new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 7

EmbodiedOcc: Embodied 3D Occupancy Prediction for Vision-based Online Scene Understanding

3D occupancy prediction provides a comprehensive description of the surrounding scenes and has become an essential task for 3D perception. Most existing methods focus on offline perception from one or a few views and cannot be applied to embodied agents that demand to gradually perceive the scene through progressive embodied exploration. In this paper, we formulate an embodied 3D occupancy prediction task to target this practical scenario and propose a Gaussian-based EmbodiedOcc framework to accomplish it. We initialize the global scene with uniform 3D semantic Gaussians and progressively update local regions observed by the embodied agent. For each update, we extract semantic and structural features from the observed image and efficiently incorporate them via deformable cross-attention to refine the regional Gaussians. Finally, we employ Gaussian-to-voxel splatting to obtain the global 3D occupancy from the updated 3D Gaussians. Our EmbodiedOcc assumes an unknown (i.e., uniformly distributed) environment and maintains an explicit global memory of it with 3D Gaussians. It gradually gains knowledge through the local refinement of regional Gaussians, which is consistent with how humans understand new scenes through embodied exploration. We reorganize an EmbodiedOcc-ScanNet benchmark based on local annotations to facilitate the evaluation of the embodied 3D occupancy prediction task. Our EmbodiedOcc outperforms existing methods by a large margin and accomplishes the embodied occupancy prediction with high accuracy and efficiency. Code: https://github.com/YkiWu/EmbodiedOcc.

  • 6 authors
·
Dec 5, 2024

Simple Image-level Classification Improves Open-vocabulary Object Detection

Open-Vocabulary Object Detection (OVOD) aims to detect novel objects beyond a given set of base categories on which the detection model is trained. Recent OVOD methods focus on adapting the image-level pre-trained vision-language models (VLMs), such as CLIP, to a region-level object detection task via, eg., region-level knowledge distillation, regional prompt learning, or region-text pre-training, to expand the detection vocabulary. These methods have demonstrated remarkable performance in recognizing regional visual concepts, but they are weak in exploiting the VLMs' powerful global scene understanding ability learned from the billion-scale image-level text descriptions. This limits their capability in detecting hard objects of small, blurred, or occluded appearance from novel/base categories, whose detection heavily relies on contextual information. To address this, we propose a novel approach, namely Simple Image-level Classification for Context-Aware Detection Scoring (SIC-CADS), to leverage the superior global knowledge yielded from CLIP for complementing the current OVOD models from a global perspective. The core of SIC-CADS is a multi-modal multi-label recognition (MLR) module that learns the object co-occurrence-based contextual information from CLIP to recognize all possible object categories in the scene. These image-level MLR scores can then be utilized to refine the instance-level detection scores of the current OVOD models in detecting those hard objects. This is verified by extensive empirical results on two popular benchmarks, OV-LVIS and OV-COCO, which show that SIC-CADS achieves significant and consistent improvement when combined with different types of OVOD models. Further, SIC-CADS also improves the cross-dataset generalization ability on Objects365 and OpenImages. The code is available at https://github.com/mala-lab/SIC-CADS.

  • 3 authors
·
Dec 16, 2023

Text-Scene: A Scene-to-Language Parsing Framework for 3D Scene Understanding

Enabling agents to understand and interact with complex 3D scenes is a fundamental challenge for embodied artificial intelligence systems. While Multimodal Large Language Models (MLLMs) have achieved significant progress in 2D image understanding, extending such capabilities to 3D scenes remains difficult: 1) 3D environment involves richer concepts such as spatial relationships, affordances, physics, layout, and so on, 2) the absence of large-scale 3D vision-language datasets has posed a significant obstacle. In this paper, we introduce Text-Scene, a framework that automatically parses 3D scenes into textual descriptions for scene understanding. Given a 3D scene, our model identifies object attributes and spatial relationships, and then generates a coherent summary of the whole scene, bridging the gap between 3D observation and language without requiring human-in-the-loop intervention. By leveraging both geometric analysis and MLLMs, Text-Scene produces descriptions that are accurate, detailed, and human-interpretable, capturing object-level details and global-level context. Experimental results on benchmarks demonstrate that our textual parses can faithfully represent 3D scenes and benefit downstream tasks. To evaluate the reasoning capability of MLLMs, we present InPlan3D, a comprehensive benchmark for 3D task planning, consisting of 3174 long-term planning tasks across 636 indoor scenes. We emphasize clarity and accessibility in our approach, aiming to make 3D scene content understandable through language. Code and datasets will be released.

  • 4 authors
·
Sep 20

TextCoT: Zoom In for Enhanced Multimodal Text-Rich Image Understanding

The advent of Large Multimodal Models (LMMs) has sparked a surge in research aimed at harnessing their remarkable reasoning abilities. However, for understanding text-rich images, challenges persist in fully leveraging the potential of LMMs, and existing methods struggle with effectively processing high-resolution images. In this work, we propose TextCoT, a novel Chain-of-Thought framework for text-rich image understanding. TextCoT utilizes the captioning ability of LMMs to grasp the global context of the image and the grounding capability to examine local textual regions. This allows for the extraction of both global and local visual information, facilitating more accurate question-answering. Technically, TextCoT consists of three stages, including image overview, coarse localization, and fine-grained observation. The image overview stage provides a comprehensive understanding of the global scene information, and the coarse localization stage approximates the image area containing the answer based on the question asked. Then, integrating the obtained global image descriptions, the final stage further examines specific regions to provide accurate answers. Our method is free of extra training, offering immediate plug-and-play functionality. Extensive experiments are conducted on a series of text-rich image question-answering benchmark datasets based on several advanced LMMs, and the results demonstrate the effectiveness and strong generalization ability of our method. Code is available at https://github.com/bzluan/TextCoT.

  • 6 authors
·
Apr 15, 2024

P2AT: Pyramid Pooling Axial Transformer for Real-time Semantic Segmentation

Recently, Transformer-based models have achieved promising results in various vision tasks, due to their ability to model long-range dependencies. However, transformers are computationally expensive, which limits their applications in real-time tasks such as autonomous driving. In addition, an efficient local and global feature selection and fusion are vital for accurate dense prediction, especially driving scene understanding tasks. In this paper, we propose a real-time semantic segmentation architecture named Pyramid Pooling Axial Transformer (P2AT). The proposed P2AT takes a coarse feature from the CNN encoder to produce scale-aware contextual features, which are then combined with the multi-level feature aggregation scheme to produce enhanced contextual features. Specifically, we introduce a pyramid pooling axial transformer to capture intricate spatial and channel dependencies, leading to improved performance on semantic segmentation. Then, we design a Bidirectional Fusion module (BiF) to combine semantic information at different levels. Meanwhile, a Global Context Enhancer is introduced to compensate for the inadequacy of concatenating different semantic levels. Finally, a decoder block is proposed to help maintain a larger receptive field. We evaluate P2AT variants on three challenging scene-understanding datasets. In particular, our P2AT variants achieve state-of-art results on the Camvid dataset 80.5%, 81.0%, 81.1% for P2AT-S, P2ATM, and P2AT-L, respectively. Furthermore, our experiment on Cityscapes and Pascal VOC 2012 have demonstrated the efficiency of the proposed architecture, with results showing that P2AT-M, achieves 78.7% on Cityscapes. The source code will be available at

  • 4 authors
·
Oct 23, 2023

$NavA^3$: Understanding Any Instruction, Navigating Anywhere, Finding Anything

Embodied navigation is a fundamental capability of embodied intelligence, enabling robots to move and interact within physical environments. However, existing navigation tasks primarily focus on predefined object navigation or instruction following, which significantly differs from human needs in real-world scenarios involving complex, open-ended scenes. To bridge this gap, we introduce a challenging long-horizon navigation task that requires understanding high-level human instructions and performing spatial-aware object navigation in real-world environments. Existing embodied navigation methods struggle with such tasks due to their limitations in comprehending high-level human instructions and localizing objects with an open vocabulary. In this paper, we propose NavA^3, a hierarchical framework divided into two stages: global and local policies. In the global policy, we leverage the reasoning capabilities of Reasoning-VLM to parse high-level human instructions and integrate them with global 3D scene views. This allows us to reason and navigate to regions most likely to contain the goal object. In the local policy, we have collected a dataset of 1.0 million samples of spatial-aware object affordances to train the NaviAfford model (PointingVLM), which provides robust open-vocabulary object localization and spatial awareness for precise goal identification and navigation in complex environments. Extensive experiments demonstrate that NavA^3 achieves SOTA results in navigation performance and can successfully complete longhorizon navigation tasks across different robot embodiments in real-world settings, paving the way for universal embodied navigation. The dataset and code will be made available. Project website: https://NavigationA3.github.io/.

  • 9 authors
·
Aug 6

Text Image Inpainting via Global Structure-Guided Diffusion Models

Real-world text can be damaged by corrosion issues caused by environmental or human factors, which hinder the preservation of the complete styles of texts, e.g., texture and structure. These corrosion issues, such as graffiti signs and incomplete signatures, bring difficulties in understanding the texts, thereby posing significant challenges to downstream applications, e.g., scene text recognition and signature identification. Notably, current inpainting techniques often fail to adequately address this problem and have difficulties restoring accurate text images along with reasonable and consistent styles. Formulating this as an open problem of text image inpainting, this paper aims to build a benchmark to facilitate its study. In doing so, we establish two specific text inpainting datasets which contain scene text images and handwritten text images, respectively. Each of them includes images revamped by real-life and synthetic datasets, featuring pairs of original images, corrupted images, and other assistant information. On top of the datasets, we further develop a novel neural framework, Global Structure-guided Diffusion Model (GSDM), as a potential solution. Leveraging the global structure of the text as a prior, the proposed GSDM develops an efficient diffusion model to recover clean texts. The efficacy of our approach is demonstrated by thorough empirical study, including a substantial boost in both recognition accuracy and image quality. These findings not only highlight the effectiveness of our method but also underscore its potential to enhance the broader field of text image understanding and processing. Code and datasets are available at: https://github.com/blackprotoss/GSDM.

  • 6 authors
·
Jan 26, 2024

RS-GPT4V: A Unified Multimodal Instruction-Following Dataset for Remote Sensing Image Understanding

The remote sensing image intelligence understanding model is undergoing a new profound paradigm shift which has been promoted by multi-modal large language model (MLLM), i.e. from the paradigm learning a domain model (LaDM) shifts to paradigm learning a pre-trained general foundation model followed by an adaptive domain model (LaGD). Under the new LaGD paradigm, the old datasets, which have led to advances in RSI intelligence understanding in the last decade, are no longer suitable for fire-new tasks. We argued that a new dataset must be designed to lighten tasks with the following features: 1) Generalization: training model to learn shared knowledge among tasks and to adapt to different tasks; 2) Understanding complex scenes: training model to understand the fine-grained attribute of the objects of interest, and to be able to describe the scene with natural language; 3) Reasoning: training model to be able to realize high-level visual reasoning. In this paper, we designed a high-quality, diversified, and unified multimodal instruction-following dataset for RSI understanding produced by GPT-4V and existing datasets, which we called RS-GPT4V. To achieve generalization, we used a (Question, Answer) which was deduced from GPT-4V via instruction-following to unify the tasks such as captioning and localization; To achieve complex scene, we proposed a hierarchical instruction description with local strategy in which the fine-grained attributes of the objects and their spatial relationships are described and global strategy in which all the local information are integrated to yield detailed instruction descript; To achieve reasoning, we designed multiple-turn QA pair to provide the reasoning ability for a model. The empirical results show that the fine-tuned MLLMs by RS-GPT4V can describe fine-grained information. The dataset is available at: https://github.com/GeoX-Lab/RS-GPT4V.

  • 8 authors
·
Jun 18, 2024

Realistic Clothed Human and Object Joint Reconstruction from a Single Image

Recent approaches to jointly reconstruct 3D humans and objects from a single RGB image represent 3D shapes with template-based or coarse models, which fail to capture details of loose clothing on human bodies. In this paper, we introduce a novel implicit approach for jointly reconstructing realistic 3D clothed humans and objects from a monocular view. For the first time, we model both the human and the object with an implicit representation, allowing to capture more realistic details such as clothing. This task is extremely challenging due to human-object occlusions and the lack of 3D information in 2D images, often leading to poor detail reconstruction and depth ambiguity. To address these problems, we propose a novel attention-based neural implicit model that leverages image pixel alignment from both the input human-object image for a global understanding of the human-object scene and from local separate views of the human and object images to improve realism with, for example, clothing details. Additionally, the network is conditioned on semantic features derived from an estimated human-object pose prior, which provides 3D spatial information about the shared space of humans and objects. To handle human occlusion caused by objects, we use a generative diffusion model that inpaints the occluded regions, recovering otherwise lost details. For training and evaluation, we introduce a synthetic dataset featuring rendered scenes of inter-occluded 3D human scans and diverse objects. Extensive evaluation on both synthetic and real-world datasets demonstrates the superior quality of the proposed human-object reconstructions over competitive methods.

  • 5 authors
·
Feb 25

VisualOverload: Probing Visual Understanding of VLMs in Really Dense Scenes

Is basic visual understanding really solved in state-of-the-art VLMs? We present VisualOverload, a slightly different visual question answering (VQA) benchmark comprising 2,720 question-answer pairs, with privately held ground-truth responses. Unlike prior VQA datasets that typically focus on near global image understanding, VisualOverload challenges models to perform simple, knowledge-free vision tasks in densely populated (or, overloaded) scenes. Our dataset consists of high-resolution scans of public-domain paintings that are populated with multiple figures, actions, and unfolding subplots set against elaborately detailed backdrops. We manually annotated these images with questions across six task categories to probe for a thorough understanding of the scene. We hypothesize that current benchmarks overestimate the performance of VLMs, and encoding and reasoning over details is still a challenging task for them, especially if they are confronted with densely populated scenes. Indeed, we observe that even the best model (o3) out of 37 tested models only achieves 19.6% accuracy on our hardest test split and overall 69.5% accuracy on all questions. Beyond a thorough evaluation, we complement our benchmark with an error analysis that reveals multiple failure modes, including a lack of counting skills, failure in OCR, and striking logical inconsistencies under complex tasks. Altogether, VisualOverload exposes a critical gap in current vision models and offers a crucial resource for the community to develop better models. Benchmark: http://paulgavrikov.github.io/visualoverload

  • 9 authors
·
Sep 29 2

GPT4Scene: Understand 3D Scenes from Videos with Vision-Language Models

In recent years, 2D Vision-Language Models (VLMs) have made significant strides in image-text understanding tasks. However, their performance in 3D spatial comprehension, which is critical for embodied intelligence, remains limited. Recent advances have leveraged 3D point clouds and multi-view images as inputs, yielding promising results. However, we propose exploring a purely vision-based solution inspired by human perception, which merely relies on visual cues for 3D spatial understanding. This paper empirically investigates the limitations of VLMs in 3D spatial knowledge, revealing that their primary shortcoming lies in the lack of global-local correspondence between the scene and individual frames. To address this, we introduce GPT4Scene, a novel visual prompting paradigm in VLM training and inference that helps build the global-local relationship, significantly improving the 3D spatial understanding of indoor scenes. Specifically, GPT4Scene constructs a 3D Bird's Eye View (BEV) image from the video and marks consistent object IDs across both frames and the BEV image. The model then inputs the concatenated BEV image and video frames with markers. In zero-shot evaluations, GPT4Scene improves performance over closed-source VLMs like GPT-4o. Additionally, we prepare a processed video dataset consisting of 165K text annotation to fine-tune open-source VLMs, achieving state-of-the-art performance on all 3D understanding tasks. Surprisingly, after training with the GPT4Scene paradigm, VLMs consistently improve during inference, even without visual prompting and BEV image as explicit correspondence. It demonstrates that the proposed paradigm helps VLMs develop an intrinsic ability to understand 3D scenes, which paves the way for a noninvasive approach to extending pre-trained VLMs for 3D scene understanding.

  • 5 authors
·
Jan 2