new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 31

Length-Induced Embedding Collapse in Transformer-based Models

Text embeddings enable various applications, but their performance deteriorates on longer texts. In this paper, we find that the performance degradation is due to a phenomenon called Length Collapse, where longer text embeddings collapse into a narrow space. This collapse results in a distributional inconsistency between embeddings of different text lengths, ultimately hurting the performance of downstream tasks. Theoretically, by considering the self-attention mechanism inherently functions as a low-pass filter, we prove that long sequences increase the attenuation rate of the low-pass filter effect of the self-attention mechanism. With layers going deeper, excessive low-pass filtering causes the token signals to retain only their Direct-Current (DC) component, which means the input token feature maps will collapse into a narrow space, especially in long texts. Based on the above analysis, we propose to mitigate the undesirable length collapse limitation by introducing a temperature in softmax(), which achieves a higher low-filter attenuation rate. The tuning-free method, called TempScale, can be plugged into multiple transformer-based embedding models. Empirically, we demonstrate that TempScale can improve existing embedding models, especially on long text inputs, bringing up to 0.53% performance gains on 40 datasets from Massive Text Embedding Benchmark (MTEB) and 0.82% performance gains on 4 datasets from LongEmbed, which specifically focuses on long context retrieval.

Stuffed Mamba: State Collapse and State Capacity of RNN-Based Long-Context Modeling

One essential advantage of recurrent neural networks (RNNs) over transformer-based language models is their linear computational complexity concerning the sequence length, which makes them much faster in handling long sequences during inference. However, most publicly available RNNs (e.g., Mamba and RWKV) are trained on sequences with less than 10K tokens, and their effectiveness in longer contexts remains largely unsatisfying so far. In this paper, we study the cause of the inability to process long context for RNNs and suggest critical mitigations. We examine two practical concerns when applying state-of-the-art RNNs to long contexts: (1) the inability to extrapolate to inputs longer than the training length and (2) the upper bound of memory capacity. Addressing the first concern, we first investigate *state collapse* (SC), a phenomenon that causes severe performance degradation on sequence lengths not encountered during training. With controlled experiments, we attribute this to overfitting due to the recurrent state being overparameterized for the training length. For the second concern, we train a series of Mamba-2 models on long documents to empirically estimate the recurrent state capacity in language modeling and passkey retrieval. Then, three SC mitigation methods are proposed to improve Mamba-2's length generalizability, allowing the model to process more than 1M tokens without SC. We also find that the recurrent state capacity in passkey retrieval scales exponentially to the state size, and we empirically train a Mamba-2 370M with near-perfect passkey retrieval accuracy on 256K context length. This suggests a promising future for RNN-based long-context modeling.

Hierarchical Budget Policy Optimization for Adaptive Reasoning

Large reasoning models achieve remarkable performance through extensive chain-of-thought generation, yet exhibit significant computational inefficiency by applying uniform reasoning strategies regardless of problem complexity. We present Hierarchical Budget Policy Optimization (HBPO), a reinforcement learning framework that enables models to learn problem-specific reasoning depths without sacrificing capability. HBPO addresses the fundamental challenge of exploration space collapse in efficiency-oriented training, where penalties on long output length systematically bias models away from necessary long reasoning paths. Through hierarchical budget exploration, our approach partitions rollout samples into multiple subgroups with distinct token budgets, aiming to enable efficient resource allocation while preventing degradation of capability. We introduce differentiated reward mechanisms that create budget-aware incentives aligned with the complexity of the problem, allowing models to discover natural correspondences between task requirements and computational effort. Extensive experiments demonstrate that HBPO reduces average token usage by up to 60.6% while improving accuracy by 3.14% across four reasoning benchmarks. Unlike existing methods that impose external constraints or rely on discrete mode selection, HBPO exhibits emergent adaptive behavior where models automatically adjust reasoning depth based on problem complexity. Our results suggest that reasoning efficiency and capability are not inherently conflicting, and can be simultaneously optimized through appropriately structured hierarchical training that preserves exploration diversity.

Stable Reinforcement Learning for Efficient Reasoning

The success of Deepseek-R1 has drawn the LLM community's attention to reinforcement learning (RL) methods like GRPO. However, such rule-based 0/1 outcome reward methods lack the capability to regulate the intermediate reasoning processes during chain-of-thought (CoT) generation, leading to severe overthinking phenomena. In response, recent studies have designed reward functions to reinforce models' behaviors in producing shorter yet correct completions. Nevertheless, we observe that these length-penalty reward functions exacerbate RL training instability: as the completion length decreases, model accuracy abruptly collapses, often occurring early in training. To address this issue, we propose a simple yet effective solution GRPO-lambda, an efficient and stabilized variant of GRPO, which dynamically adjusts the reward strategy by monitoring the correctness ratio among completions within each query-sampled group. A low correctness ratio indicates the need to avoid length penalty that compromises CoT quality, triggering a switch to length-agnostic 0/1 rewards that prioritize reasoning capability. A high ratio maintains length penalties to boost efficiency. Experimental results show that our approach avoids training instability caused by length penalty while maintaining the optimal accuracy-efficiency trade-off. On the GSM8K, GPQA, MATH-500, AMC 2023, and AIME 2024 benchmarks, it improves average accuracy by 1.48% while reducing CoT sequence length by 47.3%.

Incomplete RG: Hawking-Page transition, C-theorem and relevant scalar deformations of global AdS

We discuss relevant scalar deformations of a holographic theory with a compact boundary. An example of such a theory would be the global AdS_4 with its spatially compact boundary S^2. To introduce a relevant deformation, we choose to turn on a time-independent and spatially homogeneous non-normalizable scalar operator with m^2 = -2. The finite size of a compact boundary cuts down the RG flow at a finite length scale leading to an incomplete RG flow to IR. We discuss a version of {\it incomplete} C-theorem and an {\it incomplete} attractor like mechanism. We discuss the implication of our results for entanglement entropy and geometric quantities like scalar curvature, volume and mass scale of fundamental excitation of the how these quantities increase or decrease (often monotonically) with the strength of the deformation. Thermal physics of a holographic theory defined on a compact boundary is more interesting than its non-compact counterpart. It is well known that with a compact boundary, there is a possibility of a first order Hawking-Page transition dual to a de-confinement phase transition. From a gravity perspective, a relevant deformation dumps negative energy inside the bulk, increasing the effective cosmological constant (Lambda) of the AdS. Dumping more negative energy in the bulk would make the HP transition harder and the corresponding HP transition temperature would increase. However, we have found the size of the BH at the transition temperature decreases.

Beyond Vanilla Variational Autoencoders: Detecting Posterior Collapse in Conditional and Hierarchical Variational Autoencoders

The posterior collapse phenomenon in variational autoencoder (VAE), where the variational posterior distribution closely matches the prior distribution, can hinder the quality of the learned latent variables. As a consequence of posterior collapse, the latent variables extracted by the encoder in VAE preserve less information from the input data and thus fail to produce meaningful representations as input to the reconstruction process in the decoder. While this phenomenon has been an actively addressed topic related to VAE performance, the theory for posterior collapse remains underdeveloped, especially beyond the standard VAE. In this work, we advance the theoretical understanding of posterior collapse to two important and prevalent yet less studied classes of VAE: conditional VAE and hierarchical VAE. Specifically, via a non-trivial theoretical analysis of linear conditional VAE and hierarchical VAE with two levels of latent, we prove that the cause of posterior collapses in these models includes the correlation between the input and output of the conditional VAE and the effect of learnable encoder variance in the hierarchical VAE. We empirically validate our theoretical findings for linear conditional and hierarchical VAE and demonstrate that these results are also predictive for non-linear cases with extensive experiments.