new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 29

An accurate detection is not all you need to combat label noise in web-noisy datasets

Training a classifier on web-crawled data demands learning algorithms that are robust to annotation errors and irrelevant examples. This paper builds upon the recent empirical observation that applying unsupervised contrastive learning to noisy, web-crawled datasets yields a feature representation under which the in-distribution (ID) and out-of-distribution (OOD) samples are linearly separable. We show that direct estimation of the separating hyperplane can indeed offer an accurate detection of OOD samples, and yet, surprisingly, this detection does not translate into gains in classification accuracy. Digging deeper into this phenomenon, we discover that the near-perfect detection misses a type of clean examples that are valuable for supervised learning. These examples often represent visually simple images, which are relatively easy to identify as clean examples using standard loss- or distance-based methods despite being poorly separated from the OOD distribution using unsupervised learning. Because we further observe a low correlation with SOTA metrics, this urges us to propose a hybrid solution that alternates between noise detection using linear separation and a state-of-the-art (SOTA) small-loss approach. When combined with the SOTA algorithm PLS, we substantially improve SOTA results for real-world image classification in the presence of web noise github.com/PaulAlbert31/LSA

Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs

Cellular sheaves equip graphs with a "geometrical" structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the characteristics of the convolutional models that discretise this equation. In this paper, we use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs in heterophilic settings and their oversmoothing behaviour. By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands. At the same time, we prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their asymptotic behaviour. On the practical side, we study how sheaves can be learned from data. The resulting sheaf diffusion models have many desirable properties that address the limitations of classical graph diffusion equations (and corresponding GNN models) and obtain competitive results in heterophilic settings. Overall, our work provides new connections between GNNs and algebraic topology and would be of interest to both fields.

Towards Reliable Objective Evaluation Metrics for Generative Singing Voice Separation Models

Traditional Blind Source Separation Evaluation (BSS-Eval) metrics were originally designed to evaluate linear audio source separation models based on methods such as time-frequency masking. However, recent generative models may introduce nonlinear relationships between the separated and reference signals, limiting the reliability of these metrics for objective evaluation. To address this issue, we conduct a Degradation Category Rating listening test and analyze correlations between the obtained degradation mean opinion scores (DMOS) and a set of objective audio quality metrics for the task of singing voice separation. We evaluate three state-of-the-art discriminative models and two new competitive generative models. For both discriminative and generative models, intrusive embedding-based metrics show higher correlations with DMOS than conventional intrusive metrics such as BSS-Eval. For discriminative models, the highest correlation is achieved by the MSE computed on Music2Latent embeddings. When it comes to the evaluation of generative models, the strongest correlations are evident for the multi-resolution STFT loss and the MSE calculated on MERT-L12 embeddings, with the latter also providing the most balanced correlation across both model types. Our results highlight the limitations of BSS-Eval metrics for evaluating generative singing voice separation models and emphasize the need for careful selection and validation of alternative evaluation metrics for the task of singing voice separation.

FlowSep: Language-Queried Sound Separation with Rectified Flow Matching

Language-queried audio source separation (LASS) focuses on separating sounds using textual descriptions of the desired sources. Current methods mainly use discriminative approaches, such as time-frequency masking, to separate target sounds and minimize interference from other sources. However, these models face challenges when separating overlapping soundtracks, which may lead to artifacts such as spectral holes or incomplete separation. Rectified flow matching (RFM), a generative model that establishes linear relations between the distribution of data and noise, offers superior theoretical properties and simplicity, but has not yet been explored in sound separation. In this work, we introduce FlowSep, a new generative model based on RFM for LASS tasks. FlowSep learns linear flow trajectories from noise to target source features within the variational autoencoder (VAE) latent space. During inference, the RFM-generated latent features are reconstructed into a mel-spectrogram via the pre-trained VAE decoder, followed by a pre-trained vocoder to synthesize the waveform. Trained on 1,680 hours of audio data, FlowSep outperforms the state-of-the-art models across multiple benchmarks, as evaluated with subjective and objective metrics. Additionally, our results show that FlowSep surpasses a diffusion-based LASS model in both separation quality and inference efficiency, highlighting its strong potential for audio source separation tasks. Code, pre-trained models and demos can be found at: https://audio-agi.github.io/FlowSep_demo/.

Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation

Single-channel, speaker-independent speech separation methods have recently seen great progress. However, the accuracy, latency, and computational cost of such methods remain insufficient. The majority of the previous methods have formulated the separation problem through the time-frequency representation of the mixed signal, which has several drawbacks, including the decoupling of the phase and magnitude of the signal, the suboptimality of time-frequency representation for speech separation, and the long latency in calculating the spectrograms. To address these shortcomings, we propose a fully-convolutional time-domain audio separation network (Conv-TasNet), a deep learning framework for end-to-end time-domain speech separation. Conv-TasNet uses a linear encoder to generate a representation of the speech waveform optimized for separating individual speakers. Speaker separation is achieved by applying a set of weighting functions (masks) to the encoder output. The modified encoder representations are then inverted back to the waveforms using a linear decoder. The masks are found using a temporal convolutional network (TCN) consisting of stacked 1-D dilated convolutional blocks, which allows the network to model the long-term dependencies of the speech signal while maintaining a small model size. The proposed Conv-TasNet system significantly outperforms previous time-frequency masking methods in separating two- and three-speaker mixtures. Additionally, Conv-TasNet surpasses several ideal time-frequency magnitude masks in two-speaker speech separation as evaluated by both objective distortion measures and subjective quality assessment by human listeners. Finally, Conv-TasNet has a significantly smaller model size and a shorter minimum latency, making it a suitable solution for both offline and real-time speech separation applications.

MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation

Our previously proposed MossFormer has achieved promising performance in monaural speech separation. However, it predominantly adopts a self-attention-based MossFormer module, which tends to emphasize longer-range, coarser-scale dependencies, with a deficiency in effectively modelling finer-scale recurrent patterns. In this paper, we introduce a novel hybrid model that provides the capabilities to model both long-range, coarse-scale dependencies and fine-scale recurrent patterns by integrating a recurrent module into the MossFormer framework. Instead of applying the recurrent neural networks (RNNs) that use traditional recurrent connections, we present a recurrent module based on a feedforward sequential memory network (FSMN), which is considered "RNN-free" recurrent network due to the ability to capture recurrent patterns without using recurrent connections. Our recurrent module mainly comprises an enhanced dilated FSMN block by using gated convolutional units (GCU) and dense connections. In addition, a bottleneck layer and an output layer are also added for controlling information flow. The recurrent module relies on linear projections and convolutions for seamless, parallel processing of the entire sequence. The integrated MossFormer2 hybrid model demonstrates remarkable enhancements over MossFormer and surpasses other state-of-the-art methods in WSJ0-2/3mix, Libri2Mix, and WHAM!/WHAMR! benchmarks.

The Devil in Linear Transformer

Linear transformers aim to reduce the quadratic space-time complexity of vanilla transformers. However, they usually suffer from degraded performances on various tasks and corpus. In this paper, we examine existing kernel-based linear transformers and identify two key issues that lead to such performance gaps: 1) unbounded gradients in the attention computation adversely impact the convergence of linear transformer models; 2) attention dilution which trivially distributes attention scores over long sequences while neglecting neighbouring structures. To address these issues, we first identify that the scaling of attention matrices is the devil in unbounded gradients, which turns out unnecessary in linear attention as we show theoretically and empirically. To this end, we propose a new linear attention that replaces the scaling operation with a normalization to stabilize gradients. For the issue of attention dilution, we leverage a diagonal attention to confine attention to only neighbouring tokens in early layers. Benefiting from the stable gradients and improved attention, our new linear transformer model, transNormer, demonstrates superior performance on text classification and language modeling tasks, as well as on the challenging Long-Range Arena benchmark, surpassing vanilla transformer and existing linear variants by a clear margin while being significantly more space-time efficient. The code is available at https://github.com/OpenNLPLab/Transnormer .

Unsupervised Manifold Linearizing and Clustering

We consider the problem of simultaneously clustering and learning a linear representation of data lying close to a union of low-dimensional manifolds, a fundamental task in machine learning and computer vision. When the manifolds are assumed to be linear subspaces, this reduces to the classical problem of subspace clustering, which has been studied extensively over the past two decades. Unfortunately, many real-world datasets such as natural images can not be well approximated by linear subspaces. On the other hand, numerous works have attempted to learn an appropriate transformation of the data, such that data is mapped from a union of general non-linear manifolds to a union of linear subspaces (with points from the same manifold being mapped to the same subspace). However, many existing works have limitations such as assuming knowledge of the membership of samples to clusters, requiring high sampling density, or being shown theoretically to learn trivial representations. In this paper, we propose to optimize the Maximal Coding Rate Reduction metric with respect to both the data representation and a novel doubly stochastic cluster membership, inspired by state-of-the-art subspace clustering results. We give a parameterization of such a representation and membership, allowing efficient mini-batching and one-shot initialization. Experiments on CIFAR-10, -20, -100, and TinyImageNet-200 datasets show that the proposed method is much more accurate and scalable than state-of-the-art deep clustering methods, and further learns a latent linear representation of the data.

Landscaping Linear Mode Connectivity

The presence of linear paths in parameter space between two different network solutions in certain cases, i.e., linear mode connectivity (LMC), has garnered interest from both theoretical and practical fronts. There has been significant research that either practically designs algorithms catered for connecting networks by adjusting for the permutation symmetries as well as some others that more theoretically construct paths through which networks can be connected. Yet, the core reasons for the occurrence of LMC, when in fact it does occur, in the highly non-convex loss landscapes of neural networks are far from clear. In this work, we take a step towards understanding it by providing a model of how the loss landscape needs to behave topographically for LMC (or the lack thereof) to manifest. Concretely, we present a `mountainside and ridge' perspective that helps to neatly tie together different geometric features that can be spotted in the loss landscape along the training runs. We also complement this perspective by providing a theoretical analysis of the barrier height, for which we provide empirical support, and which additionally extends as a faithful predictor of layer-wise LMC. We close with a toy example that provides further intuition on how barriers arise in the first place, all in all, showcasing the larger aim of the work -- to provide a working model of the landscape and its topography for the occurrence of LMC.

Universal Source Separation with Weakly Labelled Data

Universal source separation (USS) is a fundamental research task for computational auditory scene analysis, which aims to separate mono recordings into individual source tracks. There are three potential challenges awaiting the solution to the audio source separation task. First, previous audio source separation systems mainly focus on separating one or a limited number of specific sources. There is a lack of research on building a unified system that can separate arbitrary sources via a single model. Second, most previous systems require clean source data to train a separator, while clean source data are scarce. Third, there is a lack of USS system that can automatically detect and separate active sound classes in a hierarchical level. To use large-scale weakly labeled/unlabeled audio data for audio source separation, we propose a universal audio source separation framework containing: 1) an audio tagging model trained on weakly labeled data as a query net; and 2) a conditional source separation model that takes query net outputs as conditions to separate arbitrary sound sources. We investigate various query nets, source separation models, and training strategies and propose a hierarchical USS strategy to automatically detect and separate sound classes from the AudioSet ontology. By solely leveraging the weakly labelled AudioSet, our USS system is successful in separating a wide variety of sound classes, including sound event separation, music source separation, and speech enhancement. The USS system achieves an average signal-to-distortion ratio improvement (SDRi) of 5.57 dB over 527 sound classes of AudioSet; 10.57 dB on the DCASE 2018 Task 2 dataset; 8.12 dB on the MUSDB18 dataset; an SDRi of 7.28 dB on the Slakh2100 dataset; and an SSNR of 9.00 dB on the voicebank-demand dataset. We release the source code at https://github.com/bytedance/uss

MoM: Linear Sequence Modeling with Mixture-of-Memories

Linear sequence modeling methods, such as linear attention, state space modeling, and linear RNNs, offer significant efficiency improvements by reducing the complexity of training and inference. However, these methods typically compress the entire input sequence into a single fixed-size memory state, which leads to suboptimal performance on recall-intensive downstream tasks. Drawing inspiration from neuroscience, particularly the brain's ability to maintain robust long-term memory while mitigating "memory interference", we introduce a novel architecture called Mixture-of-Memories (MoM). MoM utilizes multiple independent memory states, with a router network directing input tokens to specific memory states. This approach greatly enhances the overall memory capacity while minimizing memory interference. As a result, MoM performs exceptionally well on recall-intensive tasks, surpassing existing linear sequence modeling techniques. Despite incorporating multiple memory states, the computation of each memory state remains linear in complexity, allowing MoM to retain the linear-complexity advantage during training, while constant-complexity during inference. Our experimental results show that MoM significantly outperforms current linear sequence models on downstream language tasks, particularly recall-intensive tasks, and even achieves performance comparable to Transformer models. The code is released at https://github.com/OpenSparseLLMs/MoM and is also released as a part of https://github.com/OpenSparseLLMs/Linear-MoE.

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.

A Tour of Convolutional Networks Guided by Linear Interpreters

Convolutional networks are large linear systems divided into layers and connected by non-linear units. These units are the "articulations" that allow the network to adapt to the input. To understand how a network manages to solve a problem we must look at the articulated decisions in entirety. If we could capture the actions of non-linear units for a particular input, we would be able to replay the whole system back and forth as if it was always linear. It would also reveal the actions of non-linearities because the resulting linear system, a Linear Interpreter, depends on the input image. We introduce a hooking layer, called a LinearScope, which allows us to run the network and the linear interpreter in parallel. Its implementation is simple, flexible and efficient. From here we can make many curious inquiries: how do these linear systems look like? When the rows and columns of the transformation matrix are images, how do they look like? What type of basis do these linear transformations rely on? The answers depend on the problems presented, through which we take a tour to some popular architectures used for classification, super-resolution (SR) and image-to-image translation (I2I). For classification we observe that popular networks use a pixel-wise vote per class strategy and heavily rely on bias parameters. For SR and I2I we find that CNNs use wavelet-type basis similar to the human visual system. For I2I we reveal copy-move and template-creation strategies to generate outputs.

LiT: Delving into a Simplified Linear Diffusion Transformer for Image Generation

In commonly used sub-quadratic complexity modules, linear attention benefits from simplicity and high parallelism, making it promising for image synthesis tasks. However, the architectural design and learning strategy for linear attention remain underexplored in this field. In this paper, we offer a suite of ready-to-use solutions for efficient linear diffusion Transformers. Our core contributions include: (1) Simplified Linear Attention using few heads, observing the free-lunch effect of performance without latency increase. (2) Weight inheritance from a fully pre-trained diffusion Transformer: initializing linear Transformer using pre-trained diffusion Transformer and loading all parameters except for those related to linear attention. (3) Hybrid knowledge distillation objective: using a pre-trained diffusion Transformer to help the training of the student linear Transformer, supervising not only the predicted noise but also the variance of the reverse diffusion process. These guidelines lead to our proposed Linear Diffusion Transformer (LiT), an efficient text-to-image Transformer that can be deployed offline on a laptop. Experiments show that in class-conditional 256*256 and 512*512 ImageNet benchmark LiT achieves highly competitive FID while reducing training steps by 80% and 77% compared to DiT. LiT also rivals methods based on Mamba or Gated Linear Attention. Besides, for text-to-image generation, LiT allows for the rapid synthesis of up to 1K resolution photorealistic images. Project page: https://techmonsterwang.github.io/LiT/.

Music Source Separation in the Waveform Domain

Source separation for music is the task of isolating contributions, or stems, from different instruments recorded individually and arranged together to form a song. Such components include voice, bass, drums and any other accompaniments.Contrarily to many audio synthesis tasks where the best performances are achieved by models that directly generate the waveform, the state-of-the-art in source separation for music is to compute masks on the magnitude spectrum. In this paper, we compare two waveform domain architectures. We first adapt Conv-Tasnet, initially developed for speech source separation,to the task of music source separation. While Conv-Tasnet beats many existing spectrogram-domain methods, it suffersfrom significant artifacts, as shown by human evaluations. We propose instead Demucs, a novel waveform-to-waveform model,with a U-Net structure and bidirectional LSTM.Experiments on the MusDB dataset show that, with proper data augmentation, Demucs beats allexisting state-of-the-art architectures, including Conv-Tasnet, with 6.3 SDR on average, (and up to 6.8 with 150 extra training songs, even surpassing the IRM oracle for the bass source).Using recent development in model quantization, Demucs can be compressed down to 120MBwithout any loss of accuracy.We also provide human evaluations, showing that Demucs benefit from a large advantagein terms of the naturalness of the audio. However, it suffers from some bleeding,especially between the vocals and other source.

On Kinetic Optimal Probability Paths for Generative Models

Recent successful generative models are trained by fitting a neural network to an a-priori defined tractable probability density path taking noise to training examples. In this paper we investigate the space of Gaussian probability paths, which includes diffusion paths as an instance, and look for an optimal member in some useful sense. In particular, minimizing the Kinetic Energy (KE) of a path is known to make particles' trajectories simple, hence easier to sample, and empirically improve performance in terms of likelihood of unseen data and sample generation quality. We investigate Kinetic Optimal (KO) Gaussian paths and offer the following observations: (i) We show the KE takes a simplified form on the space of Gaussian paths, where the data is incorporated only through a single, one dimensional scalar function, called the data separation function. (ii) We characterize the KO solutions with a one dimensional ODE. (iii) We approximate data-dependent KO paths by approximating the data separation function and minimizing the KE. (iv) We prove that the data separation function converges to 1 in the general case of arbitrary normalized dataset consisting of n samples in d dimension as n/drightarrow 0. A consequence of this result is that the Conditional Optimal Transport (Cond-OT) path becomes kinetic optimal as n/drightarrow 0. We further support this theory with empirical experiments on ImageNet.

Liger: Linearizing Large Language Models to Gated Recurrent Structures

Transformers with linear recurrent modeling offer linear-time training and constant-memory inference. Despite their demonstrated efficiency and performance, pretraining such non-standard architectures from scratch remains costly and risky. The linearization of large language models (LLMs) transforms pretrained standard models into linear recurrent structures, enabling more efficient deployment. However, current linearization methods typically introduce additional feature map modules that require extensive fine-tuning and overlook the gating mechanisms used in state-of-the-art linear recurrent models. To address these issues, this paper presents Liger, short for Linearizing LLMs to gated recurrent structures. Liger is a novel approach for converting pretrained LLMs into gated linear recurrent models without adding extra parameters. It repurposes the pretrained key matrix weights to construct diverse gating mechanisms, facilitating the formation of various gated recurrent structures while avoiding the need to train additional components from scratch. Using lightweight fine-tuning with Low-Rank Adaptation (LoRA), Liger restores the performance of the linearized gated recurrent models to match that of the original LLMs. Additionally, we introduce Liger Attention, an intra-layer hybrid attention mechanism, which significantly recovers 93\% of the Transformer-based LLM at 0.02\% pre-training tokens during the linearization process, achieving competitive results across multiple benchmarks, as validated on models ranging from 1B to 8B parameters. Code is available at https://github.com/OpenSparseLLMs/Linearization.

Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models

Linear attention is an efficient attention mechanism that has recently emerged as a promising alternative to conventional softmax attention. With its ability to process tokens in linear computational complexities, linear attention, in theory, can handle sequences of unlimited length without sacrificing speed, i.e., maintaining a constant training speed for various sequence lengths with a fixed memory consumption. However, due to the issue with cumulative summation (cumsum), current linear attention algorithms cannot demonstrate their theoretical advantage in a causal setting. In this paper, we present Lightning Attention-2, the first linear attention implementation that enables linear attention to realize its theoretical computational benefits. To achieve this, we leverage the thought of tiling, separately handling the intra-block and inter-block components in linear attention calculation. Specifically, we utilize the conventional attention computation mechanism for the intra-blocks and apply linear attention kernel tricks for the inter-blocks. A tiling technique is adopted through both forward and backward procedures to take full advantage of the GPU hardware. We implement our algorithm in Triton to make it IO-aware and hardware-friendly. Various experiments are conducted on different model sizes and sequence lengths. Lightning Attention-2 retains consistent training and inference speed regardless of input sequence length and is significantly faster than other attention mechanisms. The source code is available at https://github.com/OpenNLPLab/lightning-attention.

Mathematical modelling of flow and adsorption in a gas chromatograph

In this paper, a mathematical model is developed to describe the evolution of the concentration of compounds through a gas chromatography column. The model couples mass balances and kinetic equations for all components. Both single and multiple-component cases are considered with constant or variable velocity. Non-dimensionalisation indicates the small effect of diffusion. The system where diffusion is neglected is analysed using Laplace transforms. In the multiple-component case, it is demonstrated that the competition between the compounds is negligible and the equations may be decoupled. This reduces the problem to solving a single integral equation to determine the concentration profile for all components (since they are scaled versions of each other). For a given analyte, we then only two parameters need to be fitted to the data. To verify this approach, the full governing equations are also solved numerically using the finite difference method and a global adaptive quadrature method to integrate the Laplace transformation. Comparison with the Laplace solution verifies the high degree of accuracy of the simpler Laplace form. The Laplace solution is then verified against experimental data from BTEX chromatography. This novel method, which involves solving a single equation and fitting parameters in pairs for individual components, is highly efficient. It is significantly faster and simpler than the full numerical solution and avoids the computationally expensive methods that would normally be used to fit all curves at the same time.

Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching

Recently, Ainsworth et al. showed that using weight matching (WM) to minimize the L_2 distance in a permutation search of model parameters effectively identifies permutations that satisfy linear mode connectivity (LMC), in which the loss along a linear path between two independently trained models with different seeds remains nearly constant. This paper provides a theoretical analysis of LMC using WM, which is crucial for understanding stochastic gradient descent's effectiveness and its application in areas like model merging. We first experimentally and theoretically show that permutations found by WM do not significantly reduce the L_2 distance between two models and the occurrence of LMC is not merely due to distance reduction by WM in itself. We then provide theoretical insights showing that permutations can change the directions of the singular vectors, but not the singular values, of the weight matrices in each layer. This finding shows that permutations found by WM mainly align the directions of singular vectors associated with large singular values across models. This alignment brings the singular vectors with large singular values, which determine the model functionality, closer between pre-merged and post-merged models, so that the post-merged model retains functionality similar to the pre-merged models, making it easy to satisfy LMC. Finally, we analyze the difference between WM and straight-through estimator (STE), a dataset-dependent permutation search method, and show that WM outperforms STE, especially when merging three or more models.

Quartet: Native FP4 Training Can Be Optimal for Large Language Models

The rapid advancement of large language models (LLMs) has been paralleled by unprecedented increases in computational demands, with training costs for state-of-the-art models doubling every few months. Training models directly in low-precision arithmetic offers a solution, by improving both computational throughput and energy efficiency. Specifically, NVIDIA's recent Blackwell architecture facilitates extremely low-precision operations, specifically FP4 variants, promising substantial efficiency gains. Yet, current algorithms for training LLMs in FP4 precision face significant accuracy degradation and often rely on mixed-precision fallbacks. In this paper, we systematically investigate hardware-supported FP4 training and introduce Quartet, a new approach enabling accurate, end-to-end FP4 training with all the major computations (in e.g. linear layers) being performed in low precision. Through extensive evaluations on Llama-type models, we reveal a new low-precision scaling law that quantifies performance trade-offs across varying bit-widths and allows us to identify a "near-optimal" low-precision training technique in terms of accuracy-vs-computation, called Quartet. We implement Quartet using optimized CUDA kernels tailored for NVIDIA Blackwell GPUs, and show that it can achieve state-of-the-art accuracy for FP4 precision, successfully training billion-scale models. Our method demonstrates that fully FP4-based training is a competitive alternative to standard-precision and FP8 training. Our code is available at https://github.com/IST-DASLab/Quartet.

How to Capture Higher-order Correlations? Generalizing Matrix Softmax Attention to Kronecker Computation

In the classical transformer attention scheme, we are given three n times d size matrices Q, K, V (the query, key, and value tokens), and the goal is to compute a new n times d size matrix D^{-1} exp(QK^top) V where D = diag( exp(QK^top) {bf 1}_n ). In this work, we study a generalization of attention which captures triple-wise correlations. This generalization is able to solve problems about detecting triple-wise connections that were shown to be impossible for transformers. The potential downside of this generalization is that it appears as though computations are even more difficult, since the straightforward algorithm requires cubic time in n. However, we show that in the bounded-entry setting (which arises in practice, and which is well-studied in both theory and practice), there is actually a near-linear time algorithm. More precisely, we show that bounded entries are both necessary and sufficient for quickly performing generalized computations: bullet On the positive side, if all entries of the input matrices are bounded above by o(sqrt[3]{log n}) then we show how to approximate the ``tensor-type'' attention matrix in n^{1+o(1)} time. bullet On the negative side, we show that if the entries of the input matrices may be as large as Omega(sqrt[3]{log n}), then there is no algorithm that runs faster than n^{3-o(1)} (assuming the Strong Exponential Time Hypothesis from fine-grained complexity theory). We also show that our construction, algorithms, and lower bounds naturally generalize to higher-order tensors and correlations. Interestingly, the higher the order of the tensors, the lower the bound on the entries needs to be for an efficient algorithm. Our results thus yield a natural tradeoff between the boundedness of the entries, and order of the tensor one may use for more expressive, efficient attention computation.