is to develop models that can correctly categorize images from previously seen categories, in addition to discovering novel ones. Learning is performed over a series of time steps where the model obtains new labeled and unlabeled data, and discards old data, at each iteration. The difficulty of the problem is compounded in our generalized setting as the unlabeled data can contain images from categories that may or may not have been observed before. We present a new method for IGCD which combines non-parametric categorization with efficient image sampling to mitigate catastrophic forgetting. To quantify performance, we propose a new benchmark dataset named iNatIGCD that is motivated by a real-world fine-grained visual categorization task. In our experiments we outperform existing related methods
Learning Facial Liveness Representation for Domain Generalized Face Anti-spoofing
Face anti-spoofing (FAS) aims at distinguishing face spoof attacks from the authentic ones, which is typically approached by learning proper models for performing the associated classification task. In practice, one would expect such models to be generalized to FAS in different image domains. Moreover, it is not practical to assume that the type of spoof attacks would be known in advance. In this paper, we propose a deep learning model for addressing the aforementioned domain-generalized face anti-spoofing task. In particular, our proposed network is able to disentangle facial liveness representation from the irrelevant ones (i.e., facial content and image domain features). The resulting liveness representation exhibits sufficient domain invariant properties, and thus it can be applied for performing domain-generalized FAS. In our experiments, we conduct experiments on five benchmark datasets with various settings, and we verify that our model performs favorably against state-of-the-art approaches in identifying novel types of spoof attacks in unseen image domains.
FastDiff: A Fast Conditional Diffusion Model for High-Quality Speech Synthesis
Denoising diffusion probabilistic models (DDPMs) have recently achieved leading performances in many generative tasks. However, the inherited iterative sampling process costs hindered their applications to speech synthesis. This paper proposes FastDiff, a fast conditional diffusion model for high-quality speech synthesis. FastDiff employs a stack of time-aware location-variable convolutions of diverse receptive field patterns to efficiently model long-term time dependencies with adaptive conditions. A noise schedule predictor is also adopted to reduce the sampling steps without sacrificing the generation quality. Based on FastDiff, we design an end-to-end text-to-speech synthesizer, FastDiff-TTS, which generates high-fidelity speech waveforms without any intermediate feature (e.g., Mel-spectrogram). Our evaluation of FastDiff demonstrates the state-of-the-art results with higher-quality (MOS 4.28) speech samples. Also, FastDiff enables a sampling speed of 58x faster than real-time on a V100 GPU, making diffusion models practically applicable to speech synthesis deployment for the first time. We further show that FastDiff generalized well to the mel-spectrogram inversion of unseen speakers, and FastDiff-TTS outperformed other competing methods in end-to-end text-to-speech synthesis. Audio samples are available at https://FastDiff.github.io/.
Contrastive Embedding for Generalized Zero-Shot Learning
Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and unseen classes, when only the labeled examples from seen classes are provided. Recent feature generation methods learn a generative model that can synthesize the missing visual features of unseen classes to mitigate the data-imbalance problem in GZSL. However, the original visual feature space is suboptimal for GZSL classification since it lacks discriminative information. To tackle this issue, we propose to integrate the generation model with the embedding model, yielding a hybrid GZSL framework. The hybrid GZSL approach maps both the real and the synthetic samples produced by the generation model into an embedding space, where we perform the final GZSL classification. Specifically, we propose a contrastive embedding (CE) for our hybrid GZSL framework. The proposed contrastive embedding can leverage not only the class-wise supervision but also the instance-wise supervision, where the latter is usually neglected by existing GZSL researches. We evaluate our proposed hybrid GZSL framework with contrastive embedding, named CE-GZSL, on five benchmark datasets. The results show that our CEGZSL method can outperform the state-of-the-arts by a significant margin on three datasets. Our codes are available on https://github.com/Hanzy1996/CE-GZSL.
Generalized Domain Conditioned Adaptation Network
Domain Adaptation (DA) attempts to transfer knowledge learned in the labeled source domain to the unlabeled but related target domain without requiring large amounts of target supervision. Recent advances in DA mainly proceed by aligning the source and target distributions. Despite the significant success, the adaptation performance still degrades accordingly when the source and target domains encounter a large distribution discrepancy. We consider this limitation may attribute to the insufficient exploration of domain-specialized features because most studies merely concentrate on domain-general feature learning in task-specific layers and integrate totally-shared convolutional networks (convnets) to generate common features for both domains. In this paper, we relax the completely-shared convnets assumption adopted by previous DA methods and propose Domain Conditioned Adaptation Network (DCAN), which introduces domain conditioned channel attention module with a multi-path structure to separately excite channel activation for each domain. Such a partially-shared convnets module allows domain-specialized features in low-level to be explored appropriately. Further, given the knowledge transferability varying along with convolutional layers, we develop Generalized Domain Conditioned Adaptation Network (GDCAN) to automatically determine whether domain channel activations should be separately modeled in each attention module. Afterward, the critical domain-specialized knowledge could be adaptively extracted according to the domain statistic gaps. As far as we know, this is the first work to explore the domain-wise convolutional channel activations separately for deep DA networks. Additionally, to effectively match high-level feature distributions across domains, we consider deploying feature adaptation blocks after task-specific layers, which can explicitly mitigate the domain discrepancy.
High-Dimensional Continuous Control Using Generalized Advantage Estimation
Policy gradient methods are an appealing approach in reinforcement learning because they directly optimize the cumulative reward and can straightforwardly be used with nonlinear function approximators such as neural networks. The two main challenges are the large number of samples typically required, and the difficulty of obtaining stable and steady improvement despite the nonstationarity of the incoming data. We address the first challenge by using value functions to substantially reduce the variance of policy gradient estimates at the cost of some bias, with an exponentially-weighted estimator of the advantage function that is analogous to TD(lambda). We address the second challenge by using trust region optimization procedure for both the policy and the value function, which are represented by neural networks. Our approach yields strong empirical results on highly challenging 3D locomotion tasks, learning running gaits for bipedal and quadrupedal simulated robots, and learning a policy for getting the biped to stand up from starting out lying on the ground. In contrast to a body of prior work that uses hand-crafted policy representations, our neural network policies map directly from raw kinematics to joint torques. Our algorithm is fully model-free, and the amount of simulated experience required for the learning tasks on 3D bipeds corresponds to 1-2 weeks of real time.
Interfacing Foundation Models' Embeddings
We present FIND, a generalized interface for aligning foundation models' embeddings. As shown in teaser figure, a lightweight transformer interface without tuning any foundation model weights is enough for a unified image (segmentation) and dataset-level (retrieval) understanding. The proposed interface has the following favorable attributes: (1) Generalizable. It applies to various tasks spanning retrieval, segmentation, etc., under the same architecture and weights. (2) Prototypable. Different tasks are able to be implemented through prototyping attention masks and embedding types. (3) Extendable. The proposed interface is adaptive to new tasks, and new models. (4) Interleavable. With the benefit of multi-task multi-modal training, the proposed interface creates an interleaved shared embedding space. In light of the interleaved embedding space, we introduce the FIND-Bench, which introduces new training and evaluation annotations to the COCO dataset for interleave segmentation and retrieval. Our approach achieves state-of-the-art performance on FIND-Bench and competitive performance on standard retrieval and segmentation settings. The training, evaluation, and demo code as well as the dataset have been released at https://github.com/UX-Decoder/FIND.
Unified Speech-Text Pretraining for Spoken Dialog Modeling
While recent work shows promising results in expanding the capabilities of large language models (LLM) to directly understand and synthesize speech, an LLM-based strategy for modeling spoken dialogs remains elusive and calls for further investigation. This work proposes an extensive speech-text LLM framework, named the Unified Spoken Dialog Model (USDM), to generate coherent spoken responses with organic prosodic features relevant to the given input speech without relying on automatic speech recognition (ASR) or text-to-speech (TTS) solutions. Our approach employs a multi-step speech-text inference scheme that leverages chain-of-reasoning capabilities exhibited by the underlying LLM. We also propose a generalized speech-text pretraining scheme that helps with capturing cross-modal semantics. Automatic and human evaluations show that the proposed approach is effective in generating natural-sounding spoken responses, outperforming both prior and cascaded baselines. Detailed comparative studies reveal that, despite the cascaded approach being stronger in individual components, the joint speech-text modeling improves robustness against recognition errors and speech quality. Demo is available at https://unifiedsdm.github.io.
Large Language Models Meet Open-World Intent Discovery and Recognition: An Evaluation of ChatGPT
The tasks of out-of-domain (OOD) intent discovery and generalized intent discovery (GID) aim to extend a closed intent classifier to open-world intent sets, which is crucial to task-oriented dialogue (TOD) systems. Previous methods address them by fine-tuning discriminative models. Recently, although some studies have been exploring the application of large language models (LLMs) represented by ChatGPT to various downstream tasks, it is still unclear for the ability of ChatGPT to discover and incrementally extent OOD intents. In this paper, we comprehensively evaluate ChatGPT on OOD intent discovery and GID, and then outline the strengths and weaknesses of ChatGPT. Overall, ChatGPT exhibits consistent advantages under zero-shot settings, but is still at a disadvantage compared to fine-tuned models. More deeply, through a series of analytical experiments, we summarize and discuss the challenges faced by LLMs including clustering, domain-specific understanding, and cross-domain in-context learning scenarios. Finally, we provide empirical guidance for future directions to address these challenges.
Trained Transformers Learn Linear Models In-Context
Attention-based neural networks such as transformers have demonstrated a remarkable ability to exhibit in-context learning (ICL): Given a short prompt sequence of tokens from an unseen task, they can formulate relevant per-token and next-token predictions without any parameter updates. By embedding a sequence of labeled training data and unlabeled test data as a prompt, this allows for transformers to behave like supervised learning algorithms. Indeed, recent work has shown that when training transformer architectures over random instances of linear regression problems, these models' predictions mimic those of ordinary least squares. Towards understanding the mechanisms underlying this phenomenon, we investigate the dynamics of ICL in transformers with a single linear self-attention layer trained by gradient flow on linear regression tasks. We show that despite non-convexity, gradient flow with a suitable random initialization finds a global minimum of the objective function. At this global minimum, when given a test prompt of labeled examples from a new prediction task, the transformer achieves prediction error competitive with the best linear predictor over the test prompt distribution. We additionally characterize the robustness of the trained transformer to a variety of distribution shifts and show that although a number of shifts are tolerated, shifts in the covariate distribution of the prompts are not. Motivated by this, we consider a generalized ICL setting where the covariate distributions can vary across prompts. We show that although gradient flow succeeds at finding a global minimum in this setting, the trained transformer is still brittle under mild covariate shifts. We complement this finding with experiments on large, nonlinear transformer architectures which we show are more robust under covariate shifts.
Reflected Diffusion Models
Score-based diffusion models learn to reverse a stochastic differential equation that maps data to noise. However, for complex tasks, numerical error can compound and result in highly unnatural samples. Previous work mitigates this drift with thresholding, which projects to the natural data domain (such as pixel space for images) after each diffusion step, but this leads to a mismatch between the training and generative processes. To incorporate data constraints in a principled manner, we present Reflected Diffusion Models, which instead reverse a reflected stochastic differential equation evolving on the support of the data. Our approach learns the perturbed score function through a generalized score matching loss and extends key components of standard diffusion models including diffusion guidance, likelihood-based training, and ODE sampling. We also bridge the theoretical gap with thresholding: such schemes are just discretizations of reflected SDEs. On standard image benchmarks, our method is competitive with or surpasses the state of the art without architectural modifications and, for classifier-free guidance, our approach enables fast exact sampling with ODEs and produces more faithful samples under high guidance weight.
Learning Physical Models that Can Respect Conservation Laws
Recent work in scientific machine learning (SciML) has focused on incorporating partial differential equation (PDE) information into the learning process. Much of this work has focused on relatively ``easy'' PDE operators (e.g., elliptic and parabolic), with less emphasis on relatively ``hard'' PDE operators (e.g., hyperbolic). Within numerical PDEs, the latter problem class requires control of a type of volume element or conservation constraint, which is known to be challenging. Delivering on the promise of SciML requires seamlessly incorporating both types of problems into the learning process. To address this issue, we propose ProbConserv, a framework for incorporating conservation constraints into a generic SciML architecture. To do so, ProbConserv combines the integral form of a conservation law with a Bayesian update. We provide a detailed analysis of ProbConserv on learning with the Generalized Porous Medium Equation (GPME), a widely-applicable parameterized family of PDEs that illustrates the qualitative properties of both easier and harder PDEs. ProbConserv is effective for easy GPME variants, performing well with state-of-the-art competitors; and for harder GPME variants it outperforms other approaches that do not guarantee volume conservation. ProbConserv seamlessly enforces physical conservation constraints, maintains probabilistic uncertainty quantification (UQ), and deals well with shocks and heteroscedasticities. In each case, it achieves superior predictive performance on downstream tasks.
Generalized Few-Shot Semantic Segmentation: All You Need is Fine-Tuning
Generalized few-shot semantic segmentation was introduced to move beyond only evaluating few-shot segmentation models on novel classes to include testing their ability to remember base classes. While the current state-of-the-art approach is based on meta-learning, it performs poorly and saturates in learning after observing only a few shots. We propose the first fine-tuning solution, and demonstrate that it addresses the saturation problem while achieving state-of-the-art results on two datasets, PASCAL-5i and COCO-20i. We also show that it outperforms existing methods, whether fine-tuning multiple final layers or only the final layer. Finally, we present a triplet loss regularization that shows how to redistribute the balance of performance between novel and base categories so that there is a smaller gap between them.
Improve Transformer Models with Better Relative Position Embeddings
Transformer architectures rely on explicit position encodings in order to preserve a notion of word order. In this paper, we argue that existing work does not fully utilize position information. For example, the initial proposal of a sinusoid embedding is fixed and not learnable. In this paper, we first review absolute position embeddings and existing methods for relative position embeddings. We then propose new techniques that encourage increased interaction between query, key and relative position embeddings in the self-attention mechanism. Our most promising approach is a generalization of the absolute position embedding, improving results on SQuAD1.1 compared to previous position embeddings approaches. In addition, we address the inductive property of whether a position embedding can be robust enough to handle long sequences. We demonstrate empirically that our relative position embedding method is reasonably generalized and robust from the inductive perspective. Finally, we show that our proposed method can be adopted as a near drop-in replacement for improving the accuracy of large models with a small computational budget.
GLUCOSE: GeneraLized and COntextualized Story Explanations
When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context. To construct GLUCOSE, we drew on cognitive psychology to identify ten dimensions of causal explanation, focusing on events, states, motivations, and emotions. Each GLUCOSE entry includes a story-specific causal statement paired with an inference rule generalized from the statement. This paper details two concrete contributions. First, we present our platform for effectively crowdsourcing GLUCOSE data at scale, which uses semi-structured templates to elicit causal explanations. Using this platform, we collected a total of ~670K specific statements and general rules that capture implicit commonsense knowledge about everyday situations. Second, we show that existing knowledge resources and pretrained language models do not include or readily predict GLUCOSE's rich inferential content. However, when state-of-the-art neural models are trained on this knowledge, they can start to make commonsense inferences on unseen stories that match humans' mental models.
Discovering Symbolic Models from Deep Learning with Inductive Biases
We develop a general approach to distill symbolic representations of a learned deep model by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The technique works as follows: we first encourage sparse latent representations when we train a GNN in a supervised setting, then we apply symbolic regression to components of the learned model to extract explicit physical relations. We find the correct known equations, including force laws and Hamiltonians, can be extracted from the neural network. We then apply our method to a non-trivial cosmology example-a detailed dark matter simulation-and discover a new analytic formula which can predict the concentration of dark matter from the mass distribution of nearby cosmic structures. The symbolic expressions extracted from the GNN using our technique also generalized to out-of-distribution data better than the GNN itself. Our approach offers alternative directions for interpreting neural networks and discovering novel physical principles from the representations they learn.
BlendedMVS: A Large-scale Dataset for Generalized Multi-view Stereo Networks
While deep learning has recently achieved great success on multi-view stereo (MVS), limited training data makes the trained model hard to be generalized to unseen scenarios. Compared with other computer vision tasks, it is rather difficult to collect a large-scale MVS dataset as it requires expensive active scanners and labor-intensive process to obtain ground truth 3D structures. In this paper, we introduce BlendedMVS, a novel large-scale dataset, to provide sufficient training ground truth for learning-based MVS. To create the dataset, we apply a 3D reconstruction pipeline to recover high-quality textured meshes from images of well-selected scenes. Then, we render these mesh models to color images and depth maps. To introduce the ambient lighting information during training, the rendered color images are further blended with the input images to generate the training input. Our dataset contains over 17k high-resolution images covering a variety of scenes, including cities, architectures, sculptures and small objects. Extensive experiments demonstrate that BlendedMVS endows the trained model with significantly better generalization ability compared with other MVS datasets. The dataset and pretrained models are available at https://github.com/YoYo000/BlendedMVS.