17 Consistency Flow Matching: Defining Straight Flows with Velocity Consistency Flow matching (FM) is a general framework for defining probability paths via Ordinary Differential Equations (ODEs) to transform between noise and data samples. Recent approaches attempt to straighten these flow trajectories to generate high-quality samples with fewer function evaluations, typically through iterative rectification methods or optimal transport solutions. In this paper, we introduce Consistency Flow Matching (Consistency-FM), a novel FM method that explicitly enforces self-consistency in the velocity field. Consistency-FM directly defines straight flows starting from different times to the same endpoint, imposing constraints on their velocity values. Additionally, we propose a multi-segment training approach for Consistency-FM to enhance expressiveness, achieving a better trade-off between sampling quality and speed. Preliminary experiments demonstrate that our Consistency-FM significantly improves training efficiency by converging 4.4x faster than consistency models and 1.7x faster than rectified flow models while achieving better generation quality. Our code is available at: https://github.com/YangLing0818/consistency_flow_matching 9 authors · Jul 2, 2024 4
- DocScanner: Robust Document Image Rectification with Progressive Learning Compared with flatbed scanners, portable smartphones provide more convenience for physical document digitization. However, such digitized documents are often distorted due to uncontrolled physical deformations, camera positions, and illumination variations. To this end, we present DocScanner, a novel framework for document image rectification. Different from existing solutions, DocScanner addresses this issue by introducing a progressive learning mechanism. Specifically, DocScanner maintains a single estimate of the rectified image, which is progressively corrected with a recurrent architecture. The iterative refinements make DocScanner converge to a robust and superior rectification performance, while the lightweight recurrent architecture ensures the running efficiency. To further improve the rectification quality, based on the geometric priori between the distorted and the rectified images, a geometric regularization is introduced during training to further improve the performance. Extensive experiments are conducted on the Doc3D dataset and the DocUNet Benchmark dataset, and the quantitative and qualitative evaluation results verify the effectiveness of DocScanner, which outperforms previous methods on OCR accuracy, image similarity, and our proposed distortion metric by a considerable margin. Furthermore, our DocScanner shows superior efficiency in runtime latency and model size. 5 authors · Oct 28, 2021
- Rectified Iterative Disparity for Stereo Matching Both uncertainty-assisted and iteration-based methods have achieved great success in stereo matching. However, existing uncertainty estimation methods take a single image and the corresponding disparity as input, which imposes higher demands on the estimation network. In this paper, we propose Cost volume-based disparity Uncertainty Estimation (UEC). Based on the rich similarity information in the cost volume coming from the image pairs, the proposed UEC can achieve competitive performance with low computational cost. Secondly, we propose two methods of uncertainty-assisted disparity estimation, Uncertainty-based Disparity Rectification (UDR) and Uncertainty-based Disparity update Conditioning (UDC). These two methods optimise the disparity update process of the iterative-based approach without adding extra parameters. In addition, we propose Disparity Rectification loss that significantly improves the accuracy of small amount of disparity updates. We present a high-performance stereo architecture, DR Stereo, which is a combination of the proposed methods. Experimental results from SceneFlow, KITTI, Middlebury 2014, and ETH3D show that DR-Stereo achieves very competitive disparity estimation performance. 2 authors · Jun 16, 2024