new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 17

Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts

Heterophilic Graph Neural Networks (HGNNs) have shown promising results for semi-supervised learning tasks on graphs. Notably, most real-world heterophilic graphs are composed of a mixture of nodes with different neighbor patterns, exhibiting local node-level homophilic and heterophilic structures. However, existing works are only devoted to designing better HGNN backbones or architectures for node classification tasks on heterophilic and homophilic graph benchmarks simultaneously, and their analyses of HGNN performance with respect to nodes are only based on the determined data distribution without exploring the effect caused by this structural difference between training and testing nodes. How to learn invariant node representations on heterophilic graphs to handle this structure difference or distribution shifts remains unexplored. In this paper, we first discuss the limitations of previous graph-based invariant learning methods from the perspective of data augmentation. Then, we propose HEI, a framework capable of generating invariant node representations through incorporating heterophily information to infer latent environments without augmentation, which are then used for invariant prediction, under heterophilic graph structure distribution shifts. We theoretically show that our proposed method can achieve guaranteed performance under heterophilic graph structure distribution shifts. Extensive experiments on various benchmarks and backbones can also demonstrate the effectiveness of our method compared with existing state-of-the-art baselines.

  • 6 authors
·
Aug 18, 2024

SiMilarity-Enhanced Homophily for Multi-View Heterophilous Graph Clustering

With the increasing prevalence of graph-structured data, multi-view graph clustering has been widely used in various downstream applications. Existing approaches primarily rely on a unified message passing mechanism, which significantly enhances clustering performance. Nevertheless, this mechanism limits its applicability to heterophilous situations, as it is fundamentally predicated on the assumption of homophily, i.e., the connected nodes often belong to the same class. In reality, this assumption does not always hold; a moderately or even mildly homophilous graph is more common than a fully homophilous one due to inevitable heterophilous information in the graph. To address this issue, in this paper, we propose a novel SiMilarity-enhanced Homophily for Multi-view Heterophilous Graph Clustering (SMHGC) approach. By analyzing the relationship between similarity and graph homophily, we propose to enhance the homophily by introducing three similarity terms, i.e., neighbor pattern similarity, node feature similarity, and multi-view global similarity, in a label-free manner. Then, a consensus-based inter- and intra-view fusion paradigm is proposed to fuse the improved homophilous graph from different views and utilize them for clustering. The state-of-the-art experimental results on both multi-view heterophilous and homophilous datasets collectively demonstrate the strong capacity of similarity for unsupervised multi-view heterophilous graph learning. Additionally, the consistent performance across semi-synthetic datasets with varying levels of homophily serves as further evidence of SMHGC's resilience to heterophily.

  • 7 authors
·
Oct 4, 2024

Breaking the Entanglement of Homophily and Heterophily in Semi-supervised Node Classification

Recently, graph neural networks (GNNs) have shown prominent performance in semi-supervised node classification by leveraging knowledge from the graph database. However, most existing GNNs follow the homophily assumption, where connected nodes are more likely to exhibit similar feature distributions and the same labels, and such an assumption has proven to be vulnerable in a growing number of practical applications. As a supplement, heterophily reflects dissimilarity in connected nodes, which has gained significant attention in graph learning. To this end, data engineers aim to develop a powerful GNN model that can ensure performance under both homophily and heterophily. Despite numerous attempts, most existing GNNs struggle to achieve optimal node representations due to the constraints of undirected graphs. The neglect of directed edges results in sub-optimal graph representations, thereby hindering the capacity of GNNs. To address this issue, we introduce AMUD, which quantifies the relationship between node profiles and topology from a statistical perspective, offering valuable insights for Adaptively Modeling the natural directed graphs as the Undirected or Directed graph to maximize the benefits from subsequent graph learning. Furthermore, we propose Adaptive Directed Pattern Aggregation (ADPA) as a new directed graph learning paradigm for AMUD. Empirical studies have demonstrated that AMUD guides efficient graph learning. Meanwhile, extensive experiments on 14 benchmark datasets substantiate the impressive performance of ADPA, outperforming baselines by significant margins of 3.96\%.

  • 6 authors
·
Dec 7, 2023

From Graphs to Hypergraphs: Hypergraph Projection and its Remediation

We study the implications of the modeling choice to use a graph, instead of a hypergraph, to represent real-world interconnected systems whose constituent relationships are of higher order by nature. Such a modeling choice typically involves an underlying projection process that maps the original hypergraph onto a graph, and is common in graph-based analysis. While hypergraph projection can potentially lead to loss of higher-order relations, there exists very limited studies on the consequences of doing so, as well as its remediation. This work fills this gap by doing two things: (1) we develop analysis based on graph and set theory, showing two ubiquitous patterns of hyperedges that are root to structural information loss in all hypergraph projections; we also quantify the combinatorial impossibility of recovering the lost higher-order structures if no extra help is provided; (2) we still seek to recover the lost higher-order structures in hypergraph projection, and in light of (1)'s findings we propose to relax the problem into a learning-based setting. Under this setting, we develop a learning-based hypergraph reconstruction method based on an important statistic of hyperedge distributions that we find. Our reconstruction method is evaluated on 8 real-world datasets under different settings, and exhibits consistently good performance. We also demonstrate benefits of the reconstructed hypergraphs via use cases of protein rankings and link predictions.

  • 2 authors
·
Jan 16, 2024

When Heterophily Meets Heterogeneity: New Graph Benchmarks and Effective Methods

Many real-world graphs frequently present challenges for graph learning due to the presence of both heterophily and heterogeneity. However, existing benchmarks for graph learning often focus on heterogeneous graphs with homophily or homogeneous graphs with heterophily, leaving a gap in understanding how methods perform on graphs that are both heterogeneous and heterophilic. To bridge this gap, we introduce H2GB, a novel graph benchmark that brings together the complexities of both the heterophily and heterogeneity properties of graphs. Our benchmark encompasses 9 diverse real-world datasets across 5 domains, 28 baseline model implementations, and 26 benchmark results. In addition, we present a modular graph transformer framework UnifiedGT and a new model variant, H2G-former, that excels at this challenging benchmark. By integrating masked label embeddings, cross-type heterogeneous attention, and type-specific FFNs, H2G-former effectively tackles graph heterophily and heterogeneity. Extensive experiments across 26 baselines on H2GB reveal inadequacies of current models on heterogeneous heterophilic graph learning, and demonstrate the superiority of our H2G-former over existing solutions. Both the benchmark and the framework are available on GitHub (https://github.com/junhongmit/H2GB) and PyPI (https://pypi.org/project/H2GB), and documentation can be found at https://junhongmit.github.io/H2GB/.

  • 6 authors
·
Jul 15, 2024

HyperAgent: Leveraging Hypergraphs for Topology Optimization in Multi-Agent Communication

Recent advances in large language model-powered multi-agent systems have demonstrated remarkable collective intelligence through effective communication. However, existing approaches face two primary challenges: (i) Ineffective group collaboration modeling, as they rely on pairwise edge representations in graph structures, limiting their ability to capture relationships among multiple agents; and (ii) Limited task-adaptiveness in communication topology design, leading to excessive communication cost for simple tasks and insufficient coordination for complex scenarios. These issues restrict the scalability and practical deployment of adaptive collaboration frameworks. To address these challenges, we propose HyperAgent, a hypergraph-based framework that optimizes communication topologies and effectively captures group collaboration patterns using direct hyperedge representations. Unlike edge-based approaches, HyperAgent uses hyperedges to link multiple agents within the same subtask and employs hypergraph convolutional layers to achieve one-step information aggregation in collaboration groups. Additionally, it incorporates a variational autoencoder framework with sparsity regularization to dynamically adjust hypergraph topologies based on task complexity. Experiments highlight the superiority of HyperAgent in both performance and efficiency. For instance, on GSM8K, HyperAgent achieves 95.07\% accuracy while reducing token consumption by 25.33\%, demonstrating the potential of hypergraph-based optimization for multi-agent communication.

  • 8 authors
·
Oct 12 2

Generating Drug Repurposing Hypotheses through the Combination of Disease-Specific Hypergraphs

The drug development pipeline for a new compound can last 10-20 years and cost over 10 billion. Drug repurposing offers a more time- and cost-effective alternative. Computational approaches based on biomedical knowledge graph representations have recently yielded new drug repurposing hypotheses. In this study, we present a novel, disease-specific hypergraph representation learning technique to derive contextual embeddings of biological pathways of various lengths but that all start at any given drug and all end at the disease of interest. Further, we extend this method to multi-disease hypergraphs. To determine the repurposing potential of each of the 1,522 drugs, we derive drug-specific distributions of cosine similarity values and ultimately consider the median for ranking. Cosine similarity values are computed between (1) all biological pathways starting at the considered drug and ending at the disease of interest and (2) all biological pathways starting at drugs currently prescribed against that disease and ending at the disease of interest. We illustrate our approach with Alzheimer's disease (AD) and two of its risk factors: hypertension (HTN) and type 2 diabetes (T2D). We compare each drug's rank across four hypergraph settings (single- or multi-disease): AD only, AD + HTN, AD + T2D, and AD + HTN + T2D. Notably, our framework led to the identification of two promising drugs whose repurposing potential was significantly higher in hypergraphs combining two diseases: dapagliflozin (antidiabetic; moved up, from top 32% to top 7%, across all considered drugs) and debrisoquine (antihypertensive; moved up, from top 76% to top 23%). Our approach serves as a hypothesis generation tool, to be paired with a validation pipeline relying on laboratory experiments and semi-automated parsing of the biomedical literature.

  • 5 authors
·
Nov 16, 2023

H4G: Unlocking Faithful Inference for Zero-Shot Graph Learning in Hyperbolic Space

Text-attributed graphs are widely used across domains, offering rich opportunities for zero-shot learning via graph-text alignment. However, existing methods struggle with tasks requiring fine-grained pattern recognition, particularly on heterophilic graphs. Through empirical and theoretical analysis, we identify an over-abstraction problem: current approaches operate at excessively large hyperbolic radii, compressing multi-scale structural information into uniform high-level abstractions. This abstraction-induced information loss obscures critical local patterns essential for accurate predictions. By analyzing embeddings in hyperbolic space, we demonstrate that optimal graph learning requires faithful preservation of fine-grained structural details, better retained by representations positioned closer to the origin. To address this, we propose H4G, a framework that systematically reduces embedding radii using learnable block-diagonal scaling matrices and M\"obius matrix multiplication. This approach restores access to fine-grained patterns while maintaining global receptive ability with minimal computational overhead. Experiments show H4G achieves state-of-the-art zero-shot performance with 12.8\% improvement on heterophilic graphs and 8.4\% on homophilic graphs, confirming that radius reduction enables faithful multi-scale representation for advancing zero-shot graph learning.

  • 9 authors
·
Oct 13

Heterogeneous Directed Hypergraph Neural Network over abstract syntax tree (AST) for Code Classification

Code classification is a difficult issue in program understanding and automatic coding. Due to the elusive syntax and complicated semantics in programs, most existing studies use techniques based on abstract syntax tree (AST) and graph neural network (GNN) to create code representations for code classification. These techniques utilize the structure and semantic information of the code, but they only take into account pairwise associations and neglect the high-order correlations that already exist between nodes in the AST, which may result in the loss of code structural information. On the other hand, while a general hypergraph can encode high-order data correlations, it is homogeneous and undirected which will result in a lack of semantic and structural information such as node types, edge types, and directions between child nodes and parent nodes when modeling AST. In this study, we propose to represent AST as a heterogeneous directed hypergraph (HDHG) and process the graph by heterogeneous directed hypergraph neural network (HDHGN) for code classification. Our method improves code understanding and can represent high-order data correlations beyond paired interactions. We assess heterogeneous directed hypergraph neural network (HDHGN) on public datasets of Python and Java programs. Our method outperforms previous AST-based and GNN-based methods, which demonstrates the capability of our model.

  • 3 authors
·
May 7, 2023

Edge Representation Learning with Hypergraphs

Graph neural networks have recently achieved remarkable success in representing graph-structured data, with rapid progress in both the node embedding and graph pooling methods. Yet, they mostly focus on capturing information from the nodes considering their connectivity, and not much work has been done in representing the edges, which are essential components of a graph. However, for tasks such as graph reconstruction and generation, as well as graph classification tasks for which the edges are important for discrimination, accurately representing edges of a given graph is crucial to the success of the graph representation learning. To this end, we propose a novel edge representation learning framework based on Dual Hypergraph Transformation (DHT), which transforms the edges of a graph into the nodes of a hypergraph. This dual hypergraph construction allows us to apply message-passing techniques for node representations to edges. After obtaining edge representations from the hypergraphs, we then cluster or drop edges to obtain holistic graph-level edge representations. We validate our edge representation learning method with hypergraphs on diverse graph datasets for graph representation and generation performance, on which our method largely outperforms existing graph representation learning methods. Moreover, our edge representation learning and pooling method also largely outperforms state-of-the-art graph pooling methods on graph classification, not only because of its accurate edge representation learning, but also due to its lossless compression of the nodes and removal of irrelevant edges for effective message-passing.

  • 6 authors
·
Jun 30, 2021

SoftHGNN: Soft Hypergraph Neural Networks for General Visual Recognition

Visual recognition relies on understanding both the semantics of image tokens and the complex interactions among them. Mainstream self-attention methods, while effective at modeling global pair-wise relations, fail to capture high-order associations inherent in real-world scenes and often suffer from redundant computation. Hypergraphs extend conventional graphs by modeling high-order interactions and offer a promising framework for addressing these limitations. However, existing hypergraph neural networks typically rely on static and hard hyperedge assignments, leading to excessive and redundant hyperedges with hard binary vertex memberships that overlook the continuity of visual semantics. To overcome these issues, we present Soft Hypergraph Neural Networks (SoftHGNNs), which extend the methodology of hypergraph computation, to make it truly efficient and versatile in visual recognition tasks. Our framework introduces the concept of soft hyperedges, where each vertex is associated with hyperedges via continuous participation weights rather than hard binary assignments. This dynamic and differentiable association is achieved by using the learnable hyperedge prototype. Through similarity measurements between token features and the prototype, the model generates semantically rich soft hyperedges. SoftHGNN then aggregates messages over soft hyperedges to capture high-order semantics. To further enhance efficiency when scaling up the number of soft hyperedges, we incorporate a sparse hyperedge selection mechanism that activates only the top-k important hyperedges, along with a load-balancing regularizer to ensure balanced hyperedge utilization. Experimental results across three tasks on five datasets demonstrate that SoftHGNN efficiently captures high-order associations in visual scenes, achieving significant performance improvements.

  • 7 authors
·
May 21

MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation

The burgeoning presence of multimodal content-sharing platforms propels the development of personalized recommender systems. Previous works usually suffer from data sparsity and cold-start problems, and may fail to adequately explore semantic user-product associations from multimodal data. To address these issues, we propose a novel Multi-Modal Hypergraph Contrastive Learning (MMHCL) framework for user recommendation. For a comprehensive information exploration from user-product relations, we construct two hypergraphs, i.e. a user-to-user (u2u) hypergraph and an item-to-item (i2i) hypergraph, to mine shared preferences among users and intricate multimodal semantic resemblance among items, respectively. This process yields denser second-order semantics that are fused with first-order user-item interaction as complementary to alleviate the data sparsity issue. Then, we design a contrastive feature enhancement paradigm by applying synergistic contrastive learning. By maximizing/minimizing the mutual information between second-order (e.g. shared preference pattern for users) and first-order (information of selected items for users) embeddings of the same/different users and items, the feature distinguishability can be effectively enhanced. Compared with using sparse primary user-item interaction only, our MMHCL obtains denser second-order hypergraphs and excavates more abundant shared attributes to explore the user-product associations, which to a certain extent alleviates the problems of data sparsity and cold-start. Extensive experiments have comprehensively demonstrated the effectiveness of our method. Our code is publicly available at: https://github.com/Xu107/MMHCL.

  • 7 authors
·
Apr 23

Towards Data-centric Machine Learning on Directed Graphs: a Survey

In recent years, Graph Neural Networks (GNNs) have made significant advances in processing structured data. However, most of them primarily adopted a model-centric approach, which simplifies graphs by converting them into undirected formats and emphasizes model designs. This approach is inherently limited in real-world applications due to the unavoidable information loss in simple undirected graphs and the model optimization challenges that arise when exceeding the upper bounds of this sub-optimal data representational capacity. As a result, there has been a shift toward data-centric methods that prioritize improving graph quality and representation. Specifically, various types of graphs can be derived from naturally structured data, including heterogeneous graphs, hypergraphs, and directed graphs. Among these, directed graphs offer distinct advantages in topological systems by modeling causal relationships, and directed GNNs have been extensively studied in recent years. However, a comprehensive survey of this emerging topic is still lacking. Therefore, we aim to provide a comprehensive review of directed graph learning, with a particular focus on a data-centric perspective. Specifically, we first introduce a novel taxonomy for existing studies. Subsequently, we re-examine these methods from the data-centric perspective, with an emphasis on understanding and improving data representation. It demonstrates that a deep understanding of directed graphs and their quality plays a crucial role in model performance. Additionally, we explore the diverse applications of directed GNNs across 10+ domains, highlighting their broad applicability. Finally, we identify key opportunities and challenges within the field, offering insights that can guide future research and development in directed graph learning.

  • 6 authors
·
Nov 28, 2024

LightHGNN: Distilling Hypergraph Neural Networks into MLPs for 100times Faster Inference

Hypergraph Neural Networks (HGNNs) have recently attracted much attention and exhibited satisfactory performance due to their superiority in high-order correlation modeling. However, it is noticed that the high-order modeling capability of hypergraph also brings increased computation complexity, which hinders its practical industrial deployment. In practice, we find that one key barrier to the efficient deployment of HGNNs is the high-order structural dependencies during inference. In this paper, we propose to bridge the gap between the HGNNs and inference-efficient Multi-Layer Perceptron (MLPs) to eliminate the hypergraph dependency of HGNNs and thus reduce computational complexity as well as improve inference speed. Specifically, we introduce LightHGNN and LightHGNN^+ for fast inference with low complexity. LightHGNN directly distills the knowledge from teacher HGNNs to student MLPs via soft labels, and LightHGNN^+ further explicitly injects reliable high-order correlations into the student MLPs to achieve topology-aware distillation and resistance to over-smoothing. Experiments on eight hypergraph datasets demonstrate that even without hypergraph dependency, the proposed LightHGNNs can still achieve competitive or even better performance than HGNNs and outperform vanilla MLPs by 16.3 on average. Extensive experiments on three graph datasets further show the average best performance of our LightHGNNs compared with all other methods. Experiments on synthetic hypergraphs with 5.5w vertices indicate LightHGNNs can run 100times faster than HGNNs, showcasing their ability for latency-sensitive deployments.

  • 4 authors
·
Feb 6, 2024

Thinking Like an Expert:Multimodal Hypergraph-of-Thought (HoT) Reasoning to boost Foundation Modals

Reasoning ability is one of the most crucial capabilities of a foundation model, signifying its capacity to address complex reasoning tasks. Chain-of-Thought (CoT) technique is widely regarded as one of the effective methods for enhancing the reasoning ability of foundation models and has garnered significant attention. However, the reasoning process of CoT is linear, step-by-step, similar to personal logical reasoning, suitable for solving general and slightly complicated problems. On the contrary, the thinking pattern of an expert owns two prominent characteristics that cannot be handled appropriately in CoT, i.e., high-order multi-hop reasoning and multimodal comparative judgement. Therefore, the core motivation of this paper is transcending CoT to construct a reasoning paradigm that can think like an expert. The hyperedge of a hypergraph could connect various vertices, making it naturally suitable for modelling high-order relationships. Inspired by this, this paper innovatively proposes a multimodal Hypergraph-of-Thought (HoT) reasoning paradigm, which enables the foundation models to possess the expert-level ability of high-order multi-hop reasoning and multimodal comparative judgement. Specifically, a textual hypergraph-of-thought is constructed utilizing triple as the primary thought to model higher-order relationships, and a hyperedge-of-thought is generated through multi-hop walking paths to achieve multi-hop inference. Furthermore, we devise a visual hypergraph-of-thought to interact with the textual hypergraph-of-thought via Cross-modal Co-Attention Graph Learning for multimodal comparative verification. Experimentations on the ScienceQA benchmark demonstrate the proposed HoT-based T5 outperforms CoT-based GPT3.5 and chatGPT, which is on par with CoT-based GPT4 with a lower model size.

  • 9 authors
·
Aug 11, 2023

Modeling Edge-Specific Node Features through Co-Representation Neural Hypergraph Diffusion

Hypergraphs are widely being employed to represent complex higher-order relations in real-world applications. Most existing research on hypergraph learning focuses on node-level or edge-level tasks. A practically relevant and more challenging task, edge-dependent node classification (ENC), is still under-explored. In ENC, a node can have different labels across different hyperedges, which requires the modeling of node features unique to each hyperedge. The state-of-the-art ENC solution, WHATsNet, only outputs single node and edge representations, leading to the limitations of entangled edge-specific features and non-adaptive representation sizes when applied to ENC. Additionally, WHATsNet suffers from the common oversmoothing issue in most HGNNs. To address these limitations, we propose CoNHD, a novel HGNN architecture specifically designed to model edge-specific features for ENC. Instead of learning separate representations for nodes and edges, CoNHD reformulates within-edge and within-node interactions as a hypergraph diffusion process over node-edge co-representations. We develop a neural implementation of the proposed diffusion process, leveraging equivariant networks as diffusion operators to effectively learn the diffusion dynamics from data. Extensive experiments demonstrate that CoNHD achieves the best performance across all benchmark ENC datasets and several downstream tasks without sacrificing efficiency. Our implementation is available at https://github.com/zhengyijia/CoNHD.

  • 2 authors
·
May 23, 2024

A Survey on Machine Learning Solutions for Graph Pattern Extraction

A subgraph is constructed by using a subset of vertices and edges of a given graph. There exist many graph properties that are hereditary for subgraphs. Hence, researchers from different communities have paid a great deal of attention in studying numerous subgraph problems, on top of the ordinary graph problems. Many algorithms are proposed in studying subgraph problems, where one common approach is by extracting the patterns and structures of a given graph. Due to the complex structures of certain types of graphs and to improve overall performances of the existing frameworks, machine learning techniques have recently been employed in dealing with various subgraph problems. In this article, we present a comprehensive review on five well known subgraph problems that have been tackled by using machine learning methods. They are subgraph isomorphism (both counting and matching), maximum common subgraph, community detection and community search problems. We provide an outline of each proposed method, and examine its designs and performances. We also explore non-learning-based algorithms for each problem and a brief discussion is given. We then suggest some promising research directions in this area, hoping that relevant subgraph problems can be tackled by using a similar strategy. Since there is a huge growth in employing machine learning techniques in recent years, we believe that this survey will serve as a good reference point to relevant research communities.

  • 6 authors
·
Apr 3, 2022

HiGPT: Heterogeneous Graph Language Model

Heterogeneous graph learning aims to capture complex relationships and diverse relational semantics among entities in a heterogeneous graph to obtain meaningful representations for nodes and edges. Recent advancements in heterogeneous graph neural networks (HGNNs) have achieved state-of-the-art performance by considering relation heterogeneity and using specialized message functions and aggregation rules. However, existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets. Most of these frameworks follow the "pre-train" and "fine-tune" paradigm on the same dataset, which restricts their capacity to adapt to new and unseen data. This raises the question: "Can we generalize heterogeneous graph models to be well-adapted to diverse downstream learning tasks with distribution shifts in both node token sets and relation type heterogeneity?'' To tackle those challenges, we propose HiGPT, a general large graph model with Heterogeneous graph instruction-tuning paradigm. Our framework enables learning from arbitrary heterogeneous graphs without the need for any fine-tuning process from downstream datasets. To handle distribution shifts in heterogeneity, we introduce an in-context heterogeneous graph tokenizer that captures semantic relationships in different heterogeneous graphs, facilitating model adaptation. We incorporate a large corpus of heterogeneity-aware graph instructions into our HiGPT, enabling the model to effectively comprehend complex relation heterogeneity and distinguish between various types of graph tokens. Furthermore, we introduce the Mixture-of-Thought (MoT) instruction augmentation paradigm to mitigate data scarcity by generating diverse and informative instructions. Through comprehensive evaluations, our proposed framework demonstrates exceptional performance in terms of generalization performance.

  • 7 authors
·
Feb 25, 2024

Transductive Multi-view Zero-Shot Learning

Most existing zero-shot learning approaches exploit transfer learning via an intermediate-level semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and is applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.

  • 4 authors
·
Jan 19, 2015

Layer-stacked Attention for Heterogeneous Network Embedding

The heterogeneous network is a robust data abstraction that can model entities of different types interacting in various ways. Such heterogeneity brings rich semantic information but presents nontrivial challenges in aggregating the heterogeneous relationships between objects - especially those of higher-order indirect relations. Recent graph neural network approaches for representation learning on heterogeneous networks typically employ the attention mechanism, which is often only optimized for predictions based on direct links. Furthermore, even though most deep learning methods can aggregate higher-order information by building deeper models, such a scheme can diminish the degree of interpretability. To overcome these challenges, we explore an architecture - Layer-stacked ATTention Embedding (LATTE) - that automatically decomposes higher-order meta relations at each layer to extract the relevant heterogeneous neighborhood structures for each node. Additionally, by successively stacking layer representations, the learned node embedding offers a more interpretable aggregation scheme for nodes of different types at different neighborhood ranges. We conducted experiments on several benchmark heterogeneous network datasets. In both transductive and inductive node classification tasks, LATTE can achieve state-of-the-art performance compared to existing approaches, all while offering a lightweight model. With extensive experimental analyses and visualizations, the framework can demonstrate the ability to extract informative insights on heterogeneous networks.

  • 2 authors
·
Sep 17, 2020

Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures

Persistent homology (PH) provides topological descriptors for geometric data, such as weighted graphs, which are interpretable, stable to perturbations, and invariant under, e.g., relabeling. Most applications of PH focus on the one-parameter case -- where the descriptors summarize the changes in topology of data as it is filtered by a single quantity of interest -- and there is now a wide array of methods enabling the use of one-parameter PH descriptors in data science, which rely on the stable vectorization of these descriptors as elements of a Hilbert space. Although the multiparameter PH (MPH) of data that is filtered by several quantities of interest encodes much richer information than its one-parameter counterpart, the scarceness of stability results for MPH descriptors has so far limited the available options for the stable vectorization of MPH. In this paper, we aim to bring together the best of both worlds by showing how the interpretation of signed barcodes -- a recent family of MPH descriptors -- as signed measures leads to natural extensions of vectorization strategies from one parameter to multiple parameters. The resulting feature vectors are easy to define and to compute, and provably stable. While, as a proof of concept, we focus on simple choices of signed barcodes and vectorizations, we already see notable performance improvements when comparing our feature vectors to state-of-the-art topology-based methods on various types of data.

  • 5 authors
·
Jun 6, 2023

GraphShaper: Geometry-aware Alignment for Improving Transfer Learning in Text-Attributed Graphs

Graph foundation models represent a transformative paradigm for learning transferable representations across diverse graph domains. Recent methods leverage large language models to unify graph and text modalities into a shared representation space using contrastive learning. However, systematic evaluations reveal significant performance degradation at structural boundaries where distinct topological patterns converge, with accuracy losses exceeding 20 percentage points. This issue arises from a key limitation: current methods assume all graph structures can be encoded within a single Euclidean space. In reality, tree structures require hyperbolic geometry to preserve hierarchical branching, while cyclic patterns depend on spherical geometry for closure properties. At structural boundaries, nodes experience conflicting geometric constraints that uniform encoding spaces cannot resolve. This raises a crucial challenge: Can alignment frameworks be designed to respect the intrinsic geometric diversity of graph structures? We introduce GraphShaper, a geometry-aware framework that enhances graph encoding through multi-geometric specialization. Our approach employs expert networks tailored to different geometric spaces, dynamically computing fusion weights to adaptively integrate geometric properties based on local structural characteristics. This adaptive fusion preserves structural integrity before alignment with text embeddings. Extensive experiments demonstrate that GraphShaper achieves 9.47\% accuracy improvements on citation networks and 7.63\% on social networks in zero-shot settings.

  • 9 authors
·
Oct 13

GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation

Recent advances in learning multi-modal representation have witnessed the success in biomedical domains. While established techniques enable handling multi-modal information, the challenges are posed when extended to various clinical modalities and practical modalitymissing setting due to the inherent modality gaps. To tackle these, we propose an innovative Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o), which embeds the numerous disparate clinical modalities into a unified representation, completes the deficient embedding of missing modality and reformulates the cross-modal learning with a graph-based aggregation. Specially, we establish a heterogeneous graph embedding to explicitly capture the diverse semantic properties on both the modality-specific features (nodes) and the cross-modal relations (edges). Then, we design a modality-prompted completion that enables completing the inadequate graph representation of missing modality through a graph prompting mechanism, which generates hallucination graphic topologies to steer the missing embedding towards the intact representation. Through the completed graph, we meticulously develop a knowledge-guided hierarchical cross-modal aggregation consisting of a global meta-path neighbouring to uncover the potential heterogeneous neighbors along the pathways driven by domain knowledge, and a local multi-relation aggregation module for the comprehensive cross-modal interaction across various heterogeneous relations. We assess the efficacy of our methodology on rigorous benchmarking experiments against prior state-of-the-arts. In a nutshell, GTP-4o presents an initial foray into the intriguing realm of embedding, relating and perceiving the heterogeneous patterns from various clinical modalities holistically via a graph theory. Project page: https://gtp-4-o.github.io/.

  • 7 authors
·
Jul 7, 2024

Multi-Label Zero-Shot Product Attribute-Value Extraction

E-commerce platforms should provide detailed product descriptions (attribute values) for effective product search and recommendation. However, attribute value information is typically not available for new products. To predict unseen attribute values, large quantities of labeled training data are needed to train a traditional supervised learning model. Typically, it is difficult, time-consuming, and costly to manually label large quantities of new product profiles. In this paper, we propose a novel method to efficiently and effectively extract unseen attribute values from new products in the absence of labeled data (zero-shot setting). We propose HyperPAVE, a multi-label zero-shot attribute value extraction model that leverages inductive inference in heterogeneous hypergraphs. In particular, our proposed technique constructs heterogeneous hypergraphs to capture complex higher-order relations (i.e. user behavior information) to learn more accurate feature representations for graph nodes. Furthermore, our proposed HyperPAVE model uses an inductive link prediction mechanism to infer future connections between unseen nodes. This enables HyperPAVE to identify new attribute values without the need for labeled training data. We conduct extensive experiments with ablation studies on different categories of the MAVE dataset. The results demonstrate that our proposed HyperPAVE model significantly outperforms existing classification-based, generation-based large language models for attribute value extraction in the zero-shot setting.

  • 2 authors
·
Feb 13, 2024

Hyperbolic Large Language Models

Large language models (LLMs) have achieved remarkable success and demonstrated superior performance across various tasks, including natural language processing (NLP), weather forecasting, biological protein folding, text generation, and solving mathematical problems. However, many real-world data exhibit highly non-Euclidean latent hierarchical anatomy, such as protein networks, transportation networks, financial networks, brain networks, and linguistic structures or syntactic trees in natural languages. Effectively learning intrinsic semantic entailment and hierarchical relationships from these raw, unstructured input data using LLMs remains an underexplored area. Due to its effectiveness in modeling tree-like hierarchical structures, hyperbolic geometry -- a non-Euclidean space -- has rapidly gained popularity as an expressive latent representation space for complex data modeling across domains such as graphs, images, languages, and multi-modal data. Here, we provide a comprehensive and contextual exposition of recent advancements in LLMs that leverage hyperbolic geometry as a representation space to enhance semantic representation learning and multi-scale reasoning. Specifically, the paper presents a taxonomy of the principal techniques of Hyperbolic LLMs (HypLLMs) in terms of four main categories: (1) hyperbolic LLMs through exp/log maps; (2) hyperbolic fine-tuned models; (3) fully hyperbolic LLMs, and (4) hyperbolic state-space models. We also explore crucial potential applications and outline future research directions. A repository of key papers, models, datasets, and code implementations is available at https://github.com/sarangp2402/Hyperbolic-LLM-Models/tree/main.

  • 5 authors
·
Sep 6

Efficient Heterogeneous Graph Learning via Random Projection

Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs. Typical HGNNs require repetitive message passing during training, limiting efficiency for large-scale real-world graphs. Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors, enabling efficient mini-batch training. Existing pre-computation-based HGNNs can be mainly categorized into two styles, which differ in how much information loss is allowed and efficiency. We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN), which combines the benefits of one style's efficiency with the low information loss of the other style. To achieve efficiency, the main framework of RpHGNN consists of propagate-then-update iterations, where we introduce a Random Projection Squashing step to ensure that complexity increases only linearly. To achieve low information loss, we introduce a Relation-wise Neighbor Collection component with an Even-odd Propagation Scheme, which aims to collect information from neighbors in a finer-grained way. Experimental results indicate that our approach achieves state-of-the-art results on seven small and large benchmark datasets while also being 230% faster compared to the most effective baseline. Surprisingly, our approach not only surpasses pre-processing-based baselines but also outperforms end-to-end methods.

  • 3 authors
·
Oct 22, 2023