new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 30

Heavy Labels Out! Dataset Distillation with Label Space Lightening

Dataset distillation or condensation aims to condense a large-scale training dataset into a much smaller synthetic one such that the training performance of distilled and original sets on neural networks are similar. Although the number of training samples can be reduced substantially, current state-of-the-art methods heavily rely on enormous soft labels to achieve satisfactory performance. As a result, the required storage can be comparable even to original datasets, especially for large-scale ones. To solve this problem, instead of storing these heavy labels, we propose a novel label-lightening framework termed HeLlO aiming at effective image-to-label projectors, with which synthetic labels can be directly generated online from synthetic images. Specifically, to construct such projectors, we leverage prior knowledge in open-source foundation models, e.g., CLIP, and introduce a LoRA-like fine-tuning strategy to mitigate the gap between pre-trained and target distributions, so that original models for soft-label generation can be distilled into a group of low-rank matrices. Moreover, an effective image optimization method is proposed to further mitigate the potential error between the original and distilled label generators. Extensive experiments demonstrate that with only about 0.003% of the original storage required for a complete set of soft labels, we achieve comparable performance to current state-of-the-art dataset distillation methods on large-scale datasets. Our code will be available.

Positive Label Is All You Need for Multi-Label Classification

Multi-label classification (MLC) suffers from the inevitable label noise in training data due to the difficulty in annotating various semantic labels in each image. To mitigate the influence of noisy labels, existing methods mainly devote to identifying and correcting the label mistakes via a trained MLC model. However, these methods still involve annoying noisy labels in training, which can result in imprecise recognition of noisy labels and weaken the performance. In this paper, considering that the negative labels are substantially more than positive labels, and most noisy labels are from the negative labels, we directly discard all the negative labels in the dataset, and propose a new method dubbed positive and unlabeled multi-label classification (PU-MLC). By extending positive-unlabeled learning into MLC task, our method trains model with only positive labels and unlabeled data, and introduces adaptive re-balance factor and adaptive temperature coefficient in the loss function to alleviate the catastrophic imbalance in label distribution and over-smoothing of probabilities in training. Furthermore, to capture both local and global dependencies in the image, we also introduce a local-global convolution module, which supplements global information into existing convolution layers with no retraining of backbone required. Our PU-MLC is simple and effective, and it is applicable to both MLC and MLC with partial labels (MLC-PL) tasks. Extensive experiments on MS-COCO and PASCAL VOC datasets demonstrate that our PU-MLC achieves significantly improvements on both MLC and MLC-PL settings with even fewer annotations. Code will be released.

Label-efficient Single Photon Images Classification via Active Learning

Single-photon LiDAR achieves high-precision 3D imaging in extreme environments through quantum-level photon detection technology. Current research primarily focuses on reconstructing 3D scenes from sparse photon events, whereas the semantic interpretation of single-photon images remains underexplored, due to high annotation costs and inefficient labeling strategies. This paper presents the first active learning framework for single-photon image classification. The core contribution is an imaging condition-aware sampling strategy that integrates synthetic augmentation to model variability across imaging conditions. By identifying samples where the model is both uncertain and sensitive to these conditions, the proposed method selectively annotates only the most informative examples. Experiments on both synthetic and real-world datasets show that our approach outperforms all baselines and achieves high classification accuracy with significantly fewer labeled samples. Specifically, our approach achieves 97% accuracy on synthetic single-photon data using only 1.5% labeled samples. On real-world data, we maintain 90.63% accuracy with just 8% labeled samples, which is 4.51% higher than the best-performing baseline. This illustrates that active learning enables the same level of classification performance on single-photon images as on classical images, opening doors to large-scale integration of single-photon data in real-world applications.

Label Drop for Multi-Aspect Relation Modeling in Universal Information Extraction

Universal Information Extraction (UIE) has garnered significant attention due to its ability to address model explosion problems effectively. Extractive UIE can achieve strong performance using a relatively small model, making it widely adopted. Extractive UIEs generally rely on task instructions for different tasks, including single-target instructions and multiple-target instructions. Single-target instruction UIE enables the extraction of only one type of relation at a time, limiting its ability to model correlations between relations and thus restricting its capability to extract complex relations. While multiple-target instruction UIE allows for the extraction of multiple relations simultaneously, the inclusion of irrelevant relations introduces decision complexity and impacts extraction accuracy. Therefore, for multi-relation extraction, we propose LDNet, which incorporates multi-aspect relation modeling and a label drop mechanism. By assigning different relations to different levels for understanding and decision-making, we reduce decision confusion. Additionally, the label drop mechanism effectively mitigates the impact of irrelevant relations. Experiments show that LDNet outperforms or achieves competitive performance with state-of-the-art systems on 9 tasks, 33 datasets, in both single-modal and multi-modal, few-shot and zero-shot settings.https://github.com/Lu-Yang666/LDNet

Label Critic: Design Data Before Models

As medical datasets rapidly expand, creating detailed annotations of different body structures becomes increasingly expensive and time-consuming. We consider that requesting radiologists to create detailed annotations is unnecessarily burdensome and that pre-existing AI models can largely automate this process. Following the spirit don't use a sledgehammer on a nut, we find that, rather than creating annotations from scratch, radiologists only have to review and edit errors if the Best-AI Labels have mistakes. To obtain the Best-AI Labels among multiple AI Labels, we developed an automatic tool, called Label Critic, that can assess label quality through tireless pairwise comparisons. Extensive experiments demonstrate that, when incorporated with our developed Image-Prompt pairs, pre-existing Large Vision-Language Models (LVLM), trained on natural images and texts, achieve 96.5% accuracy when choosing the best label in a pair-wise comparison, without extra fine-tuning. By transforming the manual annotation task (30-60 min/scan) into an automatic comparison task (15 sec/scan), we effectively reduce the manual efforts required from radiologists by an order of magnitude. When the Best-AI Labels are sufficiently accurate (81% depending on body structures), they will be directly adopted as the gold-standard annotations for the dataset, with lower-quality AI Labels automatically discarded. Label Critic can also check the label quality of a single AI Label with 71.8% accuracy when no alternatives are available for comparison, prompting radiologists to review and edit if the estimated quality is low (19% depending on body structures).

Label Anything: Multi-Class Few-Shot Semantic Segmentation with Visual Prompts

Few-shot semantic segmentation aims to segment objects from previously unseen classes using only a limited number of labeled examples. In this paper, we introduce Label Anything, a novel transformer-based architecture designed for multi-prompt, multi-way few-shot semantic segmentation. Our approach leverages diverse visual prompts -- points, bounding boxes, and masks -- to create a highly flexible and generalizable framework that significantly reduces annotation burden while maintaining high accuracy. Label Anything makes three key contributions: (i) we introduce a new task formulation that relaxes conventional few-shot segmentation constraints by supporting various types of prompts, multi-class classification, and enabling multiple prompts within a single image; (ii) we propose a novel architecture based on transformers and attention mechanisms; and (iii) we design a versatile training procedure allowing our model to operate seamlessly across different N-way K-shot and prompt-type configurations with a single trained model. Our extensive experimental evaluation on the widely used COCO-20^i benchmark demonstrates that Label Anything achieves state-of-the-art performance among existing multi-way few-shot segmentation methods, while significantly outperforming leading single-class models when evaluated in multi-class settings. Code and trained models are available at https://github.com/pasqualedem/LabelAnything.

Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models

Machine unlearning aims to remove information derived from forgotten data while preserving that of the remaining dataset in a well-trained model. With the increasing emphasis on data privacy, several approaches to machine unlearning have emerged. However, these methods typically rely on complete supervision throughout the unlearning process. Unfortunately, obtaining such supervision, whether for the forgetting or remaining data, can be impractical due to the substantial cost associated with annotating real-world datasets. This challenge prompts us to propose a supervision-free unlearning approach that operates without the need for labels during the unlearning process. Specifically, we introduce a variational approach to approximate the distribution of representations for the remaining data. Leveraging this approximation, we adapt the original model to eliminate information from the forgotten data at the representation level. To further address the issue of lacking supervision information, which hinders alignment with ground truth, we introduce a contrastive loss to facilitate the matching of representations between the remaining data and those of the original model, thus preserving predictive performance. Experimental results across various unlearning tasks demonstrate the effectiveness of our proposed method, Label-Agnostic Forgetting (LAF) without using any labels, which achieves comparable performance to state-of-the-art methods that rely on full supervision information. Furthermore, our approach excels in semi-supervised scenarios, leveraging limited supervision information to outperform fully supervised baselines. This work not only showcases the viability of supervision-free unlearning in deep models but also opens up a new possibility for future research in unlearning at the representation level.

Label-Only Model Inversion Attacks via Knowledge Transfer

In a model inversion (MI) attack, an adversary abuses access to a machine learning (ML) model to infer and reconstruct private training data. Remarkable progress has been made in the white-box and black-box setups, where the adversary has access to the complete model or the model's soft output respectively. However, there is very limited study in the most challenging but practically important setup: Label-only MI attacks, where the adversary only has access to the model's predicted label (hard label) without confidence scores nor any other model information. In this work, we propose LOKT, a novel approach for label-only MI attacks. Our idea is based on transfer of knowledge from the opaque target model to surrogate models. Subsequently, using these surrogate models, our approach can harness advanced white-box attacks. We propose knowledge transfer based on generative modelling, and introduce a new model, Target model-assisted ACGAN (T-ACGAN), for effective knowledge transfer. Our method casts the challenging label-only MI into the more tractable white-box setup. We provide analysis to support that surrogate models based on our approach serve as effective proxies for the target model for MI. Our experiments show that our method significantly outperforms existing SOTA Label-only MI attack by more than 15% across all MI benchmarks. Furthermore, our method compares favorably in terms of query budget. Our study highlights rising privacy threats for ML models even when minimal information (i.e., hard labels) is exposed. Our study highlights rising privacy threats for ML models even when minimal information (i.e., hard labels) is exposed. Our code, demo, models and reconstructed data are available at our project page: https://ngoc-nguyen-0.github.io/lokt/

Label-free Node Classification on Graphs with Large Language Models (LLMS)

In recent years, there have been remarkable advancements in node classification achieved by Graph Neural Networks (GNNs). However, they necessitate abundant high-quality labels to ensure promising performance. In contrast, Large Language Models (LLMs) exhibit impressive zero-shot proficiency on text-attributed graphs. Yet, they face challenges in efficiently processing structural data and suffer from high inference costs. In light of these observations, this work introduces a label-free node classification on graphs with LLMs pipeline, LLM-GNN. It amalgamates the strengths of both GNNs and LLMs while mitigating their limitations. Specifically, LLMs are leveraged to annotate a small portion of nodes and then GNNs are trained on LLMs' annotations to make predictions for the remaining large portion of nodes. The implementation of LLM-GNN faces a unique challenge: how can we actively select nodes for LLMs to annotate and consequently enhance the GNN training? How can we leverage LLMs to obtain annotations of high quality, representativeness, and diversity, thereby enhancing GNN performance with less cost? To tackle this challenge, we develop an annotation quality heuristic and leverage the confidence scores derived from LLMs to advanced node selection. Comprehensive experimental results validate the effectiveness of LLM-GNN. In particular, LLM-GNN can achieve an accuracy of 74.9% on a vast-scale dataset \products with a cost less than 1 dollar.

Label Supervised LLaMA Finetuning

The recent success of Large Language Models (LLMs) has gained significant attention in both academia and industry. Substantial efforts have been made to enhance the zero- and few-shot generalization capabilities of open-source LLMs through finetuning. Currently, the prevailing approach is instruction-tuning, which trains LLMs to complete real-world tasks by generating responses guided by natural language instructions. It is worth noticing that such an approach may underperform in sequence and token classification tasks. Unlike text generation tasks, classification tasks have a limited label space, where precise label prediction is more appreciated than generating diverse and human-like responses. Prior research has unveiled that instruction-tuned LLMs cannot outperform BERT, prompting us to explore the potential of leveraging latent representations from LLMs for supervised label prediction. In this paper, we introduce a label-supervised adaptation for LLMs, which aims to finetuning the model with discriminant labels. We evaluate this approach with Label Supervised LLaMA (LS-LLaMA), based on LLaMA-2-7B, a relatively small-scale LLM, and can be finetuned on a single GeForce RTX4090 GPU. We extract latent representations from the final LLaMA layer and project them into the label space to compute the cross-entropy loss. The model is finetuned by Low-Rank Adaptation (LoRA) to minimize this loss. Remarkably, without intricate prompt engineering or external knowledge, LS-LLaMA substantially outperforms LLMs ten times its size in scale and demonstrates consistent improvements compared to robust baselines like BERT-Large and RoBERTa-Large in text classification. Moreover, by removing the causal mask from decoders, LS-unLLaMA achieves the state-of-the-art performance in named entity recognition (NER). Our work will shed light on a novel approach to adapting LLMs for various downstream tasks.

Label Shift Adapter for Test-Time Adaptation under Covariate and Label Shifts

Test-time adaptation (TTA) aims to adapt a pre-trained model to the target domain in a batch-by-batch manner during inference. While label distributions often exhibit imbalances in real-world scenarios, most previous TTA approaches typically assume that both source and target domain datasets have balanced label distribution. Due to the fact that certain classes appear more frequently in certain domains (e.g., buildings in cities, trees in forests), it is natural that the label distribution shifts as the domain changes. However, we discover that the majority of existing TTA methods fail to address the coexistence of covariate and label shifts. To tackle this challenge, we propose a novel label shift adapter that can be incorporated into existing TTA approaches to deal with label shifts during the TTA process effectively. Specifically, we estimate the label distribution of the target domain to feed it into the label shift adapter. Subsequently, the label shift adapter produces optimal parameters for the target label distribution. By predicting only the parameters for a part of the pre-trained source model, our approach is computationally efficient and can be easily applied, regardless of the model architectures. Through extensive experiments, we demonstrate that integrating our strategy with TTA approaches leads to substantial performance improvements under the joint presence of label and covariate shifts.

Label Dependent Attention Model for Disease Risk Prediction Using Multimodal Electronic Health Records

Disease risk prediction has attracted increasing attention in the field of modern healthcare, especially with the latest advances in artificial intelligence (AI). Electronic health records (EHRs), which contain heterogeneous patient information, are widely used in disease risk prediction tasks. One challenge of applying AI models for risk prediction lies in generating interpretable evidence to support the prediction results while retaining the prediction ability. In order to address this problem, we propose the method of jointly embedding words and labels whereby attention modules learn the weights of words from medical notes according to their relevance to the names of risk prediction labels. This approach boosts interpretability by employing an attention mechanism and including the names of prediction tasks in the model. However, its application is only limited to the handling of textual inputs such as medical notes. In this paper, we propose a label dependent attention model LDAM to 1) improve the interpretability by exploiting Clinical-BERT (a biomedical language model pre-trained on a large clinical corpus) to encode biomedically meaningful features and labels jointly; 2) extend the idea of joint embedding to the processing of time-series data, and develop a multi-modal learning framework for integrating heterogeneous information from medical notes and time-series health status indicators. To demonstrate our method, we apply LDAM to the MIMIC-III dataset to predict different disease risks. We evaluate our method both quantitatively and qualitatively. Specifically, the predictive power of LDAM will be shown, and case studies will be carried out to illustrate its interpretability.

Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity

We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification that are formulated from distributionally robust optimization (DRO) perspective, where the uncertainty in the given label information are modeled and captured by taking the worse case of distributional weights. The benefits of this perspective are several fold: (i) it provides a unified framework to explain the classical cross-entropy (CE) loss and SVM loss and their variants, (ii) it includes a special family corresponding to the temperature-scaled CE loss, which is widely adopted but poorly understood; (iii) it allows us to achieve adaptivity to the uncertainty degree of label information at an instance level. Our contributions include: (1) we study both consistency and robustness by establishing top-k (forall kgeq 1) consistency of LDR losses for multi-class classification, and a negative result that a top-1 consistent and symmetric robust loss cannot achieve top-k consistency simultaneously for all kgeq 2; (2) we propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance; (3) we demonstrate stable and competitive performance for the proposed adaptive LDR loss on 7 benchmark datasets under 6 noisy label and 1 clean settings against 13 loss functions, and on one real-world noisy dataset. The code is open-sourced at https://github.com/Optimization-AI/ICML2023_LDR.

Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks

We identify label errors in the test sets of 10 of the most commonly-used computer vision, natural language, and audio datasets, and subsequently study the potential for these label errors to affect benchmark results. Errors in test sets are numerous and widespread: we estimate an average of at least 3.3% errors across the 10 datasets, where for example label errors comprise at least 6% of the ImageNet validation set. Putative label errors are identified using confident learning algorithms and then human-validated via crowdsourcing (51% of the algorithmically-flagged candidates are indeed erroneously labeled, on average across the datasets). Traditionally, machine learning practitioners choose which model to deploy based on test accuracy - our findings advise caution here, proposing that judging models over correctly labeled test sets may be more useful, especially for noisy real-world datasets. Surprisingly, we find that lower capacity models may be practically more useful than higher capacity models in real-world datasets with high proportions of erroneously labeled data. For example, on ImageNet with corrected labels: ResNet-18 outperforms ResNet-50 if the prevalence of originally mislabeled test examples increases by just 6%. On CIFAR-10 with corrected labels: VGG-11 outperforms VGG-19 if the prevalence of originally mislabeled test examples increases by just 5%. Test set errors across the 10 datasets can be viewed at https://labelerrors.com and all label errors can be reproduced by https://github.com/cleanlab/label-errors.

Multi-label Cluster Discrimination for Visual Representation Learning

Contrastive Language Image Pre-training (CLIP) has recently demonstrated success across various tasks due to superior feature representation empowered by image-text contrastive learning. However, the instance discrimination method used by CLIP can hardly encode the semantic structure of training data. To handle this limitation, cluster discrimination has been proposed through iterative cluster assignment and classification. Nevertheless, most cluster discrimination approaches only define a single pseudo-label for each image, neglecting multi-label signals in the image. In this paper, we propose a novel Multi-Label Cluster Discrimination method named MLCD to enhance representation learning. In the clustering step, we first cluster the large-scale LAION-400M dataset into one million centers based on off-the-shelf embedding features. Considering that natural images frequently contain multiple visual objects or attributes, we select the multiple closest centers as auxiliary class labels. In the discrimination step, we design a novel multi-label classification loss, which elegantly separates losses from positive classes and negative classes, and alleviates ambiguity on decision boundary. We validate the proposed multi-label cluster discrimination method with experiments on different scales of models and pre-training datasets. Experimental results show that our method achieves state-of-the-art performance on multiple downstream tasks including linear probe, zero-shot classification, and image-text retrieval.

Re-assessing ImageNet: How aligned is its single-label assumption with its multi-label nature?

ImageNet, an influential dataset in computer vision, is traditionally evaluated using single-label classification, which assumes that an image can be adequately described by a single concept or label. However, this approach may not fully capture the complex semantics within the images available in ImageNet, potentially hindering the development of models that effectively learn these intricacies. This study critically examines the prevalent single-label benchmarking approach and advocates for a shift to multi-label benchmarking for ImageNet. This shift would enable a more comprehensive assessment of the capabilities of deep neural network (DNN) models. We analyze the effectiveness of pre-trained state-of-the-art DNNs on ImageNet and one of its variants, ImageNetV2. Studies in the literature have reported unexpected accuracy drops of 11% to 14% on ImageNetV2. Our findings show that these reported declines are largely attributable to a characteristic of the dataset that has not received sufficient attention -- the proportion of images with multiple labels. Taking this characteristic into account, the results of our experiments provide evidence that there is no substantial degradation in effectiveness on ImageNetV2. Furthermore, we acknowledge that ImageNet pre-trained models exhibit some capability at capturing the multi-label nature of the dataset even though they were trained under the single-label assumption. Consequently, we propose a new evaluation approach to augment existing approaches that assess this capability. Our findings highlight the importance of considering the multi-label nature of the ImageNet dataset during benchmarking. Failing to do so could lead to incorrect conclusions regarding the effectiveness of DNNs and divert research efforts from addressing other substantial challenges related to the reliability and robustness of these models.

Multi-Label Guided Soft Contrastive Learning for Efficient Earth Observation Pretraining

Self-supervised pretraining on large-scale satellite data has raised great interest in building Earth observation (EO) foundation models. However, many important resources beyond pure satellite imagery, such as land-cover-land-use products that provide free global semantic information, as well as vision foundation models that hold strong knowledge of the natural world, tend to be overlooked. In this work, we show these free additional resources not only help resolve common contrastive learning bottlenecks, but also significantly boost the efficiency and effectiveness of EO pretraining. Specifically, we first propose soft contrastive learning that optimizes cross-scene soft similarity based on land-cover-generated multi-label supervision, naturally solving the issue of multiple positive samples and too strict positive matching in complex scenes. Second, we explore cross-domain continual pretraining for both multispectral and SAR imagery, building efficient EO foundation models from strongest vision models such as DINOv2. Integrating simple weight-initialization and Siamese masking strategies into our soft contrastive learning framework, we demonstrate impressive continual pretraining performance even when the input channels and modalities are not aligned. Without prohibitive training, we produce multispectral and SAR foundation models that achieve significantly better results in 9 out of 10 downstream tasks than most existing SOTA models. For example, our ResNet50/ViT-S achieve 84.8/85.0 linear probing mAP scores on BigEarthNet-10\% which are better than most existing ViT-L models; under the same setting, our ViT-B sets a new record of 86.8 in multispectral, and 82.5 in SAR, the latter even better than many multispectral models. Dataset and models are available at https://github.com/zhu-xlab/softcon.

PacGDC: Label-Efficient Generalizable Depth Completion with Projection Ambiguity and Consistency

Generalizable depth completion enables the acquisition of dense metric depth maps for unseen environments, offering robust perception capabilities for various downstream tasks. However, training such models typically requires large-scale datasets with metric depth labels, which are often labor-intensive to collect. This paper presents PacGDC, a label-efficient technique that enhances data diversity with minimal annotation effort for generalizable depth completion. PacGDC builds on novel insights into inherent ambiguities and consistencies in object shapes and positions during 2D-to-3D projection, allowing the synthesis of numerous pseudo geometries for the same visual scene. This process greatly broadens available geometries by manipulating scene scales of the corresponding depth maps. To leverage this property, we propose a new data synthesis pipeline that uses multiple depth foundation models as scale manipulators. These models robustly provide pseudo depth labels with varied scene scales, affecting both local objects and global layouts, while ensuring projection consistency that supports generalization. To further diversify geometries, we incorporate interpolation and relocation strategies, as well as unlabeled images, extending the data coverage beyond the individual use of foundation models. Extensive experiments show that PacGDC achieves remarkable generalizability across multiple benchmarks, excelling in diverse scene semantics/scales and depth sparsity/patterns under both zero-shot and few-shot settings. Code: https://github.com/Wang-xjtu/PacGDC.

FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion

Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability stemming from two factors: 1) limited annotated image-event-depth datasets causing insufficient cross-modal supervision, and 2) inherent frequency mismatches between static images and dynamic event streams with distinct spatiotemporal patterns, leading to ineffective feature fusion. To address this dual challenge, we propose Frequency-decoupled Unified Self-supervised Encoder (FUSE) with two synergistic components: The Parameter-efficient Self-supervised Transfer (PST) establishes cross-modal knowledge transfer through latent space alignment with image foundation models, effectively mitigating data scarcity by enabling joint encoding without depth ground truth. Complementing this, we propose the Frequency-Decoupled Fusion module (FreDFuse) to explicitly decouple high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches through physics-aware fusion. This combined approach enables FUSE to construct a universal image-event encoder that only requires lightweight decoder adaptation for target datasets. Extensive experiments demonstrate state-of-the-art performance with 14% and 24.9% improvements in Abs.Rel on MVSEC and DENSE datasets. The framework exhibits remarkable zero-shot adaptability to challenging scenarios including extreme lighting and motion blur, significantly advancing real-world deployment capabilities. The source code for our method is publicly available at: https://github.com/sunpihai-up/FUSE

Balancing Label Quantity and Quality for Scalable Elicitation

Scalable oversight studies methods of training and evaluating AI systems in domains where human judgment is unreliable or expensive, such as scientific research and software engineering in complex codebases. Most work in this area has focused on methods of improving the quality of labels. Recent work by Burns et al. (2023) considers the complementary problem of training models with low-quality labels, finding that large pretrained models often have an inductive bias towards producing correct answers. In practice, however, neither label quantity nor quality is fixed: practitioners face a quantity-quality tradeoff. In this paper, we explore the microeconomics of the quantity-quality tradeoff on binary NLP classification tasks used in Burns et al. (2023). While sample-efficient learning has been studied extensively, little public research has focused on scalable elicitation: eliciting capabilities from pretrained models subject to labeling cost constraints. We find that this setting has novel dynamics caused by the tradeoff between label quantity and quality, as well as the model's existing latent capabilities. We observe three regimes of eliciting classification knowledge from pretrained models using supervised finetuning: quantity-dominant, quality-dominant, and a mixed regime involving the use of low- and high-quality data together to attain higher accuracy at a lower cost than using either alone. We explore sample-efficient elicitation methods that make use of two datasets of differing qualities, and establish a Pareto frontier of scalable elicitation methods that optimally trade off labeling cost and classifier performance. We find that the accuracy of supervised fine-tuning can be improved by up to 5 percentage points at a fixed labeling budget by adding a few-shot prompt to make use of the model's existing knowledge of the task.

LAPT: Label-driven Automated Prompt Tuning for OOD Detection with Vision-Language Models

Out-of-distribution (OOD) detection is crucial for model reliability, as it identifies samples from unknown classes and reduces errors due to unexpected inputs. Vision-Language Models (VLMs) such as CLIP are emerging as powerful tools for OOD detection by integrating multi-modal information. However, the practical application of such systems is challenged by manual prompt engineering, which demands domain expertise and is sensitive to linguistic nuances. In this paper, we introduce Label-driven Automated Prompt Tuning (LAPT), a novel approach to OOD detection that reduces the need for manual prompt engineering. We develop distribution-aware prompts with in-distribution (ID) class names and negative labels mined automatically. Training samples linked to these class labels are collected autonomously via image synthesis and retrieval methods, allowing for prompt learning without manual effort. We utilize a simple cross-entropy loss for prompt optimization, with cross-modal and cross-distribution mixing strategies to reduce image noise and explore the intermediate space between distributions, respectively. The LAPT framework operates autonomously, requiring only ID class names as input and eliminating the need for manual intervention. With extensive experiments, LAPT consistently outperforms manually crafted prompts, setting a new standard for OOD detection. Moreover, LAPT not only enhances the distinction between ID and OOD samples, but also improves the ID classification accuracy and strengthens the generalization robustness to covariate shifts, resulting in outstanding performance in challenging full-spectrum OOD detection tasks. Codes are available at https://github.com/YBZh/LAPT.

Towards Label-Efficient Human Matting: A Simple Baseline for Weakly Semi-Supervised Trimap-Free Human Matting

This paper presents a new practical training method for human matting, which demands delicate pixel-level human region identification and significantly laborious annotations. To reduce the annotation cost, most existing matting approaches often rely on image synthesis to augment the dataset. However, the unnaturalness of synthesized training images brings in a new domain generalization challenge for natural images. To address this challenge, we introduce a new learning paradigm, weakly semi-supervised human matting (WSSHM), which leverages a small amount of expensive matte labels and a large amount of budget-friendly segmentation labels, to save the annotation cost and resolve the domain generalization problem. To achieve the goal of WSSHM, we propose a simple and effective training method, named Matte Label Blending (MLB), that selectively guides only the beneficial knowledge of the segmentation and matte data to the matting model. Extensive experiments with our detailed analysis demonstrate our method can substantially improve the robustness of the matting model using a few matte data and numerous segmentation data. Our training method is also easily applicable to real-time models, achieving competitive accuracy with breakneck inference speed (328 FPS on NVIDIA V100 GPU). The implementation code is available at https://github.com/clovaai/WSSHM.

KeNet:Knowledge-enhanced Doc-Label Attention Network for Multi-label text classification

Multi-Label Text Classification (MLTC) is a fundamental task in the field of Natural Language Processing (NLP) that involves the assignment of multiple labels to a given text. MLTC has gained significant importance and has been widely applied in various domains such as topic recognition, recommendation systems, sentiment analysis, and information retrieval. However, traditional machine learning and Deep neural network have not yet addressed certain issues, such as the fact that some documents are brief but have a large number of labels and how to establish relationships between the labels. It is imperative to additionally acknowledge that the significance of knowledge is substantiated in the realm of MLTC. To address this issue, we provide a novel approach known as Knowledge-enhanced Doc-Label Attention Network (KeNet). Specifically, we design an Attention Network that incorporates external knowledge, label embedding, and a comprehensive attention mechanism. In contrast to conventional methods, we use comprehensive representation of documents, knowledge and labels to predict all labels for each single text. Our approach has been validated by comprehensive research conducted on three multi-label datasets. Experimental results demonstrate that our method outperforms state-of-the-art MLTC method. Additionally, a case study is undertaken to illustrate the practical implementation of KeNet.

Multi-Label Zero-Shot Product Attribute-Value Extraction

E-commerce platforms should provide detailed product descriptions (attribute values) for effective product search and recommendation. However, attribute value information is typically not available for new products. To predict unseen attribute values, large quantities of labeled training data are needed to train a traditional supervised learning model. Typically, it is difficult, time-consuming, and costly to manually label large quantities of new product profiles. In this paper, we propose a novel method to efficiently and effectively extract unseen attribute values from new products in the absence of labeled data (zero-shot setting). We propose HyperPAVE, a multi-label zero-shot attribute value extraction model that leverages inductive inference in heterogeneous hypergraphs. In particular, our proposed technique constructs heterogeneous hypergraphs to capture complex higher-order relations (i.e. user behavior information) to learn more accurate feature representations for graph nodes. Furthermore, our proposed HyperPAVE model uses an inductive link prediction mechanism to infer future connections between unseen nodes. This enables HyperPAVE to identify new attribute values without the need for labeled training data. We conduct extensive experiments with ablation studies on different categories of the MAVE dataset. The results demonstrate that our proposed HyperPAVE model significantly outperforms existing classification-based, generation-based large language models for attribute value extraction in the zero-shot setting.

PatchCT: Aligning Patch Set and Label Set with Conditional Transport for Multi-Label Image Classification

Multi-label image classification is a prediction task that aims to identify more than one label from a given image. This paper considers the semantic consistency of the latent space between the visual patch and linguistic label domains and introduces the conditional transport (CT) theory to bridge the acknowledged gap. While recent cross-modal attention-based studies have attempted to align such two representations and achieved impressive performance, they required carefully-designed alignment modules and extra complex operations in the attention computation. We find that by formulating the multi-label classification as a CT problem, we can exploit the interactions between the image and label efficiently by minimizing the bidirectional CT cost. Specifically, after feeding the images and textual labels into the modality-specific encoders, we view each image as a mixture of patch embeddings and a mixture of label embeddings, which capture the local region features and the class prototypes, respectively. CT is then employed to learn and align those two semantic sets by defining the forward and backward navigators. Importantly, the defined navigators in CT distance model the similarities between patches and labels, which provides an interpretable tool to visualize the learned prototypes. Extensive experiments on three public image benchmarks show that the proposed model consistently outperforms the previous methods.

Mitigating Label Biases for In-context Learning

Various design settings for in-context learning (ICL), such as the choice and order of the in-context examples, can bias a model toward a particular prediction without being reflective of an understanding of the task. While many studies discuss these design choices, there have been few systematic investigations into categorizing them and mitigating their impact. In this work, we define a typology for three types of label biases in ICL for text classification: vanilla-label bias, context-label bias, and domain-label bias (which we conceptualize and detect for the first time). Our analysis demonstrates that prior label bias calibration methods fall short of addressing all three types of biases. Specifically, domain-label bias restricts LLMs to random-level performance on many tasks regardless of the choice of in-context examples. To mitigate the effect of these biases, we propose a simple bias calibration method that estimates a language model's label bias using random in-domain words from the task corpus. After controlling for this estimated bias when making predictions, our novel domain-context calibration significantly improves the ICL performance of GPT-J and GPT-3 on a wide range of tasks. The gain is substantial on tasks with large domain-label bias (up to 37% in Macro-F1). Furthermore, our results generalize to models with different scales, pretraining methods, and manually-designed task instructions, showing the prevalence of label biases in ICL.

CLImage: Human-Annotated Datasets for Complementary-Label Learning

Complementary-label learning (CLL) is a weakly-supervised learning paradigm that aims to train a multi-class classifier using only complementary labels, which indicate classes to which an instance does not belong. Despite numerous algorithmic proposals for CLL, their practical applicability remains unverified for two reasons. Firstly, these algorithms often rely on assumptions about the generation of complementary labels, and it is not clear how far the assumptions are from reality. Secondly, their evaluation has been limited to synthetically labeled datasets. To gain insights into the real-world performance of CLL algorithms, we developed a protocol to collect complementary labels from human annotators. Our efforts resulted in the creation of four datasets: CLCIFAR10, CLCIFAR20, CLMicroImageNet10, and CLMicroImageNet20, derived from well-known classification datasets CIFAR10, CIFAR100, and TinyImageNet200. These datasets represent the very first real-world CLL datasets, namely CLImage, which are publicly available at: https://github.com/ntucllab/CLImage\_Dataset. Through extensive benchmark experiments, we discovered a notable decrease in performance when transitioning from synthetically labeled datasets to real-world datasets. We investigated the key factors contributing to the decrease with a thorough dataset-level ablation study. Our analyses highlight annotation noise as the most influential factor in the real-world datasets. In addition, we discover that the biased-nature of human-annotated complementary labels and the difficulty to validate with only complementary labels are two outstanding barriers to practical CLL. These findings suggest that the community focus more research efforts on developing CLL algorithms and validation schemes that are robust to noisy and biased complementary-label distributions.

A General Gaussian Heatmap Label Assignment for Arbitrary-Oriented Object Detection

Recently, many arbitrary-oriented object detection (AOOD) methods have been proposed and attracted widespread attention in many fields. However, most of them are based on anchor-boxes or standard Gaussian heatmaps. Such label assignment strategy may not only fail to reflect the shape and direction characteristics of arbitrary-oriented objects, but also have high parameter-tuning efforts. In this paper, a novel AOOD method called General Gaussian Heatmap Label Assignment (GGHL) is proposed. Specifically, an anchor-free object-adaptation label assignment (OLA) strategy is presented to define the positive candidates based on two-dimensional (2-D) oriented Gaussian heatmaps, which reflect the shape and direction features of arbitrary-oriented objects. Based on OLA, an oriented-bounding-box (OBB) representation component (ORC) is developed to indicate OBBs and adjust the Gaussian center prior weights to fit the characteristics of different objects adaptively through neural network learning. Moreover, a joint-optimization loss (JOL) with area normalization and dynamic confidence weighting is designed to refine the misalign optimal results of different subtasks. Extensive experiments on public datasets demonstrate that the proposed GGHL improves the AOOD performance with low parameter-tuning and time costs. Furthermore, it is generally applicable to most AOOD methods to improve their performance including lightweight models on embedded platforms.

LaSO: Label-Set Operations networks for multi-label few-shot learning

Example synthesis is one of the leading methods to tackle the problem of few-shot learning, where only a small number of samples per class are available. However, current synthesis approaches only address the scenario of a single category label per image. In this work, we propose a novel technique for synthesizing samples with multiple labels for the (yet unhandled) multi-label few-shot classification scenario. We propose to combine pairs of given examples in feature space, so that the resulting synthesized feature vectors will correspond to examples whose label sets are obtained through certain set operations on the label sets of the corresponding input pairs. Thus, our method is capable of producing a sample containing the intersection, union or set-difference of labels present in two input samples. As we show, these set operations generalize to labels unseen during training. This enables performing augmentation on examples of novel categories, thus, facilitating multi-label few-shot classifier learning. We conduct numerous experiments showing promising results for the label-set manipulation capabilities of the proposed approach, both directly (using the classification and retrieval metrics), and in the context of performing data augmentation for multi-label few-shot learning. We propose a benchmark for this new and challenging task and show that our method compares favorably to all the common baselines.