Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePolyIE: A Dataset of Information Extraction from Polymer Material Scientific Literature
Scientific information extraction (SciIE), which aims to automatically extract information from scientific literature, is becoming more important than ever. However, there are no existing SciIE datasets for polymer materials, which is an important class of materials used ubiquitously in our daily lives. To bridge this gap, we introduce POLYIE, a new SciIE dataset for polymer materials. POLYIE is curated from 146 full-length polymer scholarly articles, which are annotated with different named entities (i.e., materials, properties, values, conditions) as well as their N-ary relations by domain experts. POLYIE presents several unique challenges due to diverse lexical formats of entities, ambiguity between entities, and variable-length relations. We evaluate state-of-the-art named entity extraction and relation extraction models on POLYIE, analyze their strengths and weaknesses, and highlight some difficult cases for these models. To the best of our knowledge, POLYIE is the first SciIE benchmark for polymer materials, and we hope it will lead to more research efforts from the community on this challenging task. Our code and data are available on: https://github.com/jerry3027/PolyIE.
MuLMS: A Multi-Layer Annotated Text Corpus for Information Extraction in the Materials Science Domain
Keeping track of all relevant recent publications and experimental results for a research area is a challenging task. Prior work has demonstrated the efficacy of information extraction models in various scientific areas. Recently, several datasets have been released for the yet understudied materials science domain. However, these datasets focus on sub-problems such as parsing synthesis procedures or on sub-domains, e.g., solid oxide fuel cells. In this resource paper, we present MuLMS, a new dataset of 50 open-access articles, spanning seven sub-domains of materials science. The corpus has been annotated by domain experts with several layers ranging from named entities over relations to frame structures. We present competitive neural models for all tasks and demonstrate that multi-task training with existing related resources leads to benefits.
An Autoregressive Text-to-Graph Framework for Joint Entity and Relation Extraction
In this paper, we propose a novel method for joint entity and relation extraction from unstructured text by framing it as a conditional sequence generation problem. In contrast to conventional generative information extraction models that are left-to-right token-level generators, our approach is span-based. It generates a linearized graph where nodes represent text spans and edges represent relation triplets. Our method employs a transformer encoder-decoder architecture with pointing mechanism on a dynamic vocabulary of spans and relation types. Our model can capture the structural characteristics and boundaries of entities and relations through span representations while simultaneously grounding the generated output in the original text thanks to the pointing mechanism. Evaluation on benchmark datasets validates the effectiveness of our approach, demonstrating competitive results. Code is available at https://github.com/urchade/ATG.
MMM: Multilingual Mutual Reinforcement Effect Mix Datasets & Test with Open-domain Information Extraction Large Language Models
The Mutual Reinforcement Effect (MRE) represents a promising avenue in information extraction and multitasking research. Nevertheless, its applicability has been constrained due to the exclusive availability of MRE mix datasets in Japanese, thereby limiting comprehensive exploration by the global research community. To address this limitation, we introduce a Multilingual MRE mix dataset (MMM) that encompasses 21 sub-datasets in English, Japanese, and Chinese. In this paper, we also propose a method for dataset translation assisted by Large Language Models (LLMs), which significantly reduces the manual annotation time required for dataset construction by leveraging LLMs to translate the original Japanese datasets. Additionally, we have enriched the dataset by incorporating open-domain Named Entity Recognition (NER) and sentence classification tasks. Utilizing this expanded dataset, we developed a unified input-output framework to train an Open-domain Information Extraction Large Language Model (OIELLM). The OIELLM model demonstrates the capability to effectively process novel MMM datasets, exhibiting significant improvements in performance.
Key-value information extraction from full handwritten pages
We propose a Transformer-based approach for information extraction from digitized handwritten documents. Our approach combines, in a single model, the different steps that were so far performed by separate models: feature extraction, handwriting recognition and named entity recognition. We compare this integrated approach with traditional two-stage methods that perform handwriting recognition before named entity recognition, and present results at different levels: line, paragraph, and page. Our experiments show that attention-based models are especially interesting when applied on full pages, as they do not require any prior segmentation step. Finally, we show that they are able to learn from key-value annotations: a list of important words with their corresponding named entities. We compare our models to state-of-the-art methods on three public databases (IAM, ESPOSALLES, and POPP) and outperform previous performances on all three datasets.
Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and the Case of Information Extraction
Large language models (LLMs) show great potential for synthetic data generation. This work shows that useful data can be synthetically generated even for tasks that cannot be solved directly by the LLM: we show that, for problems with structured outputs, it is possible to prompt an LLM to perform the task in the opposite direction, to generate plausible text for the target structure. Leveraging the asymmetry in task difficulty makes it possible to produce large-scale, high-quality data for complex tasks. We demonstrate the effectiveness of this approach on closed information extraction, where collecting ground-truth data is challenging, and no satisfactory dataset exists to date. We synthetically generate a dataset of 1.8M data points, demonstrate its superior quality compared to existing datasets in a human evaluation and use it to finetune small models (220M and 770M parameters). The models we introduce, SynthIE, outperform existing baselines of comparable size with a substantial gap of 57 and 79 absolute points in micro and macro F1, respectively. Code, data, and models are available at https://github.com/epfl-dlab/SynthIE.
Large Language Models for Generative Information Extraction: A Survey
Information extraction (IE) aims to extract structural knowledge (such as entities, relations, and events) from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation, allowing for generalization across various domains and tasks. As a result, numerous works have been proposed to harness abilities of LLMs and offer viable solutions for IE tasks based on a generative paradigm. To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks, in this study, we survey the most recent advancements in this field. We first present an extensive overview by categorizing these works in terms of various IE subtasks and learning paradigms, then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs. Based on thorough review conducted, we identify several insights in technique and promising research directions that deserve further exploration in future studies. We maintain a public repository and consistently update related resources at: https://github.com/quqxui/Awesome-LLM4IE-Papers.
Benchmarking Large Language Models with Augmented Instructions for Fine-grained Information Extraction
Information Extraction (IE) is an essential task in Natural Language Processing. Traditional methods have relied on coarse-grained extraction with simple instructions. However, with the emergence of Large Language Models (LLMs), there is a need to adapt IE techniques to leverage the capabilities of these models. This paper introduces a fine-grained IE benchmark dataset tailored for LLMs, employing augmented instructions for each information type, which includes task descriptions, extraction rules, output formats, and examples. Through extensive evaluations, we observe that encoder-decoder models, particularly T5 and FLAN-T5, perform well in generalizing to unseen information types, while ChatGPT exhibits greater adaptability to new task forms. Our results also indicate that performance is not solely dictated by model scale, and highlight the significance of architecture, data diversity, and learning techniques. This work paves the way for a more refined and versatile utilization of LLMs in Information Extraction.
Advancing Italian Biomedical Information Extraction with Large Language Models: Methodological Insights and Multicenter Practical Application
The introduction of computerized medical records in hospitals has reduced burdensome operations like manual writing and information fetching. However, the data contained in medical records are still far underutilized, primarily because extracting them from unstructured textual medical records takes time and effort. Information Extraction, a subfield of Natural Language Processing, can help clinical practitioners overcome this limitation, using automated text-mining pipelines. In this work, we created the first Italian neuropsychiatric Named Entity Recognition dataset, PsyNIT, and used it to develop a Large Language Model for this task. Moreover, we conducted several experiments with three external independent datasets to implement an effective multicenter model, with overall F1-score 84.77%, Precision 83.16%, Recall 86.44%. The lessons learned are: (i) the crucial role of a consistent annotation process and (ii) a fine-tuning strategy that combines classical methods with a "few-shot" approach. This allowed us to establish methodological guidelines that pave the way for future implementations in this field and allow Italian hospitals to tap into important research opportunities.
Improving Open Information Extraction with Large Language Models: A Study on Demonstration Uncertainty
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text, typically in the form of (subject, relation, object) triples. Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks due to two key issues. First, LLMs struggle to distinguish irrelevant context from relevant relations and generate structured output due to the restrictions on fine-tuning the model. Second, LLMs generates responses autoregressively based on probability, which makes the predicted relations lack confidence. In this paper, we assess the capabilities of LLMs in improving the OIE task. Particularly, we propose various in-context learning strategies to enhance LLM's instruction-following ability and a demonstration uncertainty quantification module to enhance the confidence of the generated relations. Our experiments on three OIE benchmark datasets show that our approach holds its own against established supervised methods, both quantitatively and qualitatively.
Structured information extraction from complex scientific text with fine-tuned large language models
Intelligently extracting and linking complex scientific information from unstructured text is a challenging endeavor particularly for those inexperienced with natural language processing. Here, we present a simple sequence-to-sequence approach to joint named entity recognition and relation extraction for complex hierarchical information in scientific text. The approach leverages a pre-trained large language model (LLM), GPT-3, that is fine-tuned on approximately 500 pairs of prompts (inputs) and completions (outputs). Information is extracted either from single sentences or across sentences in abstracts/passages, and the output can be returned as simple English sentences or a more structured format, such as a list of JSON objects. We demonstrate that LLMs trained in this way are capable of accurately extracting useful records of complex scientific knowledge for three representative tasks in materials chemistry: linking dopants with their host materials, cataloging metal-organic frameworks, and general chemistry/phase/morphology/application information extraction. This approach represents a simple, accessible, and highly-flexible route to obtaining large databases of structured knowledge extracted from unstructured text. An online demo is available at http://www.matscholar.com/info-extraction.
ADELIE: Aligning Large Language Models on Information Extraction
Large language models (LLMs) usually fall short on information extraction (IE) tasks and struggle to follow the complex instructions of IE tasks. This primarily arises from LLMs not being aligned with humans, as mainstream alignment datasets typically do not include IE data. In this paper, we introduce ADELIE (Aligning large language moDELs on Information Extraction), an aligned LLM that effectively solves various IE tasks, including closed IE, open IE, and on-demand IE. We first collect and construct a high-quality alignment corpus IEInstruct for IE. Then we train ADELIE_SFT using instruction tuning on IEInstruct. We further train ADELIE_SFT with direct preference optimization (DPO) objective, resulting in ADELIE_DPO. Extensive experiments on various held-out IE datasets demonstrate that our models (ADELIE_SFT and ADELIE_DPO) achieve state-of-the-art (SoTA) performance among open-source models. We further explore the general capabilities of ADELIE, and experimental results reveal that their general capabilities do not exhibit a noticeable decline. We will release the code, data, and models to facilitate further research.
Epidemic Information Extraction for Event-Based Surveillance using Large Language Models
This paper presents a novel approach to epidemic surveillance, leveraging the power of Artificial Intelligence and Large Language Models (LLMs) for effective interpretation of unstructured big data sources, like the popular ProMED and WHO Disease Outbreak News. We explore several LLMs, evaluating their capabilities in extracting valuable epidemic information. We further enhance the capabilities of the LLMs using in-context learning, and test the performance of an ensemble model incorporating multiple open-source LLMs. The findings indicate that LLMs can significantly enhance the accuracy and timeliness of epidemic modelling and forecasting, offering a promising tool for managing future pandemic events.
Large Language Models for Scientific Information Extraction: An Empirical Study for Virology
In this paper, we champion the use of structured and semantic content representation of discourse-based scholarly communication, inspired by tools like Wikipedia infoboxes or structured Amazon product descriptions. These representations provide users with a concise overview, aiding scientists in navigating the dense academic landscape. Our novel automated approach leverages the robust text generation capabilities of LLMs to produce structured scholarly contribution summaries, offering both a practical solution and insights into LLMs' emergent abilities. For LLMs, the prime focus is on improving their general intelligence as conversational agents. We argue that these models can also be applied effectively in information extraction (IE), specifically in complex IE tasks within terse domains like Science. This paradigm shift replaces the traditional modular, pipelined machine learning approach with a simpler objective expressed through instructions. Our results show that finetuned FLAN-T5 with 1000x fewer parameters than the state-of-the-art GPT-davinci is competitive for the task.
Adaptive Reinforcement Learning Planning: Harnessing Large Language Models for Complex Information Extraction
Existing research on large language models (LLMs) shows that they can solve information extraction tasks through multi-step planning. However, their extraction behavior on complex sentences and tasks is unstable, emerging issues such as false positives and missing elements. We observe that decomposing complex extraction tasks and extracting them step by step can effectively improve LLMs' performance, and the extraction orders of entities significantly affect the final results of LLMs. This paper proposes a two-stage multi-step method for LLM-based information extraction and adopts the RL framework to execute the multi-step planning. We regard sequential extraction as a Markov decision process, build an LLM-based extraction environment, design a decision module to adaptively provide the optimal order for sequential entity extraction on different sentences, and utilize the DDQN algorithm to train the decision model. We also design the rewards and evaluation metrics suitable for the extraction results of LLMs. We conduct extensive experiments on multiple public datasets to demonstrate the effectiveness of our method in improving the information extraction capabilities of LLMs.
Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks
Information Extraction (IE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs). A key task within IE is Relation Extraction (RE), which identifies relationships between entities in text. Various RE methods exist, including supervised, unsupervised, weakly supervised, and rule-based approaches. Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area. In the current era dominated by Large Language Models (LLMs), fine-tuning these models can overcome limitations associated with zero-shot LLM prompting-based RE methods, especially regarding domain adaptation challenges and identifying implicit relations between entities in sentences. These implicit relations, which cannot be easily extracted from a sentence's dependency tree, require logical inference for accurate identification. This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach to address the challenges of identifying implicit relations at the sentence level, particularly when LLMs act as generators within the RAG framework. Empirical evaluations on the TACRED, TACRED-Revisited (TACREV), Re-TACRED, and SemEVAL datasets show significant performance improvements with fine-tuned LLMs, including Llama2-7B, Mistral-7B, and T5 (Large). Notably, our approach achieves substantial gains on SemEVAL, where implicit relations are common, surpassing previous results on this dataset. Additionally, our method outperforms previous works on TACRED, TACREV, and Re-TACRED, demonstrating exceptional performance across diverse evaluation scenarios.
Improving Information Extraction on Business Documents with Specific Pre-Training Tasks
Transformer-based Language Models are widely used in Natural Language Processing related tasks. Thanks to their pre-training, they have been successfully adapted to Information Extraction in business documents. However, most pre-training tasks proposed in the literature for business documents are too generic and not sufficient to learn more complex structures. In this paper, we use LayoutLM, a language model pre-trained on a collection of business documents, and introduce two new pre-training tasks that further improve its capacity to extract relevant information. The first is aimed at better understanding the complex layout of documents, and the second focuses on numeric values and their order of magnitude. These tasks force the model to learn better-contextualized representations of the scanned documents. We further introduce a new post-processing algorithm to decode BIESO tags in Information Extraction that performs better with complex entities. Our method significantly improves extraction performance on both public (from 93.88 to 95.50 F1 score) and private (from 84.35 to 84.84 F1 score) datasets composed of expense receipts, invoices, and purchase orders.
Weakly supervised information extraction from inscrutable handwritten document images
State-of-the-art information extraction methods are limited by OCR errors. They work well for printed text in form-like documents, but unstructured, handwritten documents still remain a challenge. Adapting existing models to domain-specific training data is quite expensive, because of two factors, 1) limited availability of the domain-specific documents (such as handwritten prescriptions, lab notes, etc.), and 2) annotations become even more challenging as one needs domain-specific knowledge to decode inscrutable handwritten document images. In this work, we focus on the complex problem of extracting medicine names from handwritten prescriptions using only weakly labeled data. The data consists of images along with the list of medicine names in it, but not their location in the image. We solve the problem by first identifying the regions of interest, i.e., medicine lines from just weak labels and then injecting a domain-specific medicine language model learned using only synthetically generated data. Compared to off-the-shelf state-of-the-art methods, our approach performs >2.5x better in medicine names extraction from prescriptions.
LMDX: Language Model-based Document Information Extraction and Localization
Large Language Models (LLM) have revolutionized Natural Language Processing (NLP), improving state-of-the-art on many existing tasks and exhibiting emergent capabilities. However, LLMs have not yet been successfully applied on semi-structured document information extraction, which is at the core of many document processing workflows and consists of extracting key entities from a visually rich document (VRD) given a predefined target schema. The main obstacles to LLM adoption in that task have been the absence of layout encoding within LLMs, critical for a high quality extraction, and the lack of a grounding mechanism ensuring the answer is not hallucinated. In this paper, we introduce Language Model-based Document Information Extraction and Localization (LMDX), a methodology to adapt arbitrary LLMs for document information extraction. LMDX can do extraction of singular, repeated, and hierarchical entities, both with and without training data, while providing grounding guarantees and localizing the entities within the document. In particular, we apply LMDX to the PaLM 2-S LLM and evaluate it on VRDU and CORD benchmarks, setting a new state-of-the-art and showing how LMDX enables the creation of high quality, data-efficient parsers.
GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface
Information extraction (IE) is fundamental to numerous NLP applications, yet existing solutions often require specialized models for different tasks or rely on computationally expensive large language models. We present GLiNER2, a unified framework that enhances the original GLiNER architecture to support named entity recognition, text classification, and hierarchical structured data extraction within a single efficient model. Built pretrained transformer encoder architecture, GLiNER2 maintains CPU efficiency and compact size while introducing multi-task composition through an intuitive schema-based interface. Our experiments demonstrate competitive performance across extraction and classification tasks with substantial improvements in deployment accessibility compared to LLM-based alternatives. We release GLiNER2 as an open-source pip-installable library with pre-trained models and documentation at https://github.com/fastino-ai/GLiNER2.
TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools
Large Language Models (LLMs) often do not perform well on queries that require the aggregation of information across texts. To better evaluate this setting and facilitate modeling efforts, we introduce TACT - Text And Calculations through Tables, a dataset crafted to evaluate LLMs' reasoning and computational abilities using complex instructions. TACT contains challenging instructions that demand stitching information scattered across one or more texts, and performing complex integration on this information to generate the answer. We construct this dataset by leveraging an existing dataset of texts and their associated tables. For each such tables, we formulate new queries, and gather their respective answers. We demonstrate that all contemporary LLMs perform poorly on this dataset, achieving an accuracy below 38\%. To pinpoint the difficulties and thoroughly dissect the problem, we analyze model performance across three components: table-generation, Pandas command-generation, and execution. Unexpectedly, we discover that each component presents substantial challenges for current LLMs. These insights lead us to propose a focused modeling framework, which we refer to as IE as a tool. Specifically, we propose to add "tools" for each of the above steps, and implement each such tool with few-shot prompting. This approach shows an improvement over existing prompting techniques, offering a promising direction for enhancing model capabilities in these tasks.
IEPile: Unearthing Large-Scale Schema-Based Information Extraction Corpus
Large Language Models (LLMs) demonstrate remarkable potential across various domains; however, they exhibit a significant performance gap in Information Extraction (IE). Note that high-quality instruction data is the vital key for enhancing the specific capabilities of LLMs, while current IE datasets tend to be small in scale, fragmented, and lack standardized schema. To this end, we introduce IEPile, a comprehensive bilingual (English and Chinese) IE instruction corpus, which contains approximately 0.32B tokens. We construct IEPile by collecting and cleaning 33 existing IE datasets, and introduce schema-based instruction generation to unearth a large-scale corpus. Experimental results on LLaMA and Baichuan demonstrate that using IEPile can enhance the performance of LLMs for IE, especially the zero-shot generalization. We open-source the resource and pre-trained models, hoping to provide valuable support to the NLP community.
CaseReportBench: An LLM Benchmark Dataset for Dense Information Extraction in Clinical Case Reports
Rare diseases, including Inborn Errors of Metabolism (IEM), pose significant diagnostic challenges. Case reports serve as key but computationally underutilized resources to inform diagnosis. Clinical dense information extraction refers to organizing medical information into structured predefined categories. Large Language Models (LLMs) may enable scalable information extraction from case reports but are rarely evaluated for this task. We introduce CaseReportBench, an expert-annotated dataset for dense information extraction of case reports, focusing on IEMs. Using this dataset, we assess various models and prompting strategies, introducing novel approaches such as category-specific prompting and subheading-filtered data integration. Zero-shot chain-of-thought prompting offers little advantage over standard zero-shot prompting. Category-specific prompting improves alignment with the benchmark. The open-source model Qwen2.5-7B outperforms GPT-4o for this task. Our clinician evaluations show that LLMs can extract clinically relevant details from case reports, supporting rare disease diagnosis and management. We also highlight areas for improvement, such as LLMs' limitations in recognizing negative findings important for differential diagnosis. This work advances LLM-driven clinical natural language processing and paves the way for scalable medical AI applications.
GoLLIE: Annotation Guidelines improve Zero-Shot Information-Extraction
Large Language Models (LLMs) combined with instruction tuning have made significant progress when generalizing to unseen tasks. However, they have been less successful in Information Extraction (IE), lagging behind task-specific models. Typically, IE tasks are characterized by complex annotation guidelines which describe the task and give examples to humans. Previous attempts to leverage such information have failed, even with the largest models, as they are not able to follow the guidelines out-of-the-box. In this paper we propose GoLLIE (Guideline-following Large Language Model for IE), a model able to improve zero-shot results on unseen IE tasks by virtue of being fine-tuned to comply with annotation guidelines. Comprehensive evaluation empirically demonstrates that GoLLIE is able to generalize to and follow unseen guidelines, outperforming previous attempts at zero-shot information extraction. The ablation study shows that detailed guidelines is key for good results.
Schema as Parameterized Tools for Universal Information Extraction
Universal information extraction (UIE) primarily employs an extractive generation approach with large language models (LLMs), typically outputting structured information based on predefined schemas such as JSON or tables. UIE suffers from a lack of adaptability when selecting between predefined schemas and on-the-fly schema generation within the in-context learning paradigm, especially when there are numerous schemas to choose from. In this paper, we propose a unified adaptive text-to-structure generation framework, called Schema as Parameterized Tools (SPT), which reimagines the tool-calling capability of LLMs by treating predefined schemas as parameterized tools for tool selection and parameter filling. Specifically, our SPT method can be applied to unify closed, open, and on-demand IE tasks by adopting Schema Retrieval by fetching the relevant schemas from a predefined pool, Schema Filling by extracting information and filling slots as with tool parameters, or Schema Generation by synthesizing new schemas with uncovered cases. Experiments show that the SPT method can handle four distinct IE tasks adaptively, delivering robust schema retrieval and selection performance. SPT also achieves comparable extraction performance to LoRA baselines and current leading UIE systems with significantly fewer trainable parameters.
GENIE: Generative Note Information Extraction model for structuring EHR data
Electronic Health Records (EHRs) hold immense potential for advancing healthcare, offering rich, longitudinal data that combines structured information with valuable insights from unstructured clinical notes. However, the unstructured nature of clinical text poses significant challenges for secondary applications. Traditional methods for structuring EHR free-text data, such as rule-based systems and multi-stage pipelines, are often limited by their time-consuming configurations and inability to adapt across clinical notes from diverse healthcare settings. Few systems provide a comprehensive attribute extraction for terminologies. While giant large language models (LLMs) like GPT-4 and LLaMA 405B excel at structuring tasks, they are slow, costly, and impractical for large-scale use. To overcome these limitations, we introduce GENIE, a Generative Note Information Extraction system that leverages LLMs to streamline the structuring of unstructured clinical text into usable data with standardized format. GENIE processes entire paragraphs in a single pass, extracting entities, assertion statuses, locations, modifiers, values, and purposes with high accuracy. Its unified, end-to-end approach simplifies workflows, reduces errors, and eliminates the need for extensive manual intervention. Using a robust data preparation pipeline and fine-tuned small scale LLMs, GENIE achieves competitive performance across multiple information extraction tasks, outperforming traditional tools like cTAKES and MetaMap and can handle extra attributes to be extracted. GENIE strongly enhances real-world applicability and scalability in healthcare systems. By open-sourcing the model and test data, we aim to encourage collaboration and drive further advancements in EHR structurization.
GIELLM: Japanese General Information Extraction Large Language Model Utilizing Mutual Reinforcement Effect
Information Extraction (IE) stands as a cornerstone in natural language processing, traditionally segmented into distinct sub-tasks. The advent of Large Language Models (LLMs) heralds a paradigm shift, suggesting the feasibility of a singular model addressing multiple IE subtasks. In this vein, we introduce the General Information Extraction Large Language Model (GIELLM), which integrates text Classification, Sentiment Analysis, Named Entity Recognition, Relation Extraction, and Event Extraction using a uniform input-output schema. This innovation marks the first instance of a model simultaneously handling such a diverse array of IE subtasks. Notably, the GIELLM leverages the Mutual Reinforcement Effect (MRE), enhancing performance in integrated tasks compared to their isolated counterparts. Our experiments demonstrate State-of-the-Art (SOTA) results in five out of six Japanese mixed datasets, significantly surpassing GPT-3.5-Turbo. Further, an independent evaluation using the novel Text Classification Relation and Event Extraction(TCREE) dataset corroborates the synergistic advantages of MRE in text and word classification. This breakthrough paves the way for most IE subtasks to be subsumed under a singular LLM framework. Specialized fine-tune task-specific models are no longer needed.
Reading Order Matters: Information Extraction from Visually-rich Documents by Token Path Prediction
Recent advances in multimodal pre-trained models have significantly improved information extraction from visually-rich documents (VrDs), in which named entity recognition (NER) is treated as a sequence-labeling task of predicting the BIO entity tags for tokens, following the typical setting of NLP. However, BIO-tagging scheme relies on the correct order of model inputs, which is not guaranteed in real-world NER on scanned VrDs where text are recognized and arranged by OCR systems. Such reading order issue hinders the accurate marking of entities by BIO-tagging scheme, making it impossible for sequence-labeling methods to predict correct named entities. To address the reading order issue, we introduce Token Path Prediction (TPP), a simple prediction head to predict entity mentions as token sequences within documents. Alternative to token classification, TPP models the document layout as a complete directed graph of tokens, and predicts token paths within the graph as entities. For better evaluation of VrD-NER systems, we also propose two revised benchmark datasets of NER on scanned documents which can reflect real-world scenarios. Experiment results demonstrate the effectiveness of our method, and suggest its potential to be a universal solution to various information extraction tasks on documents.
Guideline Learning for In-context Information Extraction
Large language models (LLMs) can perform a new task by merely conditioning on task instructions and a few input-output examples, without optimizing any parameters. This is called In-Context Learning (ICL). In-context Information Extraction (IE) has recently garnered attention in the research community. However, the performance of In-context IE generally lags behind the state-of-the-art supervised expert models. We highlight a key reason for this shortfall: underspecified task description. The limited-length context struggles to thoroughly express the intricate IE task instructions and various edge cases, leading to misalignment in task comprehension with humans. In this paper, we propose a Guideline Learning (GL) framework for In-context IE which reflectively learns and follows guidelines. During the learning phrase, GL automatically synthesizes a set of guidelines based on a few error cases, and during inference, GL retrieves helpful guidelines for better ICL. Moreover, we propose a self-consistency-based active learning method to enhance the efficiency of GL. Experiments on event extraction and relation extraction show that GL can significantly improve the performance of in-context IE.
Zero-shot information extraction from radiological reports using ChatGPT
Electronic health records contain an enormous amount of valuable information, but many are recorded in free text. Information extraction is the strategy to transform the sequence of characters into structured data, which can be employed for secondary analysis. However, the traditional information extraction components, such as named entity recognition and relation extraction, require annotated data to optimize the model parameters, which has become one of the major bottlenecks in building information extraction systems. With the large language models achieving good performances on various downstream NLP tasks without parameter tuning, it becomes possible to use large language models for zero-shot information extraction. In this study, we aim to explore whether the most popular large language model, ChatGPT, can extract useful information from the radiological reports. We first design the prompt template for the interested information in the CT reports. Then, we generate the prompts by combining the prompt template with the CT reports as the inputs of ChatGPT to obtain the responses. A post-processing module is developed to transform the responses into structured extraction results. We conducted the experiments with 847 CT reports collected from Peking University Cancer Hospital. The experimental results indicate that ChatGPT can achieve competitive performances for some extraction tasks compared with the baseline information extraction system, but some limitations need to be further improved.
Self-Verification Improves Few-Shot Clinical Information Extraction
Extracting patient information from unstructured text is a critical task in health decision-support and clinical research. Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning, in contrast to supervised learning which requires much more costly human annotations. However, despite drastic advances in modern LLMs such as GPT-4, they still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health. Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs. This is made possible by the asymmetry between verification and generation, where the latter is often much easier than the former. Experimental results show that our method consistently improves accuracy for various LLMs in standard clinical information extraction tasks. Additionally, self-verification yields interpretations in the form of a short text span corresponding to each output, which makes it very efficient for human experts to audit the results, paving the way towards trustworthy extraction of clinical information in resource-constrained scenarios. To facilitate future research in this direction, we release our code and prompts.
InstructUIE: Multi-task Instruction Tuning for Unified Information Extraction
Large language models have unlocked strong multi-task capabilities from reading instructive prompts. However, recent studies have shown that existing large models still have difficulty with information extraction tasks. For example, gpt-3.5-turbo achieved an F1 score of 18.22 on the Ontonotes dataset, which is significantly lower than the state-of-the-art performance. In this paper, we propose InstructUIE, a unified information extraction framework based on instruction tuning, which can uniformly model various information extraction tasks and capture the inter-task dependency. To validate the proposed method, we introduce IE INSTRUCTIONS, a benchmark of 32 diverse information extraction datasets in a unified text-to-text format with expert-written instructions. Experimental results demonstrate that our method achieves comparable performance to Bert in supervised settings and significantly outperforms the state-of-the-art and gpt3.5 in zero-shot settings.
Clinical Trial Information Extraction with BERT
Natural language processing (NLP) of clinical trial documents can be useful in new trial design. Here we identify entity types relevant to clinical trial design and propose a framework called CT-BERT for information extraction from clinical trial text. We trained named entity recognition (NER) models to extract eligibility criteria entities by fine-tuning a set of pre-trained BERT models. We then compared the performance of CT-BERT with recent baseline methods including attention-based BiLSTM and Criteria2Query. The results demonstrate the superiority of CT-BERT in clinical trial NLP.
GLiNER multi-task: Generalist Lightweight Model for Various Information Extraction Tasks
Information extraction tasks require both accurate, efficient, and generalisable models. Classical supervised deep learning approaches can achieve the required performance, but they need large datasets and are limited in their ability to adapt to different tasks. On the other hand, large language models (LLMs) demonstrate good generalization, meaning that they can adapt to many different tasks based on user requests. However, LLMs are computationally expensive and tend to fail to generate structured outputs. In this article, we will introduce a new kind of GLiNER model that can be used for various information extraction tasks while being a small encoder model. Our model achieved SoTA performance on zero-shot NER benchmarks and leading performance on question-answering, summarization and relation extraction tasks. Additionally, in this article, we will cover experimental results on self-learning approaches for named entity recognition using GLiNER models.
DongbaMIE: A Multimodal Information Extraction Dataset for Evaluating Semantic Understanding of Dongba Pictograms
Dongba pictographs are the only pictographs still in use in the world. They have pictorial ideographic features, and their symbols carry rich cultural and contextual information. Due to the lack of relevant datasets, existing research has difficulty in advancing the study of semantic understanding of Dongba pictographs. To this end, we propose DongbaMIE, the first multimodal dataset for semantic understanding and extraction of Dongba pictographs. The dataset consists of Dongba pictograph images and their corresponding Chinese semantic annotations. It contains 23,530 sentence-level and 2,539 paragraph-level images, covering four semantic dimensions: objects, actions, relations, and attributes. We systematically evaluate the GPT-4o, Gemini-2.0, and Qwen2-VL models. Experimental results show that the F1 scores of GPT-4o and Gemini in the best object extraction are only 3.16 and 3.11 respectively. The F1 score of Qwen2-VL after supervised fine-tuning is only 11.49. These results suggest that current large multimodal models still face significant challenges in accurately recognizing the diverse semantic information in Dongba pictographs. The dataset can be obtained from this URL.
Target Prompting for Information Extraction with Vision Language Model
The recent trend in the Large Vision and Language model has brought a new change in how information extraction systems are built. VLMs have set a new benchmark with their State-of-the-art techniques in understanding documents and building question-answering systems across various industries. They are significantly better at generating text from document images and providing accurate answers to questions. However, there are still some challenges in effectively utilizing these models to build a precise conversational system. General prompting techniques used with large language models are often not suitable for these specially designed vision language models. The output generated by such generic input prompts is ordinary and may contain information gaps when compared with the actual content of the document. To obtain more accurate and specific answers, a well-targeted prompt is required by the vision language model, along with the document image. In this paper, a technique is discussed called Target prompting, which focuses on explicitly targeting parts of document images and generating related answers from those specific regions only. The paper also covers the evaluation of response for each prompting technique using different user queries and input prompts.
Slot Filling for Biomedical Information Extraction
Information Extraction (IE) from text refers to the task of extracting structured knowledge from unstructured text. The task typically consists of a series of sub-tasks such as Named Entity Recognition and Relation Extraction. Sourcing entity and relation type specific training data is a major bottleneck in domains with limited resources such as biomedicine. In this work we present a slot filling approach to the task of biomedical IE, effectively replacing the need for entity and relation-specific training data, allowing us to deal with zero-shot settings. We follow the recently proposed paradigm of coupling a Tranformer-based bi-encoder, Dense Passage Retrieval, with a Transformer-based reading comprehension model to extract relations from biomedical text. We assemble a biomedical slot filling dataset for both retrieval and reading comprehension and conduct a series of experiments demonstrating that our approach outperforms a number of simpler baselines. We also evaluate our approach end-to-end for standard as well as zero-shot settings. Our work provides a fresh perspective on how to solve biomedical IE tasks, in the absence of relevant training data. Our code, models and datasets are available at https://github.com/ypapanik/biomedical-slot-filling.
Information Extraction from Heterogeneous Documents without Ground Truth Labels using Synthetic Label Generation and Knowledge Distillation
Invoices and receipts submitted by employees are visually rich documents (VRDs) with textual, visual and layout information. To protect against the risk of fraud and abuse, it is crucial for organizations to efficiently extract desired information from submitted receipts. This helps in the assessment of key factors such as appropriateness of the expense claim, adherence to spending and transaction policies, the validity of the receipt, as well as downstream anomaly detection at various levels. These documents are heterogeneous, with multiple formats and languages, uploaded with different image qualities, and often do not contain ground truth labels for the efficient training of models. In this paper we propose Task Aware Instruction-based Labelling (TAIL), a method for synthetic label generation in VRD corpuses without labels, and fine-tune a multimodal Visually Rich Document Understanding Model (VRDU) on TAIL labels using response-based knowledge distillation without using the teacher model's weights or training dataset to conditionally generate annotations in the appropriate format. Using a benchmark external dataset where ground truth labels are available, we demonstrate conditions under which our approach performs at par with Claude 3 Sonnet through empirical studies. We then show that the resulting model performs at par or better on the internal expense documents of a large multinational organization than state-of-the-art LMM (large multimodal model) Claude 3 Sonnet while being 85% less costly and ~5X faster, and outperforms layout-aware baselines by more than 10% in Average Normalized Levenshtein Similarity (ANLS) scores due to its ability to reason and extract information from rare formats. Finally, we illustrate the usage of our approach in overpayment prevention.
Instruct and Extract: Instruction Tuning for On-Demand Information Extraction
Large language models with instruction-following capabilities open the door to a wider group of users. However, when it comes to information extraction - a classic task in natural language processing - most task-specific systems cannot align well with long-tail ad hoc extraction use cases for non-expert users. To address this, we propose a novel paradigm, termed On-Demand Information Extraction, to fulfill the personalized demands of real-world users. Our task aims to follow the instructions to extract the desired content from the associated text and present it in a structured tabular format. The table headers can either be user-specified or inferred contextually by the model. To facilitate research in this emerging area, we present a benchmark named InstructIE, inclusive of both automatically generated training data, as well as the human-annotated test set. Building on InstructIE, we further develop an On-Demand Information Extractor, ODIE. Comprehensive evaluations on our benchmark reveal that ODIE substantially outperforms the existing open-source models of similar size. Our code and dataset are released on https://github.com/yzjiao/On-Demand-IE.
CodeIE: Large Code Generation Models are Better Few-Shot Information Extractors
Large language models (LLMs) pre-trained on massive corpora have demonstrated impressive few-shot learning ability on many NLP tasks. A common practice is to recast the task into a text-to-text format such that generative LLMs of natural language (NL-LLMs) like GPT-3 can be prompted to solve it. However, it is nontrivial to perform information extraction (IE) tasks with NL-LLMs since the output of the IE task is usually structured and therefore is hard to be converted into plain text. In this paper, we propose to recast the structured output in the form of code instead of natural language and utilize generative LLMs of code (Code-LLMs) such as Codex to perform IE tasks, in particular, named entity recognition and relation extraction. In contrast to NL-LLMs, we show that Code-LLMs can be well-aligned with these IE tasks by designing code-style prompts and formulating these IE tasks as code generation tasks. Experiment results on seven benchmarks show that our method consistently outperforms fine-tuning moderate-size pre-trained models specially designed for IE tasks (e.g., UIE) and prompting NL-LLMs under few-shot settings. We further conduct a series of in-depth analyses to demonstrate the merits of leveraging Code-LLMs for IE tasks.
ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for Document Information Extraction
Large language models (LLMs), such as GPT-3 and ChatGPT, have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning, which involves inference based on a few demonstration examples. Despite their successes in NLP tasks, no investigation has been conducted to assess the ability of LLMs to perform document information extraction (DIE) using in-context learning. Applying LLMs to DIE poses two challenges: the modality and task gap. To this end, we propose a simple but effective in-context learning framework called ICL-D3IE, which enables LLMs to perform DIE with different types of demonstration examples. Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations for benefiting all test instances. We design demonstrations describing relationships that enable LLMs to understand positional relationships. We introduce formatting demonstrations for easy answer extraction. Additionally, the framework improves diverse demonstrations by updating them iteratively. Our experiments on three widely used benchmark datasets demonstrate that the ICL-D3IE framework enables Davinci-003/ChatGPT to achieve superior performance when compared to previous pre-trained methods fine-tuned with full training in both the in-distribution (ID) setting and in the out-of-distribution (OOD) setting. Code is available at https://github.com/MAEHCM/ICL-D3IE.
Relation-Rich Visual Document Generator for Visual Information Extraction
Despite advances in Large Language Models (LLMs) and Multimodal LLMs (MLLMs) for visual document understanding (VDU), visual information extraction (VIE) from relation-rich documents remains challenging due to the layout diversity and limited training data. While existing synthetic document generators attempt to address data scarcity, they either rely on manually designed layouts and templates, or adopt rule-based approaches that limit layout diversity. Besides, current layout generation methods focus solely on topological patterns without considering textual content, making them impractical for generating documents with complex associations between the contents and layouts. In this paper, we propose a Relation-rIch visual Document GEnerator (RIDGE) that addresses these limitations through a two-stage approach: (1) Content Generation, which leverages LLMs to generate document content using a carefully designed Hierarchical Structure Text format which captures entity categories and relationships, and (2) Content-driven Layout Generation, which learns to create diverse, plausible document layouts solely from easily available Optical Character Recognition (OCR) results, requiring no human labeling or annotations efforts. Experimental results have demonstrated that our method significantly enhances the performance of document understanding models on various VIE benchmarks. The code and model will be available at https://github.com/AI-Application-and-Integration-Lab/RIDGE .
Schema-Driven Information Extraction from Heterogeneous Tables
In this paper, we explore the question of whether large language models can support cost-efficient information extraction from tables. We introduce schema-driven information extraction, a new task that transforms tabular data into structured records following a human-authored schema. To assess various LLM's capabilities on this task, we present a benchmark comprised of tables from four diverse domains: machine learning papers, chemistry literature, material science journals, and webpages. We use this collection of annotated tables to evaluate the ability of open-source and API-based language models to extract information from tables covering diverse domains and data formats. Our experiments demonstrate that surprisingly competitive performance can be achieved without requiring task-specific pipelines or labels, achieving F1 scores ranging from 74.2 to 96.1, while maintaining cost efficiency. Moreover, through detailed ablation studies and analyses, we investigate the factors contributing to model success and validate the practicality of distilling compact models to reduce API reliance.
InstructIE: A Chinese Instruction-based Information Extraction Dataset
We introduce a new Information Extraction (IE) task dubbed Instruction-based IE, which aims to ask the system to follow specific instructions or guidelines to extract information. To facilitate research in this area, we construct a dataset called InstructIE, consisting of 270,000 weakly supervised data from Chinese Wikipedia and 1,000 high-quality crowdsourced annotated instances. We further evaluate the performance of various baseline models on the InstructIE dataset. The results reveal that although current models exhibit promising performance, there is still room for improvement. Furthermore, we conduct a comprehensive case study analysis, underlining the challenges inherent in the Instruction-based IE task. Code and dataset are available at https://github.com/zjunlp/DeepKE/tree/main/example/llm.
Large Language Models are Few-Shot Clinical Information Extractors
A long-running goal of the clinical NLP community is the extraction of important variables trapped in clinical notes. However, roadblocks have included dataset shift from the general domain and a lack of public clinical corpora and annotations. In this work, we show that large language models, such as InstructGPT, perform well at zero- and few-shot information extraction from clinical text despite not being trained specifically for the clinical domain. Whereas text classification and generation performance have already been studied extensively in such models, here we additionally demonstrate how to leverage them to tackle a diverse set of NLP tasks which require more structured outputs, including span identification, token-level sequence classification, and relation extraction. Further, due to the dearth of available data to evaluate these systems, we introduce new datasets for benchmarking few-shot clinical information extraction based on a manual re-annotation of the CASI dataset for new tasks. On the clinical extraction tasks we studied, the GPT-3 systems significantly outperform existing zero- and few-shot baselines.
PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation
In this paper we present our submission for the EACL 2021 SRW; a methodology that aims at bridging the gap between high and low-resource languages in the context of Open Information Extraction, showcasing it on the Greek language. The goals of this paper are twofold: First, we build Neural Machine Translation (NMT) models for English-to-Greek and Greek-to-English based on the Transformer architecture. Second, we leverage these NMT models to produce English translations of Greek text as input for our NLP pipeline, to which we apply a series of pre-processing and triple extraction tasks. Finally, we back-translate the extracted triples to Greek. We conduct an evaluation of both our NMT and OIE methods on benchmark datasets and demonstrate that our approach outperforms the current state-of-the-art for the Greek natural language.
DocGraphLM: Documental Graph Language Model for Information Extraction
Advances in Visually Rich Document Understanding (VrDU) have enabled information extraction and question answering over documents with complex layouts. Two tropes of architectures have emerged -- transformer-based models inspired by LLMs, and Graph Neural Networks. In this paper, we introduce DocGraphLM, a novel framework that combines pre-trained language models with graph semantics. To achieve this, we propose 1) a joint encoder architecture to represent documents, and 2) a novel link prediction approach to reconstruct document graphs. DocGraphLM predicts both directions and distances between nodes using a convergent joint loss function that prioritizes neighborhood restoration and downweighs distant node detection. Our experiments on three SotA datasets show consistent improvement on IE and QA tasks with the adoption of graph features. Moreover, we report that adopting the graph features accelerates convergence in the learning process during training, despite being solely constructed through link prediction.
GuideX: Guided Synthetic Data Generation for Zero-Shot Information Extraction
Information Extraction (IE) systems are traditionally domain-specific, requiring costly adaptation that involves expert schema design, data annotation, and model training. While Large Language Models have shown promise in zero-shot IE, performance degrades significantly in unseen domains where label definitions differ. This paper introduces GUIDEX, a novel method that automatically defines domain-specific schemas, infers guidelines, and generates synthetically labeled instances, allowing for better out-of-domain generalization. Fine-tuning Llama 3.1 with GUIDEX sets a new state-of-the-art across seven zeroshot Named Entity Recognition benchmarks. Models trained with GUIDEX gain up to 7 F1 points over previous methods without humanlabeled data, and nearly 2 F1 points higher when combined with it. Models trained on GUIDEX demonstrate enhanced comprehension of complex, domain-specific annotation schemas. Code, models, and synthetic datasets are available at neilus03.github.io/guidex.com
Enhancing Document Information Analysis with Multi-Task Pre-training: A Robust Approach for Information Extraction in Visually-Rich Documents
This paper introduces a deep learning model tailored for document information analysis, emphasizing document classification, entity relation extraction, and document visual question answering. The proposed model leverages transformer-based models to encode all the information present in a document image, including textual, visual, and layout information. The model is pre-trained and subsequently fine-tuned for various document image analysis tasks. The proposed model incorporates three additional tasks during the pre-training phase, including reading order identification of different layout segments in a document image, layout segments categorization as per PubLayNet, and generation of the text sequence within a given layout segment (text block). The model also incorporates a collective pre-training scheme where losses of all the tasks under consideration, including pre-training and fine-tuning tasks with all datasets, are considered. Additional encoder and decoder blocks are added to the RoBERTa network to generate results for all tasks. The proposed model achieved impressive results across all tasks, with an accuracy of 95.87% on the RVL-CDIP dataset for document classification, F1 scores of 0.9306, 0.9804, 0.9794, and 0.8742 on the FUNSD, CORD, SROIE, and Kleister-NDA datasets respectively for entity relation extraction, and an ANLS score of 0.8468 on the DocVQA dataset for visual question answering. The results highlight the effectiveness of the proposed model in understanding and interpreting complex document layouts and content, making it a promising tool for document analysis tasks.
RealKIE: Five Novel Datasets for Enterprise Key Information Extraction
We introduce RealKIE, a benchmark of five challenging datasets aimed at advancing key information extraction methods, with an emphasis on enterprise applications. The datasets include a diverse range of documents including SEC S1 Filings, US Non-disclosure Agreements, UK Charity Reports, FCC Invoices, and Resource Contracts. Each presents unique challenges: poor text serialization, sparse annotations in long documents, and complex tabular layouts. These datasets provide a realistic testing ground for key information extraction tasks like investment analysis and legal data processing. In addition to presenting these datasets, we offer an in-depth description of the annotation process, document processing techniques, and baseline modeling approaches. This contribution facilitates the development of NLP models capable of handling practical challenges and supports further research into information extraction technologies applicable to industry-specific problems. The annotated data and OCR outputs are available to download at https://indicodatasolutions.github.io/RealKIE/ code to reproduce the baselines will be available shortly.
The SOFC-Exp Corpus and Neural Approaches to Information Extraction in the Materials Science Domain
This paper presents a new challenging information extraction task in the domain of materials science. We develop an annotation scheme for marking information on experiments related to solid oxide fuel cells in scientific publications, such as involved materials and measurement conditions. With this paper, we publish our annotation guidelines, as well as our SOFC-Exp corpus consisting of 45 open-access scholarly articles annotated by domain experts. A corpus and an inter-annotator agreement study demonstrate the complexity of the suggested named entity recognition and slot filling tasks as well as high annotation quality. We also present strong neural-network based models for a variety of tasks that can be addressed on the basis of our new data set. On all tasks, using BERT embeddings leads to large performance gains, but with increasing task complexity, adding a recurrent neural network on top seems beneficial. Our models will serve as competitive baselines in future work, and analysis of their performance highlights difficult cases when modeling the data and suggests promising research directions.
MIRFLEX: Music Information Retrieval Feature Library for Extraction
This paper introduces an extendable modular system that compiles a range of music feature extraction models to aid music information retrieval research. The features include musical elements like key, downbeats, and genre, as well as audio characteristics like instrument recognition, vocals/instrumental classification, and vocals gender detection. The integrated models are state-of-the-art or latest open-source. The features can be extracted as latent or post-processed labels, enabling integration into music applications such as generative music, recommendation, and playlist generation. The modular design allows easy integration of newly developed systems, making it a good benchmarking and comparison tool. This versatile toolkit supports the research community in developing innovative solutions by providing concrete musical features.
UMIE: Unified Multimodal Information Extraction with Instruction Tuning
Multimodal information extraction (MIE) gains significant attention as the popularity of multimedia content increases. However, current MIE methods often resort to using task-specific model structures, which results in limited generalizability across tasks and underutilizes shared knowledge across MIE tasks. To address these issues, we propose UMIE, a unified multimodal information extractor to unify three MIE tasks as a generation problem using instruction tuning, being able to effectively extract both textual and visual mentions. Extensive experiments show that our single UMIE outperforms various state-of-the-art (SoTA) methods across six MIE datasets on three tasks. Furthermore, in-depth analysis demonstrates UMIE's strong generalization in the zero-shot setting, robustness to instruction variants, and interpretability. Our research serves as an initial step towards a unified MIE model and initiates the exploration into both instruction tuning and large language models within the MIE domain. Our code, data, and model are available at https://github.com/ZUCC-AI/UMIE
Problem Solved? Information Extraction Design Space for Layout-Rich Documents using LLMs
This paper defines and explores the design space for information extraction (IE) from layout-rich documents using large language models (LLMs). The three core challenges of layout-aware IE with LLMs are 1) data structuring, 2) model engagement, and 3) output refinement. Our study delves into the sub-problems within these core challenges, such as input representation, chunking, prompting, and selection of LLMs and multimodal models. It examines the outcomes of different design choices through a new layout-aware IE test suite, benchmarking against the state-of-art (SoA) model LayoutLMv3. The results show that the configuration from one-factor-at-a-time (OFAT) trial achieves near-optimal results with 14.1 points F1-score gain from the baseline model, while full factorial exploration yields only a slightly higher 15.1 points gain at around 36x greater token usage. We demonstrate that well-configured general-purpose LLMs can match the performance of specialized models, providing a cost-effective alternative. Our test-suite is freely available at https://github.com/gayecolakoglu/LayIE-LLM.
DANIEL: A fast Document Attention Network for Information Extraction and Labelling of handwritten documents
Information extraction from handwritten documents involves traditionally three distinct steps: Document Layout Analysis, Handwritten Text Recognition, and Named Entity Recognition. Recent approaches have attempted to integrate these steps into a single process using fully end-to-end architectures. Despite this, these integrated approaches have not yet matched the performance of language models, when applied to information extraction in plain text. In this paper, we introduce DANIEL (Document Attention Network for Information Extraction and Labelling), a fully end-to-end architecture integrating a language model and designed for comprehensive handwritten document understanding. DANIEL performs layout recognition, handwriting recognition, and named entity recognition on full-page documents. Moreover, it can simultaneously learn across multiple languages, layouts, and tasks. For named entity recognition, the ontology to be applied can be specified via the input prompt. The architecture employs a convolutional encoder capable of processing images of any size without resizing, paired with an autoregressive decoder based on a transformer-based language model. DANIEL achieves competitive results on four datasets, including a new state-of-the-art performance on RIMES 2009 and M-POPP for Handwriting Text Recognition, and IAM NER for Named Entity Recognition. Furthermore, DANIEL is much faster than existing approaches. We provide the source code and the weights of the trained models at https://github.com/Shulk97/daniel.
Retrieval-Augmented Code Generation for Universal Information Extraction
Information Extraction (IE) aims to extract structural knowledge (e.g., entities, relations, events) from natural language texts, which brings challenges to existing methods due to task-specific schemas and complex text expressions. Code, as a typical kind of formalized language, is capable of describing structural knowledge under various schemas in a universal way. On the other hand, Large Language Models (LLMs) trained on both codes and texts have demonstrated powerful capabilities of transforming texts into codes, which provides a feasible solution to IE tasks. Therefore, in this paper, we propose a universal retrieval-augmented code generation framework based on LLMs, called Code4UIE, for IE tasks. Specifically, Code4UIE adopts Python classes to define task-specific schemas of various structural knowledge in a universal way. By so doing, extracting knowledge under these schemas can be transformed into generating codes that instantiate the predefined Python classes with the information in texts. To generate these codes more precisely, Code4UIE adopts the in-context learning mechanism to instruct LLMs with examples. In order to obtain appropriate examples for different tasks, Code4UIE explores several example retrieval strategies, which can retrieve examples semantically similar to the given texts. Extensive experiments on five representative IE tasks across nine datasets demonstrate the effectiveness of the Code4UIE framework.
HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction
Extraction and interpretation of intricate information from unstructured text data arising in financial applications, such as earnings call transcripts, present substantial challenges to large language models (LLMs) even using the current best practices to use Retrieval Augmented Generation (RAG) (referred to as VectorRAG techniques which utilize vector databases for information retrieval) due to challenges such as domain specific terminology and complex formats of the documents. We introduce a novel approach based on a combination, called HybridRAG, of the Knowledge Graphs (KGs) based RAG techniques (called GraphRAG) and VectorRAG techniques to enhance question-answer (Q&A) systems for information extraction from financial documents that is shown to be capable of generating accurate and contextually relevant answers. Using experiments on a set of financial earning call transcripts documents which come in the form of Q&A format, and hence provide a natural set of pairs of ground-truth Q&As, we show that HybridRAG which retrieves context from both vector database and KG outperforms both traditional VectorRAG and GraphRAG individually when evaluated at both the retrieval and generation stages in terms of retrieval accuracy and answer generation. The proposed technique has applications beyond the financial domain
YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction
The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are deficient in their information extraction capabilities for Chinese languages other than English. In this paper, we propose an end-to-end chat-enhanced instruction tuning framework for universal information extraction (YAYI-UIE), which supports both Chinese and English. Specifically, we utilize dialogue data and information extraction data to enhance the information extraction performance jointly. Experimental results show that our proposed framework achieves state-of-the-art performance on Chinese datasets while also achieving comparable performance on English datasets under both supervised settings and zero-shot settings.
Leveraging Large Language Models for Mobile App Review Feature Extraction
Mobile app review analysis presents unique challenges due to the low quality, subjective bias, and noisy content of user-generated documents. Extracting features from these reviews is essential for tasks such as feature prioritization and sentiment analysis, but it remains a challenging task. Meanwhile, encoder-only models based on the Transformer architecture have shown promising results for classification and information extraction tasks for multiple software engineering processes. This study explores the hypothesis that encoder-only large language models can enhance feature extraction from mobile app reviews. By leveraging crowdsourced annotations from an industrial context, we redefine feature extraction as a supervised token classification task. Our approach includes extending the pre-training of these models with a large corpus of user reviews to improve contextual understanding and employing instance selection techniques to optimize model fine-tuning. Empirical evaluations demonstrate that this method improves the precision and recall of extracted features and enhances performance efficiency. Key contributions include a novel approach to feature extraction, annotated datasets, extended pre-trained models, and an instance selection mechanism for cost-effective fine-tuning. This research provides practical methods and empirical evidence in applying large language models to natural language processing tasks within mobile app reviews, offering improved performance in feature extraction.
HumSet: Dataset of Multilingual Information Extraction and Classification for Humanitarian Crisis Response
Timely and effective response to humanitarian crises requires quick and accurate analysis of large amounts of text data - a process that can highly benefit from expert-assisted NLP systems trained on validated and annotated data in the humanitarian response domain. To enable creation of such NLP systems, we introduce and release HumSet, a novel and rich multilingual dataset of humanitarian response documents annotated by experts in the humanitarian response community. The dataset provides documents in three languages (English, French, Spanish) and covers a variety of humanitarian crises from 2018 to 2021 across the globe. For each document, HUMSET provides selected snippets (entries) as well as assigned classes to each entry annotated using common humanitarian information analysis frameworks. HUMSET also provides novel and challenging entry extraction and multi-label entry classification tasks. In this paper, we take a first step towards approaching these tasks and conduct a set of experiments on Pre-trained Language Models (PLM) to establish strong baselines for future research in this domain. The dataset is available at https://blog.thedeep.io/humset/.
LSOIE: A Large-Scale Dataset for Supervised Open Information Extraction
Open Information Extraction (OIE) systems seek to compress the factual propositions of a sentence into a series of n-ary tuples. These tuples are useful for downstream tasks in natural language processing like knowledge base creation, textual entailment, and natural language understanding. However, current OIE datasets are limited in both size and diversity. We introduce a new dataset by converting the QA-SRL 2.0 dataset to a large-scale OIE dataset (LSOIE). Our LSOIE dataset is 20 times larger than the next largest human-annotated OIE dataset. We construct and evaluate several benchmark OIE models on LSOIE, providing baselines for future improvements on the task. Our LSOIE data, models, and code are made publicly available
POTATO: exPlainable infOrmation exTrAcTion framewOrk
We present POTATO, a task- and languageindependent framework for human-in-the-loop (HITL) learning of rule-based text classifiers using graph-based features. POTATO handles any type of directed graph and supports parsing text into Abstract Meaning Representations (AMR), Universal Dependencies (UD), and 4lang semantic graphs. A streamlit-based user interface allows users to build rule systems from graph patterns, provides real-time evaluation based on ground truth data, and suggests rules by ranking graph features using interpretable machine learning models. Users can also provide patterns over graphs using regular expressions, and POTATO can recommend refinements of such rules. POTATO is applied in projects across domains and languages, including classification tasks on German legal text and English social media data. All components of our system are written in Python, can be installed via pip, and are released under an MIT License on GitHub.
Retrieval Augmented Structured Generation: Business Document Information Extraction As Tool Use
Business Document Information Extraction (BDIE) is the problem of transforming a blob of unstructured information (raw text, scanned documents, etc.) into a structured format that downstream systems can parse and use. It has two main tasks: Key-Information Extraction (KIE) and Line Items Recognition (LIR). In this paper, we argue that BDIE is best modeled as a Tool Use problem, where the tools are these downstream systems. We then present Retrieval Augmented Structured Generation (RASG), a novel general framework for BDIE that achieves state of the art (SOTA) results on both KIE and LIR tasks on BDIE benchmarks. The contributions of this paper are threefold: (1) We show, with ablation benchmarks, that Large Language Models (LLMs) with RASG are already competitive with or surpasses current SOTA Large Multimodal Models (LMMs) without RASG on BDIE benchmarks. (2) We propose a new metric class for Line Items Recognition, General Line Items Recognition Metric (GLIRM), that is more aligned with practical BDIE use cases compared to existing metrics, such as ANLS*, DocILE, and GriTS. (3) We provide a heuristic algorithm for backcalculating bounding boxes of predicted line items and tables without the need for vision encoders. Finally, we claim that, while LMMs might sometimes offer marginal performance benefits, LLMs + RASG is oftentimes superior given real-world applications and constraints of BDIE.
Unlocking Science: Novel Dataset and Benchmark for Cross-Modality Scientific Information Extraction
Extracting key information from scientific papers has the potential to help researchers work more efficiently and accelerate the pace of scientific progress. Over the last few years, research on Scientific Information Extraction (SciIE) witnessed the release of several new systems and benchmarks. However, existing paper-focused datasets mostly focus only on specific parts of a manuscript (e.g., abstracts) and are single-modality (i.e., text- or table-only), due to complex processing and expensive annotations. Moreover, core information can be present in either text or tables or across both. To close this gap in data availability and enable cross-modality IE, while alleviating labeling costs, we propose a semi-supervised pipeline for annotating entities in text, as well as entities and relations in tables, in an iterative procedure. Based on this pipeline, we release novel resources for the scientific community, including a high-quality benchmark, a large-scale corpus, and a semi-supervised annotation pipeline. We further report the performance of state-of-the-art IE models on the proposed benchmark dataset, as a baseline. Lastly, we explore the potential capability of large language models such as ChatGPT for the current task. Our new dataset, results, and analysis validate the effectiveness and efficiency of our semi-supervised pipeline, and we discuss its remaining limitations.
P-Adapters: Robustly Extracting Factual Information from Language Models with Diverse Prompts
Recent work (e.g. LAMA (Petroni et al., 2019)) has found that the quality of the factual information extracted from Large Language Models (LLMs) depends on the prompts used to query them. This inconsistency is problematic because different users will query LLMs for the same information using different wording, but should receive the same, accurate responses regardless. In this work we aim to address this shortcoming by introducing P-Adapters: lightweight models that sit between the embedding layer and first attention layer of LLMs. They take LLM embeddings as input and output continuous prompts that are used to query the LLM. Additionally, we investigate Mixture of Experts (MoE) models that learn a set of continuous prompts ("experts") and select one to query the LLM. They require a separate classifier trained on human-annotated data to map natural language prompts to the continuous ones. P-Adapters perform comparably to the more complex MoE models in extracting factual information from BERT and RoBERTa while eliminating the need for additional annotations. P-Adapters show between 12-26% absolute improvement in precision and 36-50% absolute improvement in consistency over a baseline of only using natural language queries. Finally, we investigate what makes P-Adapters successful and conclude that a significant factor is access to the LLM's embeddings of the original natural language prompt, particularly the subject of the entity pair being queried.
"What is the value of {templates}?" Rethinking Document Information Extraction Datasets for LLMs
The rise of large language models (LLMs) for visually rich document understanding (VRDU) has kindled a need for prompt-response, document-based datasets. As annotating new datasets from scratch is labor-intensive, the existing literature has generated prompt-response datasets from available resources using simple templates. For the case of key information extraction (KIE), one of the most common VRDU tasks, past work has typically employed the template "What is the value for the {key}?". However, given the variety of questions encountered in the wild, simple and uniform templates are insufficient for creating robust models in research and industrial contexts. In this work, we present K2Q, a diverse collection of five datasets converted from KIE to a prompt-response format using a plethora of bespoke templates. The questions in K2Q can span multiple entities and be extractive or boolean. We empirically compare the performance of seven baseline generative models on K2Q with zero-shot prompting. We further compare three of these models when training on K2Q versus training on simpler templates to motivate the need of our work. We find that creating diverse and intricate KIE questions enhances the performance and robustness of VRDU models. We hope this work encourages future studies on data quality for generative model training.
GSAP-NER: A Novel Task, Corpus, and Baseline for Scholarly Entity Extraction Focused on Machine Learning Models and Datasets
Named Entity Recognition (NER) models play a crucial role in various NLP tasks, including information extraction (IE) and text understanding. In academic writing, references to machine learning models and datasets are fundamental components of various computer science publications and necessitate accurate models for identification. Despite the advancements in NER, existing ground truth datasets do not treat fine-grained types like ML model and model architecture as separate entity types, and consequently, baseline models cannot recognize them as such. In this paper, we release a corpus of 100 manually annotated full-text scientific publications and a first baseline model for 10 entity types centered around ML models and datasets. In order to provide a nuanced understanding of how ML models and datasets are mentioned and utilized, our dataset also contains annotations for informal mentions like "our BERT-based model" or "an image CNN". You can find the ground truth dataset and code to replicate model training at https://data.gesis.org/gsap/gsap-ner.
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents
Key information extraction (KIE) from document images requires understanding the contextual and spatial semantics of texts in two-dimensional (2D) space. Many recent studies try to solve the task by developing pre-trained language models focusing on combining visual features from document images with texts and their layout. On the other hand, this paper tackles the problem by going back to the basic: effective combination of text and layout. Specifically, we propose a pre-trained language model, named BROS (BERT Relying On Spatiality), that encodes relative positions of texts in 2D space and learns from unlabeled documents with area-masking strategy. With this optimized training scheme for understanding texts in 2D space, BROS shows comparable or better performance compared to previous methods on four KIE benchmarks (FUNSD, SROIE*, CORD, and SciTSR) without relying on visual features. This paper also reveals two real-world challenges in KIE tasks-(1) minimizing the error from incorrect text ordering and (2) efficient learning from fewer downstream examples-and demonstrates the superiority of BROS over previous methods. Code is available at https://github.com/clovaai/bros.
DWIE: an entity-centric dataset for multi-task document-level information extraction
This paper presents DWIE, the 'Deutsche Welle corpus for Information Extraction', a newly created multi-task dataset that combines four main Information Extraction (IE) annotation subtasks: (i) Named Entity Recognition (NER), (ii) Coreference Resolution, (iii) Relation Extraction (RE), and (iv) Entity Linking. DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start from the detection and classification of named entity mentions in individual sentences. Further, DWIE presented two main challenges when building and evaluating IE models for it. First, the use of traditional mention-level evaluation metrics for NER and RE tasks on entity-centric DWIE dataset can result in measurements dominated by predictions on more frequently mentioned entities. We tackle this issue by proposing a new entity-driven metric that takes into account the number of mentions that compose each of the predicted and ground truth entities. Second, the document-level multi-task annotations require the models to transfer information between entity mentions located in different parts of the document, as well as between different tasks, in a joint learning setting. To realize this, we propose to use graph-based neural message passing techniques between document-level mention spans. Our experiments show an improvement of up to 5.5 F1 percentage points when incorporating neural graph propagation into our joint model. This demonstrates DWIE's potential to stimulate further research in graph neural networks for representation learning in multi-task IE. We make DWIE publicly available at https://github.com/klimzaporojets/DWIE.
Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction
Document parsing is essential for converting unstructured and semi-structured documents-such as contracts, academic papers, and invoices-into structured, machine-readable data. Document parsing extract reliable structured data from unstructured inputs, providing huge convenience for numerous applications. Especially with recent achievements in Large Language Models, document parsing plays an indispensable role in both knowledge base construction and training data generation. This survey presents a comprehensive review of the current state of document parsing, covering key methodologies, from modular pipeline systems to end-to-end models driven by large vision-language models. Core components such as layout detection, content extraction (including text, tables, and mathematical expressions), and multi-modal data integration are examined in detail. Additionally, this paper discusses the challenges faced by modular document parsing systems and vision-language models in handling complex layouts, integrating multiple modules, and recognizing high-density text. It emphasizes the importance of developing larger and more diverse datasets and outlines future research directions.
OmniParser: A Unified Framework for Text Spotting, Key Information Extraction and Table Recognition
Recently, visually-situated text parsing (VsTP) has experienced notable advancements, driven by the increasing demand for automated document understanding and the emergence of Generative Large Language Models (LLMs) capable of processing document-based questions. Various methods have been proposed to address the challenging problem of VsTP. However, due to the diversified targets and heterogeneous schemas, previous works usually design task-specific architectures and objectives for individual tasks, which inadvertently leads to modal isolation and complex workflow. In this paper, we propose a unified paradigm for parsing visually-situated text across diverse scenarios. Specifically, we devise a universal model, called OmniParser, which can simultaneously handle three typical visually-situated text parsing tasks: text spotting, key information extraction, and table recognition. In OmniParser, all tasks share the unified encoder-decoder architecture, the unified objective: point-conditioned text generation, and the unified input & output representation: prompt & structured sequences. Extensive experiments demonstrate that the proposed OmniParser achieves state-of-the-art (SOTA) or highly competitive performances on 7 datasets for the three visually-situated text parsing tasks, despite its unified, concise design. The code is available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery.
Construction of English Resume Corpus and Test with Pre-trained Language Models
Information extraction(IE) has always been one of the essential tasks of NLP. Moreover, one of the most critical application scenarios of information extraction is the information extraction of resumes. Constructed text is obtained by classifying each part of the resume. It is convenient to store these texts for later search and analysis. Furthermore, the constructed resume data can also be used in the AI resume screening system. Significantly reduce the labor cost of HR. This study aims to transform the information extraction task of resumes into a simple sentence classification task. Based on the English resume dataset produced by the prior study. The classification rules are improved to create a larger and more fine-grained classification dataset of resumes. This corpus is also used to test some current mainstream Pre-training language models (PLMs) performance.Furthermore, in order to explore the relationship between the number of training samples and the correctness rate of the resume dataset, we also performed comparison experiments with training sets of different train set sizes.The final multiple experimental results show that the resume dataset with improved annotation rules and increased sample size of the dataset improves the accuracy of the original resume dataset.
Hopping Too Late: Exploring the Limitations of Large Language Models on Multi-Hop Queries
Large language models (LLMs) can solve complex multi-step problems, but little is known about how these computations are implemented internally. Motivated by this, we study how LLMs answer multi-hop queries such as "The spouse of the performer of Imagine is". These queries require two information extraction steps: a latent one for resolving the first hop ("the performer of Imagine") into the bridge entity (John Lennon), and one for resolving the second hop ("the spouse of John Lennon") into the target entity (Yoko Ono). Understanding how the latent step is computed internally is key to understanding the overall computation. By carefully analyzing the internal computations of transformer-based LLMs, we discover that the bridge entity is resolved in the early layers of the model. Then, only after this resolution, the two-hop query is solved in the later layers. Because the second hop commences in later layers, there could be cases where these layers no longer encode the necessary knowledge for correctly predicting the answer. Motivated by this, we propose a novel "back-patching" analysis method whereby a hidden representation from a later layer is patched back to an earlier layer. We find that in up to 57% of previously incorrect cases there exists a back-patch that results in the correct generation of the answer, showing that the later layers indeed sometimes lack the needed functionality. Overall our methods and findings open further opportunities for understanding and improving latent reasoning in transformer-based LLMs.
Calibrated Seq2seq Models for Efficient and Generalizable Ultra-fine Entity Typing
Ultra-fine entity typing plays a crucial role in information extraction by predicting fine-grained semantic types for entity mentions in text. However, this task poses significant challenges due to the massive number of entity types in the output space. The current state-of-the-art approaches, based on standard multi-label classifiers or cross-encoder models, suffer from poor generalization performance or inefficient inference. In this paper, we present CASENT, a seq2seq model designed for ultra-fine entity typing that predicts ultra-fine types with calibrated confidence scores. Our model takes an entity mention as input and employs constrained beam search to generate multiple types autoregressively. The raw sequence probabilities associated with the predicted types are then transformed into confidence scores using a novel calibration method. We conduct extensive experiments on the UFET dataset which contains over 10k types. Our method outperforms the previous state-of-the-art in terms of F1 score and calibration error, while achieving an inference speedup of over 50 times. Additionally, we demonstrate the generalization capabilities of our model by evaluating it in zero-shot and few-shot settings on five specialized domain entity typing datasets that are unseen during training. Remarkably, our model outperforms large language models with 10 times more parameters in the zero-shot setting, and when fine-tuned on 50 examples, it significantly outperforms ChatGPT on all datasets. Our code, models and demo are available at https://github.com/yanlinf/CASENT.
Advanced Semantics for Commonsense Knowledge Extraction
Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications such as robust chatbots. Prior works like ConceptNet, TupleKB and others compiled large CSK collections, but are restricted in their expressiveness to subject-predicate-object (SPO) triples with simple concepts for S and monolithic strings for P and O. Also, these projects have either prioritized precision or recall, but hardly reconcile these complementary goals. This paper presents a methodology, called Ascent, to automatically build a large-scale knowledge base (KB) of CSK assertions, with advanced expressiveness and both better precision and recall than prior works. Ascent goes beyond triples by capturing composite concepts with subgroups and aspects, and by refining assertions with semantic facets. The latter are important to express temporal and spatial validity of assertions and further qualifiers. Ascent combines open information extraction with judicious cleaning using language models. Intrinsic evaluation shows the superior size and quality of the Ascent KB, and an extrinsic evaluation for QA-support tasks underlines the benefits of Ascent. A web interface, data and code can be found at https://ascent.mpi-inf.mpg.de/.
Automated PII Extraction from Social Media for Raising Privacy Awareness: A Deep Transfer Learning Approach
Internet users have been exposing an increasing amount of Personally Identifiable Information (PII) on social media. Such exposed PII can cause severe losses to the users, and informing users of their PII exposure is crucial to raise their privacy awareness and encourage them to take protective measures. To this end, advanced automatic techniques are needed. While Information Extraction (IE) techniques can be used to extract the PII automatically, Deep Learning (DL)-based IE models alleviate the need for feature engineering and further improve the efficiency. However, DL-based IE models often require large-scale labeled data for training, but PII-labeled social media posts are difficult to obtain due to privacy concerns. Also, these models rely heavily on pre-trained word embeddings, while PII in social media often varies in forms and thus has no fixed representations in pre-trained word embeddings. In this study, we propose the Deep Transfer Learning for PII Extraction (DTL-PIIE) framework to address these two limitations. DTL-PIIE transfers knowledge learned from publicly available PII data to social media to address the problem of rare PII-labeled data. Moreover, our framework leverages Graph Convolutional Networks (GCNs) to incorporate syntactic patterns to guide PIIE without relying on pre-trained word embeddings. Evaluation against benchmark IE models indicates that our approach outperforms state-of-the-art DL-based IE models. Our framework can facilitate various applications, such as PII misuse prediction and privacy risk assessment, protecting the privacy of internet users.
How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective
Recent studies have shown that large language models (LLMs) can assess relevance and support information retrieval (IR) tasks such as document ranking and relevance judgment generation. However, the internal mechanisms by which off-the-shelf LLMs understand and operationalize relevance remain largely unexplored. In this paper, we systematically investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability. Using activation patching techniques, we analyze the roles of various model components and identify a multi-stage, progressive process in generating either pointwise or pairwise relevance judgment. Specifically, LLMs first extract query and document information in the early layers, then process relevance information according to instructions in the middle layers, and finally utilize specific attention heads in the later layers to generate relevance judgments in the required format. Our findings provide insights into the mechanisms underlying relevance assessment in LLMs, offering valuable implications for future research on leveraging LLMs for IR tasks.
Retrieval Augmented Instruction Tuning for Open NER with Large Language Models
The strong capability of large language models (LLMs) has been applied to information extraction (IE) through either retrieval augmented prompting or instruction tuning (IT). However, the best way to incorporate information with LLMs for IE remains an open question. In this paper, we explore Retrieval Augmented Instruction Tuning (RA-IT) for IE, focusing on the task of open named entity recognition (NER). Specifically, for each training sample, we retrieve semantically similar examples from the training dataset as the context and prepend them to the input of the original instruction. To evaluate our RA-IT approach more thoroughly, we construct a Chinese IT dataset for open NER and evaluate RA-IT in both English and Chinese scenarios. Experimental results verify the effectiveness of RA-IT across various data sizes and in both English and Chinese scenarios. We also conduct thorough studies to explore the impacts of various retrieval strategies in the proposed RA-IT framework. Code and data are available at: https://github.com/Emma1066/Retrieval-Augmented-IT-OpenNER
L3Cube-MahaSocialNER: A Social Media based Marathi NER Dataset and BERT models
This work introduces the L3Cube-MahaSocialNER dataset, the first and largest social media dataset specifically designed for Named Entity Recognition (NER) in the Marathi language. The dataset comprises 18,000 manually labeled sentences covering eight entity classes, addressing challenges posed by social media data, including non-standard language and informal idioms. Deep learning models, including CNN, LSTM, BiLSTM, and Transformer models, are evaluated on the individual dataset with IOB and non-IOB notations. The results demonstrate the effectiveness of these models in accurately recognizing named entities in Marathi informal text. The L3Cube-MahaSocialNER dataset offers user-centric information extraction and supports real-time applications, providing a valuable resource for public opinion analysis, news, and marketing on social media platforms. We also show that the zero-shot results of the regular NER model are poor on the social NER test set thus highlighting the need for more social NER datasets. The datasets and models are publicly available at https://github.com/l3cube-pune/MarathiNLP
Sketch-Guided Constrained Decoding for Boosting Blackbox Large Language Models without Logit Access
Constrained decoding, a technique for enforcing constraints on language model outputs, offers a way to control text generation without retraining or architectural modifications. Its application is, however, typically restricted to models that give users access to next-token distributions (usually via softmax logits), which poses a limitation with blackbox large language models (LLMs). This paper introduces sketch-guided constrained decoding (SGCD), a novel approach to constrained decoding for blackbox LLMs, which operates without access to the logits of the blackbox LLM. SGCD utilizes a locally hosted auxiliary model to refine the output of an unconstrained blackbox LLM, effectively treating this initial output as a "sketch" for further elaboration. This approach is complementary to traditional logit-based techniques and enables the application of constrained decoding in settings where full model transparency is unavailable. We demonstrate the efficacy of SGCD through experiments in closed information extraction and constituency parsing, showing how it enhances the utility and flexibility of blackbox LLMs for complex NLP tasks.
Informed Named Entity Recognition Decoding for Generative Language Models
Ever-larger language models with ever-increasing capabilities are by now well-established text processing tools. Alas, information extraction tasks such as named entity recognition are still largely unaffected by this progress as they are primarily based on the previous generation of encoder-only transformer models. Here, we propose a simple yet effective approach, Informed Named Entity Recognition Decoding (iNERD), which treats named entity recognition as a generative process. It leverages the language understanding capabilities of recent generative models in a future-proof manner and employs an informed decoding scheme incorporating the restricted nature of information extraction into open-ended text generation, improving performance and eliminating any risk of hallucinations. We coarse-tune our model on a merged named entity corpus to strengthen its performance, evaluate five generative language models on eight named entity recognition datasets, and achieve remarkable results, especially in an environment with an unknown entity class set, demonstrating the adaptability of the approach.
Explanatory Argument Extraction of Correct Answers in Resident Medical Exams
Developing the required technology to assist medical experts in their everyday activities is currently a hot topic in the Artificial Intelligence research field. Thus, a number of large language models (LLMs) and automated benchmarks have recently been proposed with the aim of facilitating information extraction in Evidence-Based Medicine (EBM) using natural language as a tool for mediating in human-AI interaction. The most representative benchmarks are limited to either multiple-choice or long-form answers and are available only in English. In order to address these shortcomings, in this paper we present a new dataset which, unlike previous work: (i) includes not only explanatory arguments for the correct answer, but also arguments to reason why the incorrect answers are not correct; (ii) the explanations are written originally by medical doctors to answer questions from the Spanish Residency Medical Exams. Furthermore, this new benchmark allows us to setup a novel extractive task which consists of identifying the explanation of the correct answer written by medical doctors. An additional benefit of our setting is that we can leverage the extractive QA paradigm to automatically evaluate performance of LLMs without resorting to costly manual evaluation by medical experts. Comprehensive experimentation with language models for Spanish shows that sometimes multilingual models fare better than monolingual ones, even outperforming models which have been adapted to the medical domain. Furthermore, results across the monolingual models are mixed, with supposedly smaller and inferior models performing competitively. In any case, the obtained results show that our novel dataset and approach can be an effective technique to help medical practitioners in identifying relevant evidence-based explanations for medical questions.
Foundational Large Language Models for Materials Research
Materials discovery and development are critical for addressing global challenges. Yet, the exponential growth in materials science literature comprising vast amounts of textual data has created significant bottlenecks in knowledge extraction, synthesis, and scientific reasoning. Large Language Models (LLMs) offer unprecedented opportunities to accelerate materials research through automated analysis and prediction. Still, their effective deployment requires domain-specific adaptation for understanding and solving domain-relevant tasks. Here, we present LLaMat, a family of foundational models for materials science developed through continued pretraining of LLaMA models on an extensive corpus of materials literature and crystallographic data. Through systematic evaluation, we demonstrate that LLaMat excels in materials-specific NLP and structured information extraction while maintaining general linguistic capabilities. The specialized LLaMat-CIF variant demonstrates unprecedented capabilities in crystal structure generation, predicting stable crystals with high coverage across the periodic table. Intriguingly, despite LLaMA-3's superior performance in comparison to LLaMA-2, we observe that LLaMat-2 demonstrates unexpectedly enhanced domain-specific performance across diverse materials science tasks, including structured information extraction from text and tables, more particularly in crystal structure generation, a potential adaptation rigidity in overtrained LLMs. Altogether, the present work demonstrates the effectiveness of domain adaptation towards developing practically deployable LLM copilots for materials research. Beyond materials science, our findings reveal important considerations for domain adaptation of LLMs, such as model selection, training methodology, and domain-specific performance, which may influence the development of specialized scientific AI systems.
Selecting and Merging: Towards Adaptable and Scalable Named Entity Recognition with Large Language Models
Supervised fine-tuning (SFT) is widely used to align large language models (LLMs) with information extraction (IE) tasks, such as named entity recognition (NER). However, annotating such fine-grained labels and training domain-specific models is costly. Existing works typically train a unified model across multiple domains, but such approaches lack adaptation and scalability since not all training data benefits target domains and scaling trained models remains challenging. We propose the SaM framework, which dynamically Selects and Merges expert models at inference time. Specifically, for a target domain, we select domain-specific experts pre-trained on existing domains based on (i) domain similarity to the target domain and (ii) performance on sampled instances, respectively. The experts are then merged to create task-specific models optimized for the target domain. By dynamically merging experts beneficial to target domains, we improve generalization across various domains without extra training. Additionally, experts can be added or removed conveniently, leading to great scalability. Extensive experiments on multiple benchmarks demonstrate our framework's effectiveness, which outperforms the unified model by an average of 10%. We further provide insights into potential improvements, practical experience, and extensions of our framework.
On the Hidden Mystery of OCR in Large Multimodal Models
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. It remains less explored about their efficacy in text-related visual tasks. We conducted a comprehensive study of existing publicly available multimodal models, evaluating their performance in text recognition (document text, artistic text, handwritten text, scene text), text-based visual question answering (document text, scene text, and bilingual text), key information extraction (receipts, documents, and nutrition facts) and handwritten mathematical expression recognition. Our findings reveal strengths and weaknesses in these models, which primarily rely on semantic understanding for word recognition and exhibit inferior perception of individual character shapes. They also display indifference towards text length and have limited capabilities in detecting finegrained features in images. Consequently, these results demonstrate that even the current most powerful large multimodal models cannot match domain-specific methods in traditional text tasks and face greater challenges in more complex tasks. Most importantly, the baseline results showcased in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal techniques. Evaluation pipeline is available at https://github.com/Yuliang-Liu/MultimodalOCR.
Binding Language Models in Symbolic Languages
Though end-to-end neural approaches have recently been dominating NLP tasks in both performance and ease-of-use, they lack interpretability and robustness. We propose Binder, a training-free neural-symbolic framework that maps the task input to a program, which (1) allows binding a unified API of language model (LM) functionalities to a programming language (e.g., SQL, Python) to extend its grammar coverage and thus tackle more diverse questions, (2) adopts an LM as both the program parser and the underlying model called by the API during execution, and (3) requires only a few in-context exemplar annotations. Specifically, we employ GPT-3 Codex as the LM. In the parsing stage, with only a few in-context exemplars, Codex is able to identify the part of the task input that cannot be answerable by the original programming language, correctly generate API calls to prompt Codex to solve the unanswerable part, and identify where to place the API calls while being compatible with the original grammar. In the execution stage, Codex can perform versatile functionalities (e.g., commonsense QA, information extraction) given proper prompts in the API calls. Binder achieves state-of-the-art results on WikiTableQuestions and TabFact datasets, with explicit output programs that benefit human debugging. Note that previous best systems are all finetuned on tens of thousands of task-specific samples, while Binder only uses dozens of annotations as in-context exemplars without any training. Our code is available at https://github.com/HKUNLP/Binder .
Document Attribution: Examining Citation Relationships using Large Language Models
As Large Language Models (LLMs) are increasingly applied to document-based tasks - such as document summarization, question answering, and information extraction - where user requirements focus on retrieving information from provided documents rather than relying on the model's parametric knowledge, ensuring the trustworthiness and interpretability of these systems has become a critical concern. A central approach to addressing this challenge is attribution, which involves tracing the generated outputs back to their source documents. However, since LLMs can produce inaccurate or imprecise responses, it is crucial to assess the reliability of these citations. To tackle this, our work proposes two techniques. (1) A zero-shot approach that frames attribution as a straightforward textual entailment task. Our method using flan-ul2 demonstrates an improvement of 0.27% and 2.4% over the best baseline of ID and OOD sets of AttributionBench, respectively. (2) We also explore the role of the attention mechanism in enhancing the attribution process. Using a smaller LLM, flan-t5-small, the F1 scores outperform the baseline across almost all layers except layer 4 and layers 8 through 11.
LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named Entity Recognition
Despite the impressive capabilities of large language models (LLMs), their performance on information extraction tasks is still not entirely satisfactory. However, their remarkable rewriting capabilities and extensive world knowledge offer valuable insights to improve these tasks. In this paper, we propose LLM-DA, a novel data augmentation technique based on LLMs for the few-shot NER task. To overcome the limitations of existing data augmentation methods that compromise semantic integrity and address the uncertainty inherent in LLM-generated text, we leverage the distinctive characteristics of the NER task by augmenting the original data at both the contextual and entity levels. Our approach involves employing 14 contextual rewriting strategies, designing entity replacements of the same type, and incorporating noise injection to enhance robustness. Extensive experiments demonstrate the effectiveness of our approach in enhancing NER model performance with limited data. Furthermore, additional analyses provide further evidence supporting the assertion that the quality of the data we generate surpasses that of other existing methods.
Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot Relation Extractors
Recent work has shown that fine-tuning large language models (LLMs) on large-scale instruction-following datasets substantially improves their performance on a wide range of NLP tasks, especially in the zero-shot setting. However, even advanced instruction-tuned LLMs still fail to outperform small LMs on relation extraction (RE), a fundamental information extraction task. We hypothesize that instruction-tuning has been unable to elicit strong RE capabilities in LLMs due to RE's low incidence in instruction-tuning datasets, making up less than 1% of all tasks (Wang et al., 2022). To address this limitation, we propose QA4RE, a framework that aligns RE with question answering (QA), a predominant task in instruction-tuning datasets. Comprehensive zero-shot RE experiments over four datasets with two series of instruction-tuned LLMs (six LLMs in total) demonstrate that our QA4RE framework consistently improves LLM performance, strongly verifying our hypothesis and enabling LLMs to outperform strong zero-shot baselines by a large margin. Additionally, we provide thorough experiments and discussions to show the robustness, few-shot effectiveness, and strong transferability of our QA4RE framework. This work illustrates a promising way of adapting LLMs to challenging and underrepresented tasks by aligning these tasks with more common instruction-tuning tasks like QA.
Biomedical Large Languages Models Seem not to be Superior to Generalist Models on Unseen Medical Data
Large language models (LLMs) have shown potential in biomedical applications, leading to efforts to fine-tune them on domain-specific data. However, the effectiveness of this approach remains unclear. This study evaluates the performance of biomedically fine-tuned LLMs against their general-purpose counterparts on a variety of clinical tasks. We evaluated their performance on clinical case challenges from the New England Journal of Medicine (NEJM) and the Journal of the American Medical Association (JAMA) and on several clinical tasks (e.g., information extraction, document summarization, and clinical coding). Using benchmarks specifically chosen to be likely outside the fine-tuning datasets of biomedical models, we found that biomedical LLMs mostly perform inferior to their general-purpose counterparts, especially on tasks not focused on medical knowledge. While larger models showed similar performance on case tasks (e.g., OpenBioLLM-70B: 66.4% vs. Llama-3-70B-Instruct: 65% on JAMA cases), smaller biomedical models showed more pronounced underperformance (e.g., OpenBioLLM-8B: 30% vs. Llama-3-8B-Instruct: 64.3% on NEJM cases). Similar trends were observed across the CLUE (Clinical Language Understanding Evaluation) benchmark tasks, with general-purpose models often performing better on text generation, question answering, and coding tasks. Our results suggest that fine-tuning LLMs to biomedical data may not provide the expected benefits and may potentially lead to reduced performance, challenging prevailing assumptions about domain-specific adaptation of LLMs and highlighting the need for more rigorous evaluation frameworks in healthcare AI. Alternative approaches, such as retrieval-augmented generation, may be more effective in enhancing the biomedical capabilities of LLMs without compromising their general knowledge.
Do Not (Always) Look Right: Investigating the Capabilities of Decoder-Based Large Language Models for Sequence Labeling
Pre-trained language models based on masked language modeling (MLM) objective excel in natural language understanding (NLU) tasks. While fine-tuned MLM-based encoders consistently outperform causal language modeling decoders of comparable size, a recent trend of scaling decoder models to multiple billion parameters resulted in large language models (LLMs), making them competitive with MLM-based encoders. Although scale amplifies their prowess in NLU tasks, LLMs fall short of SOTA results in information extraction (IE) tasks, many framed as sequence labeling (SL). However, whether this is an intrinsic limitation of LLMs or whether their SL performance can be improved remains unclear. To address this, we explore strategies to enhance the SL performance of "open" LLMs (Llama2 and Mistral) on IE tasks. We investigate bidirectional information flow within groups of decoder blocks, applying layer-wise removal or enforcement of the causal mask (CM) during LLM fine-tuning. This approach yields performance gains competitive with SOTA SL models, matching or outperforming the results of CM removal from all blocks. Our findings hold for diverse SL tasks, proving that "open" LLMs with layer-dependent CM removal outperform strong MLM-based encoders and instruction-tuned LLMs. However, we observe no effect from CM removal on a small scale when maintaining an equivalent model size, pre-training steps, and pre-training and fine-tuning data.
Enhancing Domain-Specific Retrieval-Augmented Generation: Synthetic Data Generation and Evaluation using Reasoning Models
Retrieval-Augmented Generation (RAG) systems face significant performance gaps when applied to technical domains requiring precise information extraction from complex documents. Current evaluation methodologies relying on document-level metrics inadequately capture token-resolution retrieval accuracy that is critical for domain-related documents. We propose a framework combining granular evaluation metrics with synthetic data generation to optimize domain-specific RAG performance. First, we introduce token-aware metrics Precision Omega and Intersection-over-Union (IoU) that quantify context preservation versus information density trade-offs inherent in technical texts. Second, we develop a reasoning model-driven pipeline using instruction-tuned LLMs (DeepSeek-R1, DeepSeek-R1 distilled variants, and Phi-4) to generate context-anchored QA pairs with discontinuous reference spans across three specialized corpora: SEC 10-K filings (finance), biomedical abstracts (PubMed), and APT threat reports (cybersecurity). Our empirical analysis reveals critical insights: smaller chunks (less than 10 tokens) improve precision by 31-42% (IoU = 0.071 vs. baseline 0.053) at recall costs (-18%), while domain-specific embedding strategies yield 22% variance in optimal chunk sizing (5-20 tokens). The DeepSeek-R1-Distill-Qwen-32B model demonstrates superior concept alignment (+14% mean IoU over alternatives), though no configuration universally dominates. Financial texts favor larger chunks for risk factor coverage (Recall = 0.81 at size = 20), whereas cybersecurity content benefits from atomic segmentation, Precision Omega = 0.28 at size = 5. Our code is available on https://github.com/aryan-jadon/Synthetic-Data-Generation-and-Evaluation-using-Reasoning-Model
Mining experimental data from Materials Science literature with Large Language Models: an evaluation study
This study is dedicated to assessing the capabilities of large language models (LLMs) such as GPT-3.5-Turbo, GPT-4, and GPT-4-Turbo in extracting structured information from scientific documents in materials science. To this end, we primarily focus on two critical tasks of information extraction: (i) a named entity recognition (NER) of studied materials and physical properties and (ii) a relation extraction (RE) between these entities. Due to the evident lack of datasets within Materials Informatics (MI), we evaluated using SuperMat, based on superconductor research, and MeasEval, a generic measurement evaluation corpus. The performance of LLMs in executing these tasks is benchmarked against traditional models based on the BERT architecture and rule-based approaches (baseline). We introduce a novel methodology for the comparative analysis of intricate material expressions, emphasising the standardisation of chemical formulas to tackle the complexities inherent in materials science information assessment. For NER, LLMs fail to outperform the baseline with zero-shot prompting and exhibit only limited improvement with few-shot prompting. However, a GPT-3.5-Turbo fine-tuned with the appropriate strategy for RE outperforms all models, including the baseline. Without any fine-tuning, GPT-4 and GPT-4-Turbo display remarkable reasoning and relationship extraction capabilities after being provided with merely a couple of examples, surpassing the baseline. Overall, the results suggest that although LLMs demonstrate relevant reasoning skills in connecting concepts, specialised models are currently a better choice for tasks requiring extracting complex domain-specific entities like materials. These insights provide initial guidance applicable to other materials science sub-domains in future work.
BioInstruct: Instruction Tuning of Large Language Models for Biomedical Natural Language Processing
To enhance the performance of large language models (LLMs) in biomedical natural language processing (BioNLP) by introducing a domain-specific instruction dataset and examining its impact when combined with multi-task learning principles. We created the BioInstruct, comprising 25,005 instructions to instruction-tune LLMs(LLaMA 1 & 2, 7B & 13B version). The instructions were created by prompting the GPT-4 language model with three-seed samples randomly drawn from an 80 human curated instructions. We employed Low-Rank Adaptation(LoRA) for parameter-efficient fine-tuning. We then evaluated these instruction-tuned LLMs on several BioNLP tasks, which can be grouped into three major categories: question answering(QA), information extraction(IE), and text generation(GEN). We also examined whether categories(e.g., QA, IE, and generation) of instructions impact model performance. Comparing with LLMs without instruction-tuned, our instruction-tuned LLMs demonstrated marked performance gains: 17.3% in QA, 5.7% in IE, and 96% in Generation tasks. Our 7B-parameter instruction-tuned LLaMA 1 model was competitive or even surpassed other LLMs in the biomedical domain that were also fine-tuned from LLaMA 1 with vast domain-specific data or a variety of tasks. Our results also show that the performance gain is significantly higher when instruction fine-tuning is conducted with closely related tasks. Our findings align with the observations of multi-task learning, suggesting the synergies between two tasks. The BioInstruct dataset serves as a valuable resource and instruction tuned LLMs lead to the best performing BioNLP applications.
Towards Human-AI Collaborative Urban Science Research Enabled by Pre-trained Large Language Models
Pre-trained large language models (PLMs) have the potential to support urban science research through content creation, information extraction, assisted programming, text classification, and other technical advances. In this research, we explored the opportunities, challenges, and prospects of PLMs in urban science research. Specifically, we discussed potential applications of PLMs to urban institution, urban space, urban information, and citizen behaviors research through seven examples using ChatGPT. We also examined the challenges of PLMs in urban science research from both technical and social perspectives. The prospects of the application of PLMs in urban science research were then proposed. We found that PLMs can effectively aid in understanding complex concepts in urban science, facilitate urban spatial form identification, assist in disaster monitoring, and sense public sentiment. At the same time, however, the applications of PLMs in urban science research face evident threats, such as technical limitations, security, privacy, and social bias. The development of fundamental models based on domain knowledge and human-AI collaboration may help improve PLMs to support urban science research in future.
DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population
We present an open-source and extensible knowledge extraction toolkit DeepKE, supporting complicated low-resource, document-level and multimodal scenarios in the knowledge base population. DeepKE implements various information extraction tasks, including named entity recognition, relation extraction and attribute extraction. With a unified framework, DeepKE allows developers and researchers to customize datasets and models to extract information from unstructured data according to their requirements. Specifically, DeepKE not only provides various functional modules and model implementation for different tasks and scenarios but also organizes all components by consistent frameworks to maintain sufficient modularity and extensibility. We release the source code at GitHub in https://github.com/zjunlp/DeepKE with Google Colab tutorials and comprehensive documents for beginners. Besides, we present an online system in http://deepke.openkg.cn/EN/re_doc_show.html for real-time extraction of various tasks, and a demo video.
Accurate Medical Named Entity Recognition Through Specialized NLP Models
This study evaluated the effect of BioBERT in medical text processing for the task of medical named entity recognition. Through comparative experiments with models such as BERT, ClinicalBERT, SciBERT, and BlueBERT, the results showed that BioBERT achieved the best performance in both precision and F1 score, verifying its applicability and superiority in the medical field. BioBERT enhances its ability to understand professional terms and complex medical texts through pre-training on biomedical data, providing a powerful tool for medical information extraction and clinical decision support. The study also explored the privacy and compliance challenges of BioBERT when processing medical data, and proposed future research directions for combining other medical-specific models to improve generalization and robustness. With the development of deep learning technology, the potential of BioBERT in application fields such as intelligent medicine, personalized treatment, and disease prediction will be further expanded. Future research can focus on the real-time and interpretability of the model to promote its widespread application in the medical field.
Zero-Shot ATC Coding with Large Language Models for Clinical Assessments
Manual assignment of Anatomical Therapeutic Chemical (ATC) codes to prescription records is a significant bottleneck in healthcare research and operations at Ontario Health and InterRAI Canada, requiring extensive expert time and effort. To automate this process while maintaining data privacy, we develop a practical approach using locally deployable large language models (LLMs). Inspired by recent advances in automatic International Classification of Diseases (ICD) coding, our method frames ATC coding as a hierarchical information extraction task, guiding LLMs through the ATC ontology level by level. We evaluate our approach using GPT-4o as an accuracy ceiling and focus development on open-source Llama models suitable for privacy-sensitive deployment. Testing across Health Canada drug product data, the RABBITS benchmark, and real clinical notes from Ontario Health, our method achieves 78% exact match accuracy with GPT-4o and 60% with Llama 3.1 70B. We investigate knowledge grounding through drug definitions, finding modest improvements in accuracy. Further, we show that fine-tuned Llama 3.1 8B matches zero-shot Llama 3.1 70B accuracy, suggesting that effective ATC coding is feasible with smaller models. Our results demonstrate the feasibility of automatic ATC coding in privacy-sensitive healthcare environments, providing a foundation for future deployments.
A Survey of Prompt Engineering Methods in Large Language Models for Different NLP Tasks
Large language models (LLMs) have shown remarkable performance on many different Natural Language Processing (NLP) tasks. Prompt engineering plays a key role in adding more to the already existing abilities of LLMs to achieve significant performance gains on various NLP tasks. Prompt engineering requires composing natural language instructions called prompts to elicit knowledge from LLMs in a structured way. Unlike previous state-of-the-art (SoTA) models, prompt engineering does not require extensive parameter re-training or fine-tuning based on the given NLP task and thus solely operates on the embedded knowledge of LLMs. Additionally, LLM enthusiasts can intelligently extract LLMs' knowledge through a basic natural language conversational exchange or prompt engineering, allowing more and more people even without deep mathematical machine learning background to experiment with LLMs. With prompt engineering gaining popularity in the last two years, researchers have come up with numerous engineering techniques around designing prompts to improve accuracy of information extraction from the LLMs. In this paper, we summarize different prompting techniques and club them together based on different NLP tasks that they have been used for. We further granularly highlight the performance of these prompting strategies on various datasets belonging to that NLP task, talk about the corresponding LLMs used, present a taxonomy diagram and discuss the possible SoTA for specific datasets. In total, we read and present a survey of 44 research papers which talk about 39 different prompting methods on 29 different NLP tasks of which most of them have been published in the last two years.
FinTagging: An LLM-ready Benchmark for Extracting and Structuring Financial Information
We introduce FinTagging, the first full-scope, table-aware XBRL benchmark designed to evaluate the structured information extraction and semantic alignment capabilities of large language models (LLMs) in the context of XBRL-based financial reporting. Unlike prior benchmarks that oversimplify XBRL tagging as flat multi-class classification and focus solely on narrative text, FinTagging decomposes the XBRL tagging problem into two subtasks: FinNI for financial entity extraction and FinCL for taxonomy-driven concept alignment. It requires models to jointly extract facts and align them with the full 10k+ US-GAAP taxonomy across both unstructured text and structured tables, enabling realistic, fine-grained evaluation. We assess a diverse set of LLMs under zero-shot settings, systematically analyzing their performance on both subtasks and overall tagging accuracy. Our results reveal that, while LLMs demonstrate strong generalization in information extraction, they struggle with fine-grained concept alignment, particularly in disambiguating closely related taxonomy entries. These findings highlight the limitations of existing LLMs in fully automating XBRL tagging and underscore the need for improved semantic reasoning and schema-aware modeling to meet the demands of accurate financial disclosure. Code is available at our GitHub repository and data is at our Hugging Face repository.
Analyzing and Boosting the Power of Fine-Grained Visual Recognition for Multi-modal Large Language Models
Multi-modal large language models (MLLMs) have shown remarkable abilities in various visual understanding tasks. However, MLLMs still struggle with fine-grained visual recognition (FGVR), which aims to identify subordinate-level categories from images. This can negatively impact more advanced capabilities of MLLMs, such as object-centric visual question answering and reasoning. In our study, we revisit three quintessential capabilities of MLLMs for FGVR, including object information extraction, category knowledge reserve, object-category alignment, and position of the root cause as a misalignment problem. To address this issue, we present Finedefics, an MLLM that enhances the model's FGVR capability by incorporating informative attribute descriptions of objects into the training phase. We employ contrastive learning on object-attribute pairs and attribute-category pairs simultaneously and use examples from similar but incorrect categories as hard negatives, naturally bringing representations of visual objects and category names closer. Extensive evaluations across multiple popular FGVR datasets demonstrate that Finedefics outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code is available at https://github.com/PKU-ICST-MIPL/Finedefics_ICLR2025.
OmniParser V2: Structured-Points-of-Thought for Unified Visual Text Parsing and Its Generality to Multimodal Large Language Models
Visually-situated text parsing (VsTP) has recently seen notable advancements, driven by the growing demand for automated document understanding and the emergence of large language models capable of processing document-based questions. While various methods have been proposed to tackle the complexities of VsTP, existing solutions often rely on task-specific architectures and objectives for individual tasks. This leads to modal isolation and complex workflows due to the diversified targets and heterogeneous schemas. In this paper, we introduce OmniParser V2, a universal model that unifies VsTP typical tasks, including text spotting, key information extraction, table recognition, and layout analysis, into a unified framework. Central to our approach is the proposed Structured-Points-of-Thought (SPOT) prompting schemas, which improves model performance across diverse scenarios by leveraging a unified encoder-decoder architecture, objective, and input\&output representation. SPOT eliminates the need for task-specific architectures and loss functions, significantly simplifying the processing pipeline. Our extensive evaluations across four tasks on eight different datasets show that OmniParser V2 achieves state-of-the-art or competitive results in VsTP. Additionally, we explore the integration of SPOT within a multimodal large language model structure, further enhancing text localization and recognition capabilities, thereby confirming the generality of SPOT prompting technique. The code is available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery{AdvancedLiterateMachinery}.
MMAU: A Massive Multi-Task Audio Understanding and Reasoning Benchmark
The ability to comprehend audio--which includes speech, non-speech sounds, and music--is crucial for AI agents to interact effectively with the world. We present MMAU, a novel benchmark designed to evaluate multimodal audio understanding models on tasks requiring expert-level knowledge and complex reasoning. MMAU comprises 10k carefully curated audio clips paired with human-annotated natural language questions and answers spanning speech, environmental sounds, and music. It includes information extraction and reasoning questions, requiring models to demonstrate 27 distinct skills across unique and challenging tasks. Unlike existing benchmarks, MMAU emphasizes advanced perception and reasoning with domain-specific knowledge, challenging models to tackle tasks akin to those faced by experts. We assess 18 open-source and proprietary (Large) Audio-Language Models, demonstrating the significant challenges posed by MMAU. Notably, even the most advanced Gemini Pro v1.5 achieves only 52.97% accuracy, and the state-of-the-art open-source Qwen2-Audio achieves only 52.50%, highlighting considerable room for improvement. We believe MMAU will drive the audio and multimodal research community to develop more advanced audio understanding models capable of solving complex audio tasks.
UMLS-KGI-BERT: Data-Centric Knowledge Integration in Transformers for Biomedical Entity Recognition
Pre-trained transformer language models (LMs) have in recent years become the dominant paradigm in applied NLP. These models have achieved state-of-the-art performance on tasks such as information extraction, question answering, sentiment analysis, document classification and many others. In the biomedical domain, significant progress has been made in adapting this paradigm to NLP tasks that require the integration of domain-specific knowledge as well as statistical modelling of language. In particular, research in this area has focused on the question of how best to construct LMs that take into account not only the patterns of token distribution in medical text, but also the wealth of structured information contained in terminology resources such as the UMLS. This work contributes a data-centric paradigm for enriching the language representations of biomedical transformer-encoder LMs by extracting text sequences from the UMLS. This allows for graph-based learning objectives to be combined with masked-language pre-training. Preliminary results from experiments in the extension of pre-trained LMs as well as training from scratch show that this framework improves downstream performance on multiple biomedical and clinical Named Entity Recognition (NER) tasks.
Name Tagging Under Domain Shift via Metric Learning for Life Sciences
Name tagging is a key component of Information Extraction (IE), particularly in scientific domains such as biomedicine and chemistry, where large language models (LLMs), e.g., ChatGPT, fall short. We investigate the applicability of transfer learning for enhancing a name tagging model trained in the biomedical domain (the source domain) to be used in the chemical domain (the target domain). A common practice for training such a model in a few-shot learning setting is to pretrain the model on the labeled source data, and then, to finetune it on a hand-full of labeled target examples. In our experiments we observed that such a model is prone to mis-labeling the source entities, which can often appear in the text, as the target entities. To alleviate this problem, we propose a model to transfer the knowledge from the source domain to the target domain, however, at the same time, to project the source entities and target entities into separate regions of the feature space. This diminishes the risk of mis-labeling the source entities as the target entities. Our model consists of two stages: 1) entity grouping in the source domain, which incorporates knowledge from annotated events to establish relations between entities, and 2) entity discrimination in the target domain, which relies on pseudo labeling and contrastive learning to enhance discrimination between the entities in the two domains. We carry out our extensive experiments across three source and three target datasets, and demonstrate that our method outperforms the baselines, in some scenarios by 5\% absolute value.
Multi-Task Identification of Entities, Relations, and Coreference for Scientific Knowledge Graph Construction
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
WildLong: Synthesizing Realistic Long-Context Instruction Data at Scale
Large language models (LLMs) with extended context windows enable tasks requiring extensive information integration but are limited by the scarcity of high-quality, diverse datasets for long-context instruction tuning. Existing data synthesis methods focus narrowly on objectives like fact retrieval and summarization, restricting their generalizability to complex, real-world tasks. WildLong extracts meta-information from real user queries, models co-occurrence relationships via graph-based methods, and employs adaptive generation to produce scalable data. It extends beyond single-document tasks to support multi-document reasoning, such as cross-document comparison and aggregation. Our models, finetuned on 150K instruction-response pairs synthesized using WildLong, surpasses existing open-source long-context-optimized models across benchmarks while maintaining strong performance on short-context tasks without incorporating supplementary short-context data. By generating a more diverse and realistic long-context instruction dataset, WildLong enhances LLMs' ability to generalize to complex, real-world reasoning over long contexts, establishing a new paradigm for long-context data synthesis.
What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices
Recent advancements in large language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios. In order to achieve success in long context tasks, a large amount of work has been done to enhance the long context capabilities of the model through synthetic data. Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement. However, our preliminary experiments indicate that less than 35% of generated samples are multi-hop, and more than 40% exhibit poor quality, limiting comprehensive understanding and further research. To improve the quality of synthetic data, we propose the Multi-agent Interactive Multi-hop Generation (MIMG) framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent. This framework improves the data quality, with the proportion of high-quality, multi-hop, and diverse data exceeding 85%. Furthermore, we systematically investigate strategies for document selection, question merging, and validation techniques through extensive experiments across various models. Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human-annotated data. Our code is available at: https://github.com/WowCZ/LongMIT.
Converting Annotated Clinical Cases into Structured Case Report Forms
Case Report Forms (CRFs) are largely used in medical research as they ensure accuracy, reliability, and validity of results in clinical studies. However, publicly available, wellannotated CRF datasets are scarce, limiting the development of CRF slot filling systems able to fill in a CRF from clinical notes. To mitigate the scarcity of CRF datasets, we propose to take advantage of available datasets annotated for information extraction tasks and to convert them into structured CRFs. We present a semi-automatic conversion methodology, which has been applied to the E3C dataset in two languages (English and Italian), resulting in a new, high-quality dataset for CRF slot filling. Through several experiments on the created dataset, we report that slot filling achieves 59.7% for Italian and 67.3% for English on a closed Large Language Models (zero-shot) and worse performances on three families of open-source models, showing that filling CRFs is challenging even for recent state-of-the-art LLMs. We release the datest at https://huggingface.co/collections/NLP-FBK/e3c-to-crf-67b9844065460cbe42f80166
Deep Learning based Visually Rich Document Content Understanding: A Survey
Visually Rich Documents (VRDs) are essential in academia, finance, medical fields, and marketing due to their multimodal information content. Traditional methods for extracting information from VRDs depend on expert knowledge and manual labor, making them costly and inefficient. The advent of deep learning has revolutionized this process, introducing models that leverage multimodal information vision, text, and layout along with pretraining tasks to develop comprehensive document representations. These models have achieved state-of-the-art performance across various downstream tasks, significantly enhancing the efficiency and accuracy of information extraction from VRDs. In response to the growing demands and rapid developments in Visually Rich Document Understanding (VRDU), this paper provides a comprehensive review of deep learning-based VRDU frameworks. We systematically survey and analyze existing methods and benchmark datasets, categorizing them based on adopted strategies and downstream tasks. Furthermore, we compare different techniques used in VRDU models, focusing on feature representation and fusion, model architecture, and pretraining methods, while highlighting their strengths, limitations, and appropriate scenarios. Finally, we identify emerging trends and challenges in VRDU, offering insights into future research directions and practical applications. This survey aims to provide a thorough understanding of VRDU advancements, benefiting both academic and industrial sectors.
Application of Deep Learning in Generating Structured Radiology Reports: A Transformer-Based Technique
Since radiology reports needed for clinical practice and research are written and stored in free-text narrations, extraction of relative information for further analysis is difficult. In these circumstances, natural language processing (NLP) techniques can facilitate automatic information extraction and transformation of free-text formats to structured data. In recent years, deep learning (DL)-based models have been adapted for NLP experiments with promising results. Despite the significant potential of DL models based on artificial neural networks (ANN) and convolutional neural networks (CNN), the models face some limitations to implement in clinical practice. Transformers, another new DL architecture, have been increasingly applied to improve the process. Therefore, in this study, we propose a transformer-based fine-grained named entity recognition (NER) architecture for clinical information extraction. We collected 88 abdominopelvic sonography reports in free-text formats and annotated them based on our developed information schema. The text-to-text transfer transformer model (T5) and Scifive, a pre-trained domain-specific adaptation of the T5 model, were applied for fine-tuning to extract entities and relations and transform the input into a structured format. Our transformer-based model in this study outperformed previously applied approaches such as ANN and CNN models based on ROUGE-1, ROUGE-2, ROUGE-L, and BLEU scores of 0.816, 0.668, 0.528, and 0.743, respectively, while providing an interpretable structured report.
Making the Most Out of the Limited Context Length: Predictive Power Varies with Clinical Note Type and Note Section
Recent advances in large language models have led to renewed interest in natural language processing in healthcare using the free text of clinical notes. One distinguishing characteristic of clinical notes is their long time span over multiple long documents. The unique structure of clinical notes creates a new design choice: when the context length for a language model predictor is limited, which part of clinical notes should we choose as the input? Existing studies either choose the inputs with domain knowledge or simply truncate them. We propose a framework to analyze the sections with high predictive power. Using MIMIC-III, we show that: 1) predictive power distribution is different between nursing notes and discharge notes and 2) combining different types of notes could improve performance when the context length is large. Our findings suggest that a carefully selected sampling function could enable more efficient information extraction from clinical notes.
Embedded Named Entity Recognition using Probing Classifiers
Extracting semantic information from generated text is a useful tool for applications such as automated fact checking or retrieval augmented generation. Currently, this requires either separate models during inference, which increases computational cost, or destructive fine-tuning of the language model. Instead, we propose directly embedding information extraction capabilities into pre-trained language models using probing classifiers, enabling efficient simultaneous text generation and information extraction. For this, we introduce an approach called EMBER and show that it enables named entity recognition in decoder-only language models without fine-tuning them and while incurring minimal additional computational cost at inference time. Specifically, our experiments using GPT-2 show that EMBER maintains high token generation rates during streaming text generation, with only a negligible decrease in speed of around 1% compared to a 43.64% slowdown measured for a baseline using a separate NER model. Code and data are available at https://github.com/nicpopovic/EMBER.
Fine-grained Contract NER using instruction based model
Lately, instruction-based techniques have made significant strides in improving performance in few-shot learning scenarios. They achieve this by bridging the gap between pre-trained language models and fine-tuning for specific downstream tasks. Despite these advancements, the performance of Large Language Models (LLMs) in information extraction tasks like Named Entity Recognition (NER), using prompts or instructions, still falls short of supervised baselines. The reason for this performance gap can be attributed to the fundamental disparity between NER and LLMs. NER is inherently a sequence labeling task, where the model must assign entity-type labels to individual tokens within a sentence. In contrast, LLMs are designed as a text generation task. This distinction between semantic labeling and text generation leads to subpar performance. In this paper, we transform the NER task into a text-generation task that can be readily adapted by LLMs. This involves enhancing source sentences with task-specific instructions and answer choices, allowing for the identification of entities and their types within natural language. We harness the strength of LLMs by integrating supervised learning within them. The goal of this combined strategy is to boost the performance of LLMs in extraction tasks like NER while simultaneously addressing hallucination issues often observed in LLM-generated content. A novel corpus Contract NER comprising seven frequently observed contract categories, encompassing named entities associated with 18 distinct legal entity types is released along with our baseline models. Our models and dataset are available to the community for future research * .
Pre-training technique to localize medical BERT and enhance biomedical BERT
Pre-training large-scale neural language models on raw texts has made a significant contribution to improving transfer learning in natural language processing (NLP). With the introduction of transformer-based language models, such as bidirectional encoder representations from transformers (BERT), the performance of information extraction from a free text by NLP has significantly improved for both the general domain and medical domain; however, it is difficult to train specific BERT models that perform well for domains in which there are few publicly available databases of high quality and large size. We hypothesized that this problem can be addressed by up-sampling a domain-specific corpus and using it for pre-training with a larger corpus in a balanced manner. Our proposed method consists of a single intervention with one option: simultaneous pre-training after up-sampling and amplified vocabulary. We conducted three experiments and evaluated the resulting products. We confirmed that our Japanese medical BERT outperformed conventional baselines and the other BERT models in terms of the medical document classification task and that our English BERT pre-trained using both the general and medical-domain corpora performed sufficiently well for practical use in terms of the biomedical language understanding evaluation (BLUE) benchmark. Moreover, our enhanced biomedical BERT model, in which clinical notes were not used during pre-training, showed that both the clinical and biomedical scores of the BLUE benchmark were 0.3 points above that of the ablation model trained without our proposed method. Well-balanced pre-training by up-sampling instances derived from a corpus appropriate for the target task allows us to construct a high-performance BERT model.
EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba
Prior efforts in light-weight model development mainly centered on CNN and Transformer-based designs yet faced persistent challenges. CNNs adept at local feature extraction compromise resolution while Transformers offer global reach but escalate computational demands O(N^2). This ongoing trade-off between accuracy and efficiency remains a significant hurdle. Recently, state space models (SSMs), such as Mamba, have shown outstanding performance and competitiveness in various tasks such as language modeling and computer vision, while reducing the time complexity of global information extraction to O(N). Inspired by this, this work proposes to explore the potential of visual state space models in light-weight model design and introduce a novel efficient model variant dubbed EfficientVMamba. Concretely, our EfficientVMamba integrates a atrous-based selective scan approach by efficient skip sampling, constituting building blocks designed to harness both global and local representational features. Additionally, we investigate the integration between SSM blocks and convolutions, and introduce an efficient visual state space block combined with an additional convolution branch, which further elevate the model performance. Experimental results show that, EfficientVMamba scales down the computational complexity while yields competitive results across a variety of vision tasks. For example, our EfficientVMamba-S with 1.3G FLOPs improves Vim-Ti with 1.5G FLOPs by a large margin of 5.6% accuracy on ImageNet. Code is available at: https://github.com/TerryPei/EfficientVMamba.
CURIE: Evaluating LLMs On Multitask Scientific Long Context Understanding and Reasoning
Scientific problem-solving involves synthesizing information while applying expert knowledge. We introduce CURIE, a scientific long-Context Understanding,Reasoning and Information Extraction benchmark to measure the potential of Large Language Models (LLMs) in scientific problem-solving and assisting scientists in realistic workflows. This benchmark introduces ten challenging tasks with a total of 580 problems and solution pairs curated by experts in six disciplines - materials science, condensed matter physics, quantum computing, geospatial analysis, biodiversity, and proteins - covering both experimental and theoretical work-flows in science. We evaluate a range of closed and open LLMs on tasks in CURIE which requires domain expertise, comprehension of long in-context information,and multi-step reasoning. While Gemini Flash 2.0 and Claude-3 show consistent high comprehension across domains, the popular GPT-4o and command-R+ fail dramatically on protein sequencing tasks. With the best performance at 32% there is much room for improvement for all models. We hope that insights gained from CURIE can guide the future development of LLMs in sciences. Evaluation code and data are in https://github.com/google/curie
FreeVC: Towards High-Quality Text-Free One-Shot Voice Conversion
Voice conversion (VC) can be achieved by first extracting source content information and target speaker information, and then reconstructing waveform with these information. However, current approaches normally either extract dirty content information with speaker information leaked in, or demand a large amount of annotated data for training. Besides, the quality of reconstructed waveform can be degraded by the mismatch between conversion model and vocoder. In this paper, we adopt the end-to-end framework of VITS for high-quality waveform reconstruction, and propose strategies for clean content information extraction without text annotation. We disentangle content information by imposing an information bottleneck to WavLM features, and propose the spectrogram-resize based data augmentation to improve the purity of extracted content information. Experimental results show that the proposed method outperforms the latest VC models trained with annotated data and has greater robustness.
TextureDreamer: Image-guided Texture Synthesis through Geometry-aware Diffusion
We present TextureDreamer, a novel image-guided texture synthesis method to transfer relightable textures from a small number of input images (3 to 5) to target 3D shapes across arbitrary categories. Texture creation is a pivotal challenge in vision and graphics. Industrial companies hire experienced artists to manually craft textures for 3D assets. Classical methods require densely sampled views and accurately aligned geometry, while learning-based methods are confined to category-specific shapes within the dataset. In contrast, TextureDreamer can transfer highly detailed, intricate textures from real-world environments to arbitrary objects with only a few casually captured images, potentially significantly democratizing texture creation. Our core idea, personalized geometry-aware score distillation (PGSD), draws inspiration from recent advancements in diffuse models, including personalized modeling for texture information extraction, variational score distillation for detailed appearance synthesis, and explicit geometry guidance with ControlNet. Our integration and several essential modifications substantially improve the texture quality. Experiments on real images spanning different categories show that TextureDreamer can successfully transfer highly realistic, semantic meaningful texture to arbitrary objects, surpassing the visual quality of previous state-of-the-art.
Agent-based Learning of Materials Datasets from Scientific Literature
Advancements in machine learning and artificial intelligence are transforming materials discovery. Yet, the availability of structured experimental data remains a bottleneck. The vast corpus of scientific literature presents a valuable and rich resource of such data. However, manual dataset creation from these resources is challenging due to issues in maintaining quality and consistency, scalability limitations, and the risk of human error and bias. Therefore, in this work, we develop a chemist AI agent, powered by large language models (LLMs), to overcome these challenges by autonomously creating structured datasets from natural language text, ranging from sentences and paragraphs to extensive scientific research articles. Our chemist AI agent, Eunomia, can plan and execute actions by leveraging the existing knowledge from decades of scientific research articles, scientists, the Internet and other tools altogether. We benchmark the performance of our approach in three different information extraction tasks with various levels of complexity, including solid-state impurity doping, metal-organic framework (MOF) chemical formula, and property relations. Our results demonstrate that our zero-shot agent, with the appropriate tools, is capable of attaining performance that is either superior or comparable to the state-of-the-art fine-tuned materials information extraction methods. This approach simplifies compilation of machine learning-ready datasets for various materials discovery applications, and significantly ease the accessibility of advanced natural language processing tools for novice users in natural language. The methodology in this work is developed as an open-source software on https://github.com/AI4ChemS/Eunomia.
BoundingDocs: a Unified Dataset for Document Question Answering with Spatial Annotations
We present a unified dataset for document Question-Answering (QA), which is obtained combining several public datasets related to Document AI and visually rich document understanding (VRDU). Our main contribution is twofold: on the one hand we reformulate existing Document AI tasks, such as Information Extraction (IE), into a Question-Answering task, making it a suitable resource for training and evaluating Large Language Models; on the other hand, we release the OCR of all the documents and include the exact position of the answer to be found in the document image as a bounding box. Using this dataset, we explore the impact of different prompting techniques (that might include bounding box information) on the performance of open-weight models, identifying the most effective approaches for document comprehension.
PEACE: Empowering Geologic Map Holistic Understanding with MLLMs
Geologic map, as a fundamental diagram in geology science, provides critical insights into the structure and composition of Earth's subsurface and surface. These maps are indispensable in various fields, including disaster detection, resource exploration, and civil engineering. Despite their significance, current Multimodal Large Language Models (MLLMs) often fall short in geologic map understanding. This gap is primarily due to the challenging nature of cartographic generalization, which involves handling high-resolution map, managing multiple associated components, and requiring domain-specific knowledge. To quantify this gap, we construct GeoMap-Bench, the first-ever benchmark for evaluating MLLMs in geologic map understanding, which assesses the full-scale abilities in extracting, referring, grounding, reasoning, and analyzing. To bridge this gap, we introduce GeoMap-Agent, the inaugural agent designed for geologic map understanding, which features three modules: Hierarchical Information Extraction (HIE), Domain Knowledge Injection (DKI), and Prompt-enhanced Question Answering (PEQA). Inspired by the interdisciplinary collaboration among human scientists, an AI expert group acts as consultants, utilizing a diverse tool pool to comprehensively analyze questions. Through comprehensive experiments, GeoMap-Agent achieves an overall score of 0.811 on GeoMap-Bench, significantly outperforming 0.369 of GPT-4o. Our work, emPowering gEologic mAp holistiC undErstanding (PEACE) with MLLMs, paves the way for advanced AI applications in geology, enhancing the efficiency and accuracy of geological investigations.
ClinicalMamba: A Generative Clinical Language Model on Longitudinal Clinical Notes
The advancement of natural language processing (NLP) systems in healthcare hinges on language model ability to interpret the intricate information contained within clinical notes. This process often requires integrating information from various time points in a patient's medical history. However, most earlier clinical language models were pretrained with a context length limited to roughly one clinical document. In this study, We introduce ClinicalMamba, a specialized version of the Mamba language model, pretrained on a vast corpus of longitudinal clinical notes to address the unique linguistic characteristics and information processing needs of the medical domain. ClinicalMamba, with 130 million and 2.8 billion parameters, demonstrates a superior performance in modeling clinical language across extended text lengths compared to Mamba and clinical Llama. With few-shot learning, ClinicalMamba achieves notable benchmarks in speed and accuracy, outperforming existing clinical language models and general domain large models like GPT-4 in longitudinal clinical notes information extraction tasks.
BizFinBench: A Business-Driven Real-World Financial Benchmark for Evaluating LLMs
Large language models excel in general tasks, yet assessing their reliability in logic-heavy, precision-critical domains like finance, law, and healthcare remains challenging. To address this, we introduce BizFinBench, the first benchmark specifically designed to evaluate LLMs in real-world financial applications. BizFinBench consists of 6,781 well-annotated queries in Chinese, spanning five dimensions: numerical calculation, reasoning, information extraction, prediction recognition, and knowledge-based question answering, grouped into nine fine-grained categories. The benchmark includes both objective and subjective metrics. We also introduce IteraJudge, a novel LLM evaluation method that reduces bias when LLMs serve as evaluators in objective metrics. We benchmark 25 models, including both proprietary and open-source systems. Extensive experiments show that no model dominates across all tasks. Our evaluation reveals distinct capability patterns: (1) In Numerical Calculation, Claude-3.5-Sonnet (63.18) and DeepSeek-R1 (64.04) lead, while smaller models like Qwen2.5-VL-3B (15.92) lag significantly; (2) In Reasoning, proprietary models dominate (ChatGPT-o3: 83.58, Gemini-2.0-Flash: 81.15), with open-source models trailing by up to 19.49 points; (3) In Information Extraction, the performance spread is the largest, with DeepSeek-R1 scoring 71.46, while Qwen3-1.7B scores 11.23; (4) In Prediction Recognition, performance variance is minimal, with top models scoring between 39.16 and 50.00. We find that while current LLMs handle routine finance queries competently, they struggle with complex scenarios requiring cross-concept reasoning. BizFinBench offers a rigorous, business-aligned benchmark for future research. The code and dataset are available at https://github.com/HiThink-Research/BizFinBench.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.
Inseq: An Interpretability Toolkit for Sequence Generation Models
Past work in natural language processing interpretability focused mainly on popular classification tasks while largely overlooking generation settings, partly due to a lack of dedicated tools. In this work, we introduce Inseq, a Python library to democratize access to interpretability analyses of sequence generation models. Inseq enables intuitive and optimized extraction of models' internal information and feature importance scores for popular decoder-only and encoder-decoder Transformers architectures. We showcase its potential by adopting it to highlight gender biases in machine translation models and locate factual knowledge inside GPT-2. Thanks to its extensible interface supporting cutting-edge techniques such as contrastive feature attribution, Inseq can drive future advances in explainable natural language generation, centralizing good practices and enabling fair and reproducible model evaluations.
SynFinTabs: A Dataset of Synthetic Financial Tables for Information and Table Extraction
Table extraction from document images is a challenging AI problem, and labelled data for many content domains is difficult to come by. Existing table extraction datasets often focus on scientific tables due to the vast amount of academic articles that are readily available, along with their source code. However, there are significant layout and typographical differences between tables found across scientific, financial, and other domains. Current datasets often lack the words, and their positions, contained within the tables, instead relying on unreliable OCR to extract these features for training modern machine learning models on natural language processing tasks. Therefore, there is a need for a more general method of obtaining labelled data. We present SynFinTabs, a large-scale, labelled dataset of synthetic financial tables. Our hope is that our method of generating these synthetic tables is transferable to other domains. To demonstrate the effectiveness of our dataset in training models to extract information from table images, we create FinTabQA, a layout large language model trained on an extractive question-answering task. We test our model using real-world financial tables and compare it to a state-of-the-art generative model and discuss the results. We make the dataset, model, and dataset generation code publicly available.
Review GIDE -- Restaurant Review Gastrointestinal Illness Detection and Extraction with Large Language Models
Foodborne gastrointestinal (GI) illness is a common cause of ill health in the UK. However, many cases do not interact with the healthcare system, posing significant challenges for traditional surveillance methods. The growth of publicly available online restaurant reviews and advancements in large language models (LLMs) present potential opportunities to extend disease surveillance by identifying public reports of GI illness. In this study, we introduce a novel annotation schema, developed with experts in GI illness, applied to the Yelp Open Dataset of reviews. Our annotations extend beyond binary disease detection, to include detailed extraction of information on symptoms and foods. We evaluate the performance of open-weight LLMs across these three tasks: GI illness detection, symptom extraction, and food extraction. We compare this performance to RoBERTa-based classification models fine-tuned specifically for these tasks. Our results show that using prompt-based approaches, LLMs achieve micro-F1 scores of over 90% for all three of our tasks. Using prompting alone, we achieve micro-F1 scores that exceed those of smaller fine-tuned models. We further demonstrate the robustness of LLMs in GI illness detection across three bias-focused experiments. Our results suggest that publicly available review text and LLMs offer substantial potential for public health surveillance of GI illness by enabling highly effective extraction of key information. While LLMs appear to exhibit minimal bias in processing, the inherent limitations of restaurant review data highlight the need for cautious interpretation of results.
Copyright Violations and Large Language Models
Language models may memorize more than just facts, including entire chunks of texts seen during training. Fair use exemptions to copyright laws typically allow for limited use of copyrighted material without permission from the copyright holder, but typically for extraction of information from copyrighted materials, rather than {\em verbatim} reproduction. This work explores the issue of copyright violations and large language models through the lens of verbatim memorization, focusing on possible redistribution of copyrighted text. We present experiments with a range of language models over a collection of popular books and coding problems, providing a conservative characterization of the extent to which language models can redistribute these materials. Overall, this research highlights the need for further examination and the potential impact on future developments in natural language processing to ensure adherence to copyright regulations. Code is at https://github.com/coastalcph/CopyrightLLMs.
From Accidents to Insights: Leveraging Multimodal Data for Scenario-Driven ADS Testing
The rapid advancements in Autonomous Driving Systems (ADS) have necessitated robust software testing to ensure safety and reliability. However, automating the generation of scalable and concrete test scenarios remains a significant challenge. Current scenario-based test case generation methods often face limitations, such as unrealistic scenes and inaccurate vehicle trajectories. These challenges largely result from the loss of map information during data extraction and the lack of an effective verification mechanism to mitigate hallucinations in large language models (LLMs). This paper introduces TRACE, a scenario-based ADS Test case Generation framework for Critical Scenarios. By leveraging multimodal data to extract challenging scenarios from real-world car crash reports, TRACE constructs numerous critical test cases with less data, significantly enhancing ADS bug detection efficiency. Using in-context learning, chain-of-thought prompting, and self-validation approaches, we use LLMs to extract environmental and road network information from crash reports. For vehicle trajectory planning, data containing map information and vehicle coordinates serves as a knowledge base to build a ChatGPT-based LLM with path-planning capabilities, which we named TrackMate. Based on 50 existing crash reports, our approach successfully tested three ADS models across two simulation platforms, MetaDrive and BeamNG. Of the 290 constructed test scenarios, 127 are identified as critical, as they resulted in vehicle collisions. Additionally, user feedback reveals that TRACE demonstrates superior scenario reconstruction accuracy, with 77.5% of the scenarios being rated as 'mostly or 'totally' consistent, compared to only 27% for the most related SOTA, LCTGen.
Performance Gap in Entity Knowledge Extraction Across Modalities in Vision Language Models
Vision-language models (VLMs) excel at extracting and reasoning about information from images. Yet, their capacity to leverage internal knowledge about specific entities remains underexplored. This work investigates the disparity in model performance when answering factual questions about an entity described in text versus depicted in an image. Our results reveal a significant accuracy drop - reaching 18% for some models - when the entity is presented visually instead of textually. To study this gap we present PopVQA, a dataset which allows separating entity recognition and question answering, and use it to benchmark several models. We hypothesize that this decline arises from limitations in how information flows from image tokens to query tokens. Thus, we use mechanistic interpretability tools to reveal that, although image tokens are preprocessed by the vision encoder, meaningful information flow from these tokens occurs only in the much deeper layers. Furthermore, critical image processing happens in the language model's middle layers, allowing few layers for consecutive reasoning, highlighting a potential inefficiency in how the model utilizes its layers for reasoning. These insights shed light on the internal mechanics of VLMs and offer pathways for enhancing their reasoning capabilities. PopVQA can be found at https://huggingface.co/datasets/idoco/PopVQA.
Canary Extraction in Natural Language Understanding Models
Natural Language Understanding (NLU) models can be trained on sensitive information such as phone numbers, zip-codes etc. Recent literature has focused on Model Inversion Attacks (ModIvA) that can extract training data from model parameters. In this work, we present a version of such an attack by extracting canaries inserted in NLU training data. In the attack, an adversary with open-box access to the model reconstructs the canaries contained in the model's training set. We evaluate our approach by performing text completion on canaries and demonstrate that by using the prefix (non-sensitive) tokens of the canary, we can generate the full canary. As an example, our attack is able to reconstruct a four digit code in the training dataset of the NLU model with a probability of 0.5 in its best configuration. As countermeasures, we identify several defense mechanisms that, when combined, effectively eliminate the risk of ModIvA in our experiments.
Can Sensitive Information Be Deleted From LLMs? Objectives for Defending Against Extraction Attacks
Pretrained language models sometimes possess knowledge that we do not wish them to, including memorized personal information and knowledge that could be used to harm people. They can also output toxic or harmful text. To mitigate these safety and informational issues, we propose an attack-and-defense framework for studying the task of deleting sensitive information directly from model weights. We study direct edits to model weights because (1) this approach should guarantee that particular deleted information is never extracted by future prompt attacks, and (2) it should protect against whitebox attacks, which is necessary for making claims about safety/privacy in a setting where publicly available model weights could be used to elicit sensitive information. Our threat model assumes that an attack succeeds if the answer to a sensitive question is located among a set of B generated candidates, based on scenarios where the information would be insecure if the answer is among B candidates. Experimentally, we show that even state-of-the-art model editing methods such as ROME struggle to truly delete factual information from models like GPT-J, as our whitebox and blackbox attacks can recover "deleted" information from an edited model 38% of the time. These attacks leverage two key observations: (1) that traces of deleted information can be found in intermediate model hidden states, and (2) that applying an editing method for one question may not delete information across rephrased versions of the question. Finally, we provide new defense methods that protect against some extraction attacks, but we do not find a single universally effective defense method. Our results suggest that truly deleting sensitive information is a tractable but difficult problem, since even relatively low attack success rates have potentially severe societal implications for real-world deployment of language models.
Extraction of Medication and Temporal Relation from Clinical Text using Neural Language Models
Clinical texts, represented in electronic medical records (EMRs), contain rich medical information and are essential for disease prediction, personalised information recommendation, clinical decision support, and medication pattern mining and measurement. Relation extractions between medication mentions and temporal information can further help clinicians better understand the patients' treatment history. To evaluate the performances of deep learning (DL) and large language models (LLMs) in medication extraction and temporal relations classification, we carry out an empirical investigation of MedTem project using several advanced learning structures including BiLSTM-CRF and CNN-BiLSTM for a clinical domain named entity recognition (NER), and BERT-CNN for temporal relation extraction (RE), in addition to the exploration of different word embedding techniques. Furthermore, we also designed a set of post-processing roles to generate structured output on medications and the temporal relation. Our experiments show that CNN-BiLSTM slightly wins the BiLSTM-CRF model on the i2b2-2009 clinical NER task yielding 75.67, 77.83, and 78.17 for precision, recall, and F1 scores using Macro Average. BERT-CNN model also produced reasonable evaluation scores 64.48, 67.17, and 65.03 for P/R/F1 using Macro Avg on the temporal relation extraction test set from i2b2-2012 challenges. Code and Tools from MedTem will be hosted at https://github.com/HECTA-UoM/MedTem
Beyond Extraction: Contextualising Tabular Data for Efficient Summarisation by Language Models
The conventional use of the Retrieval-Augmented Generation (RAG) architecture has proven effective for retrieving information from diverse documents. However, challenges arise in handling complex table queries, especially within PDF documents containing intricate tabular structures.This research introduces an innovative approach to enhance the accuracy of complex table queries in RAG-based systems. Our methodology involves storing PDFs in the retrieval database and extracting tabular content separately. The extracted tables undergo a process of context enrichment, concatenating headers with corresponding values. To ensure a comprehensive understanding of the enriched data, we employ a fine-tuned version of the Llama-2-chat language model for summarisation within the RAG architecture. Furthermore, we augment the tabular data with contextual sense using the ChatGPT 3.5 API through a one-shot prompt. This enriched data is then fed into the retrieval database alongside other PDFs. Our approach aims to significantly improve the precision of complex table queries, offering a promising solution to a longstanding challenge in information retrieval.
Detecting Relevant Information in High-Volume Chat Logs: Keyphrase Extraction for Grooming and Drug Dealing Forensic Analysis
The growing use of digital communication platforms has given rise to various criminal activities, such as grooming and drug dealing, which pose significant challenges to law enforcement and forensic experts. This paper presents a supervised keyphrase extraction approach to detect relevant information in high-volume chat logs involving grooming and drug dealing for forensic analysis. The proposed method, JointKPE++, builds upon the JointKPE keyphrase extractor by employing improvements to handle longer texts effectively. We evaluate JointKPE++ using BERT-based pre-trained models on grooming and drug dealing datasets, including BERT, RoBERTa, SpanBERT, and BERTimbau. The results show significant improvements over traditional approaches and demonstrate the potential for JointKPE++ to aid forensic experts in efficiently detecting keyphrases related to criminal activities.
Extreme Multi-Label Skill Extraction Training using Large Language Models
Online job ads serve as a valuable source of information for skill requirements, playing a crucial role in labor market analysis and e-recruitment processes. Since such ads are typically formatted in free text, natural language processing (NLP) technologies are required to automatically process them. We specifically focus on the task of detecting skills (mentioned literally, or implicitly described) and linking them to a large skill ontology, making it a challenging case of extreme multi-label classification (XMLC). Given that there is no sizable labeled (training) dataset are available for this specific XMLC task, we propose techniques to leverage general Large Language Models (LLMs). We describe a cost-effective approach to generate an accurate, fully synthetic labeled dataset for skill extraction, and present a contrastive learning strategy that proves effective in the task. Our results across three skill extraction benchmarks show a consistent increase of between 15 to 25 percentage points in R-Precision@5 compared to previously published results that relied solely on distant supervision through literal matches.
Distilling Large Language Models for Biomedical Knowledge Extraction: A Case Study on Adverse Drug Events
Large language models (LLMs), such as GPT-4, have demonstrated remarkable capabilities across a wide range of tasks, including health applications. In this paper, we study how LLMs can be used to scale biomedical knowledge curation. We find that while LLMs already possess decent competency in structuring biomedical text, by distillation into a task-specific student model through self-supervised learning, substantial gains can be attained over out-of-box LLMs, with additional advantages such as cost, efficiency, and white-box model access. We conduct a case study on adverse drug event (ADE) extraction, which is an important area for improving care. On standard ADE extraction evaluation, a GPT-3.5 distilled PubMedBERT model attained comparable accuracy as supervised state-of-the-art models without using any labeled data. Despite being over 1,000 times smaller, the distilled model outperformed its teacher GPT-3.5 by over 6 absolute points in F1 and GPT-4 by over 5 absolute points. Ablation studies on distillation model choice (e.g., PubMedBERT vs BioGPT) and ADE extraction architecture shed light on best practice for biomedical knowledge extraction. Similar gains were attained by distillation for other standard biomedical knowledge extraction tasks such as gene-disease associations and protected health information, further illustrating the promise of this approach.
REVS: Unlearning Sensitive Information in Language Models via Rank Editing in the Vocabulary Space
Language models (LMs) risk inadvertently memorizing and divulging sensitive or personally identifiable information (PII) seen in training data, causing privacy concerns. Current approaches to address this issue involve costly dataset scrubbing, or model filtering through unlearning and model editing, which can be bypassed through extraction attacks. We propose REVS, a novel non-gradient-based method for unlearning sensitive information from LMs. REVS identifies and modifies a small subset of neurons relevant for constituent tokens that form sensitive information. To adequately evaluate our method on truly sensitive information, we curate three datasets: email and URL datasets naturally memorized by the models, and a synthetic social security number dataset that we tune the models to memorize. Compared to other methods, REVS demonstrates superior performance in unlearning sensitive information and robustness to extraction attacks, while retaining underlying model integrity.
Knowledge AI: Fine-tuning NLP Models for Facilitating Scientific Knowledge Extraction and Understanding
This project investigates the efficacy of Large Language Models (LLMs) in understanding and extracting scientific knowledge across specific domains and to create a deep learning framework: Knowledge AI. As a part of this framework, we employ pre-trained models and fine-tune them on datasets in the scientific domain. The models are adapted for four key Natural Language Processing (NLP) tasks: summarization, text generation, question answering, and named entity recognition. Our results indicate that domain-specific fine-tuning significantly enhances model performance in each of these tasks, thereby improving their applicability for scientific contexts. This adaptation enables non-experts to efficiently query and extract information within targeted scientific fields, demonstrating the potential of fine-tuned LLMs as a tool for knowledge discovery in the sciences.
Product Attribute Value Extraction using Large Language Models
E-commerce applications such as faceted product search or product comparison are based on structured product descriptions like attribute/value pairs. The vendors on e-commerce platforms do not provide structured product descriptions but describe offers using titles or descriptions. To process such offers, it is necessary to extract attribute/value pairs from textual product attributes. State-of-the-art attribute/value extraction techniques rely on pre-trained language models (PLMs), such as BERT. Two major drawbacks of these models for attribute/value extraction are that (i) the models require significant amounts of task-specific training data and (ii) the fine-tuned models face challenges in generalizing to attribute values not included in the training data. This paper explores the potential of large language models (LLMs) as a training data-efficient and robust alternative to PLM-based attribute/value extraction methods. We consider hosted LLMs, such as GPT-3.5 and GPT-4, as well as open-source LLMs based on Llama2. We evaluate the models in a zero-shot scenario and in a scenario where task-specific training data is available. In the zero-shot scenario, we compare various prompt designs for representing information about the target attributes of the extraction. In the scenario with training data, we investigate (i) the provision of example attribute values, (ii) the selection of in-context demonstrations, and (iii) the fine-tuning of GPT-3.5. Our experiments show that GPT-4 achieves an average F1-score of 85% on the two evaluation datasets while the best PLM-based techniques perform on average 5% worse using the same amount of training data. GPT-4 achieves a 10% higher F1-score than the best open-source LLM. The fine-tuned GPT-3.5 model reaches a similar performance as GPT-4 while being significantly more cost-efficient.
AgentRE: An Agent-Based Framework for Navigating Complex Information Landscapes in Relation Extraction
The relation extraction (RE) in complex scenarios faces challenges such as diverse relation types and ambiguous relations between entities within a single sentence, leading to the poor performance of pure "text-in, text-out" language models (LMs). To address these challenges, in this paper, we propose an agent-based RE framework, namely AgentRE, which fully leverages the potential of large language models (LLMs) including memory, retrieval and reflection, to achieve RE in complex scenarios. Specifically, three major modules are built in AgentRE serving as the tools to help the agent acquire and process various useful information, thereby obtaining improved RE performance. Our extensive experimental results upon two datasets in English and Chinese demonstrate our AgentRE's superior performance, especially in low-resource scenarios. Additionally, the trajectories generated by AgentRE can be refined to construct a high-quality training dataset incorporating different reasoning methods, which can be used to fine-tune smaller models. Code is available at https://github.com/Lightblues/AgentRE.
Teach LLMs to Phish: Stealing Private Information from Language Models
When large language models are trained on private data, it can be a significant privacy risk for them to memorize and regurgitate sensitive information. In this work, we propose a new practical data extraction attack that we call "neural phishing". This attack enables an adversary to target and extract sensitive or personally identifiable information (PII), e.g., credit card numbers, from a model trained on user data with upwards of 10% attack success rates, at times, as high as 50%. Our attack assumes only that an adversary can insert as few as 10s of benign-appearing sentences into the training dataset using only vague priors on the structure of the user data.
Are Large Pre-Trained Language Models Leaking Your Personal Information?
Are Large Pre-Trained Language Models Leaking Your Personal Information? In this paper, we analyze whether Pre-Trained Language Models (PLMs) are prone to leaking personal information. Specifically, we query PLMs for email addresses with contexts of the email address or prompts containing the owner's name. We find that PLMs do leak personal information due to memorization. However, since the models are weak at association, the risk of specific personal information being extracted by attackers is low. We hope this work could help the community to better understand the privacy risk of PLMs and bring new insights to make PLMs safe.
FEVEROUS: Fact Extraction and VERification Over Unstructured and Structured information
Fact verification has attracted a lot of attention in the machine learning and natural language processing communities, as it is one of the key methods for detecting misinformation. Existing large-scale benchmarks for this task have focused mostly on textual sources, i.e. unstructured information, and thus ignored the wealth of information available in structured formats, such as tables. In this paper we introduce a novel dataset and benchmark, Fact Extraction and VERification Over Unstructured and Structured information (FEVEROUS), which consists of 87,026 verified claims. Each claim is annotated with evidence in the form of sentences and/or cells from tables in Wikipedia, as well as a label indicating whether this evidence supports, refutes, or does not provide enough information to reach a verdict. Furthermore, we detail our efforts to track and minimize the biases present in the dataset and could be exploited by models, e.g. being able to predict the label without using evidence. Finally, we develop a baseline for verifying claims against text and tables which predicts both the correct evidence and verdict for 18% of the claims.
Analyzing Leakage of Personally Identifiable Information in Language Models
Language Models (LMs) have been shown to leak information about training data through sentence-level membership inference and reconstruction attacks. Understanding the risk of LMs leaking Personally Identifiable Information (PII) has received less attention, which can be attributed to the false assumption that dataset curation techniques such as scrubbing are sufficient to prevent PII leakage. Scrubbing techniques reduce but do not prevent the risk of PII leakage: in practice scrubbing is imperfect and must balance the trade-off between minimizing disclosure and preserving the utility of the dataset. On the other hand, it is unclear to which extent algorithmic defenses such as differential privacy, designed to guarantee sentence- or user-level privacy, prevent PII disclosure. In this work, we introduce rigorous game-based definitions for three types of PII leakage via black-box extraction, inference, and reconstruction attacks with only API access to an LM. We empirically evaluate the attacks against GPT-2 models fine-tuned with and without defenses in three domains: case law, health care, and e-mails. Our main contributions are (i) novel attacks that can extract up to 10times more PII sequences than existing attacks, (ii) showing that sentence-level differential privacy reduces the risk of PII disclosure but still leaks about 3% of PII sequences, and (iii) a subtle connection between record-level membership inference and PII reconstruction. Code to reproduce all experiments in the paper is available at https://github.com/microsoft/analysing_pii_leakage.
Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction
The task of condensing large chunks of textual information into concise and structured tables has gained attention recently due to the emergence of Large Language Models (LLMs) and their potential benefit for downstream tasks, such as text summarization and text mining. Previous approaches often generate tables that directly replicate information from the text, limiting their applicability in broader contexts, as text-to-table generation in real-life scenarios necessitates information extraction, reasoning, and integration. However, there is a lack of both datasets and methodologies towards this task. In this paper, we introduce LiveSum, a new benchmark dataset created for generating summary tables of competitions based on real-time commentary texts. We evaluate the performances of state-of-the-art LLMs on this task in both fine-tuning and zero-shot settings, and additionally propose a novel pipeline called T^3(Text-Tuple-Table) to improve their performances. Extensive experimental results demonstrate that LLMs still struggle with this task even after fine-tuning, while our approach can offer substantial performance gains without explicit training. Further analyses demonstrate that our method exhibits strong generalization abilities, surpassing previous approaches on several other text-to-table datasets. Our code and data can be found at https://github.com/HKUST-KnowComp/LiveSum-TTT.
AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction Model
Event argument extraction (EAE) identifies event arguments and their specific roles for a given event. Recent advancement in generation-based EAE models has shown great performance and generalizability over classification-based models. However, existing generation-based EAE models mostly focus on problem re-formulation and prompt design, without incorporating additional information that has been shown to be effective for classification-based models, such as the abstract meaning representation (AMR) of the input passages. Incorporating such information into generation-based models is challenging due to the heterogeneous nature of the natural language form prevalently used in generation-based models and the structured form of AMRs. In this work, we study strategies to incorporate AMR into generation-based EAE models. We propose AMPERE, which generates AMR-aware prefixes for every layer of the generation model. Thus, the prefix introduces AMR information to the generation-based EAE model and then improves the generation. We also introduce an adjusted copy mechanism to AMPERE to help overcome potential noises brought by the AMR graph. Comprehensive experiments and analyses on ACE2005 and ERE datasets show that AMPERE can get 4% - 10% absolute F1 score improvements with reduced training data and it is in general powerful across different training sizes.
Online Adaptation of Language Models with a Memory of Amortized Contexts
Due to the rapid generation and dissemination of information, large language models (LLMs) quickly run out of date despite enormous development costs. Due to this crucial need to keep models updated, online learning has emerged as a critical necessity when utilizing LLMs for real-world applications. However, given the ever-expanding corpus of unseen documents and the large parameter space of modern LLMs, efficient adaptation is essential. To address these challenges, we propose Memory of Amortized Contexts (MAC), an efficient and effective online adaptation framework for LLMs with strong knowledge retention. We propose an amortized feature extraction and memory-augmentation approach to compress and extract information from new documents into compact modulations stored in a memory bank. When answering questions, our model attends to and extracts relevant knowledge from this memory bank. To learn informative modulations in an efficient manner, we utilize amortization-based meta-learning, which substitutes the optimization process with a single forward pass of the encoder. Subsequently, we learn to choose from and aggregate selected documents into a single modulation by conditioning on the question, allowing us to adapt a frozen language model during test time without requiring further gradient updates. Our experiment demonstrates the superiority of MAC in multiple aspects, including online adaptation performance, time, and memory efficiency. Code is available at: https://github.com/jihoontack/MAC.
Cross-Domain Aspect Extraction using Transformers Augmented with Knowledge Graphs
The extraction of aspect terms is a critical step in fine-grained sentiment analysis of text. Existing approaches for this task have yielded impressive results when the training and testing data are from the same domain. However, these methods show a drastic decrease in performance when applied to cross-domain settings where the domain of the testing data differs from that of the training data. To address this lack of extensibility and robustness, we propose a novel approach for automatically constructing domain-specific knowledge graphs that contain information relevant to the identification of aspect terms. We introduce a methodology for injecting information from these knowledge graphs into Transformer models, including two alternative mechanisms for knowledge insertion: via query enrichment and via manipulation of attention patterns. We demonstrate state-of-the-art performance on benchmark datasets for cross-domain aspect term extraction using our approach and investigate how the amount of external knowledge available to the Transformer impacts model performance.
BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction
Manual digitization of bibliographic metadata is time consuming and labor intensive, especially for historical and real-world archives with highly variable formatting across documents. Despite advances in machine learning, the absence of dedicated datasets for metadata extraction hinders automation. To address this gap, we introduce BiblioPage, a dataset of scanned title pages annotated with structured bibliographic metadata. The dataset consists of approximately 2,000 monograph title pages collected from 14 Czech libraries, spanning a wide range of publication periods, typographic styles, and layout structures. Each title page is annotated with 16 bibliographic attributes, including title, contributors, and publication metadata, along with precise positional information in the form of bounding boxes. To extract structured information from this dataset, we valuated object detection models such as YOLO and DETR combined with transformer-based OCR, achieving a maximum mAP of 52 and an F1 score of 59. Additionally, we assess the performance of various visual large language models, including LlamA 3.2-Vision and GPT-4o, with the best model reaching an F1 score of 67. BiblioPage serves as a real-world benchmark for bibliographic metadata extraction, contributing to document understanding, document question answering, and document information extraction. Dataset and evaluation scripts are availible at: https://github.com/DCGM/biblio-dataset
TartuNLP at SemEval-2025 Task 5: Subject Tagging as Two-Stage Information Retrieval
We present our submission to the Task 5 of SemEval-2025 that aims to aid librarians in assigning subject tags to the library records by producing a list of likely relevant tags for a given document. We frame the task as an information retrieval problem, where the document content is used to retrieve subject tags from a large subject taxonomy. We leverage two types of encoder models to build a two-stage information retrieval system -- a bi-encoder for coarse-grained candidate extraction at the first stage, and a cross-encoder for fine-grained re-ranking at the second stage. This approach proved effective, demonstrating significant improvements in recall compared to single-stage methods and showing competitive results according to qualitative evaluation.
Can bidirectional encoder become the ultimate winner for downstream applications of foundation models?
Over the past few decades, Artificial Intelligence(AI) has progressed from the initial machine learning stage to the deep learning stage, and now to the stage of foundational models. Foundational models have the characteristics of pre-training, transfer learning, and self-supervised learning, and pre-trained models can be fine-tuned and applied to various downstream tasks. Under the framework of foundational models, models such as Bidirectional Encoder Representations from Transformers(BERT) and Generative Pre-trained Transformer(GPT) have greatly advanced the development of natural language processing(NLP), especially the emergence of many models based on BERT. BERT broke through the limitation of only using one-way methods for language modeling in pre-training by using a masked language model. It can capture bidirectional context information to predict the masked words in the sequence, this can improve the feature extraction ability of the model. This makes the model very useful for downstream tasks, especially for specialized applications. The model using the bidirectional encoder can better understand the domain knowledge and be better applied to these downstream tasks. So we hope to help understand how this technology has evolved and improved model performance in various natural language processing tasks under the background of foundational models and reveal its importance in capturing context information and improving the model's performance on downstream tasks. This article analyzes one-way and bidirectional models based on GPT and BERT and compares their differences based on the purpose of the model. It also briefly analyzes BERT and the improvements of some models based on BERT. The model's performance on the Stanford Question Answering Dataset(SQuAD) and General Language Understanding Evaluation(GLUE) was compared.
TAGPRIME: A Unified Framework for Relational Structure Extraction
Many tasks in natural language processing require the extraction of relationship information for a given condition, such as event argument extraction, relation extraction, and task-oriented semantic parsing. Recent works usually propose sophisticated models for each task independently and pay less attention to the commonality of these tasks and to have a unified framework for all the tasks. In this work, we propose to take a unified view of all these tasks and introduce TAGPRIME to address relational structure extraction problems. TAGPRIME is a sequence tagging model that appends priming words about the information of the given condition (such as an event trigger) to the input text. With the self-attention mechanism in pre-trained language models, the priming words make the output contextualized representations contain more information about the given condition, and hence become more suitable for extracting specific relationships for the condition. Extensive experiments and analyses on three different tasks that cover ten datasets across five different languages demonstrate the generality and effectiveness of TAGPRIME.
PubTables-1M: Towards comprehensive table extraction from unstructured documents
Recently, significant progress has been made applying machine learning to the problem of table structure inference and extraction from unstructured documents. However, one of the greatest challenges remains the creation of datasets with complete, unambiguous ground truth at scale. To address this, we develop a new, more comprehensive dataset for table extraction, called PubTables-1M. PubTables-1M contains nearly one million tables from scientific articles, supports multiple input modalities, and contains detailed header and location information for table structures, making it useful for a wide variety of modeling approaches. It also addresses a significant source of ground truth inconsistency observed in prior datasets called oversegmentation, using a novel canonicalization procedure. We demonstrate that these improvements lead to a significant increase in training performance and a more reliable estimate of model performance at evaluation for table structure recognition. Further, we show that transformer-based object detection models trained on PubTables-1M produce excellent results for all three tasks of detection, structure recognition, and functional analysis without the need for any special customization for these tasks. Data and code will be released at https://github.com/microsoft/table-transformer.
Logic-of-Thought: Injecting Logic into Contexts for Full Reasoning in Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks but their performance in complex logical reasoning tasks remains unsatisfactory. Although some prompting methods, such as Chain-of-Thought, can improve the reasoning ability of LLMs to some extent, they suffer from an unfaithful issue where derived conclusions may not align with the generated reasoning chain. To address this issue, some studies employ the approach of propositional logic to further enhance logical reasoning abilities of LLMs. However, the potential omissions in the extraction of logical expressions in these methods can cause information loss in the logical reasoning process, thereby generating incorrect results. To this end, we propose Logic-of-Thought (LoT) prompting which employs propositional logic to generate expanded logical information from input context, and utilizes the generated logical information as an additional augmentation to the input prompts, thereby enhancing the capability of logical reasoning. The LoT is orthogonal to existing prompting methods and can be seamlessly integrated with them. Extensive experiments demonstrate that LoT boosts the performance of various prompting methods with a striking margin across five logical reasoning tasks. In particular, the LoT enhances Chain-of-Thought's performance on the ReClor dataset by +4.35%; moreover, it improves Chain-of-Thought with Self-Consistency's performance on LogiQA by +5%; additionally, it boosts performance of Tree-of-Thoughts on ProofWriter dataset by +8%.
Introducing Syntactic Structures into Target Opinion Word Extraction with Deep Learning
Targeted opinion word extraction (TOWE) is a sub-task of aspect based sentiment analysis (ABSA) which aims to find the opinion words for a given aspect-term in a sentence. Despite their success for TOWE, the current deep learning models fail to exploit the syntactic information of the sentences that have been proved to be useful for TOWE in the prior research. In this work, we propose to incorporate the syntactic structures of the sentences into the deep learning models for TOWE, leveraging the syntax-based opinion possibility scores and the syntactic connections between the words. We also introduce a novel regularization technique to improve the performance of the deep learning models based on the representation distinctions between the words in TOWE. The proposed model is extensively analyzed and achieves the state-of-the-art performance on four benchmark datasets.
Ethicist: Targeted Training Data Extraction Through Loss Smoothed Soft Prompting and Calibrated Confidence Estimation
Large pre-trained language models achieve impressive results across many tasks. However, recent works point out that pre-trained language models may memorize a considerable fraction of their training data, leading to the privacy risk of information leakage. In this paper, we propose a method named Ethicist for targeted training data extraction through loss smoothed soft prompting and calibrated confidence estimation, investigating how to recover the suffix in the training data when given a prefix. To elicit memorization in the attacked model, we tune soft prompt embeddings while keeping the model fixed. We further propose a smoothing loss that smooths the loss distribution of the suffix tokens to make it easier to sample the correct suffix. In order to select the most probable suffix from a collection of sampled suffixes and estimate the prediction confidence, we propose a calibrated confidence estimation method, which normalizes the confidence of the generated suffixes with a local estimation. We show that Ethicist significantly improves the extraction performance on a recently proposed public benchmark. We also investigate several factors influencing the data extraction performance, including decoding strategy, model scale, prefix length, and suffix length. Our code is available at https://github.com/thu-coai/Targeted-Data-Extraction.
Probing the limitations of multimodal language models for chemistry and materials research
Recent advancements in artificial intelligence have sparked interest in scientific assistants that could support researchers across the full spectrum of scientific workflows, from literature review to experimental design and data analysis. A key capability for such systems is the ability to process and reason about scientific information in both visual and textual forms - from interpreting spectroscopic data to understanding laboratory setups. Here, we introduce MaCBench, a comprehensive benchmark for evaluating how vision-language models handle real-world chemistry and materials science tasks across three core aspects: data extraction, experimental understanding, and results interpretation. Through a systematic evaluation of leading models, we find that while these systems show promising capabilities in basic perception tasks - achieving near-perfect performance in equipment identification and standardized data extraction - they exhibit fundamental limitations in spatial reasoning, cross-modal information synthesis, and multi-step logical inference. Our insights have important implications beyond chemistry and materials science, suggesting that developing reliable multimodal AI scientific assistants may require advances in curating suitable training data and approaches to training those models.
ChuLo: Chunk-Level Key Information Representation for Long Document Processing
Transformer-based models have achieved remarkable success in various Natural Language Processing (NLP) tasks, yet their ability to handle long documents is constrained by computational limitations. Traditional approaches, such as truncating inputs, sparse self-attention, and chunking, attempt to mitigate these issues, but they often lead to information loss and hinder the model's ability to capture long-range dependencies. In this paper, we introduce ChuLo, a novel chunk representation method for long document classification that addresses these limitations. Our ChuLo groups input tokens using unsupervised keyphrase extraction, emphasizing semantically important keyphrase based chunk to retain core document content while reducing input length. This approach minimizes information loss and improves the efficiency of Transformer-based models. Preserving all tokens in long document understanding, especially token classification tasks, is especially important to ensure that fine-grained annotations, which depend on the entire sequence context, are not lost. We evaluate our method on multiple long document classification tasks and long document token classification tasks, demonstrating its effectiveness through comprehensive qualitative and quantitative analyses.
Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning
Creating knowledge bases and ontologies is a time consuming task that relies on a manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrary complex nested knowledge schemas. Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning (ZSL) and general-purpose query answering from flexible prompts and return information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs prompt interrogation against GPT-3+ to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to provide identifiers for all matched elements. We present examples of use of SPIRES in different domains, including extraction of food recipes, multi-species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease causation graphs. Current SPIRES accuracy is comparable to the mid-range of existing Relation Extraction (RE) methods, but has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM. SPIRES is available as part of the open source OntoGPT package: https://github.com/ monarch-initiative/ontogpt.
AudioSetCaps: An Enriched Audio-Caption Dataset using Automated Generation Pipeline with Large Audio and Language Models
With the emergence of audio-language models, constructing large-scale paired audio-language datasets has become essential yet challenging for model development, primarily due to the time-intensive and labour-heavy demands involved. While large language models (LLMs) have improved the efficiency of synthetic audio caption generation, current approaches struggle to effectively extract and incorporate detailed audio information. In this paper, we propose an automated pipeline that integrates audio-language models for fine-grained content extraction, LLMs for synthetic caption generation, and a contrastive language-audio pretraining (CLAP) model-based refinement process to improve the quality of captions. Specifically, we employ prompt chaining techniques in the content extraction stage to obtain accurate and fine-grained audio information, while we use the refinement process to mitigate potential hallucinations in the generated captions. Leveraging the AudioSet dataset and the proposed approach, we create AudioSetCaps, a dataset comprising 1.9 million audio-caption pairs, the largest audio-caption dataset at the time of writing. The models trained with AudioSetCaps achieve state-of-the-art performance on audio-text retrieval with R@1 scores of 46.3% for text-to-audio and 59.7% for audio-to-text retrieval and automated audio captioning with the CIDEr score of 84.8. As our approach has shown promising results with AudioSetCaps, we create another dataset containing 4.1 million synthetic audio-language pairs based on the Youtube-8M and VGGSound datasets. To facilitate research in audio-language learning, we have made our pipeline, datasets with 6 million audio-language pairs, and pre-trained models publicly available at https://github.com/JishengBai/AudioSetCaps.
Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs
Large Language Models (LLMs) have demonstrated strong reasoning and memorization capabilities via pretraining on massive textual corpora. However, this poses risk of privacy and copyright violations, highlighting the need for efficient machine unlearning methods that remove sensitive data without retraining from scratch. While Gradient Ascent (GA) is commonly used to unlearn by reducing the likelihood of generating unwanted content, it leads to unstable optimization and catastrophic forgetting of retrained knowledge. We find that combining GA with low-rank adaptation results in poor trade-offs between computational cost and generative performance. To address these challenges, we propose Low-rank Knowledge Unlearning (LoKU), a novel framework that enables robust and efficient unlearning for LLMs. First, we introduce Inverted Hinge Loss, which suppresses unwanted tokens while maintaining fluency by boosting the probability of the next most likely token. Second, we develop a data-adaptive initialization for LoRA adapters via low-rank approximation weighted with relative Fisher information, thereby focusing updates on parameters critical for removing targeted knowledge. Experiments on the Training Data Extraction Challenge dataset using GPT-Neo models as well as on the TOFU benchmark with Phi-1.5B and Llama2-7B models demonstrate that our approach effectively removes sensitive information while maintaining reasoning and generative capabilities with minimal impact. Our implementation can be found in https://github.com/csm9493/efficient-llm-unlearning.
RETA-LLM: A Retrieval-Augmented Large Language Model Toolkit
Although Large Language Models (LLMs) have demonstrated extraordinary capabilities in many domains, they still have a tendency to hallucinate and generate fictitious responses to user requests. This problem can be alleviated by augmenting LLMs with information retrieval (IR) systems (also known as retrieval-augmented LLMs). Applying this strategy, LLMs can generate more factual texts in response to user input according to the relevant content retrieved by IR systems from external corpora as references. In addition, by incorporating external knowledge, retrieval-augmented LLMs can answer in-domain questions that cannot be answered by solely relying on the world knowledge stored in parameters. To support research in this area and facilitate the development of retrieval-augmented LLM systems, we develop RETA-LLM, a {RET}reival-{A}ugmented LLM toolkit. In RETA-LLM, we create a complete pipeline to help researchers and users build their customized in-domain LLM-based systems. Compared with previous retrieval-augmented LLM systems, RETA-LLM provides more plug-and-play modules to support better interaction between IR systems and LLMs, including {request rewriting, document retrieval, passage extraction, answer generation, and fact checking} modules. Our toolkit is publicly available at https://github.com/RUC-GSAI/YuLan-IR/tree/main/RETA-LLM.
AnyMaker: Zero-shot General Object Customization via Decoupled Dual-Level ID Injection
Text-to-image based object customization, aiming to generate images with the same identity (ID) as objects of interest in accordance with text prompts and reference images, has made significant progress. However, recent customizing research is dominated by specialized tasks, such as human customization or virtual try-on, leaving a gap in general object customization. To this end, we introduce AnyMaker, an innovative zero-shot object customization framework capable of generating general objects with high ID fidelity and flexible text editability. The efficacy of AnyMaker stems from its novel general ID extraction, dual-level ID injection, and ID-aware decoupling. Specifically, the general ID extraction module extracts sufficient ID information with an ensemble of self-supervised models to tackle the diverse customization tasks for general objects. Then, to provide the diffusion UNet with the extracted ID as much while not damaging the text editability in the generation process, we design a global-local dual-level ID injection module, in which the global-level semantic ID is injected into text descriptions while the local-level ID details are injected directly into the model through newly added cross-attention modules. In addition, we propose an ID-aware decoupling module to disentangle ID-related information from non-ID elements in the extracted representations for high-fidelity generation of both identity and text descriptions. To validate our approach and boost the research of general object customization, we create the first large-scale general ID dataset, Multi-Category ID-Consistent (MC-IDC) dataset, with 315k text-image samples and 10k categories. Experiments show that AnyMaker presents remarkable performance in general object customization and outperforms specialized methods in corresponding tasks. Code and dataset will be released soon.
A Closer Look at GAN Priors: Exploiting Intermediate Features for Enhanced Model Inversion Attacks
Model Inversion (MI) attacks aim to reconstruct privacy-sensitive training data from released models by utilizing output information, raising extensive concerns about the security of Deep Neural Networks (DNNs). Recent advances in generative adversarial networks (GANs) have contributed significantly to the improved performance of MI attacks due to their powerful ability to generate realistic images with high fidelity and appropriate semantics. However, previous MI attacks have solely disclosed private information in the latent space of GAN priors, limiting their semantic extraction and transferability across multiple target models and datasets. To address this challenge, we propose a novel method, Intermediate Features enhanced Generative Model Inversion (IF-GMI), which disassembles the GAN structure and exploits features between intermediate blocks. This allows us to extend the optimization space from latent code to intermediate features with enhanced expressive capabilities. To prevent GAN priors from generating unrealistic images, we apply a L1 ball constraint to the optimization process. Experiments on multiple benchmarks demonstrate that our method significantly outperforms previous approaches and achieves state-of-the-art results under various settings, especially in the out-of-distribution (OOD) scenario. Our code is available at: https://github.com/final-solution/IF-GMI
AxisPose: Model-Free Matching-Free Single-Shot 6D Object Pose Estimation via Axis Generation
Object pose estimation, which plays a vital role in robotics, augmented reality, and autonomous driving, has been of great interest in computer vision. Existing studies either require multi-stage pose regression or rely on 2D-3D feature matching. Though these approaches have shown promising results, they rely heavily on appearance information, requiring complex input (i.e., multi-view reference input, depth, or CAD models) and intricate pipeline (i.e., feature extraction-SfM-2D to 3D matching-PnP). We propose AxisPose, a model-free, matching-free, single-shot solution for robust 6D pose estimation, which fundamentally diverges from the existing paradigm. Unlike existing methods that rely on 2D-3D or 2D-2D matching using 3D techniques, such as SfM and PnP, AxisPose directly infers a robust 6D pose from a single view by leveraging a diffusion model to learn the latent axis distribution of objects without reference views. Specifically, AxisPose constructs an Axis Generation Module (AGM) to capture the latent geometric distribution of object axes through a diffusion model. The diffusion process is guided by injecting the gradient of geometric consistency loss into the noise estimation to maintain the geometric consistency of the generated tri-axis. With the generated tri-axis projection, AxisPose further adopts a Triaxial Back-projection Module (TBM) to recover the 6D pose from the object tri-axis. The proposed AxisPose achieves robust performance at the cross-instance level (i.e., one model for N instances) using only a single view as input without reference images, with great potential for generalization to unseen-object level.
MWE as WSD: Solving Multiword Expression Identification with Word Sense Disambiguation
Recent approaches to word sense disambiguation (WSD) utilize encodings of the sense gloss (definition), in addition to the input context, to improve performance. In this work we demonstrate that this approach can be adapted for use in multiword expression (MWE) identification by training models which use gloss and context information to filter MWE candidates produced by a rule-based extraction pipeline. Our approach substantially improves precision, outperforming the state-of-the-art in MWE identification on the DiMSUM dataset by up to 1.9 F1 points and achieving competitive results on the PARSEME 1.1 English dataset. Our models also retain most of their WSD performance, showing that a single model can be used for both tasks. Finally, building on similar approaches using Bi-encoders for WSD, we introduce a novel Poly-encoder architecture which improves MWE identification performance.
DocParser: End-to-end OCR-free Information Extraction from Visually Rich Documents
Information Extraction from visually rich documents is a challenging task that has gained a lot of attention in recent years due to its importance in several document-control based applications and its widespread commercial value. The majority of the research work conducted on this topic to date follow a two-step pipeline. First, they read the text using an off-the-shelf Optical Character Recognition (OCR) engine, then, they extract the fields of interest from the obtained text. The main drawback of these approaches is their dependence on an external OCR system, which can negatively impact both performance and computational speed. Recent OCR-free methods were proposed to address the previous issues. Inspired by their promising results, we propose in this paper an OCR-free end-to-end information extraction model named DocParser. It differs from prior end-to-end approaches by its ability to better extract discriminative character features. DocParser achieves state-of-the-art results on various datasets, while still being faster than previous works.
CHIMERA: A Knowledge Base of Idea Recombination in Scientific Literature
A hallmark of human innovation is the process of recombination -- creating original ideas by integrating elements of existing mechanisms and concepts. In this work, we automatically mine the scientific literature and build CHIMERA: a large-scale knowledge base (KB) of recombination examples. CHIMERA can be used to empirically explore at scale how scientists recombine concepts and take inspiration from different areas, or to train supervised machine learning models that learn to predict new creative cross-domain directions. To build this KB, we present a novel information extraction task of extracting recombination from scientific paper abstracts, collect a high-quality corpus of hundreds of manually annotated abstracts, and use it to train an LLM-based extraction model. The model is applied to a large corpus of papers in the AI domain, yielding a KB of over 28K recombination examples. We analyze CHIMERA to explore the properties of recombination in different subareas of AI. Finally, we train a scientific hypothesis generation model using the KB, which predicts new recombination directions that real-world researchers find inspiring. Our data and code are available at https://github.cs.huji.ac.il/tomhope-lab/CHIMERA
Easy-to-Hard Learning for Information Extraction
Information extraction (IE) systems aim to automatically extract structured information, such as named entities, relations between entities, and events, from unstructured texts. While most existing work addresses a particular IE task, universally modeling various IE tasks with one model has achieved great success recently. Despite their success, they employ a one-stage learning strategy, i.e., directly learning to extract the target structure given the input text, which contradicts the human learning process. In this paper, we propose a unified easy-to-hard learning framework consisting of three stages, i.e., the easy stage, the hard stage, and the main stage, for IE by mimicking the human learning process. By breaking down the learning process into multiple stages, our framework facilitates the model to acquire general IE task knowledge and improve its generalization ability. Extensive experiments across four IE tasks demonstrate the effectiveness of our framework. We achieve new state-of-the-art results on 13 out of 17 datasets. Our code is available at https://github.com/DAMO-NLP-SG/IE-E2H.
MT4CrossOIE: Multi-stage Tuning for Cross-lingual Open Information Extraction
Cross-lingual open information extraction aims to extract structured information from raw text across multiple languages. Previous work uses a shared cross-lingual pre-trained model to handle the different languages but underuses the potential of the language-specific representation. In this paper, we propose an effective multi-stage tuning framework called MT4CrossIE, designed for enhancing cross-lingual open information extraction by injecting language-specific knowledge into the shared model. Specifically, the cross-lingual pre-trained model is first tuned in a shared semantic space (e.g., embedding matrix) in the fixed encoder and then other components are optimized in the second stage. After enough training, we freeze the pre-trained model and tune the multiple extra low-rank language-specific modules using mixture-of-LoRAs for model-based cross-lingual transfer. In addition, we leverage two-stage prompting to encourage the large language model (LLM) to annotate the multi-lingual raw data for data-based cross-lingual transfer. The model is trained with multi-lingual objectives on our proposed dataset OpenIE4++ by combing the model-based and data-based transfer techniques. Experimental results on various benchmarks emphasize the importance of aggregating multiple plug-in-and-play language-specific modules and demonstrate the effectiveness of MT4CrossIE in cross-lingual OIE\url{https://github.com/CSJianYang/Multilingual-Multimodal-NLP}.
Label Drop for Multi-Aspect Relation Modeling in Universal Information Extraction
Universal Information Extraction (UIE) has garnered significant attention due to its ability to address model explosion problems effectively. Extractive UIE can achieve strong performance using a relatively small model, making it widely adopted. Extractive UIEs generally rely on task instructions for different tasks, including single-target instructions and multiple-target instructions. Single-target instruction UIE enables the extraction of only one type of relation at a time, limiting its ability to model correlations between relations and thus restricting its capability to extract complex relations. While multiple-target instruction UIE allows for the extraction of multiple relations simultaneously, the inclusion of irrelevant relations introduces decision complexity and impacts extraction accuracy. Therefore, for multi-relation extraction, we propose LDNet, which incorporates multi-aspect relation modeling and a label drop mechanism. By assigning different relations to different levels for understanding and decision-making, we reduce decision confusion. Additionally, the label drop mechanism effectively mitigates the impact of irrelevant relations. Experiments show that LDNet outperforms or achieves competitive performance with state-of-the-art systems on 9 tasks, 33 datasets, in both single-modal and multi-modal, few-shot and zero-shot settings.https://github.com/Lu-Yang666/LDNet
LasUIE: Unifying Information Extraction with Latent Adaptive Structure-aware Generative Language Model
Universally modeling all typical information extraction tasks (UIE) with one generative language model (GLM) has revealed great potential by the latest study, where various IE predictions are unified into a linearized hierarchical expression under a GLM. Syntactic structure information, a type of effective feature which has been extensively utilized in IE community, should also be beneficial to UIE. In this work, we propose a novel structure-aware GLM, fully unleashing the power of syntactic knowledge for UIE. A heterogeneous structure inductor is explored to unsupervisedly induce rich heterogeneous structural representations by post-training an existing GLM. In particular, a structural broadcaster is devised to compact various latent trees into explicit high-order forests, helping to guide a better generation during decoding. We finally introduce a task-oriented structure fine-tuning mechanism, further adjusting the learned structures to most coincide with the end-task's need. Over 12 IE benchmarks across 7 tasks our system shows significant improvements over the baseline UIE system. Further in-depth analyses show that our GLM learns rich task-adaptive structural bias that greatly resolves the UIE crux, the long-range dependence issue and boundary identifying. Source codes are open at https://github.com/ChocoWu/LasUIE.
CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model
This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.
FormNet: Structural Encoding beyond Sequential Modeling in Form Document Information Extraction
Sequence modeling has demonstrated state-of-the-art performance on natural language and document understanding tasks. However, it is challenging to correctly serialize tokens in form-like documents in practice due to their variety of layout patterns. We propose FormNet, a structure-aware sequence model to mitigate the suboptimal serialization of forms. First, we design Rich Attention that leverages the spatial relationship between tokens in a form for more precise attention score calculation. Second, we construct Super-Tokens for each word by embedding representations from their neighboring tokens through graph convolutions. FormNet therefore explicitly recovers local syntactic information that may have been lost during serialization. In experiments, FormNet outperforms existing methods with a more compact model size and less pre-training data, establishing new state-of-the-art performance on CORD, FUNSD and Payment benchmarks.
Extracting Radiological Findings With Normalized Anatomical Information Using a Span-Based BERT Relation Extraction Model
Medical imaging is critical to the diagnosis and treatment of numerous medical problems, including many forms of cancer. Medical imaging reports distill the findings and observations of radiologists, creating an unstructured textual representation of unstructured medical images. Large-scale use of this text-encoded information requires converting the unstructured text to a structured, semantic representation. We explore the extraction and normalization of anatomical information in radiology reports that is associated with radiological findings. We investigate this extraction and normalization task using a span-based relation extraction model that jointly extracts entities and relations using BERT. This work examines the factors that influence extraction and normalization performance, including the body part/organ system, frequency of occurrence, span length, and span diversity. It discusses approaches for improving performance and creating high-quality semantic representations of radiological phenomena.
GraphER: A Structure-aware Text-to-Graph Model for Entity and Relation Extraction
Information extraction (IE) is an important task in Natural Language Processing (NLP), involving the extraction of named entities and their relationships from unstructured text. In this paper, we propose a novel approach to this task by formulating it as graph structure learning (GSL). By formulating IE as GSL, we enhance the model's ability to dynamically refine and optimize the graph structure during the extraction process. This formulation allows for better interaction and structure-informed decisions for entity and relation prediction, in contrast to previous models that have separate or untied predictions for these tasks. When compared against state-of-the-art baselines on joint entity and relation extraction benchmarks, our model, GraphER, achieves competitive results.
Semantic Information Extraction for Text Data with Probability Graph
In this paper, the problem of semantic information extraction for resource constrained text data transmission is studied. In the considered model, a sequence of text data need to be transmitted within a communication resource-constrained network, which only allows limited data transmission. Thus, at the transmitter, the original text data is extracted with natural language processing techniques. Then, the extracted semantic information is captured in a knowledge graph. An additional probability dimension is introduced in this graph to capture the importance of each information. This semantic information extraction problem is posed as an optimization framework whose goal is to extract most important semantic information for transmission. To find an optimal solution for this problem, a Floyd's algorithm based solution coupled with an efficient sorting mechanism is proposed. Numerical results testify the effectiveness of the proposed algorithm with regards to two novel performance metrics including semantic uncertainty and semantic similarity.
A Joint Model for Definition Extraction with Syntactic Connection and Semantic Consistency
Definition Extraction (DE) is one of the well-known topics in Information Extraction that aims to identify terms and their corresponding definitions in unstructured texts. This task can be formalized either as a sentence classification task (i.e., containing term-definition pairs or not) or a sequential labeling task (i.e., identifying the boundaries of the terms and definitions). The previous works for DE have only focused on one of the two approaches, failing to model the inter-dependencies between the two tasks. In this work, we propose a novel model for DE that simultaneously performs the two tasks in a single framework to benefit from their inter-dependencies. Our model features deep learning architectures to exploit the global structures of the input sentences as well as the semantic consistencies between the terms and the definitions, thereby improving the quality of the representation vectors for DE. Besides the joint inference between sentence classification and sequential labeling, the proposed model is fundamentally different from the prior work for DE in that the prior work has only employed the local structures of the input sentences (i.e., word-to-word relations), and not yet considered the semantic consistencies between terms and definitions. In order to implement these novel ideas, our model presents a multi-task learning framework that employs graph convolutional neural networks and predicts the dependency paths between the terms and the definitions. We also seek to enforce the consistency between the representations of the terms and definitions both globally (i.e., increasing semantic consistency between the representations of the entire sentences and the terms/definitions) and locally (i.e., promoting the similarity between the representations of the terms and the definitions).
Universal Information Extraction as Unified Semantic Matching
The challenge of information extraction (IE) lies in the diversity of label schemas and the heterogeneity of structures. Traditional methods require task-specific model design and rely heavily on expensive supervision, making them difficult to generalize to new schemas. In this paper, we decouple IE into two basic abilities, structuring and conceptualizing, which are shared by different tasks and schemas. Based on this paradigm, we propose to universally model various IE tasks with Unified Semantic Matching (USM) framework, which introduces three unified token linking operations to model the abilities of structuring and conceptualizing. In this way, USM can jointly encode schema and input text, uniformly extract substructures in parallel, and controllably decode target structures on demand. Empirical evaluation on 4 IE tasks shows that the proposed method achieves state-of-the-art performance under the supervised experiments and shows strong generalization ability in zero/few-shot transfer settings.
Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning
Most successful information extraction systems operate with access to a large collection of documents. In this work, we explore the task of acquiring and incorporating external evidence to improve extraction accuracy in domains where the amount of training data is scarce. This process entails issuing search queries, extraction from new sources and reconciliation of extracted values, which are repeated until sufficient evidence is collected. We approach the problem using a reinforcement learning framework where our model learns to select optimal actions based on contextual information. We employ a deep Q-network, trained to optimize a reward function that reflects extraction accuracy while penalizing extra effort. Our experiments on two databases -- of shooting incidents, and food adulteration cases -- demonstrate that our system significantly outperforms traditional extractors and a competitive meta-classifier baseline.
Mirror: A Universal Framework for Various Information Extraction Tasks
Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at https://github.com/Spico197/Mirror .
ZS4IE: A toolkit for Zero-Shot Information Extraction with simple Verbalizations
The current workflow for Information Extraction (IE) analysts involves the definition of the entities/relations of interest and a training corpus with annotated examples. In this demonstration we introduce a new workflow where the analyst directly verbalizes the entities/relations, which are then used by a Textual Entailment model to perform zero-shot IE. We present the design and implementation of a toolkit with a user interface, as well as experiments on four IE tasks that show that the system achieves very good performance at zero-shot learning using only 5--15 minutes per type of a user's effort. Our demonstration system is open-sourced at https://github.com/BBN-E/ZS4IE . A demonstration video is available at https://vimeo.com/676138340 .
KnowCoder: Coding Structured Knowledge into LLMs for Universal Information Extraction
In this paper, we propose KnowCoder, a Large Language Model (LLM) to conduct Universal Information Extraction (UIE) via code generation. KnowCoder aims to develop a kind of unified schema representation that LLMs can easily understand and an effective learning framework that encourages LLMs to follow schemas and extract structured knowledge accurately. To achieve these, KnowCoder introduces a code-style schema representation method to uniformly transform different schemas into Python classes, with which complex schema information, such as constraints among tasks in UIE, can be captured in an LLM-friendly manner. We further construct a code-style schema library covering over 30,000 types of knowledge, which is the largest one for UIE, to the best of our knowledge. To ease the learning process of LLMs, KnowCoder contains a two-phase learning framework that enhances its schema understanding ability via code pretraining and its schema following ability via instruction tuning. After code pretraining on around 1.5B automatically constructed data, KnowCoder already attains remarkable generalization ability and achieves relative improvements by 49.8% F1, compared to LLaMA2, under the few-shot setting. After instruction tuning, KnowCoder further exhibits strong generalization ability on unseen schemas and achieves up to 12.5% and 21.9%, compared to sota baselines, under the zero-shot setting and the low resource setting, respectively. Additionally, based on our unified schema representations, various human-annotated datasets can simultaneously be utilized to refine KnowCoder, which achieves significant improvements up to 7.5% under the supervised setting.
ROPE: Reading Order Equivariant Positional Encoding for Graph-based Document Information Extraction
Natural reading orders of words are crucial for information extraction from form-like documents. Despite recent advances in Graph Convolutional Networks (GCNs) on modeling spatial layout patterns of documents, they have limited ability to capture reading orders of given word-level node representations in a graph. We propose Reading Order Equivariant Positional Encoding (ROPE), a new positional encoding technique designed to apprehend the sequential presentation of words in documents. ROPE generates unique reading order codes for neighboring words relative to the target word given a word-level graph connectivity. We study two fundamental document entity extraction tasks including word labeling and word grouping on the public FUNSD dataset and a large-scale payment dataset. We show that ROPE consistently improves existing GCNs with a margin up to 8.4% F1-score.
A Few-shot Approach to Resume Information Extraction via Prompts
Prompt learning's fine-tune performance on text classification tasks has attracted the NLP community. This paper applies it to resume information extraction, improving existing methods for this task. We created manual templates and verbalizers tailored to resume texts and compared the performance of Masked Language Model (MLM) and Seq2Seq PLMs. Also, we enhanced the verbalizer design for Knowledgeable Prompt-tuning, contributing to prompt template design across NLP tasks. We present the Manual Knowledgeable Verbalizer (MKV), a rule for constructing verbalizers for specific applications. Our tests show that MKV rules yield more effective, robust templates and verbalizers than existing methods. Our MKV approach resolved sample imbalance, surpassing current automatic prompt methods. This study underscores the value of tailored prompt learning for resume extraction, stressing the importance of custom-designed templates and verbalizers.
DEGREE: A Data-Efficient Generation-Based Event Extraction Model
Event extraction requires high-quality expert human annotations, which are usually expensive. Therefore, learning a data-efficient event extraction model that can be trained with only a few labeled examples has become a crucial challenge. In this paper, we focus on low-resource end-to-end event extraction and propose DEGREE, a data-efficient model that formulates event extraction as a conditional generation problem. Given a passage and a manually designed prompt, DEGREE learns to summarize the events mentioned in the passage into a natural sentence that follows a predefined pattern. The final event predictions are then extracted from the generated sentence with a deterministic algorithm. DEGREE has three advantages to learn well with less training data. First, our designed prompts provide semantic guidance for DEGREE to leverage DEGREE and thus better capture the event arguments. Moreover, DEGREE is capable of using additional weakly-supervised information, such as the description of events encoded in the prompts. Finally, DEGREE learns triggers and arguments jointly in an end-to-end manner, which encourages the model to better utilize the shared knowledge and dependencies among them. Our experimental results demonstrate the strong performance of DEGREE for low-resource event extraction.
FormNetV2: Multimodal Graph Contrastive Learning for Form Document Information Extraction
The recent advent of self-supervised pre-training techniques has led to a surge in the use of multimodal learning in form document understanding. However, existing approaches that extend the mask language modeling to other modalities require careful multi-task tuning, complex reconstruction target designs, or additional pre-training data. In FormNetV2, we introduce a centralized multimodal graph contrastive learning strategy to unify self-supervised pre-training for all modalities in one loss. The graph contrastive objective maximizes the agreement of multimodal representations, providing a natural interplay for all modalities without special customization. In addition, we extract image features within the bounding box that joins a pair of tokens connected by a graph edge, capturing more targeted visual cues without loading a sophisticated and separately pre-trained image embedder. FormNetV2 establishes new state-of-the-art performance on FUNSD, CORD, SROIE and Payment benchmarks with a more compact model size.
Unified Structure Generation for Universal Information Extraction
Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. In this paper, we propose a unified text-to-structure generation framework, namely UIE, which can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE.
BuDDIE: A Business Document Dataset for Multi-task Information Extraction
The field of visually rich document understanding (VRDU) aims to solve a multitude of well-researched NLP tasks in a multi-modal domain. Several datasets exist for research on specific tasks of VRDU such as document classification (DC), key entity extraction (KEE), entity linking, visual question answering (VQA), inter alia. These datasets cover documents like invoices and receipts with sparse annotations such that they support one or two co-related tasks (e.g., entity extraction and entity linking). Unfortunately, only focusing on a single specific of documents or task is not representative of how documents often need to be processed in the wild - where variety in style and requirements is expected. In this paper, we introduce BuDDIE (Business Document Dataset for Information Extraction), the first multi-task dataset of 1,665 real-world business documents that contains rich and dense annotations for DC, KEE, and VQA. Our dataset consists of publicly available business entity documents from US state government websites. The documents are structured and vary in their style and layout across states and types (e.g., forms, certificates, reports, etc.). We provide data variety and quality metrics for BuDDIE as well as a series of baselines for each task. Our baselines cover traditional textual, multi-modal, and large language model approaches to VRDU.
ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences
Recently, the increasing demand for superior medical services has highlighted the discrepancies in the medical infrastructure. With big data, especially texts, forming the foundation of medical services, there is an exigent need for effective natural language processing (NLP) solutions tailored to the healthcare domain. Conventional approaches leveraging pre-trained models present promising results in this domain and current large language models (LLMs) offer advanced foundation for medical text processing. However, most medical LLMs are trained only with supervised fine-tuning (SFT), even though it efficiently empowers LLMs to understand and respond to medical instructions but is ineffective in learning domain knowledge and aligning with human preference. Another engineering barrier that prevents current medical LLM from better text processing ability is their restricted context length (e.g., 2,048 tokens), making it hard for the LLMs to process long context, which is frequently required in the medical domain. In this work, we propose ChiMed-GPT, a new benchmark LLM designed explicitly for Chinese medical domain, with enlarged context length to 4,096 tokens and undergoes a comprehensive training regime with pre-training, SFT, and RLHF. Evaluations on real-world tasks including information extraction, question answering, and dialogue generation demonstrate ChiMed-GPT's superior performance over general domain LLMs. Furthermore, we analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients, so as to contribute to further responsible development of LLMs in the medical domain. The code and model are released at https://github.com/synlp/ChiMed-GPT.
LayoutLLM: Large Language Model Instruction Tuning for Visually Rich Document Understanding
This paper proposes LayoutLLM, a more flexible document analysis method for understanding imaged documents. Visually Rich Document Understanding tasks, such as document image classification and information extraction, have gained significant attention due to their importance. Existing methods have been developed to enhance document comprehension by incorporating pre-training awareness of images, text, and layout structure. However, these methods require fine-tuning for each task and dataset, and the models are expensive to train and operate. To overcome this limitation, we propose a new LayoutLLM that integrates these with large-scale language models (LLMs). By leveraging the strengths of existing research in document image understanding and LLMs' superior language understanding capabilities, the proposed model, fine-tuned with multimodal instruction datasets, performs an understanding of document images in a single model. Our experiments demonstrate improvement over the baseline model in various document analysis tasks.
German BERT Model for Legal Named Entity Recognition
The use of BERT, one of the most popular language models, has led to improvements in many Natural Language Processing (NLP) tasks. One such task is Named Entity Recognition (NER) i.e. automatic identification of named entities such as location, person, organization, etc. from a given text. It is also an important base step for many NLP tasks such as information extraction and argumentation mining. Even though there is much research done on NER using BERT and other popular language models, the same is not explored in detail when it comes to Legal NLP or Legal Tech. Legal NLP applies various NLP techniques such as sentence similarity or NER specifically on legal data. There are only a handful of models for NER tasks using BERT language models, however, none of these are aimed at legal documents in German. In this paper, we fine-tune a popular BERT language model trained on German data (German BERT) on a Legal Entity Recognition (LER) dataset. To make sure our model is not overfitting, we performed a stratified 10-fold cross-validation. The results we achieve by fine-tuning German BERT on the LER dataset outperform the BiLSTM-CRF+ model used by the authors of the same LER dataset. Finally, we make the model openly available via HuggingFace.
CRENER: A Character Relation Enhanced Chinese NER Model
Chinese Named Entity Recognition (NER) is an important task in information extraction, which has a significant impact on downstream applications. Due to the lack of natural separators in Chinese, previous NER methods mostly relied on external dictionaries to enrich the semantic and boundary information of Chinese words. However, such methods may introduce noise that affects the accuracy of named entity recognition. To this end, we propose a character relation enhanced Chinese NER model (CRENER). This model defines four types of tags that reflect the relationships between characters, and proposes a fine-grained modeling of the relationships between characters based on three types of relationships: adjacency relations between characters, relations between characters and tags, and relations between tags, to more accurately identify entity boundaries and improve Chinese NER accuracy. Specifically, we transform the Chinese NER task into a character-character relationship classification task, ensuring the accuracy of entity boundary recognition through joint modeling of relation tags. To enhance the model's ability to understand contextual information, WRENER further constructed an adapted transformer encoder that combines unscaled direction-aware and distance-aware masked self-attention mechanisms. Moreover, a relationship representation enhancement module was constructed to model predefined relationship tags, effectively mining the relationship representations between characters and tags. Experiments conducted on four well-known Chinese NER benchmark datasets have shown that the proposed model outperforms state-of-the-art baselines. The ablation experiment also demonstrated the effectiveness of the proposed model.
PhysBERT: A Text Embedding Model for Physics Scientific Literature
The specialized language and complex concepts in physics pose significant challenges for information extraction through Natural Language Processing (NLP). Central to effective NLP applications is the text embedding model, which converts text into dense vector representations for efficient information retrieval and semantic analysis. In this work, we introduce PhysBERT, the first physics-specific text embedding model. Pre-trained on a curated corpus of 1.2 million arXiv physics papers and fine-tuned with supervised data, PhysBERT outperforms leading general-purpose models on physics-specific tasks including the effectiveness in fine-tuning for specific physics subdomains.
Beyond Single-Event Extraction: Towards Efficient Document-Level Multi-Event Argument Extraction
Recent mainstream event argument extraction methods process each event in isolation, resulting in inefficient inference and ignoring the correlations among multiple events. To address these limitations, here we propose a multiple-event argument extraction model DEEIA (Dependency-guided Encoding and Event-specific Information Aggregation), capable of extracting arguments from all events within a document simultaneouslyThe proposed DEEIA model employs a multi-event prompt mechanism, comprising DE and EIA modules. The DE module is designed to improve the correlation between prompts and their corresponding event contexts, whereas the EIA module provides event-specific information to improve contextual understanding. Extensive experiments show that our method achieves new state-of-the-art performance on four public datasets (RAMS, WikiEvents, MLEE, and ACE05), while significantly saving the inference time compared to the baselines. Further analyses demonstrate the effectiveness of the proposed modules.
SoftTiger: A Clinical Foundation Model for Healthcare Workflows
We introduce SoftTiger, a clinical large language model (CLaM) designed as a foundation model for healthcare workflows. The narrative and unstructured nature of clinical notes is a major obstacle for healthcare intelligentization. We address a critical problem of structuring clinical notes into clinical data, according to international interoperability standards. We collect and annotate data for three subtasks, namely, international patient summary, clinical impression and medical encounter. We then supervised fine-tuned a state-of-the-art LLM using public and credentialed clinical data. The training is orchestrated in a way that the target model can first support basic clinical tasks such as abbreviation expansion and temporal information extraction, and then learn to perform more complex downstream clinical tasks. Moreover, we address several modeling challenges in the healthcare context, e.g., extra long context window. Our blind pairwise evaluation shows that SoftTiger outperforms other popular open-source models and GPT-3.5, comparable to Gemini-pro, with a mild gap from GPT-4. We believe that LLMs may become a step-stone towards healthcare digitalization and democratization. Therefore, we publicly release SoftTiger models at scales of 13 billion and 70 billion parameters, as well as datasets and code for our innovative scalable evaluation, hopefully, making a significant contribution to the healthcare industry.
UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition
Large language models (LLMs) have demonstrated remarkable generalizability, such as understanding arbitrary entities and relations. Instruction tuning has proven effective for distilling LLMs into more cost-efficient models such as Alpaca and Vicuna. Yet such student models still trail the original LLMs by large margins in downstream applications. In this paper, we explore targeted distillation with mission-focused instruction tuning to train student models that can excel in a broad application class such as open information extraction. Using named entity recognition (NER) for case study, we show how ChatGPT can be distilled into much smaller UniversalNER models for open NER. For evaluation, we assemble the largest NER benchmark to date, comprising 43 datasets across 9 diverse domains such as biomedicine, programming, social media, law, finance. Without using any direct supervision, UniversalNER attains remarkable NER accuracy across tens of thousands of entity types, outperforming general instruction-tuned models such as Alpaca and Vicuna by over 30 absolute F1 points in average. With a tiny fraction of parameters, UniversalNER not only acquires ChatGPT's capability in recognizing arbitrary entity types, but also outperforms its NER accuracy by 7-9 absolute F1 points in average. Remarkably, UniversalNER even outperforms by a large margin state-of-the-art multi-task instruction-tuned systems such as InstructUIE, which uses supervised NER examples. We also conduct thorough ablation studies to assess the impact of various components in our distillation approach. We will release the distillation recipe, data, and UniversalNER models to facilitate future research on targeted distillation.
SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks covering five essential scientific literature understanding capabilities: information extraction, summarization, question answering, claim verification, and classification. SciRIFF demonstrations are notable for their long input contexts, detailed task specifications, and complex structured outputs. While instruction-following resources are available in specific domains such as clinical medicine and chemistry, SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields. To demonstrate the utility of SciRIFF, we develop a sample-efficient strategy to adapt a general instruction-following model for science by performing additional finetuning on a mix of general-domain and SciRIFF demonstrations. In evaluations on nine held-out scientific tasks, our model -- called SciTulu -- improves over a strong LLM baseline by 28.1% and 6.5% at the 7B and 70B scales respectively, while maintaining general instruction-following performance within 2% of the baseline. We are optimistic that SciRIFF will facilitate the development and evaluation of LLMs to help researchers navigate the ever-growing body of scientific literature. We release our dataset, model checkpoints, and data processing and evaluation code to enable further research.
Audio-CoT: Exploring Chain-of-Thought Reasoning in Large Audio Language Model
Large Audio-Language Models (LALMs) have demonstrated remarkable performance in tasks involving audio perception and understanding, such as speech recognition and audio captioning. However, their reasoning capabilities - critical for solving complex real-world problems - remain underexplored. In this work, we conduct the first exploration into integrating Chain-of-Thought (CoT) reasoning into LALMs to enhance their reasoning ability across auditory modalities. We evaluate representative CoT methods, analyzing their performance in both information extraction and reasoning tasks across sound, music, and speech domains. Our findings reveal that CoT methods significantly improve performance on easy and medium tasks but encounter challenges with hard tasks, where reasoning chains can confuse the model rather than improve accuracy. Additionally, we identify a positive correlation between reasoning path length and accuracy, demonstrating the potential of scaling inference for advanced instruction-following and reasoning. This study not only highlights the promise of CoT in enhancing LALM reasoning capabilities but also identifies key limitations and provides actionable directions for future research.
Key-Point-Driven Mathematical Reasoning Distillation of Large Language Model
Large Language Models (LLMs) have demonstrated exceptional proficiency in mathematical reasoning tasks due to their extensive parameter counts and training on vast datasets. Despite these capabilities, deploying LLMs is hindered by their computational demands. Distilling LLM mathematical reasoning into Smaller Language Models (SLMs) has emerged as a solution to this challenge, although these smaller models often suffer from errors in calculation and semantic understanding. Prior work has proposed Program-of-Thought Distillation (PoTD) to avoid calculation error. To further address semantic understanding errors, we propose Key-Point-Driven Mathematical Reasoning Distillation (KPDD). KPDD enhances the reasoning performance of SLMs by breaking down the problem-solving process into three stages: Core Question Extraction, Problem-Solving Information Extraction, and Step-by-Step Solution. This method is further divided into KPDD-CoT, which generates Chain-of-Thought rationales, and KPDD-PoT, which creates Program-of-Thought rationales. The experiment results show that KPDD-CoT significantly improves reasoning abilities, while KPDD-PoT achieves state-of-the-art performance in mathematical reasoning tasks. Our approach effectively mitigates misunderstanding errors, advancing the deployment of efficient and capable SLMs.
Research on Medical Named Entity Identification Based On Prompt-Biomrc Model and Its Application in Intelligent Consultation System
This study is dedicated to exploring the application of prompt learning methods to advance Named Entity Recognition (NER) within the medical domain. In recent years, the emergence of large-scale models has driven significant progress in NER tasks, particularly with the introduction of the BioBERT language model, which has greatly enhanced NER capabilities in medical texts. Our research introduces the Prompt-bioMRC model, which integrates both hard template and soft prompt designs aimed at refining the precision and efficiency of medical entity recognition. Through extensive experimentation across diverse medical datasets, our findings consistently demonstrate that our approach surpasses traditional models. This enhancement not only validates the efficacy of our methodology but also highlights its potential to provide reliable technological support for applications like intelligent diagnosis systems. By leveraging advanced NER techniques, this study contributes to advancing automated medical data processing, facilitating more accurate medical information extraction, and supporting efficient healthcare decision-making processes.
MMRC: A Large-Scale Benchmark for Understanding Multimodal Large Language Model in Real-World Conversation
Recent multimodal large language models (MLLMs) have demonstrated significant potential in open-ended conversation, generating more accurate and personalized responses. However, their abilities to memorize, recall, and reason in sustained interactions within real-world scenarios remain underexplored. This paper introduces MMRC, a Multi-Modal Real-world Conversation benchmark for evaluating six core open-ended abilities of MLLMs: information extraction, multi-turn reasoning, information update, image management, memory recall, and answer refusal. With data collected from real-world scenarios, MMRC comprises 5,120 conversations and 28,720 corresponding manually labeled questions, posing a significant challenge to existing MLLMs. Evaluations on 20 MLLMs in MMRC indicate an accuracy drop during open-ended interactions. We identify four common failure patterns: long-term memory degradation, inadequacies in updating factual knowledge, accumulated assumption of error propagation, and reluctance to say no. To mitigate these issues, we propose a simple yet effective NOTE-TAKING strategy, which can record key information from the conversation and remind the model during its responses, enhancing conversational capabilities. Experiments across six MLLMs demonstrate significant performance improvements.
CC-OCR: A Comprehensive and Challenging OCR Benchmark for Evaluating Large Multimodal Models in Literacy
Large Multimodal Models (LMMs) have demonstrated impressive performance on recognizing document images with natural language instructions. However, it remains unclear to what extent capabilities in literacy with rich structure and fine-grained visual challenges. The current landscape lacks a comprehensive benchmark to effectively measure the literate capabilities of LMMs. Existing benchmarks are often limited by narrow scenarios and specified tasks. To this end, we introduce CC-OCR, a comprehensive benchmark that possess a diverse range of scenarios, tasks, and challenges. CC-OCR comprises four OCR-centric tracks: multi-scene text reading, multilingual text reading, document parsing, and key information extraction. It includes 39 subsets with 7,058 full annotated images, of which 41% are sourced from real applications, being released for the first time. Furthermore, we evaluate nine prominent LMMs and reveal both the strengths and weaknesses of these models, particularly in text grounding, multi-orientation, and hallucination of repetition. CC-OCR aims to comprehensively evaluate the capabilities of LMMs on OCR-centered tasks, driving advancement in LMMs.
Samba: Semantic Segmentation of Remotely Sensed Images with State Space Model
High-resolution remotely sensed images poses a challenge for commonly used semantic segmentation methods such as Convolutional Neural Network (CNN) and Vision Transformer (ViT). CNN-based methods struggle with handling such high-resolution images due to their limited receptive field, while ViT faces challenges to handle long sequences. Inspired by Mamba, which adopts a State Space Model (SSM) to efficiently capture global semantic information, we propose a semantic segmentation framework for high-resolution remotely sensed images, named Samba. Samba utilizes an encoder-decoder architecture, with Samba blocks serving as the encoder for efficient multi-level semantic information extraction, and UperNet functioning as the decoder. We evaluate Samba on the LoveDA dataset, comparing its performance against top-performing CNN and ViT methods. The results reveal that Samba achieved unparalleled performance on LoveDA. This represents that the proposed Samba is an effective application of the SSM in semantic segmentation of remotely sensed images, setting a new benchmark in performance for Mamba-based techniques in this specific application. The source code and baseline implementations are available at https://github.com/zhuqinfeng1999/Samba.
TextMonkey: An OCR-Free Large Multimodal Model for Understanding Document
We present TextMonkey, a large multimodal model (LMM) tailored for text-centric tasks. Our approach introduces enhancement across several dimensions: By adopting Shifted Window Attention with zero-initialization, we achieve cross-window connectivity at higher input resolutions and stabilize early training; We hypothesize that images may contain redundant tokens, and by using similarity to filter out significant tokens, we can not only streamline the token length but also enhance the model's performance. Moreover, by expanding our model's capabilities to encompass text spotting and grounding, and incorporating positional information into responses, we enhance interpretability. It also learns to perform screenshot tasks through finetuning. Evaluation on 12 benchmarks shows notable improvements: 5.2% in Scene Text-Centric tasks (including STVQA, TextVQA, and OCRVQA), 6.9% in Document-Oriented tasks (such as DocVQA, InfoVQA, ChartVQA, DeepForm, Kleister Charity, and WikiTableQuestions), and 2.8% in Key Information Extraction tasks (comprising FUNSD, SROIE, and POIE). It outperforms in scene text spotting with a 10.9\% increase and sets a new standard on OCRBench, a comprehensive benchmark consisting of 29 OCR-related assessments, with a score of 561, surpassing previous open-sourced large multimodal models for document understanding. Code will be released at https://github.com/Yuliang-Liu/Monkey.
SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence
To address the increasing complexity and frequency of cybersecurity incidents emphasized by the recent cybersecurity threat reports with over 10 billion instances, cyber threat intelligence (CTI) plays a critical role in the modern cybersecurity landscape by offering the insights required to understand and combat the constantly evolving nature of cyber threats. Inspired by the powerful capability of large language models (LLMs) in handling complex tasks, in this paper, we introduce a framework to benchmark, elicit, and improve cybersecurity incident analysis and response abilities in LLMs for Security Events (SEvenLLM). Specifically, we create a high-quality bilingual instruction corpus by crawling cybersecurity raw text from cybersecurity websites to overcome the lack of effective data for information extraction. Then, we design a pipeline to auto-select tasks from the tasks pool and convert the raw text into supervised corpora comprised of question and response. The instruction dataset SEvenLLM-Instruct is used to train cybersecurity LLMs with the multi-task learning objective (27 well-designed tasks) for augmenting the analysis of cybersecurity events. Extensive experiments in our curated benchmark (SEvenLLM-bench) demonstrate that SEvenLLM performs more sophisticated threat analysis and fortifies defenses against the evolving landscape of cyber threats.
CasSR: Activating Image Power for Real-World Image Super-Resolution
The objective of image super-resolution is to generate clean and high-resolution images from degraded versions. Recent advancements in diffusion modeling have led to the emergence of various image super-resolution techniques that leverage pretrained text-to-image (T2I) models. Nevertheless, due to the prevalent severe degradation in low-resolution images and the inherent characteristics of diffusion models, achieving high-fidelity image restoration remains challenging. Existing methods often exhibit issues including semantic loss, artifacts, and the introduction of spurious content not present in the original image. To tackle this challenge, we propose Cascaded diffusion for Super-Resolution, CasSR , a novel method designed to produce highly detailed and realistic images. In particular, we develop a cascaded controllable diffusion model that aims to optimize the extraction of information from low-resolution images. This model generates a preliminary reference image to facilitate initial information extraction and degradation mitigation. Furthermore, we propose a multi-attention mechanism to enhance the T2I model's capability in maximizing the restoration of the original image content. Through a comprehensive blend of qualitative and quantitative analyses, we substantiate the efficacy and superiority of our approach.
Graph Counselor: Adaptive Graph Exploration via Multi-Agent Synergy to Enhance LLM Reasoning
Graph Retrieval Augmented Generation (GraphRAG) effectively enhances external knowledge integration capabilities by explicitly modeling knowledge relationships, thereby improving the factual accuracy and generation quality of Large Language Models (LLMs) in specialized domains. However, existing methods suffer from two inherent limitations: 1) Inefficient Information Aggregation: They rely on a single agent and fixed iterative patterns, making it difficult to adaptively capture multi-level textual, structural, and degree information within graph data. 2) Rigid Reasoning Mechanism: They employ preset reasoning schemes, which cannot dynamically adjust reasoning depth nor achieve precise semantic correction. To overcome these limitations, we propose Graph Counselor, an GraphRAG method based on multi-agent collaboration. This method uses the Adaptive Graph Information Extraction Module (AGIEM), where Planning, Thought, and Execution Agents work together to precisely model complex graph structures and dynamically adjust information extraction strategies, addressing the challenges of multi-level dependency modeling and adaptive reasoning depth. Additionally, the Self-Reflection with Multiple Perspectives (SR) module improves the accuracy and semantic consistency of reasoning results through self-reflection and backward reasoning mechanisms. Experiments demonstrate that Graph Counselor outperforms existing methods in multiple graph reasoning tasks, exhibiting higher reasoning accuracy and generalization ability. Our code is available at https://github.com/gjq100/Graph-Counselor.git.
DUBLIN -- Document Understanding By Language-Image Network
Visual document understanding is a complex task that involves analyzing both the text and the visual elements in document images. Existing models often rely on manual feature engineering or domain-specific pipelines, which limit their generalization ability across different document types and languages. In this paper, we propose DUBLIN, which is pretrained on web pages using three novel objectives: Masked Document Text Generation Task, Bounding Box Task, and Rendered Question Answering Task, that leverage both the spatial and semantic information in the document images. Our model achieves competitive or state-of-the-art results on several benchmarks, such as Web-Based Structural Reading Comprehension, Document Visual Question Answering, Key Information Extraction, Diagram Understanding, and Table Question Answering. In particular, we show that DUBLIN is the first pixel-based model to achieve an EM of 77.75 and F1 of 84.25 on the WebSRC dataset. We also show that our model outperforms the current pixel-based SOTA models on DocVQA, InfographicsVQA, OCR-VQA and AI2D datasets by 4.6%, 6.5%, 2.6% and 21%, respectively. We also achieve competitive performance on RVL-CDIP document classification. Moreover, we create new baselines for text-based datasets by rendering them as document images to promote research in this direction.
An Empirical Study of Retrieval Augmented Generation with Chain-of-Thought
Since the launch of ChatGPT at the end of 2022, generative dialogue models represented by ChatGPT have quickly become essential tools in daily life. As user expectations increase, enhancing the capability of generative dialogue models to solve complex problems has become a focal point of current research. This paper delves into the effectiveness of the RAFT (Retrieval Augmented Fine-Tuning) method in improving the performance of Generative dialogue models. RAFT combines chain-of-thought with model supervised fine-tuning (SFT) and retrieval augmented generation (RAG), which significantly enhanced the model's information extraction and logical reasoning abilities. We evaluated the RAFT method across multiple datasets and analysed its performance in various reasoning tasks, including long-form QA and short-form QA tasks, tasks in both Chinese and English, and supportive and comparison reasoning tasks. Notably, it addresses the gaps in previous research regarding long-form QA tasks and Chinese datasets. Moreover, we also evaluate the benefit of the chain-of-thought (CoT) in the RAFT method. This work offers valuable insights for studies focused on enhancing the performance of generative dialogue models.
Multimodal Structured Generation: CVPR's 2nd MMFM Challenge Technical Report
Multimodal Foundation Models (MMFMs) have shown remarkable performance on various computer vision and natural language processing tasks. However, their performance on particular tasks such as document understanding is still limited. They also require more compute, time, and engineering resources to finetune and deploy compared to traditional, unimodal models. In this report, we present Multimodal Structured Generation, a general framework which constrains the output logits of frozen MMFMs to force them to reason before responding with structured outputs that downstream APIs can parse and use. We provide a detailed account of our approach, including the technical details, theoretical discussions, and final evaluation results in the 2nd Multimodal Foundation Models Challenge hosted by the Computer Vision and Pattern Recognition (CVPR) conference. Our approach achieved the second highest score in the hidden test set for Phase 2 and third highest overall. This shows the method's ability to generalize to unseen tasks. And that simple engineering can beat expensive & complicated modelling steps as we first discussed in our paper, Retrieval Augmented Structured Generation: Business Document Information Extraction as Tool Use. All of our scripts, deployment steps, and evaluation results can be accessed in https://github.com/leloykun/MMFM-Challenge
Transformer-Based Approach for Joint Handwriting and Named Entity Recognition in Historical documents
The extraction of relevant information carried out by named entities in handwriting documents is still a challenging task. Unlike traditional information extraction approaches that usually face text transcription and named entity recognition as separate subsequent tasks, we propose in this paper an end-to-end transformer-based approach to jointly perform these two tasks. The proposed approach operates at the paragraph level, which brings two main benefits. First, it allows the model to avoid unrecoverable early errors due to line segmentation. Second, it allows the model to exploit larger bi-dimensional context information to identify the semantic categories, reaching a higher final prediction accuracy. We also explore different training scenarios to show their effect on the performance and we demonstrate that a two-stage learning strategy can make the model reach a higher final prediction accuracy. As far as we know, this work presents the first approach that adopts the transformer networks for named entity recognition in handwritten documents. We achieve the new state-of-the-art performance in the ICDAR 2017 Information Extraction competition using the Esposalles database, for the complete task, even though the proposed technique does not use any dictionaries, language modeling, or post-processing.
Towards Efficient Resume Understanding: A Multi-Granularity Multi-Modal Pre-Training Approach
In the contemporary era of widespread online recruitment, resume understanding has been widely acknowledged as a fundamental and crucial task, which aims to extract structured information from resume documents automatically. Compared to the traditional rule-based approaches, the utilization of recently proposed pre-trained document understanding models can greatly enhance the effectiveness of resume understanding. The present approaches have, however, disregarded the hierarchical relations within the structured information presented in resumes, and have difficulty parsing resumes in an efficient manner. To this end, in this paper, we propose a novel model, namely ERU, to achieve efficient resume understanding. Specifically, we first introduce a layout-aware multi-modal fusion transformer for encoding the segments in the resume with integrated textual, visual, and layout information. Then, we design three self-supervised tasks to pre-train this module via a large number of unlabeled resumes. Next, we fine-tune the model with a multi-granularity sequence labeling task to extract structured information from resumes. Finally, extensive experiments on a real-world dataset clearly demonstrate the effectiveness of ERU.
ERNIE-Layout: Layout Knowledge Enhanced Pre-training for Visually-rich Document Understanding
Recent years have witnessed the rise and success of pre-training techniques in visually-rich document understanding. However, most existing methods lack the systematic mining and utilization of layout-centered knowledge, leading to sub-optimal performances. In this paper, we propose ERNIE-Layout, a novel document pre-training solution with layout knowledge enhancement in the whole workflow, to learn better representations that combine the features from text, layout, and image. Specifically, we first rearrange input sequences in the serialization stage, and then present a correlative pre-training task, reading order prediction, to learn the proper reading order of documents. To improve the layout awareness of the model, we integrate a spatial-aware disentangled attention into the multi-modal transformer and a replaced regions prediction task into the pre-training phase. Experimental results show that ERNIE-Layout achieves superior performance on various downstream tasks, setting new state-of-the-art on key information extraction, document image classification, and document question answering datasets. The code and models are publicly available at http://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/ernie-layout.
CORU: Comprehensive Post-OCR Parsing and Receipt Understanding Dataset
In the fields of Optical Character Recognition (OCR) and Natural Language Processing (NLP), integrating multilingual capabilities remains a critical challenge, especially when considering languages with complex scripts such as Arabic. This paper introduces the Comprehensive Post-OCR Parsing and Receipt Understanding Dataset (CORU), a novel dataset specifically designed to enhance OCR and information extraction from receipts in multilingual contexts involving Arabic and English. CORU consists of over 20,000 annotated receipts from diverse retail settings, including supermarkets and clothing stores, alongside 30,000 annotated images for OCR that were utilized to recognize each detected line, and 10,000 items annotated for detailed information extraction. These annotations capture essential details such as merchant names, item descriptions, total prices, receipt numbers, and dates. They are structured to support three primary computational tasks: object detection, OCR, and information extraction. We establish the baseline performance for a range of models on CORU to evaluate the effectiveness of traditional methods, like Tesseract OCR, and more advanced neural network-based approaches. These baselines are crucial for processing the complex and noisy document layouts typical of real-world receipts and for advancing the state of automated multilingual document processing. Our datasets are publicly accessible (https://github.com/Update-For-Integrated-Business-AI/CORU).
LayoutLM: Pre-training of Text and Layout for Document Image Understanding
Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread use of pre-training models for NLP applications, they almost exclusively focus on text-level manipulation, while neglecting layout and style information that is vital for document image understanding. In this paper, we propose the LayoutLM to jointly model interactions between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage image features to incorporate words' visual information into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at https://aka.ms/layoutlm.
Quadratic Interest Network for Multimodal Click-Through Rate Prediction
Multimodal click-through rate (CTR) prediction is a key technique in industrial recommender systems. It leverages heterogeneous modalities such as text, images, and behavioral logs to capture high-order feature interactions between users and items, thereby enhancing the system's understanding of user interests and its ability to predict click behavior. The primary challenge in this field lies in effectively utilizing the rich semantic information from multiple modalities while satisfying the low-latency requirements of online inference in real-world applications. To foster progress in this area, the Multimodal CTR Prediction Challenge Track of the WWW 2025 EReL@MIR Workshop formulates the problem into two tasks: (1) Task 1 of Multimodal Item Embedding: this task aims to explore multimodal information extraction and item representation learning methods that enhance recommendation tasks; and (2) Task 2 of Multimodal CTR Prediction: this task aims to explore what multimodal recommendation model can effectively leverage multimodal embedding features and achieve better performance. In this paper, we propose a novel model for Task 2, named Quadratic Interest Network (QIN) for Multimodal CTR Prediction. Specifically, QIN employs adaptive sparse target attention to extract multimodal user behavior features, and leverages Quadratic Neural Networks to capture high-order feature interactions. As a result, QIN achieved an AUC of 0.9798 on the leaderboard and ranked second in the competition. The model code, training logs, hyperparameter configurations, and checkpoints are available at https://github.com/salmon1802/QIN.
Retrieval-Augmented Generation-based Relation Extraction
Information Extraction (IE) is a transformative process that converts unstructured text data into a structured format by employing entity and relation extraction (RE) methodologies. The identification of the relation between a pair of entities plays a crucial role within this framework. Despite the existence of various techniques for relation extraction, their efficacy heavily relies on access to labeled data and substantial computational resources. In addressing these challenges, Large Language Models (LLMs) emerge as promising solutions; however, they might return hallucinating responses due to their own training data. To overcome these limitations, Retrieved-Augmented Generation-based Relation Extraction (RAG4RE) in this work is proposed, offering a pathway to enhance the performance of relation extraction tasks. This work evaluated the effectiveness of our RAG4RE approach utilizing different LLMs. Through the utilization of established benchmarks, such as TACRED, TACREV, Re-TACRED, and SemEval RE datasets, our aim is to comprehensively evaluate the efficacy of our RAG4RE approach. In particularly, we leverage prominent LLMs including Flan T5, Llama2, and Mistral in our investigation. The results of our study demonstrate that our RAG4RE approach surpasses performance of traditional RE approaches based solely on LLMs, particularly evident in the TACRED dataset and its variations. Furthermore, our approach exhibits remarkable performance compared to previous RE methodologies across both TACRED and TACREV datasets, underscoring its efficacy and potential for advancing RE tasks in natural language processing.
Large Language Model-based Role-Playing for Personalized Medical Jargon Extraction
Previous studies reveal that Electronic Health Records (EHR), which have been widely adopted in the U.S. to allow patients to access their personal medical information, do not have high readability to patients due to the prevalence of medical jargon. Tailoring medical notes to individual comprehension by identifying jargon that is difficult for each person will enhance the utility of generative models. We present the first quantitative analysis to measure the impact of role-playing in LLM in medical term extraction. By comparing the results of Mechanical Turk workers over 20 sentences, our study demonstrates that LLM role-playing improves F1 scores in 95% of cases across 14 different socio-demographic backgrounds. Furthermore, applying role-playing with in-context learning outperformed the previous state-of-the-art models. Our research showed that ChatGPT can improve traditional medical term extraction systems by utilizing role-play to deliver personalized patient education, a potential that previous models had not achieved.
Improving Keyphrase Extraction with Data Augmentation and Information Filtering
Keyphrase extraction is one of the essential tasks for document understanding in NLP. While the majority of the prior works are dedicated to the formal setting, e.g., books, news or web-blogs, informal texts such as video transcripts are less explored. To address this limitation, in this work we present a novel corpus and method for keyphrase extraction from the transcripts of the videos streamed on the Behance platform. More specifically, in this work, a novel data augmentation is proposed to enrich the model with the background knowledge about the keyphrase extraction task from other domains. Extensive experiments on the proposed dataset dataset show the effectiveness of the introduced method.
A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction
Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document. The advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents. They mainly concentrate on establishing relations between triggers and entity mentions within documents, leaving two unresolved problems: a) independent modeling of entity mentions; b) document-prompt isolation. To this end, we propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper. Firstly, GAM constructs a semantic mention graph that captures relations within and between documents and prompts, encompassing co-existence, co-reference and co-type relations. Furthermore, we introduce an ensembled graph transformer module to address mentions and their three semantic relations effectively. Later, the graph-augmented encoder-decoder module incorporates the relation-specific graph into the input embedding of PLMs and optimizes the encoder section with topology information, enhancing the relations comprehensively. Extensive experiments on the RAMS and WikiEvents datasets demonstrate the effectiveness of our approach, surpassing baseline methods and achieving a new state-of-the-art performance.
GatorTron: A Large Clinical Language Model to Unlock Patient Information from Unstructured Electronic Health Records
There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model - GatorTron - using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve 5 clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og.
Retrieving Texts based on Abstract Descriptions
In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model.
Patience is all you need! An agentic system for performing scientific literature review
Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation.
Measuring memorization through probabilistic discoverable extraction
Large language models (LLMs) are susceptible to memorizing training data, raising concerns due to the potential extraction of sensitive information. Current methods to measure memorization rates of LLMs, primarily discoverable extraction (Carlini et al., 2022), rely on single-sequence greedy sampling, potentially underestimating the true extent of memorization. This paper introduces a probabilistic relaxation of discoverable extraction that quantifies the probability of extracting a target sequence within a set of generated samples, considering various sampling schemes and multiple attempts. This approach addresses the limitations of reporting memorization rates through discoverable extraction by accounting for the probabilistic nature of LLMs and user interaction patterns. Our experiments demonstrate that this probabilistic measure can reveal cases of higher memorization rates compared to rates found through discoverable extraction. We further investigate the impact of different sampling schemes on extractability, providing a more comprehensive and realistic assessment of LLM memorization and its associated risks. Our contributions include a new probabilistic memorization definition, empirical evidence of its effectiveness, and a thorough evaluation across different models, sizes, sampling schemes, and training data repetitions.
EnriCo: Enriched Representation and Globally Constrained Inference for Entity and Relation Extraction
Joint entity and relation extraction plays a pivotal role in various applications, notably in the construction of knowledge graphs. Despite recent progress, existing approaches often fall short in two key aspects: richness of representation and coherence in output structure. These models often rely on handcrafted heuristics for computing entity and relation representations, potentially leading to loss of crucial information. Furthermore, they disregard task and/or dataset-specific constraints, resulting in output structures that lack coherence. In our work, we introduce EnriCo, which mitigates these shortcomings. Firstly, to foster rich and expressive representation, our model leverage attention mechanisms that allow both entities and relations to dynamically determine the pertinent information required for accurate extraction. Secondly, we introduce a series of decoding algorithms designed to infer the highest scoring solutions while adhering to task and dataset-specific constraints, thus promoting structured and coherent outputs. Our model demonstrates competitive performance compared to baselines when evaluated on Joint IE datasets.
Leveraging Large Language Models for Web Scraping
Large Language Models (LLMs) demonstrate remarkable capabilities in replicating human tasks and boosting productivity. However, their direct application for data extraction presents limitations due to a prioritisation of fluency over factual accuracy and a restricted ability to manipulate specific information. Therefore to overcome these limitations, this research leverages the knowledge representation power of pre-trained LLMs and the targeted information access enabled by RAG models, this research investigates a general-purpose accurate data scraping recipe for RAG models designed for language generation. To capture knowledge in a more modular and interpretable way, we use pre trained language models with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus. We utilised RAG model architecture and did an in-depth analysis of their capabilities under three tasks: (i) Semantic Classification of HTML elements, (ii) Chunking HTML text for effective understanding, and (iii) comparing results from different LLMs and ranking algorithms. While previous work has developed dedicated architectures and training procedures for HTML understanding and extraction, we show that LLMs pre-trained on standard natural language with an addition of effective chunking, searching and ranking algorithms, can prove to be efficient data scraping tool to extract complex data from unstructured text. Future research directions include addressing the challenges of provenance tracking and dynamic knowledge updates within the proposed RAG-based data extraction framework. By overcoming these limitations, this approach holds the potential to revolutionise data extraction from vast repositories of textual information.
SAM3D: Segment Anything Model in Volumetric Medical Images
Image segmentation remains a pivotal component in medical image analysis, aiding in the extraction of critical information for precise diagnostic practices. With the advent of deep learning, automated image segmentation methods have risen to prominence, showcasing exceptional proficiency in processing medical imagery. Motivated by the Segment Anything Model (SAM)-a foundational model renowned for its remarkable precision and robust generalization capabilities in segmenting 2D natural images-we introduce SAM3D, an innovative adaptation tailored for 3D volumetric medical image analysis. Unlike current SAM-based methods that segment volumetric data by converting the volume into separate 2D slices for individual analysis, our SAM3D model processes the entire 3D volume image in a unified approach. Extensive experiments are conducted on multiple medical image datasets to demonstrate that our network attains competitive results compared with other state-of-the-art methods in 3D medical segmentation tasks while being significantly efficient in terms of parameters. Code and checkpoints are available at https://github.com/UARK-AICV/SAM3D.
Enhancing Document-level Event Argument Extraction with Contextual Clues and Role Relevance
Document-level event argument extraction poses new challenges of long input and cross-sentence inference compared to its sentence-level counterpart. However, most prior works focus on capturing the relations between candidate arguments and the event trigger in each event, ignoring two crucial points: a) non-argument contextual clue information; b) the relevance among argument roles. In this paper, we propose a SCPRG (Span-trigger-based Contextual Pooling and latent Role Guidance) model, which contains two novel and effective modules for the above problem. The Span-Trigger-based Contextual Pooling(STCP) adaptively selects and aggregates the information of non-argument clue words based on the context attention weights of specific argument-trigger pairs from pre-trained model. The Role-based Latent Information Guidance (RLIG) module constructs latent role representations, makes them interact through role-interactive encoding to capture semantic relevance, and merges them into candidate arguments. Both STCP and RLIG introduce no more than 1% new parameters compared with the base model and can be easily applied to other event extraction models, which are compact and transplantable. Experiments on two public datasets show that our SCPRG outperforms previous state-of-the-art methods, with 1.13 F1 and 2.64 F1 improvements on RAMS and WikiEvents respectively. Further analyses illustrate the interpretability of our model.
A Frustratingly Easy Approach for Entity and Relation Extraction
End-to-end relation extraction aims to identify named entities and extract relations between them. Most recent work models these two subtasks jointly, either by casting them in one structured prediction framework, or performing multi-task learning through shared representations. In this work, we present a simple pipelined approach for entity and relation extraction, and establish the new state-of-the-art on standard benchmarks (ACE04, ACE05 and SciERC), obtaining a 1.7%-2.8% absolute improvement in relation F1 over previous joint models with the same pre-trained encoders. Our approach essentially builds on two independent encoders and merely uses the entity model to construct the input for the relation model. Through a series of careful examinations, we validate the importance of learning distinct contextual representations for entities and relations, fusing entity information early in the relation model, and incorporating global context. Finally, we also present an efficient approximation to our approach which requires only one pass of both entity and relation encoders at inference time, achieving an 8-16times speedup with a slight reduction in accuracy.
A Compressive Memory-based Retrieval Approach for Event Argument Extraction
Recent works have demonstrated the effectiveness of retrieval augmentation in the Event Argument Extraction (EAE) task. However, existing retrieval-based EAE methods have two main limitations: (1) input length constraints and (2) the gap between the retriever and the inference model. These issues limit the diversity and quality of the retrieved information. In this paper, we propose a Compressive Memory-based Retrieval (CMR) mechanism for EAE, which addresses the two limitations mentioned above. Our compressive memory, designed as a dynamic matrix that effectively caches retrieved information and supports continuous updates, overcomes the limitations of the input length. Additionally, after pre-loading all candidate demonstrations into the compressive memory, the model further retrieves and filters relevant information from memory based on the input query, bridging the gap between the retriever and the inference model. Extensive experiments show that our method achieves new state-of-the-art performance on three public datasets (RAMS, WikiEvents, ACE05), significantly outperforming existing retrieval-based EAE methods.
Extracting polygonal footprints in off-nadir images with Segment Anything Model
Building Footprint Extraction (BFE) from off-nadir aerial images often involves roof segmentation and offset prediction to adjust roof boundaries to the building footprint. However, this multi-stage approach typically produces low-quality results, limiting its applicability in real-world data production. To address this issue, we present OBMv2, an end-to-end and promptable model for polygonal footprint prediction. Unlike its predecessor OBM, OBMv2 introduces a novel Self Offset Attention (SOFA) mechanism that improves performance across diverse building types, from bungalows to skyscrapers, enabling end-to-end footprint prediction without post-processing. Additionally, we propose a Multi-level Information System (MISS) to effectively leverage roof masks, building masks, and offsets for accurate footprint prediction. We evaluate OBMv2 on the BONAI and OmniCity-view3 datasets and demonstrate its generalization on the Huizhou test set. The code will be available at https://github.com/likaiucas/OBMv2.
Be Careful What You Smooth For: Label Smoothing Can Be a Privacy Shield but Also a Catalyst for Model Inversion Attacks
Label smoothing -- using softened labels instead of hard ones -- is a widely adopted regularization method for deep learning, showing diverse benefits such as enhanced generalization and calibration. Its implications for preserving model privacy, however, have remained unexplored. To fill this gap, we investigate the impact of label smoothing on model inversion attacks (MIAs), which aim to generate class-representative samples by exploiting the knowledge encoded in a classifier, thereby inferring sensitive information about its training data. Through extensive analyses, we uncover that traditional label smoothing fosters MIAs, thereby increasing a model's privacy leakage. Even more, we reveal that smoothing with negative factors counters this trend, impeding the extraction of class-related information and leading to privacy preservation, beating state-of-the-art defenses. This establishes a practical and powerful novel way for enhancing model resilience against MIAs.
SCALE: Scaling up the Complexity for Advanced Language Model Evaluation
Recent strides in Large Language Models (LLMs) have saturated many NLP benchmarks (even professional domain-specific ones), emphasizing the need for novel, more challenging novel ones to properly assess LLM capabilities. In this paper, we introduce a novel NLP benchmark that poses challenges to current LLMs across four key dimensions: processing long documents (up to 50K tokens), utilizing domain specific knowledge (embodied in legal texts), multilingual understanding (covering five languages), and multitasking (comprising legal document to document Information Retrieval, Court View Generation, Leading Decision Summarization, Citation Extraction, and eight challenging Text Classification tasks). Our benchmark comprises diverse legal NLP datasets from the Swiss legal system, allowing for a comprehensive study of the underlying Non-English, inherently multilingual, federal legal system. Despite recent advances, efficiently processing long documents for intense review/analysis tasks remains an open challenge for language models. Also, comprehensive, domain-specific benchmarks requiring high expertise to develop are rare, as are multilingual benchmarks. This scarcity underscores our contribution's value, considering most public models are trained predominantly on English corpora, while other languages remain understudied, particularly for practical domain-specific NLP tasks. Our benchmark allows for testing and advancing the state-of-the-art LLMs. As part of our study, we evaluate several pre-trained multilingual language models on our benchmark to establish strong baselines as a point of reference. Despite the large size of our datasets (tens to hundreds of thousands of examples), existing publicly available models struggle with most tasks, even after in-domain pretraining. We publish all resources (benchmark suite, pre-trained models, code) under a fully permissive open CC BY-SA license.
Neural Passage Quality Estimation for Static Pruning
Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods.
Enabling Large Language Models to Generate Text with Citations
Large language models (LLMs) have emerged as a widely-used tool for information seeking, but their generated outputs are prone to hallucination. In this work, we aim to enable LLMs to generate text with citations, improving their factual correctness and verifiability. Existing work mainly relies on commercial search engines and human evaluation, making it challenging to reproduce and compare with different modeling approaches. We propose ALCE, the first benchmark for Automatic LLMs' Citation Evaluation. ALCE collects a diverse set of questions and retrieval corpora and requires building end-to-end systems to retrieve supporting evidence and generate answers with citations. We build automatic metrics along three dimensions -- fluency, correctness, and citation quality -- and demonstrate their strong correlation with human judgements. Our experiments with state-of-the-art LLMs and novel prompting strategies show that current systems have considerable room for improvements -- for example, on the ELI5 dataset, even the best model has 49% of its generations lacking complete citation support. Our extensive analyses further highlight promising future directions, including developing better retrievers, advancing long-context LLMs, and improving the ability to synthesize information from multiple sources.
CrevNet: Conditionally Reversible Video Prediction
Applying resolution-preserving blocks is a common practice to maximize information preservation in video prediction, yet their high memory consumption greatly limits their application scenarios. We propose CrevNet, a Conditionally Reversible Network that uses reversible architectures to build a bijective two-way autoencoder and its complementary recurrent predictor. Our model enjoys the theoretically guaranteed property of no information loss during the feature extraction, much lower memory consumption and computational efficiency.