new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 29

Generative Marginalization Models

We introduce marginalization models (MaMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling with tractable likelihoods by explicitly modeling all induced marginal distributions. Marginalization models enable fast evaluation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of methods with exact marginal inference, such as autoregressive models (ARMs). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". Unlike previous methods, MaMs support scalable training of any-order generative models for high-dimensional problems under the setting of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized (log) probability function such as energy function or reward function). We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including binary images, language, physical systems, and molecules, for maximum likelihood and energy-based training settings. MaMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MaMs enable any-order generative modeling of high-dimensional problems beyond the capability of previous methods. Code is at https://github.com/PrincetonLIPS/MaM.

SocialML: machine learning for social media video creators

In the recent years, social media have become one of the main places where creative content is being published and consumed by billions of users. Contrary to traditional media, social media allow the publishers to receive almost instantaneous feedback regarding their creative work at an unprecedented scale. This is a perfect use case for machine learning methods that can use these massive amounts of data to provide content creators with inspirational ideas and constructive criticism of their work. In this work, we present a comprehensive overview of machine learning-empowered tools we developed for video creators at Group Nine Media - one of the major social media companies that creates short-form videos with over three billion views per month. Our main contribution is a set of tools that allow the creators to leverage massive amounts of data to improve their creation process, evaluate their videos before the publication and improve content quality. These applications include an interactive conversational bot that allows access to material archives, a Web-based application for automatic selection of optimal video thumbnail, as well as deep learning methods for optimizing headline and predicting video popularity. Our A/B tests show that deployment of our tools leads to significant increase of average video view count by 12.9%. Our additional contribution is a set of considerations collected during the deployment of those tools that can hel