Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMEAformer: Multi-modal Entity Alignment Transformer for Meta Modality Hybrid
Multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) whose entities are associated with relevant images. However, current MMEA algorithms rely on KG-level modality fusion strategies for multi-modal entity representation, which ignores the variations of modality preferences of different entities, thus compromising robustness against noise in modalities such as blurry images and relations. This paper introduces MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, which dynamically predicts the mutual correlation coefficients among modalities for more fine-grained entity-level modality fusion and alignment. Experimental results demonstrate that our model not only achieves SOTA performance in multiple training scenarios, including supervised, unsupervised, iterative, and low-resource settings, but also has a limited number of parameters, efficient runtime, and interpretability. Our code is available at https://github.com/zjukg/MEAformer.
Words or Vision: Do Vision-Language Models Have Blind Faith in Text?
Vision-Language Models (VLMs) excel in integrating visual and textual information for vision-centric tasks, but their handling of inconsistencies between modalities is underexplored. We investigate VLMs' modality preferences when faced with visual data and varied textual inputs in vision-centered settings. By introducing textual variations to four vision-centric tasks and evaluating ten Vision-Language Models (VLMs), we discover a ``blind faith in text'' phenomenon: VLMs disproportionately trust textual data over visual data when inconsistencies arise, leading to significant performance drops under corrupted text and raising safety concerns. We analyze factors influencing this text bias, including instruction prompts, language model size, text relevance, token order, and the interplay between visual and textual certainty. While certain factors, such as scaling up the language model size, slightly mitigate text bias, others like token order can exacerbate it due to positional biases inherited from language models. To address this issue, we explore supervised fine-tuning with text augmentation and demonstrate its effectiveness in reducing text bias. Additionally, we provide a theoretical analysis suggesting that the blind faith in text phenomenon may stem from an imbalance of pure text and multi-modal data during training. Our findings highlight the need for balanced training and careful consideration of modality interactions in VLMs to enhance their robustness and reliability in handling multi-modal data inconsistencies.
Align Anything: Training All-Modality Models to Follow Instructions with Language Feedback
Reinforcement learning from human feedback (RLHF) has proven effective in enhancing the instruction-following capabilities of large language models; however, it remains underexplored in the cross-modality domain. As the number of modalities increases, aligning all-modality models with human intentions -- such as instruction following -- becomes a pressing challenge. In this work, we make the first attempt to fine-tune all-modality models (i.e. input and output with any modality, also named any-to-any models) using human preference data across all modalities (including text, image, audio, and video), ensuring its behavior aligns with human intentions. This endeavor presents several challenges. First, there is no large-scale all-modality human preference data in existing open-source resources, as most datasets are limited to specific modalities, predominantly text and image. Secondly, the effectiveness of binary preferences in RLHF for post-training alignment in complex all-modality scenarios remains an unexplored area. Finally, there is a lack of a systematic framework to evaluate the capabilities of all-modality models, particularly regarding modality selection and synergy. To address these challenges, we propose the align-anything framework, which includes meticulously annotated 200k all-modality human preference data. Then, we introduce an alignment method that learns from unified language feedback, effectively capturing complex modality-specific human preferences and enhancing the model's instruction-following capabilities. Furthermore, to assess performance improvements in all-modality models after post-training alignment, we construct a challenging all-modality capability evaluation framework -- eval-anything. All data, models, and code frameworks have been open-sourced for the community. For more details, please refer to https://github.com/PKU-Alignment/align-anything.
DynRefer: Delving into Region-level Multi-modality Tasks via Dynamic Resolution
Region-level multi-modality methods can translate referred image regions to human preferred language descriptions. Unfortunately, most of existing methods using fixed visual inputs remain lacking the resolution adaptability to find out precise language descriptions. In this study, we propose a dynamic resolution approach, referred to as DynRefer, to pursue high-accuracy region-level referring through mimicking the resolution adaptability of human visual cognition. DynRefer first implements stochastic vision-language alignment. It aligns desired language descriptions of multi-modality tasks with images of stochastic resolution, which are constructed by nesting a set of views around the referred region. DynRefer then implements dynamic multi-modality referring, which is realized by selecting views based on image and language priors. This allows the visual information used for referring to better match human preferences, thereby improving the representational adaptability of region-level multi-modality models. Extensive experiments show that DynRefer brings mutual improvement upon tasks including region-level captioning, open-vocabulary region recognition and attribute detection. Last but not least, DynRefer achieves new state-of-the-art on multiple region-level multi-modality tasks using a single model. Code is available at https://github.com/callsys/DynRefer.
An Efficient Multimodal Learning Framework to Comprehend Consumer Preferences Using BERT and Cross-Attention
Today, the acquisition of various behavioral log data has enabled deeper understanding of customer preferences and future behaviors in the marketing field. In particular, multimodal deep learning has achieved highly accurate predictions by combining multiple types of data. Many of these studies utilize with feature fusion to construct multimodal models, which combines extracted representations from each modality. However, since feature fusion treats information from each modality equally, it is difficult to perform flexible analysis such as the attention mechanism that has been used extensively in recent years. Therefore, this study proposes a context-aware multimodal deep learning model that combines Bidirectional Encoder Representations from Transformers (BERT) and cross-attention Transformer, which dynamically changes the attention of deep-contextualized word representations based on background information such as consumer demographic and lifestyle variables. We conduct a comprehensive analysis and demonstrate the effectiveness of our model by comparing it with six reference models in three categories using behavioral logs stored on an online platform. In addition, we present an efficient multimodal learning method by comparing the learning efficiency depending on the optimizers and the prediction accuracy depending on the number of tokens in the text data.
MP-GUI: Modality Perception with MLLMs for GUI Understanding
Graphical user interface (GUI) has become integral to modern society, making it crucial to be understood for human-centric systems. However, unlike natural images or documents, GUIs comprise artificially designed graphical elements arranged to convey specific semantic meanings. Current multi-modal large language models (MLLMs) already proficient in processing graphical and textual components suffer from hurdles in GUI understanding due to the lack of explicit spatial structure modeling. Moreover, obtaining high-quality spatial structure data is challenging due to privacy issues and noisy environments. To address these challenges, we present MP-GUI, a specially designed MLLM for GUI understanding. MP-GUI features three precisely specialized perceivers to extract graphical, textual, and spatial modalities from the screen as GUI-tailored visual clues, with spatial structure refinement strategy and adaptively combined via a fusion gate to meet the specific preferences of different GUI understanding tasks. To cope with the scarcity of training data, we also introduce a pipeline for automatically data collecting. Extensive experiments demonstrate that MP-GUI achieves impressive results on various GUI understanding tasks with limited data.
Judge Anything: MLLM as a Judge Across Any Modality
Evaluating generative foundation models on open-ended multimodal understanding (MMU) and generation (MMG) tasks across diverse modalities (e.g., images, audio, video) poses significant challenges due to the complexity of cross-modal interactions. To this end, the idea of utilizing Multimodal LLMs (MLLMs) as automated judges has emerged, with encouraging results in assessing vision-language understanding tasks. Moving further, this paper extends MLLM-as-a-Judge across modalities to a unified manner by introducing two benchmarks, TaskAnything and JudgeAnything, to respectively evaluate the overall performance and judging capabilities of MLLMs across any-to-any modality tasks. Specifically, TaskAnything evaluates the MMU and MMG capabilities across 15 any-to-any modality categories, employing 1,500 queries curated from well-established benchmarks. Furthermore, JudgeAnything evaluates the judging capabilities of 5 advanced (e.g., GPT-4o and Gemini-2.0-Flash) from the perspectives of Pair Comparison and Score Evaluation, providing a standardized testbed that incorporates human judgments and detailed rubrics. Our extensive experiments reveal that while these MLLMs show promise in assessing MMU (i.e., achieving an average of 66.55% in Pair Comparison setting and 42.79% in Score Evaluation setting), they encounter significant challenges with MMG tasks (i.e., averaging only 53.37% in Pair Comparison setting and 30.05% in Score Evaluation setting), exposing cross-modality biases and hallucination issues. To address this, we present OmniArena, an automated platform for evaluating omni-models and multimodal reward models. Our work highlights the need for fairer evaluation protocols and stronger alignment with human preferences. The source code and dataset are publicly available at: https://urrealhero.github.io/judgeanythingweb/.
Quantifying and Enhancing Multi-modal Robustness with Modality Preference
Multi-modal models have shown a promising capability to effectively integrate information from various sources, yet meanwhile, they are found vulnerable to pervasive perturbations, such as uni-modal attacks and missing conditions. To counter these perturbations, robust multi-modal representations are highly expected, which are positioned well away from the discriminative multi-modal decision boundary. In this paper, different from conventional empirical studies, we focus on a commonly used joint multi-modal framework and theoretically discover that larger uni-modal representation margins and more reliable integration for modalities are essential components for achieving higher robustness. This discovery can further explain the limitation of multi-modal robustness and the phenomenon that multi-modal models are often vulnerable to attacks on the specific modality. Moreover, our analysis reveals how the widespread issue, that the model has different preferences for modalities, limits the multi-modal robustness by influencing the essential components and could lead to attacks on the specific modality highly effective. Inspired by our theoretical finding, we introduce a training procedure called Certifiable Robust Multi-modal Training (CRMT), which can alleviate this influence from modality preference and explicitly regulate essential components to significantly improve robustness in a certifiable manner. Our method demonstrates substantial improvements in performance and robustness compared with existing methods. Furthermore, our training procedure can be easily extended to enhance other robust training strategies, highlighting its credibility and flexibility.
Large Language Models are Competitive Near Cold-start Recommenders for Language- and Item-based Preferences
Traditional recommender systems leverage users' item preference history to recommend novel content that users may like. However, modern dialog interfaces that allow users to express language-based preferences offer a fundamentally different modality for preference input. Inspired by recent successes of prompting paradigms for large language models (LLMs), we study their use for making recommendations from both item-based and language-based preferences in comparison to state-of-the-art item-based collaborative filtering (CF) methods. To support this investigation, we collect a new dataset consisting of both item-based and language-based preferences elicited from users along with their ratings on a variety of (biased) recommended items and (unbiased) random items. Among numerous experimental results, we find that LLMs provide competitive recommendation performance for pure language-based preferences (no item preferences) in the near cold-start case in comparison to item-based CF methods, despite having no supervised training for this specific task (zero-shot) or only a few labels (few-shot). This is particularly promising as language-based preference representations are more explainable and scrutable than item-based or vector-based representations.
Multi-Modal Recommendation Unlearning for Legal, Licensing, and Modality Constraints
User data spread across multiple modalities has popularized multi-modal recommender systems (MMRS). They recommend diverse content such as products, social media posts, TikTok reels, etc., based on a user-item interaction graph. With rising data privacy demands, recent methods propose unlearning private user data from uni-modal recommender systems (RS). However, methods for unlearning item data related to outdated user preferences, revoked licenses, and legally requested removals are still largely unexplored. Previous RS unlearning methods are unsuitable for MMRS due to the incompatibility of their matrix-based representation with the multi-modal user-item interaction graph. Moreover, their data partitioning step degrades performance on each shard due to poor data heterogeneity and requires costly performance aggregation across shards. This paper introduces MMRecUn, the first approach known to us for unlearning in MMRS and unlearning item data. Given a trained RS model, MMRecUn employs a novel Reverse Bayesian Personalized Ranking (BPR) objective to enable the model to forget marked data. The reverse BPR attenuates the impact of user-item interactions within the forget set, while the forward BPR reinforces the significance of user-item interactions within the retain set. Our experiments demonstrate that MMRecUn outperforms baseline methods across various unlearning requests when evaluated on benchmark MMRS datasets. MMRecUn achieves recall performance improvements of up to 49.85% compared to baseline methods and is up to 1.3x faster than the Gold model, which is trained on retain set from scratch. MMRecUn offers significant advantages, including superiority in removing target interactions, preserving retained interactions, and zero overhead costs compared to previous methods. Code: https://github.com/MachineUnlearn/MMRecUN Extended version: arXiv:2405.15328
Debiasing Multimodal Large Language Models via Noise-Aware Preference Optimization
Multimodal Large Language Models excel in various tasks, yet often struggle with modality bias, where the model tends to rely heavily on a single modality and overlook critical information in other modalities, which leads to incorrect focus and generating irrelevant responses. In this paper, we propose using the paradigm of preference optimization to solve the modality bias problem, including RLAIFVBias, a debiased preference optimization dataset, and a Noise Aware Preference Optimization algorithm. Specifically, we first construct the dataset by introducing perturbations to reduce the informational content of certain modalities, compelling the model to rely on a specific modality when generating negative responses. To address the inevitable noise in automatically constructed data, we combine the noise robust Mean Absolute Error with the Binary Cross Entropy in Direct Preference Optimization by a negative Box Cox transformation, and dynamically adjust the algorithm noise robustness based on the evaluated noise levels in the data. Extensive experiments validate our approach, demonstrating not only its effectiveness in mitigating modality bias but also its significant role in minimizing hallucinations.
Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts
Recent advancements in Multimodal Large Language Models (MLLMs) underscore the significance of scalable models and data to boost performance, yet this often incurs substantial computational costs. Although the Mixture of Experts (MoE) architecture has been employed to efficiently scale large language and image-text models, these efforts typically involve fewer experts and limited modalities. To address this, our work presents the pioneering attempt to develop a unified MLLM with the MoE architecture, named Uni-MoE that can handle a wide array of modalities. Specifically, it features modality-specific encoders with connectors for a unified multimodal representation. We also implement a sparse MoE architecture within the LLMs to enable efficient training and inference through modality-level data parallelism and expert-level model parallelism. To enhance the multi-expert collaboration and generalization, we present a progressive training strategy: 1) Cross-modality alignment using various connectors with different cross-modality data, 2) Training modality-specific experts with cross-modality instruction data to activate experts' preferences, and 3) Tuning the Uni-MoE framework utilizing Low-Rank Adaptation (LoRA) on mixed multimodal instruction data. We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets. The extensive experimental results demonstrate Uni-MoE's principal advantage of significantly reducing performance bias in handling mixed multimodal datasets, alongside improved multi-expert collaboration and generalization. Our findings highlight the substantial potential of MoE frameworks in advancing MLLMs and the code is available at https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs.
Diff4Steer: Steerable Diffusion Prior for Generative Music Retrieval with Semantic Guidance
Modern music retrieval systems often rely on fixed representations of user preferences, limiting their ability to capture users' diverse and uncertain retrieval needs. To address this limitation, we introduce Diff4Steer, a novel generative retrieval framework that employs lightweight diffusion models to synthesize diverse seed embeddings from user queries that represent potential directions for music exploration. Unlike deterministic methods that map user query to a single point in embedding space, Diff4Steer provides a statistical prior on the target modality (audio) for retrieval, effectively capturing the uncertainty and multi-faceted nature of user preferences. Furthermore, Diff4Steer can be steered by image or text inputs, enabling more flexible and controllable music discovery combined with nearest neighbor search. Our framework outperforms deterministic regression methods and LLM-based generative retrieval baseline in terms of retrieval and ranking metrics, demonstrating its effectiveness in capturing user preferences, leading to more diverse and relevant recommendations. Listening examples are available at tinyurl.com/diff4steer.
Trajectory Improvement and Reward Learning from Comparative Language Feedback
Learning from human feedback has gained traction in fields like robotics and natural language processing in recent years. While prior works mostly rely on human feedback in the form of comparisons, language is a preferable modality that provides more informative insights into user preferences. In this work, we aim to incorporate comparative language feedback to iteratively improve robot trajectories and to learn reward functions that encode human preferences. To achieve this goal, we learn a shared latent space that integrates trajectory data and language feedback, and subsequently leverage the learned latent space to improve trajectories and learn human preferences. To the best of our knowledge, we are the first to incorporate comparative language feedback into reward learning. Our simulation experiments demonstrate the effectiveness of the learned latent space and the success of our learning algorithms. We also conduct human subject studies that show our reward learning algorithm achieves a 23.9% higher subjective score on average and is 11.3% more time-efficient compared to preference-based reward learning, underscoring the superior performance of our method. Our website is at https://liralab.usc.edu/comparative-language-feedback/
MMedPO: Aligning Medical Vision-Language Models with Clinical-Aware Multimodal Preference Optimization
The advancement of Large Vision-Language Models (LVLMs) has propelled their application in the medical field. However, Medical LVLMs (Med-LVLMs) encounter factuality challenges due to modality misalignment, where the models prioritize textual knowledge over visual input, leading to hallucinations that contradict information in medical images. Previous attempts to enhance modality alignment in Med-LVLMs through preference optimization have inadequately mitigated clinical relevance in preference data, making these samples easily distinguishable and reducing alignment effectiveness. To address this challenge, we propose MMedPO, a novel multimodal medical preference optimization approach that considers the clinical relevance of preference samples to enhance Med-LVLM alignment. MMedPO curates multimodal preference data by introducing two types of dispreference: (1) plausible hallucinations injected through target Med-LVLMs or GPT-4o to produce medically inaccurate responses, and (2) lesion region neglect achieved through local lesion-noising, disrupting visual understanding of critical areas. We then calculate clinical relevance for each sample based on scores from multiple Med-LLMs and visual tools, and integrate these scores into the preference optimization process as weights, enabling effective alignment. Our experiments demonstrate that MMedPO significantly enhances factual accuracy in Med-LVLMs, achieving substantial improvements over existing preference optimization methods by averaging 14.2% and 51.7% across the Med-VQA and report generation tasks. Our code are available in https://github.com/aiming-lab/MMedPO.
Fast Adaptation with Bradley-Terry Preference Models in Text-To-Image Classification and Generation
Recently, large multimodal models, such as CLIP and Stable Diffusion have experimented tremendous successes in both foundations and applications. However, as these models increase in parameter size and computational requirements, it becomes more challenging for users to personalize them for specific tasks or preferences. In this work, we address the problem of adapting the previous models towards sets of particular human preferences, aligning the retrieved or generated images with the preferences of the user. We leverage the Bradley-Terry preference model to develop a fast adaptation method that efficiently fine-tunes the original model, with few examples and with minimal computing resources. Extensive evidence of the capabilities of this framework is provided through experiments in different domains related to multimodal text and image understanding, including preference prediction as a reward model, and generation tasks.
Is Extending Modality The Right Path Towards Omni-Modality?
Omni-modal language models (OLMs) aim to integrate and reason over diverse input modalities--such as text, images, video, and audio--while maintaining strong language capabilities. Despite recent advancements, existing models, especially open-source ones, remain far from true omni-modality, struggling to generalize beyond the specific modality pairs they are trained on or to achieve strong performance when processing multi-modal inputs. We study the effect of extending modality, the dominant technique for training multimodal models, where an off-the-shelf language model is fine-tuned on target-domain and language data. Specifically, we investigate three key questions: (1) Does modality extension compromise core language abilities? (2) Can model merging effectively integrate independently fine-tuned modality-specific models to achieve omni-modality? (3) Does omni-modality extension lead to better knowledge sharing and generalization compared to sequential extension? Through extensive experiments, we analyze these trade-offs and provide insights into the feasibility of achieving true omni-modality using current approaches.
MLLMs are Deeply Affected by Modality Bias
Recent advances in Multimodal Large Language Models (MLLMs) have shown promising results in integrating diverse modalities such as texts and images. MLLMs are heavily influenced by modality bias, often relying on language while under-utilizing other modalities like visual inputs. This position paper argues that MLLMs are deeply affected by modality bias. Firstly, we diagnose the current state of modality bias, highlighting its manifestations across various tasks. Secondly, we propose a systematic research road-map related to modality bias in MLLMs. Thirdly, we identify key factors of modality bias in MLLMs and offer actionable suggestions for future research to mitigate it. To substantiate these findings, we conduct experiments that demonstrate the influence of each factor: 1. Data Characteristics: Language data is compact and abstract, while visual data is redundant and complex, creating an inherent imbalance in learning dynamics. 2. Imbalanced Backbone Capabilities: The dominance of pretrained language models in MLLMs leads to overreliance on language and neglect of visual information. 3. Training Objectives: Current objectives often fail to promote balanced cross-modal alignment, resulting in shortcut learning biased toward language. These findings highlight the need for balanced training strategies and model architectures to better integrate multiple modalities in MLLMs. We call for interdisciplinary efforts to tackle these challenges and drive innovation in MLLM research. Our work provides a fresh perspective on modality bias in MLLMs and offers insights for developing more robust and generalizable multimodal systems-advancing progress toward Artificial General Intelligence.
Understanding Alignment in Multimodal LLMs: A Comprehensive Study
Preference alignment has become a crucial component in enhancing the performance of Large Language Models (LLMs), yet its impact in Multimodal Large Language Models (MLLMs) remains comparatively underexplored. Similar to language models, MLLMs for image understanding tasks encounter challenges like hallucination. In MLLMs, hallucination can occur not only by stating incorrect facts but also by producing responses that are inconsistent with the image content. A primary objective of alignment for MLLMs is to encourage these models to align responses more closely with image information. Recently, multiple works have introduced preference datasets for MLLMs and examined different alignment methods, including Direct Preference Optimization (DPO) and Proximal Policy Optimization (PPO). However, due to variations in datasets, base model types, and alignment methods, it remains unclear which specific elements contribute most significantly to the reported improvements in these works. In this paper, we independently analyze each aspect of preference alignment in MLLMs. We start by categorizing the alignment algorithms into two groups, offline (such as DPO), and online (such as online-DPO), and show that combining offline and online methods can improve the performance of the model in certain scenarios. We review a variety of published multimodal preference datasets and discuss how the details of their construction impact model performance. Based on these insights, we introduce a novel way of creating multimodal preference data called Bias-Driven Hallucination Sampling (BDHS) that needs neither additional annotation nor external models, and show that it can achieve competitive performance to previously published alignment work for multimodal models across a range of benchmarks.
Preference Tuning with Human Feedback on Language, Speech, and Vision Tasks: A Survey
Preference tuning is a crucial process for aligning deep generative models with human preferences. This survey offers a thorough overview of recent advancements in preference tuning and the integration of human feedback. The paper is organized into three main sections: 1) introduction and preliminaries: an introduction to reinforcement learning frameworks, preference tuning tasks, models, and datasets across various modalities: language, speech, and vision, as well as different policy approaches, 2) in-depth examination of each preference tuning approach: a detailed analysis of the methods used in preference tuning, and 3) applications, discussion, and future directions: an exploration of the applications of preference tuning in downstream tasks, including evaluation methods for different modalities, and an outlook on future research directions. Our objective is to present the latest methodologies in preference tuning and model alignment, enhancing the understanding of this field for researchers and practitioners. We hope to encourage further engagement and innovation in this area.
Multimodal Difference Learning for Sequential Recommendation
Sequential recommendations have drawn significant attention in modeling the user's historical behaviors to predict the next item. With the booming development of multimodal data (e.g., image, text) on internet platforms, sequential recommendation also benefits from the incorporation of multimodal data. Most methods introduce modal features of items as side information and simply concatenates them to learn unified user interests. Nevertheless, these methods encounter the limitation in modeling multimodal differences. We argue that user interests and item relationships vary across different modalities. To address this problem, we propose a novel Multimodal Difference Learning framework for Sequential Recommendation, MDSRec for brevity. Specifically, we first explore the differences in item relationships by constructing modal-aware item relation graphs with behavior signal to enhance item representations. Then, to capture the differences in user interests across modalities, we design a interest-centralized attention mechanism to independently model user sequence representations in different modalities. Finally, we fuse the user embeddings from multiple modalities to achieve accurate item recommendation. Experimental results on five real-world datasets demonstrate the superiority of MDSRec over state-of-the-art baselines and the efficacy of multimodal difference learning.
Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models
Multimodal large language models (MLLMs) can simultaneously process visual, textual, and auditory data, capturing insights that complement human analysis. However, existing video question-answering (VidQA) benchmarks and datasets often exhibit a bias toward a single modality, despite the goal of requiring advanced reasoning skills that integrate diverse modalities to answer the queries. In this work, we introduce the modality importance score (MIS) to identify such bias. It is designed to assess which modality embeds the necessary information to answer the question. Additionally, we propose an innovative method using state-of-the-art MLLMs to estimate the modality importance, which can serve as a proxy for human judgments of modality perception. With this MIS, we demonstrate the presence of unimodal bias and the scarcity of genuinely multimodal questions in existing datasets. We further validate the modality importance score with multiple ablation studies to evaluate the performance of MLLMs on permuted feature sets. Our results indicate that current models do not effectively integrate information due to modality imbalance in existing datasets. Our proposed MLLM-derived MIS can guide the curation of modality-balanced datasets that advance multimodal learning and enhance MLLMs' capabilities to understand and utilize synergistic relations across modalities.
Boosting Multi-modal Model Performance with Adaptive Gradient Modulation
While the field of multi-modal learning keeps growing fast, the deficiency of the standard joint training paradigm has become clear through recent studies. They attribute the sub-optimal performance of the jointly trained model to the modality competition phenomenon. Existing works attempt to improve the jointly trained model by modulating the training process. Despite their effectiveness, those methods can only apply to late fusion models. More importantly, the mechanism of the modality competition remains unexplored. In this paper, we first propose an adaptive gradient modulation method that can boost the performance of multi-modal models with various fusion strategies. Extensive experiments show that our method surpasses all existing modulation methods. Furthermore, to have a quantitative understanding of the modality competition and the mechanism behind the effectiveness of our modulation method, we introduce a novel metric to measure the competition strength. This metric is built on the mono-modal concept, a function that is designed to represent the competition-less state of a modality. Through systematic investigation, our results confirm the intuition that the modulation encourages the model to rely on the more informative modality. In addition, we find that the jointly trained model typically has a preferred modality on which the competition is weaker than other modalities. However, this preferred modality need not dominate others. Our code will be available at https://github.com/lihong2303/AGM_ICCV2023.
Data Poisoning Attacks Against Multimodal Encoders
Recently, the newly emerged multimodal models, which leverage both visual and linguistic modalities to train powerful encoders, have gained increasing attention. However, learning from a large-scale unlabeled dataset also exposes the model to the risk of potential poisoning attacks, whereby the adversary aims to perturb the model's training data to trigger malicious behaviors in it. In contrast to previous work, only poisoning visual modality, in this work, we take the first step to studying poisoning attacks against multimodal models in both visual and linguistic modalities. Specially, we focus on answering two questions: (1) Is the linguistic modality also vulnerable to poisoning attacks? and (2) Which modality is most vulnerable? To answer the two questions, we propose three types of poisoning attacks against multimodal models. Extensive evaluations on different datasets and model architectures show that all three attacks can achieve significant attack performance while maintaining model utility in both visual and linguistic modalities. Furthermore, we observe that the poisoning effect differs between different modalities. To mitigate the attacks, we propose both pre-training and post-training defenses. We empirically show that both defenses can significantly reduce the attack performance while preserving the model's utility.
The Possible, the Plausible, and the Desirable: Event-Based Modality Detection for Language Processing
Modality is the linguistic ability to describe events with added information such as how desirable, plausible, or feasible they are. Modality is important for many NLP downstream tasks such as the detection of hedging, uncertainty, speculation, and more. Previous studies that address modality detection in NLP often restrict modal expressions to a closed syntactic class, and the modal sense labels are vastly different across different studies, lacking an accepted standard. Furthermore, these senses are often analyzed independently of the events that they modify. This work builds on the theoretical foundations of the Georgetown Gradable Modal Expressions (GME) work by Rubinstein et al. (2013) to propose an event-based modality detection task where modal expressions can be words of any syntactic class and sense labels are drawn from a comprehensive taxonomy which harmonizes the modal concepts contributed by the different studies. We present experiments on the GME corpus aiming to detect and classify fine-grained modal concepts and associate them with their modified events. We show that detecting and classifying modal expressions is not only feasible, but also improves the detection of modal events in their own right.
DecipherPref: Analyzing Influential Factors in Human Preference Judgments via GPT-4
Human preference judgments are pivotal in guiding large language models (LLMs) to produce outputs that align with human values. Human evaluations are also used in summarization tasks to compare outputs from various systems, complementing existing automatic metrics. Despite their significance, however, there has been limited research probing these pairwise or k-wise comparisons. The collective impact and relative importance of factors such as output length, informativeness, fluency, and factual consistency are still not well understood. It is also unclear if there are other hidden factors influencing human judgments. In this paper, we conduct an in-depth examination of a collection of pairwise human judgments released by OpenAI. Utilizing the Bradley-Terry-Luce (BTL) model, we reveal the inherent preferences embedded in these human judgments. We find that the most favored factors vary across tasks and genres, whereas the least favored factors tend to be consistent, e.g., outputs are too brief, contain excessive off-focus content or hallucinated facts. Our findings have implications on the construction of balanced datasets in human preference evaluations, which is a crucial step in shaping the behaviors of future LLMs.
Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond
Developing a universal model that can effectively harness heterogeneous resources and respond to a wide range of personalized needs has been a longstanding community aspiration. Our daily choices, especially in domains like fashion and retail, are substantially shaped by multi-modal data, such as pictures and textual descriptions. These modalities not only offer intuitive guidance but also cater to personalized user preferences. However, the predominant personalization approaches mainly focus on the ID or text-based recommendation problem, failing to comprehend the information spanning various tasks or modalities. In this paper, our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP), which effectively leverages multi-modal data while eliminating the complexities associated with task- and modality-specific customization. We argue that the advancements in foundational generative modeling have provided the flexibility and effectiveness necessary to achieve the objective. In light of this, we develop a generic and extensible personalization generative framework, that can handle a wide range of personalized needs including item recommendation, product search, preference prediction, explanation generation, and further user-guided image generation. Our methodology enhances the capabilities of foundational language models for personalized tasks by seamlessly ingesting interleaved cross-modal user history information, ensuring a more precise and customized experience for users. To train and evaluate the proposed multi-modal personalized tasks, we also introduce a novel and comprehensive benchmark covering a variety of user requirements. Our experiments on the real-world benchmark showcase the model's potential, outperforming competitive methods specialized for each task.
Dissecting Human and LLM Preferences
As a relative quality comparison of model responses, human and Large Language Model (LLM) preferences serve as common alignment goals in model fine-tuning and criteria in evaluation. Yet, these preferences merely reflect broad tendencies, resulting in less explainable and controllable models with potential safety risks. In this work, we dissect the preferences of human and 32 different LLMs to understand their quantitative composition, using annotations from real-world user-model conversations for a fine-grained, scenario-wise analysis. We find that humans are less sensitive to errors, favor responses that support their stances, and show clear dislike when models admit their limits. On the contrary, advanced LLMs like GPT-4-Turbo emphasize correctness, clarity, and harmlessness more. Additionally, LLMs of similar sizes tend to exhibit similar preferences, regardless of their training methods, and fine-tuning for alignment does not significantly alter the preferences of pretrained-only LLMs. Finally, we show that preference-based evaluation can be intentionally manipulated. In both training-free and training-based settings, aligning a model with the preferences of judges boosts scores, while injecting the least preferred properties lowers them. This results in notable score shifts: up to 0.59 on MT-Bench (1-10 scale) and 31.94 on AlpacaEval 2.0 (0-100 scale), highlighting the significant impact of this strategic adaptation. Interactive Demo: https://huggingface.co/spaces/GAIR/Preference-Dissection-Visualization Dataset: https://huggingface.co/datasets/GAIR/preference-dissection Code: https://github.com/GAIR-NLP/Preference-Dissection
Data-Centric Human Preference Optimization with Rationales
Reinforcement learning from human feedback plays a crucial role in aligning language models towards human preferences, traditionally represented through comparisons between pairs or sets of responses within a given context. While many studies have enhanced algorithmic techniques to optimize learning from such data, this work shifts focus to improving preference learning through a data-centric approach. Specifically, we propose enriching existing preference datasets with machine-generated rationales that explain the reasons behind choices. We develop a simple and principled framework to augment current preference learning methods with rationale information. Our comprehensive analysis highlights how rationales enhance learning efficiency. Extensive experiments reveal that rationale-enriched preference learning offers multiple advantages: it improves data efficiency, accelerates convergence to higher-performing models, and reduces verbosity bias and hallucination. Furthermore, this framework is versatile enough to integrate with various preference optimization algorithms. Overall, our findings highlight the potential of re-imagining data design for preference learning, demonstrating that even freely available machine-generated rationales can significantly boost performance across multiple dimensions. The code repository is available at https: //github.com/reds-lab/preference-learning-with-rationales
From Introspection to Best Practices: Principled Analysis of Demonstrations in Multimodal In-Context Learning
Motivated by in-context learning (ICL) capabilities of Large Language models (LLMs), multimodal LLMs with additional visual modality are also exhibited with similar ICL abilities when multiple image-text pairs are provided as demonstrations. However, relatively less work has been done to investigate the principles behind how and why multimodal ICL works. We conduct a systematic and principled evaluation of multimodal ICL for models of different scales on a broad spectrum of new yet critical tasks. Through perturbations over different modality information, we show that modalities matter differently across tasks in multimodal ICL. Considering such modality impact, we further utilize modality-driven demonstration strategies to boost ICL performance. We also identify that demonstration selection is closely related to the models' ability to capture task inductive biases from multimodal ICL. Our principled analysis provides a comprehensive way of understanding the role of demonstrations in multimodal in-context learning, and sheds light on effectively improving multimodal ICL on a wide range of tasks even if those tasks are not seen in or even contradict pretraining data.
Modality Curation: Building Universal Embeddings for Advanced Multimodal Information Retrieval
Multimodal information retrieval (MIR) faces inherent challenges due to the heterogeneity of data sources and the complexity of cross-modal alignment. While previous studies have identified modal gaps in feature spaces, a systematic approach to address these challenges remains unexplored. In this work, we introduce UNITE, a universal framework that tackles these challenges through two critical yet underexplored aspects: data curation and modality-aware training configurations. Our work provides the first comprehensive analysis of how modality-specific data properties influence downstream task performance across diverse scenarios. Moreover, we propose Modal-Aware Masked Contrastive Learning (MAMCL) to mitigate the competitive relationships among the instances of different modalities. Our framework achieves state-of-the-art results on multiple multimodal retrieval benchmarks, outperforming existing methods by notable margins. Through extensive experiments, we demonstrate that strategic modality curation and tailored training protocols are pivotal for robust cross-modal representation learning. This work not only advances MIR performance but also provides a foundational blueprint for future research in multimodal systems. Our project is available at https://friedrichor.github.io/projects/UNITE.
Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks
RLHF has emerged as a predominant approach for aligning artificial intelligence systems with human preferences, demonstrating exceptional and measurable efficacy in instruction following tasks; however, it exhibits insufficient compliance capabilities when confronted with complex multi-instruction tasks. Conventional approaches rely heavily on human annotation or more sophisticated large language models, thereby introducing substantial resource expenditure or potential bias concerns. Meanwhile, alternative synthetic methods that augment standard preference datasets often compromise the model's semantic quality. Our research identifies a critical oversight in existing techniques, which predominantly focus on comparing responses while neglecting valuable latent signals embedded within prompt inputs, and which only focus on preference disparities at the intra-sample level, while neglecting to account for the inter-sample level preference differentials that exist among preference data. To leverage these previously neglected indicators, we propose a novel Multi-level Aware Preference Learning (MAPL) framework, capable of enhancing multi-instruction capabilities. Specifically, for any given response in original preference data pairs, we construct varied prompts with a preference relation under different conditions, in order to learn intra-sample level preference disparities. Furthermore, for any given original preference pair, we synthesize multi-instruction preference pairs to capture preference discrepancies at the inter-sample level. Building on the two datasets constructed above, we consequently devise two sophisticated training objective functions. Subsequently, our framework integrates seamlessly into both Reward Modeling and Direct Preference Optimization paradigms. Through rigorous evaluation across multiple benchmarks, we empirically validate the efficacy of our framework.
Towards Harmless Multimodal Assistants with Blind Preference Optimization
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in multimodal understanding, reasoning, and interaction. Given the extensive applications of MLLMs, the associated safety issues have become increasingly critical. Due to the effectiveness of preference optimization in aligning MLLMs with human preferences, there is an urgent need for safety-related preference data for MLLMs. To address this, we construct the MMSafe-PO preference dataset towards harmless multimodal assistants, featuring multimodal instructions, the conversational format, and ranked paired responses from human feedback. We also identify two insightful observations: modality co-defense and modality cheating, which illustrate that MLLMs possess a certain level of inherent defense while still presenting unique safety challenges. Based on these observations, we propose the Blind Preference Optimization (BPO) approach. Comprehensive experiments on three benchmarks show that BPO effectively enhances the safety capabilities of MLLMs. Notably, BPO significantly improves the safety rate of the base MLLM by 45.0%, outperforming the DPO approach. Additionally, applying BPO to the MMSafe-PO dataset greatly reduces the base MLLM's unsafe rate on other safety benchmarks (14.5% on MM-SafetyBench and 82.9% on HarmEval, demonstrating the effectiveness and robustness of both the dataset and the approach. We release code and data at https://lu-yang666.github.io/MMsafe-PO-Web/.
Improving Context-Aware Preference Modeling for Language Models
While finetuning language models from pairwise preferences has proven remarkably effective, the underspecified nature of natural language presents critical challenges. Direct preference feedback is uninterpretable, difficult to provide where multidimensional criteria may apply, and often inconsistent, either because it is based on incomplete instructions or provided by diverse principals. To address these challenges, we consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context. We decompose reward modeling error according to these two steps, which suggests that supervising context in addition to context-specific preference may be a viable approach to aligning models with diverse human preferences. For this to work, the ability of models to evaluate context-specific preference is critical. To this end, we contribute context-conditioned preference datasets and accompanying experiments that investigate the ability of language models to evaluate context-specific preference. We use our datasets to (1) show that existing preference models benefit from, but fail to fully consider, added context, (2) finetune a context-aware reward model with context-specific performance exceeding that of GPT-4 and Llama 3 70B on tested datasets, and (3) investigate the value of context-aware preference modeling.
Learning Multi-dimensional Human Preference for Text-to-Image Generation
Current metrics for text-to-image models typically rely on statistical metrics which inadequately represent the real preference of humans. Although recent work attempts to learn these preferences via human annotated images, they reduce the rich tapestry of human preference to a single overall score. However, the preference results vary when humans evaluate images with different aspects. Therefore, to learn the multi-dimensional human preferences, we propose the Multi-dimensional Preference Score (MPS), the first multi-dimensional preference scoring model for the evaluation of text-to-image models. The MPS introduces the preference condition module upon CLIP model to learn these diverse preferences. It is trained based on our Multi-dimensional Human Preference (MHP) Dataset, which comprises 918,315 human preference choices across four dimensions (i.e., aesthetics, semantic alignment, detail quality and overall assessment) on 607,541 images. The images are generated by a wide range of latest text-to-image models. The MPS outperforms existing scoring methods across 3 datasets in 4 dimensions, enabling it a promising metric for evaluating and improving text-to-image generation.
CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval
Online video web content is richly multimodal: a single video blends vision, speech, ambient audio, and on-screen text. Retrieval systems typically treat these modalities as independent retrieval sources, which can lead to noisy and subpar retrieval. We explore multimodal video content retrieval, where relevance can be scored from one particular modality or jointly across multiple modalities simultaneously. Consequently, an effective retriever must dynamically choose which modality (or set of modalities) best addresses the query. We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata. CLaMR jointly encodes all modalities with a unified multimodal backbone for improved contextualization and is trained to enhance dynamic modality selection via two key innovations. First, given the lack of training data for multimodal retrieval, we introduce MultiVENT 2.0++, a large-scale synthetic training dataset built on MultiVENT 2.0 (event-centric videos in various languages paired with queries) with modality-targeted queries. Next, we propose a modality-aware loss that jointly trains according to a standard contrastive objective alongside an objective for learning correct modality usage. On the test sets of MultiVENT 2.0++ and MSRVTT, conventional aggregation strategies, such as averaging similarities for baseline retrievers, degrade performance by introducing noise from irrelevant modalities. In contrast, CLaMR consistently outperforms existing retrievers: on MultiVENT 2.0++, CLaMR improves nDCG@10 by 25.6 over the best single-modality retriever and by 35.4 over the best multi-modality retriever. We illustrate CLaMR's downstream utility on long-video QA, retrieving relevant frames and obtaining a 3.50% boost over LanguageBind on Video-MME and 1.42% over dense sampling on LongVideoBench.
Learning a Canonical Basis of Human Preferences from Binary Ratings
Recent advances in generative AI have been driven by alignment techniques such as reinforcement learning from human feedback (RLHF). RLHF and related techniques typically involve constructing a dataset of binary or ranked choice human preferences and subsequently fine-tuning models to align with these preferences. This paper shifts the focus to understanding the preferences encoded in such datasets and identifying common human preferences. We find that a small subset of 21 preference categories (selected from a set of nearly 5,000 distinct preferences) captures >89% of preference variation across individuals. This small set of preferences is analogous to a canonical basis of human preferences, similar to established findings that characterize human variation in psychology or facial recognition studies. Through both synthetic and empirical evaluations, we confirm that our low-rank, canonical set of human preferences generalizes across the entire dataset and within specific topics. We further demonstrate our preference basis' utility in model evaluation, where our preference categories offer deeper insights into model alignment, and in model training, where we show that fine-tuning on preference-defined subsets successfully aligns the model accordingly.
A Topic-level Self-Correctional Approach to Mitigate Hallucinations in MLLMs
Aligning the behaviors of Multimodal Large Language Models (MLLMs) with human preferences is crucial for developing robust and trustworthy AI systems. While recent attempts have employed human experts or powerful auxiliary AI systems to provide more accurate preference feedback, such as determining the preferable responses from MLLMs or directly rewriting hallucination-free responses, extensive resource overhead compromise the scalability of the feedback collection. In this work, we introduce Topic-level Preference Overwriting (TPO), a self-correctional approach that guide the model itself to mitigate its own hallucination at the topic level. Through a deconfounded strategy that replaces each topic within the response with the best or worst alternatives generated by the model itself, TPO creates more contrasting pairwise preference feedback, enhancing the feedback quality without human or proprietary model intervention. Notably, the experimental results demonstrate proposed TPO achieves state-of-the-art performance in trustworthiness, significantly reducing the object hallucinations by 92% and overall hallucinations by 38%. Code, model and data will be released.
SimulPL: Aligning Human Preferences in Simultaneous Machine Translation
Simultaneous Machine Translation (SiMT) generates translations while receiving streaming source inputs. This requires the SiMT model to learn a read/write policy, deciding when to translate and when to wait for more source input. Numerous linguistic studies indicate that audiences in SiMT scenarios have distinct preferences, such as accurate translations, simpler syntax, and no unnecessary latency. Aligning SiMT models with these human preferences is crucial to improve their performances. However, this issue still remains unexplored. Additionally, preference optimization for SiMT task is also challenging. Existing methods focus solely on optimizing the generated responses, ignoring human preferences related to latency and the optimization of read/write policy during the preference optimization phase. To address these challenges, we propose Simultaneous Preference Learning (SimulPL), a preference learning framework tailored for the SiMT task. In the SimulPL framework, we categorize SiMT human preferences into five aspects: translation quality preference, monotonicity preference, key point preference, simplicity preference, and latency preference. By leveraging the first four preferences, we construct human preference prompts to efficiently guide GPT-4/4o in generating preference data for the SiMT task. In the preference optimization phase, SimulPL integrates latency preference into the optimization objective and enables SiMT models to improve the read/write policy, thereby aligning with human preferences more effectively. Experimental results indicate that SimulPL exhibits better alignment with human preferences across all latency levels in ZhrightarrowEn, DerightarrowEn and EnrightarrowZh SiMT tasks. Our data and code will be available at https://github.com/EurekaForNLP/SimulPL.
Multimodal Deep Learning
This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.
Towards LLM-Centric Multimodal Fusion: A Survey on Integration Strategies and Techniques
The rapid progress of Multimodal Large Language Models(MLLMs) has transformed the AI landscape. These models combine pre-trained LLMs with various modality encoders. This integration requires a systematic understanding of how different modalities connect to the language backbone. Our survey presents an LLM-centric analysis of current approaches. We examine methods for transforming and aligning diverse modal inputs into the language embedding space. This addresses a significant gap in existing literature. We propose a classification framework for MLLMs based on three key dimensions. First, we examine architectural strategies for modality integration. This includes both the specific integration mechanisms and the fusion level. Second, we categorize representation learning techniques as either joint or coordinate representations. Third, we analyze training paradigms, including training strategies and objective functions. By examining 125 MLLMs developed between 2021 and 2025, we identify emerging patterns in the field. Our taxonomy provides researchers with a structured overview of current integration techniques. These insights aim to guide the development of more robust multimodal integration strategies for future models built on pre-trained foundations.
Compositional preference models for aligning LMs
As language models (LMs) become more capable, it is increasingly important to align them with human preferences. However, the dominant paradigm for training Preference Models (PMs) for that purpose suffers from fundamental limitations, such as lack of transparency and scalability, along with susceptibility to overfitting the preference dataset. We propose Compositional Preference Models (CPMs), a novel PM framework that decomposes one global preference assessment into several interpretable features, obtains scalar scores for these features from a prompted LM, and aggregates these scores using a logistic regression classifier. Through these simple steps, CPMs allow to control which properties of the preference data are used to train the preference model and to build it based on features that are believed to underlie the human preference judgment. Our experiments show that CPMs not only improve generalization and are more robust to overoptimization than standard PMs, but also that best-of-n samples obtained using CPMs tend to be preferred over samples obtained using conventional PMs. Overall, our approach demonstrates the benefits of endowing PMs with priors about which features determine human preferences while relying on LM capabilities to extract those features in a scalable and robust way.
Beyond the Binary: Capturing Diverse Preferences With Reward Regularization
Large language models (LLMs) are increasingly deployed via public-facing interfaces to interact with millions of users, each with diverse preferences. Despite this, preference tuning of LLMs predominantly relies on reward models trained using binary judgments where annotators select the preferred choice out of pairs of model outputs. In this work, we argue that this reliance on binary choices does not capture the broader, aggregate preferences of the target user in real-world tasks. We propose a taxonomy that identifies two dimensions of subjectivity where different users disagree on the preferred output-namely, the Plurality of Responses to Prompts, where prompts allow for multiple correct answers, and the Indistinguishability of Responses, where candidate outputs are paraphrases of each other. We show that reward models correlate weakly with user preferences in these cases. As a first step to address this issue, we introduce a simple yet effective method that augments existing binary preference datasets with synthetic preference judgments to estimate potential user disagreement. Incorporating these via a margin term as a form of regularization during model training yields predictions that better align with the aggregate user preferences.
How do Multimodal Foundation Models Encode Text and Speech? An Analysis of Cross-Lingual and Cross-Modal Representations
Multimodal foundation models aim to create a unified representation space that abstracts away from surface features like language syntax or modality differences. To investigate this, we study the internal representations of three recent models, analyzing the model activations from semantically equivalent sentences across languages in the text and speech modalities. Our findings reveal that: 1) Cross-modal representations converge over model layers, except in the initial layers specialized at text and speech processing. 2) Length adaptation is crucial for reducing the cross-modal gap between text and speech, although current approaches' effectiveness is primarily limited to high-resource languages. 3) Speech exhibits larger cross-lingual differences than text. 4) For models not explicitly trained for modality-agnostic representations, the modality gap is more prominent than the language gap.
Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization
Existing open-source multimodal large language models (MLLMs) generally follow a training process involving pre-training and supervised fine-tuning. However, these models suffer from distribution shifts, which limit their multimodal reasoning, particularly in the Chain-of-Thought (CoT) performance. To address this, we introduce a preference optimization (PO) process to enhance the multimodal reasoning capabilities of MLLMs. Specifically, (1) on the data side, we design an automated preference data construction pipeline to create MMPR, a high-quality, large-scale multimodal reasoning preference dataset. and (2) on the model side, we explore integrating PO with MLLMs, developing a simple yet effective method, termed Mixed Preference Optimization (MPO), which boosts multimodal CoT performance. Our approach demonstrates improved performance across multiple benchmarks, particularly in multimodal reasoning tasks. Notably, our model, InternVL2-8B-MPO, achieves an accuracy of 67.0 on MathVista, outperforming InternVL2-8B by 8.7 points and achieving performance comparable to the 10x larger InternVL2-76B. We hope this study could inspire further advancements in MLLMs. Code, data, and model shall be publicly released.
Tri-Modal Motion Retrieval by Learning a Joint Embedding Space
Information retrieval is an ever-evolving and crucial research domain. The substantial demand for high-quality human motion data especially in online acquirement has led to a surge in human motion research works. Prior works have mainly concentrated on dual-modality learning, such as text and motion tasks, but three-modality learning has been rarely explored. Intuitively, an extra introduced modality can enrich a model's application scenario, and more importantly, an adequate choice of the extra modality can also act as an intermediary and enhance the alignment between the other two disparate modalities. In this work, we introduce LAVIMO (LAnguage-VIdeo-MOtion alignment), a novel framework for three-modality learning integrating human-centric videos as an additional modality, thereby effectively bridging the gap between text and motion. Moreover, our approach leverages a specially designed attention mechanism to foster enhanced alignment and synergistic effects among text, video, and motion modalities. Empirically, our results on the HumanML3D and KIT-ML datasets show that LAVIMO achieves state-of-the-art performance in various motion-related cross-modal retrieval tasks, including text-to-motion, motion-to-text, video-to-motion and motion-to-video.
Human Feedback is not Gold Standard
Human feedback has become the de facto standard for evaluating the performance of Large Language Models, and is increasingly being used as a training objective. However, it is not clear which properties of a generated output this single `preference' score captures. We hypothesise that preference scores are subjective and open to undesirable biases. We critically analyse the use of human feedback for both training and evaluation, to verify whether it fully captures a range of crucial error criteria. We find that while preference scores have fairly good coverage, they under-represent important aspects like factuality. We further hypothesise that both preference scores and error annotation may be affected by confounders, and leverage instruction-tuned models to generate outputs that vary along two possible confounding dimensions: assertiveness and complexity. We find that the assertiveness of an output skews the perceived rate of factuality errors, indicating that human annotations are not a fully reliable evaluation metric or training objective. Finally, we offer preliminary evidence that using human feedback as a training objective disproportionately increases the assertiveness of model outputs. We encourage future work to carefully consider whether preference scores are well aligned with the desired objective.
WikiPersonas: What Can We Learn From Personalized Alignment to Famous People?
Preference alignment has become a standard pipeline in finetuning models to follow generic human preferences. Majority of work seeks to optimize model to produce responses that would be preferable on average, simplifying the diverse and often contradicting space of human preferences. While research has increasingly focused on personalized alignment: adapting models to individual user preferences, there is a lack of personalized preference dataset which focus on nuanced individual-level preferences. To address this, we introduce WikiPersona: the first fine-grained personalization using well-documented, famous individuals. Our dataset challenges models to align with these personas through an interpretable process: generating verifiable textual descriptions of a persona's background and preferences in addition to alignment. We systematically evaluate different personalization approaches and find that as few-shot prompting with preferences and fine-tuning fail to simultaneously ensure effectiveness and efficiency, using inferred personal preferences as prefixes enables effective personalization, especially in topics where preferences clash while leading to more equitable generalization across unseen personas.
Adaptive Helpfulness-Harmlessness Alignment with Preference Vectors
Ensuring that large language models (LLMs) are both helpful and harmless is a critical challenge, as overly strict constraints can lead to excessive refusals, while permissive models risk generating harmful content. Existing approaches, such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO), attempt to balance these trade-offs but suffer from performance conflicts, limited controllability, and poor extendability. To address these issues, we propose Preference Vector, a novel framework inspired by task arithmetic. Instead of optimizing multiple preferences within a single objective, we train separate models on individual preferences, extract behavior shifts as preference vectors, and dynamically merge them at test time. This modular approach enables fine-grained, user-controllable preference adjustments and facilitates seamless integration of new preferences without retraining. Experiments show that our proposed Preference Vector framework improves helpfulness without excessive conservatism, allows smooth control over preference trade-offs, and supports scalable multi-preference alignment.
The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio
Recent advancements in large multimodal models (LMMs) have significantly enhanced performance across diverse tasks, with ongoing efforts to further integrate additional modalities such as video and audio. However, most existing LMMs remain vulnerable to hallucinations, the discrepancy between the factual multimodal input and the generated textual output, which has limited their applicability in various real-world scenarios. This paper presents the first systematic investigation of hallucinations in LMMs involving the three most common modalities: language, visual, and audio. Our study reveals two key contributors to hallucinations: overreliance on unimodal priors and spurious inter-modality correlations. To address these challenges, we introduce the benchmark The Curse of Multi-Modalities (CMM), which comprehensively evaluates hallucinations in LMMs, providing a detailed analysis of their underlying issues. Our findings highlight key vulnerabilities, including imbalances in modality integration and biases from training data, underscoring the need for balanced cross-modal learning and enhanced hallucination mitigation strategies. Based on our observations and findings, we suggest potential research directions that could enhance the reliability of LMMs.
Gramian Multimodal Representation Learning and Alignment
Human perception integrates multiple modalities, such as vision, hearing, and language, into a unified understanding of the surrounding reality. While recent multimodal models have achieved significant progress by aligning pairs of modalities via contrastive learning, their solutions are unsuitable when scaling to multiple modalities. These models typically align each modality to a designated anchor without ensuring the alignment of all modalities with each other, leading to suboptimal performance in tasks requiring a joint understanding of multiple modalities. In this paper, we structurally rethink the pairwise conventional approach to multimodal learning and we present the novel Gramian Representation Alignment Measure (GRAM), which overcomes the above-mentioned limitations. GRAM learns and then aligns n modalities directly in the higher-dimensional space in which modality embeddings lie by minimizing the Gramian volume of the k-dimensional parallelotope spanned by the modality vectors, ensuring the geometric alignment of all modalities simultaneously. GRAM can replace cosine similarity in any downstream method, holding for 2 to n modalities and providing more meaningful alignment with respect to previous similarity measures. The novel GRAM-based contrastive loss function enhances the alignment of multimodal models in the higher-dimensional embedding space, leading to new state-of-the-art performance in downstream tasks such as video-audio-text retrieval and audio-video classification. The project page, the code, and the pretrained models are available at https://ispamm.github.io/GRAM/.
See-Saw Modality Balance: See Gradient, and Sew Impaired Vision-Language Balance to Mitigate Dominant Modality Bias
Vision-language (VL) models have demonstrated strong performance across various tasks. However, these models often rely on a specific modality for predictions, leading to "dominant modality bias.'' This bias significantly hurts performance, especially when one modality is impaired. In this study, we analyze model behavior under dominant modality bias and theoretically show that unaligned gradients or differences in gradient magnitudes prevent balanced convergence of the loss. Based on these findings, we propose a novel framework, BalGrad to mitigate dominant modality bias. Our approach includes inter-modality gradient reweighting, adjusting the gradient of KL divergence based on each modality's contribution, and inter-task gradient projection to align task directions in a non-conflicting manner. Experiments on UPMC Food-101, Hateful Memes, and MM-IMDb datasets confirm that BalGrad effectively alleviates over-reliance on specific modalities when making predictions.
AIR: A Systematic Analysis of Annotations, Instructions, and Response Pairs in Preference Dataset
Preference learning is critical for aligning large language models (LLMs) with human values, yet its success hinges on high-quality datasets comprising three core components: Preference Annotations, Instructions, and Response Pairs. Current approaches conflate these components, obscuring their individual impacts and hindering systematic optimization. In this work, we propose AIR, a component-wise analysis framework that systematically isolates and optimizes each component while evaluating their synergistic effects. Through rigorous experimentation, AIR reveals actionable principles: annotation simplicity (point-wise generative scoring), instruction inference stability (variance-based filtering across LLMs), and response pair quality (moderate margins + high absolute scores). When combined, these principles yield +5.3 average gains over baseline method, even with only 14k high-quality pairs. Our work shifts preference dataset design from ad hoc scaling to component-aware optimization, offering a blueprint for efficient, reproducible alignment.
MODA: MOdular Duplex Attention for Multimodal Perception, Cognition, and Emotion Understanding
Multimodal large language models (MLLMs) recently showed strong capacity in integrating data among multiple modalities, empowered by a generalizable attention architecture. Advanced methods predominantly focus on language-centric tuning while less exploring multimodal tokens mixed through attention, posing challenges in high-level tasks that require fine-grained cognition and emotion understanding. In this work, we identify the attention deficit disorder problem in multimodal learning, caused by inconsistent cross-modal attention and layer-by-layer decayed attention activation. To address this, we propose a novel attention mechanism, termed MOdular Duplex Attention (MODA), simultaneously conducting the inner-modal refinement and inter-modal interaction. MODA employs a correct-after-align strategy to effectively decouple modality alignment from cross-layer token mixing. In the alignment phase, tokens are mapped to duplex modality spaces based on the basis vectors, enabling the interaction between visual and language modality. Further, the correctness of attention scores is ensured through adaptive masked attention, which enhances the model's flexibility by allowing customizable masking patterns for different modalities. Extensive experiments on 21 benchmark datasets verify the effectiveness of MODA in perception, cognition, and emotion tasks. Source code and demo are available in https://zzcheng.top/MODA.
Robust Multimodal Large Language Models Against Modality Conflict
Despite the impressive capabilities of multimodal large language models (MLLMs) in vision-language tasks, they are prone to hallucinations in real-world scenarios. This paper investigates the hallucination phenomenon in MLLMs from the perspective of modality conflict. Unlike existing works focusing on the conflicts between model responses and inputs, we study the inherent conflicts in inputs from different modalities that place MLLMs in a dilemma and directly lead to hallucinations. We formally define the modality conflict and construct a dataset named Multimodal Modality Conflict (MMMC) to simulate this phenomenon in vision-language tasks. Three methods based on prompt engineering, supervised fine-tuning, and reinforcement learning are proposed to alleviate the hallucination caused by modality conflict. Extensive experiments are conducted on the MMMC dataset to analyze the merits and demerits of these methods. Our results show that the reinforcement learning method achieves the best performance in mitigating the hallucination under modality conflict, while the supervised fine-tuning method shows promising and stable performance. Our work sheds light on the unnoticed modality conflict that leads to hallucinations and provides more insights into the robustness of MLLMs.
Text-centric Alignment for Multi-Modality Learning
This research paper addresses the challenge of modality mismatch in multimodal learning, where the modalities available during inference differ from those available at training. We propose the Text-centric Alignment for Multi-Modality Learning (TAMML) approach, an innovative method that utilizes Large Language Models (LLMs) with in-context learning and foundation models to enhance the generalizability of multimodal systems under these conditions. By leveraging the unique properties of text as a unified semantic space, TAMML demonstrates significant improvements in handling unseen, diverse, and unpredictable modality combinations. TAMML not only adapts to varying modalities but also maintains robust performance, showcasing the potential of foundation models in overcoming the limitations of traditional fixed-modality frameworks in embedding representations. This study contributes to the field by offering a flexible, effective solution for real-world applications where modality availability is dynamic and uncertain.
Beyond Preferences in AI Alignment
The dominant practice of AI alignment assumes (1) that preferences are an adequate representation of human values, (2) that human rationality can be understood in terms of maximizing the satisfaction of preferences, and (3) that AI systems should be aligned with the preferences of one or more humans to ensure that they behave safely and in accordance with our values. Whether implicitly followed or explicitly endorsed, these commitments constitute what we term a preferentist approach to AI alignment. In this paper, we characterize and challenge the preferentist approach, describing conceptual and technical alternatives that are ripe for further research. We first survey the limits of rational choice theory as a descriptive model, explaining how preferences fail to capture the thick semantic content of human values, and how utility representations neglect the possible incommensurability of those values. We then critique the normativity of expected utility theory (EUT) for humans and AI, drawing upon arguments showing how rational agents need not comply with EUT, while highlighting how EUT is silent on which preferences are normatively acceptable. Finally, we argue that these limitations motivate a reframing of the targets of AI alignment: Instead of alignment with the preferences of a human user, developer, or humanity-writ-large, AI systems should be aligned with normative standards appropriate to their social roles, such as the role of a general-purpose assistant. Furthermore, these standards should be negotiated and agreed upon by all relevant stakeholders. On this alternative conception of alignment, a multiplicity of AI systems will be able to serve diverse ends, aligned with normative standards that promote mutual benefit and limit harm despite our plural and divergent values.
Multimodal Recommendation Dialog with Subjective Preference: A New Challenge and Benchmark
Existing multimodal task-oriented dialog data fails to demonstrate the diverse expressions of user subjective preferences and recommendation acts in the real-life shopping scenario. This paper introduces a new dataset SURE (Multimodal Recommendation Dialog with SUbjective PREference), which contains 12K shopping dialogs in complex store scenes. The data is built in two phases with human annotations to ensure quality and diversity. SURE is well-annotated with subjective preferences and recommendation acts proposed by sales experts. A comprehensive analysis is given to reveal the distinguishing features of SURE. Three benchmark tasks are then proposed on the data to evaluate the capability of multimodal recommendation agents. Based on the SURE, we propose a baseline model, powered by a state-of-the-art multimodal model, for these tasks.
Uncovering Factor Level Preferences to Improve Human-Model Alignment
Despite advancements in Large Language Model (LLM) alignment, understanding the reasons behind LLM preferences remains crucial for bridging the gap between desired and actual behavior. LLMs often exhibit biases or tendencies that diverge from human preferences, such as favoring certain writing styles or producing overly verbose outputs. However, current methods for evaluating preference alignment often lack explainability, relying on coarse-grained comparisons. To address this, we introduce PROFILE (PRObing Factors of InfLuence for Explainability), a novel framework that uncovers and quantifies the influence of specific factors driving preferences. PROFILE's factor level analysis explains the 'why' behind human-model alignment and misalignment, offering insights into the direction of model improvement. We apply PROFILE to analyze human and LLM preferences across three tasks: summarization, helpful response generation, and document-based question-answering. Our factor level analysis reveals a substantial discrepancy between human and LLM preferences in generation tasks, whereas LLMs show strong alignment with human preferences in evaluation tasks. We demonstrate how leveraging factor level insights, including addressing misaligned factors or exploiting the generation-evaluation gap, can improve alignment with human preferences. This work underscores the importance of explainable preference analysis and highlights PROFILE's potential to provide valuable training signals, driving further improvements in human-model alignment.
Unintended Impacts of LLM Alignment on Global Representation
Before being deployed for user-facing applications, developers align Large Language Models (LLMs) to user preferences through a variety of procedures, such as Reinforcement Learning From Human Feedback (RLHF) and Direct Preference Optimization (DPO). Current evaluations of these procedures focus on benchmarks of instruction following, reasoning, and truthfulness. However, human preferences are not universal, and aligning to specific preference sets may have unintended effects. We explore how alignment impacts performance along three axes of global representation: English dialects, multilingualism, and opinions from and about countries worldwide. Our results show that current alignment procedures create disparities between English dialects and global opinions. We find alignment improves capabilities in several languages. We conclude by discussing design decisions that led to these unintended impacts and recommendations for more equitable preference tuning.
Aligning Multimodal LLM with Human Preference: A Survey
Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training. Multimodal Large Language Models (MLLMs), built upon LLMs, have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data. However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed. This gap has spurred the emergence of various alignment algorithms, each targeting different application scenarios and optimization goals. Recent studies have shown that alignment algorithms are a powerful approach to resolving the aforementioned challenges. In this paper, we aim to provide a comprehensive and systematic review of alignment algorithms for MLLMs. Specifically, we explore four key aspects: (1) the application scenarios covered by alignment algorithms, including general image understanding, multi-image, video, and audio, and extended multimodal applications; (2) the core factors in constructing alignment datasets, including data sources, model responses, and preference annotations; (3) the benchmarks used to evaluate alignment algorithms; and (4) a discussion of potential future directions for the development of alignment algorithms. This work seeks to help researchers organize current advancements in the field and inspire better alignment methods. The project page of this paper is available at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment.
Human Preferences for Constructive Interactions in Language Model Alignment
As large language models (LLMs) enter the mainstream, aligning them to foster constructive dialogue rather than exacerbate societal divisions is critical. Using an individualized and multicultural alignment dataset of over 7,500 conversations of individuals from 74 countries engaging with 21 LLMs, we examined how linguistic attributes linked to constructive interactions are reflected in human preference data used for training AI. We found that users consistently preferred well-reasoned and nuanced responses while rejecting those high in personal storytelling. However, users who believed that AI should reflect their values tended to place less preference on reasoning in LLM responses and more on curiosity. Encouragingly, we observed that users could set the tone for how constructive their conversation would be, as LLMs mirrored linguistic attributes, including toxicity, in user queries.
UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing RAG approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single combined corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it. Also, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over modality-specific and unified baselines.
Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization
The emergence of large Vision Language Models (VLMs) has broadened the scope and capabilities of single-modal Large Language Models (LLMs) by integrating visual modalities, thereby unlocking transformative cross-modal applications in a variety of real-world scenarios. Despite their impressive performance, VLMs are prone to significant hallucinations, particularly in the form of cross-modal inconsistencies. Building on the success of Reinforcement Learning from Human Feedback (RLHF) in aligning LLMs, recent advancements have focused on applying direct preference optimization (DPO) on carefully curated datasets to mitigate these issues. Yet, such approaches typically introduce preference signals in a brute-force manner, neglecting the crucial role of visual information in the alignment process. In this paper, we introduce Re-Align, a novel alignment framework that leverages image retrieval to construct a dual-preference dataset, effectively incorporating both textual and visual preference signals. We further introduce rDPO, an extension of the standard direct preference optimization that incorporates an additional visual preference objective during fine-tuning. Our experimental results demonstrate that Re-Align not only mitigates hallucinations more effectively than previous methods but also yields significant performance gains in general visual question-answering (VQA) tasks. Moreover, we show that Re-Align maintains robustness and scalability across a wide range of VLM sizes and architectures. This work represents a significant step forward in aligning multimodal LLMs, paving the way for more reliable and effective cross-modal applications. We release all the code in https://github.com/taco-group/Re-Align.
Perceptual Score: What Data Modalities Does Your Model Perceive?
Machine learning advances in the last decade have relied significantly on large-scale datasets that continue to grow in size. Increasingly, those datasets also contain different data modalities. However, large multi-modal datasets are hard to annotate, and annotations may contain biases that we are often unaware of. Deep-net-based classifiers, in turn, are prone to exploit those biases and to find shortcuts. To study and quantify this concern, we introduce the perceptual score, a metric that assesses the degree to which a model relies on the different subsets of the input features, i.e., modalities. Using the perceptual score, we find a surprisingly consistent trend across four popular datasets: recent, more accurate state-of-the-art multi-modal models for visual question-answering or visual dialog tend to perceive the visual data less than their predecessors. This trend is concerning as answers are hence increasingly inferred from textual cues only. Using the perceptual score also helps to analyze model biases by decomposing the score into data subset contributions. We hope to spur a discussion on the perceptiveness of multi-modal models and also hope to encourage the community working on multi-modal classifiers to start quantifying perceptiveness via the proposed perceptual score.
mDPO: Conditional Preference Optimization for Multimodal Large Language Models
Direct preference optimization (DPO) has shown to be an effective method for large language model (LLM) alignment. Recent works have attempted to apply DPO to multimodal scenarios but have found it challenging to achieve consistent improvement. Through a comparative experiment, we identify the unconditional preference problem in multimodal preference optimization, where the model overlooks the image condition. To address this problem, we propose mDPO, a multimodal DPO objective that prevents the over-prioritization of language-only preferences by also optimizing image preference. Moreover, we introduce a reward anchor that forces the reward to be positive for chosen responses, thereby avoiding the decrease in their likelihood -- an intrinsic problem of relative preference optimization. Experiments on two multimodal LLMs of different sizes and three widely used benchmarks demonstrate that mDPO effectively addresses the unconditional preference problem in multimodal preference optimization and significantly improves model performance, particularly in reducing hallucination.
The language of prompting: What linguistic properties make a prompt successful?
The latest generation of LLMs can be prompted to achieve impressive zero-shot or few-shot performance in many NLP tasks. However, since performance is highly sensitive to the choice of prompts, considerable effort has been devoted to crowd-sourcing prompts or designing methods for prompt optimisation. Yet, we still lack a systematic understanding of how linguistic properties of prompts correlate with task performance. In this work, we investigate how LLMs of different sizes, pre-trained and instruction-tuned, perform on prompts that are semantically equivalent, but vary in linguistic structure. We investigate both grammatical properties such as mood, tense, aspect and modality, as well as lexico-semantic variation through the use of synonyms. Our findings contradict the common assumption that LLMs achieve optimal performance on lower perplexity prompts that reflect language use in pretraining or instruction-tuning data. Prompts transfer poorly between datasets or models, and performance cannot generally be explained by perplexity, word frequency, ambiguity or prompt length. Based on our results, we put forward a proposal for a more robust and comprehensive evaluation standard for prompting research.
Strengthening Multimodal Large Language Model with Bootstrapped Preference Optimization
Multimodal Large Language Models (MLLMs) excel in generating responses based on visual inputs. However, they often suffer from a bias towards generating responses similar to their pretraining corpus, overshadowing the importance of visual information. We treat this bias as a "preference" for pretraining statistics, which hinders the model's grounding in visual input. To mitigate this issue, we propose Bootstrapped Preference Optimization (BPO), which conducts preference learning with datasets containing negative responses bootstrapped from the model itself. Specifically, we propose the following two strategies: 1) using distorted image inputs to the MLLM for eliciting responses that contain signified pretraining bias; 2) leveraging text-based LLM to explicitly inject erroneous but common elements into the original response. Those undesirable responses are paired with original annotated responses from the datasets to construct the preference dataset, which is subsequently utilized to perform preference learning. Our approach effectively suppresses pretrained LLM bias, enabling enhanced grounding in visual inputs. Extensive experimentation demonstrates significant performance improvements across multiple benchmarks, advancing the state-of-the-art in multimodal conversational systems.
Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation
Recent advances in Large Language Models (LLMs) have demonstrated significant potential in the field of Recommendation Systems (RSs). Most existing studies have focused on converting user behavior logs into textual prompts and leveraging techniques such as prompt tuning to enable LLMs for recommendation tasks. Meanwhile, research interest has recently grown in multimodal recommendation systems that integrate data from images, text, and other sources using modality fusion techniques. This introduces new challenges to the existing LLM-based recommendation paradigm which relies solely on text modality information. Moreover, although Multimodal Large Language Models (MLLMs) capable of processing multi-modal inputs have emerged, how to equip MLLMs with multi-modal recommendation capabilities remains largely unexplored. To this end, in this paper, we propose the Multimodal Large Language Model-enhanced Multimodaln Sequential Recommendation (MLLM-MSR) model. To capture the dynamic user preference, we design a two-stage user preference summarization method. Specifically, we first utilize an MLLM-based item-summarizer to extract image feature given an item and convert the image into text. Then, we employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences based on an LLM-based user-summarizer. Finally, to enable the MLLM for multi-modal recommendation task, we propose to fine-tune a MLLM-based recommender using Supervised Fine-Tuning (SFT) techniques. Extensive evaluations across various datasets validate the effectiveness of MLLM-MSR, showcasing its superior ability to capture and adapt to the evolving dynamics of user preferences.
Cultivating Pluralism In Algorithmic Monoculture: The Community Alignment Dataset
How can large language models (LLMs) serve users with varying preferences that may conflict across cultural, political, or other dimensions? To advance this challenge, this paper establishes four key results. First, we demonstrate, through a large-scale multilingual human study with representative samples from five countries (N=15,000), that humans exhibit significantly more variation in preferences than the responses of 21 state-of-the-art LLMs. Second, we show that existing methods for preference dataset collection are insufficient for learning the diversity of human preferences even along two of the most salient dimensions of variability in global values, due to the underlying homogeneity of candidate responses. Third, we argue that this motivates the need for negatively-correlated sampling when generating candidate sets, and we show that simple prompt-based techniques for doing so significantly enhance the performance of alignment methods in learning heterogeneous preferences. Fourth, based on this novel candidate sampling approach, we collect and open-source Community Alignment, the largest and most representative multilingual and multi-turn preference dataset to date, featuring almost 200,000 comparisons from annotators spanning five countries. We hope that the Community Alignment dataset will be a valuable resource for improving the effectiveness of LLMs for a diverse global population.
Exploring Fusion Techniques in Multimodal AI-Based Recruitment: Insights from FairCVdb
Despite the large body of work on fairness-aware learning for individual modalities like tabular data, images, and text, less work has been done on multimodal data, which fuses various modalities for a comprehensive analysis. In this work, we investigate the fairness and bias implications of multimodal fusion techniques in the context of multimodal AI-based recruitment systems using the FairCVdb dataset. Our results show that early-fusion closely matches the ground truth for both demographics, achieving the lowest MAEs by integrating each modality's unique characteristics. In contrast, late-fusion leads to highly generalized mean scores and higher MAEs. Our findings emphasise the significant potential of early-fusion for accurate and fair applications, even in the presence of demographic biases, compared to late-fusion. Future research could explore alternative fusion strategies and incorporate modality-related fairness constraints to improve fairness. For code and additional insights, visit: https://github.com/Swati17293/Multimodal-AI-Based-Recruitment-FairCVdb
DBATES: DataBase of Audio features, Text, and visual Expressions in competitive debate Speeches
In this work, we present a database of multimodal communication features extracted from debate speeches in the 2019 North American Universities Debate Championships (NAUDC). Feature sets were extracted from the visual (facial expression, gaze, and head pose), audio (PRAAT), and textual (word sentiment and linguistic category) modalities of raw video recordings of competitive collegiate debaters (N=717 6-minute recordings from 140 unique debaters). Each speech has an associated competition debate score (range: 67-96) from expert judges as well as competitor demographic and per-round reflection surveys. We observe the fully multimodal model performs best in comparison to models trained on various compositions of modalities. We also find that the weights of some features (such as the expression of joy and the use of the word we) change in direction between the aforementioned models. We use these results to highlight the value of a multimodal dataset for studying competitive, collegiate debate.
HIPPO: Enhancing the Table Understanding Capability of Large Language Models through Hybrid-Modal Preference Optimization
Tabular data contains rich structural semantics and plays a crucial role in organizing and manipulating information. To better capture these structural semantics, this paper introduces the HybrId-modal Preference oPtimizatiOn (HIPPO) model, which represents tables using both text and image, and optimizes MLLMs to effectively learn more comprehensive table information from these multiple modalities. Specifically, HIPPO samples model responses from hybrid-modal table representations and designs a modality-consistent sampling strategy to enhance response diversity and mitigate modality bias during DPO training. Experimental results on table question answering and table fact verification tasks demonstrate the effectiveness of HIPPO, achieving a 4% improvement over various table reasoning models. Further analysis reveals that HIPPO not only enhances reasoning abilities based on unimodal table representations but also facilitates the extraction of crucial and distinct semantics from different modal representations. All data and codes are available at https://github.com/NEUIR/HIPPO.
OmnixR: Evaluating Omni-modality Language Models on Reasoning across Modalities
We introduce OmnixR, an evaluation suite designed to benchmark SoTA Omni-modality Language Models, such as GPT-4o and Gemini. Evaluating OLMs, which integrate multiple modalities such as text, vision, and audio, presents unique challenges. Particularly, the user message might often consist of multiple modalities, such that OLMs have to establish holistic understanding and reasoning across modalities to accomplish the task. Existing benchmarks are limited to single modality or dual-modality tasks, overlooking comprehensive multi-modal assessments of model reasoning. To address this, OmnixR offers two evaluation variants: (1)synthetic subset: a synthetic dataset generated automatically by translating text into multiple modalities--audio, images, video, and hybrids (Omnify). (2)realistic subset: a real-world dataset, manually curated and annotated by experts, for evaluating cross-modal reasoning in natural settings. OmnixR presents a unique evaluation towards assessing OLMs over a diverse mix of modalities, such as a question that involves video, audio, and text, providing a rigorous cross-modal reasoning testbed unlike any existing benchmarks. Our experiments find that all state-of-the-art OLMs struggle with OmnixR questions that require integrating information from multiple modalities to answer. Further analysis highlights differences in reasoning behavior, underscoring the challenges of omni-modal AI alignment.
UniMSE: Towards Unified Multimodal Sentiment Analysis and Emotion Recognition
Multimodal sentiment analysis (MSA) and emotion recognition in conversation (ERC) are key research topics for computers to understand human behaviors. From a psychological perspective, emotions are the expression of affect or feelings during a short period, while sentiments are formed and held for a longer period. However, most existing works study sentiment and emotion separately and do not fully exploit the complementary knowledge behind the two. In this paper, we propose a multimodal sentiment knowledge-sharing framework (UniMSE) that unifies MSA and ERC tasks from features, labels, and models. We perform modality fusion at the syntactic and semantic levels and introduce contrastive learning between modalities and samples to better capture the difference and consistency between sentiments and emotions. Experiments on four public benchmark datasets, MOSI, MOSEI, MELD, and IEMOCAP, demonstrate the effectiveness of the proposed method and achieve consistent improvements compared with state-of-the-art methods.
Mixture-of-experts VAEs can disregard variation in surjective multimodal data
Machine learning systems are often deployed in domains that entail data from multiple modalities, for example, phenotypic and genotypic characteristics describe patients in healthcare. Previous works have developed multimodal variational autoencoders (VAEs) that generate several modalities. We consider subjective data, where single datapoints from one modality (such as class labels) describe multiple datapoints from another modality (such as images). We theoretically and empirically demonstrate that multimodal VAEs with a mixture of experts posterior can struggle to capture variability in such surjective data.
Disentangling Preference Representation and Text Generation for Efficient Individual Preference Alignment
Aligning Large Language Models (LLMs) with general human preferences has been proved crucial in improving the interaction quality between LLMs and human. However, human values are inherently diverse among different individuals, making it insufficient to align LLMs solely with general preferences. To address this, personalizing LLMs according to individual feedback emerges as a promising solution. Nonetheless, this approach presents challenges in terms of the efficiency of alignment algorithms. In this work, we introduce a flexible paradigm for individual preference alignment. Our method fundamentally improves efficiency by disentangling preference representation from text generation in LLMs. We validate our approach across multiple text generation tasks and demonstrate that it can produce aligned quality as well as or better than PEFT-based methods, while reducing additional training time for each new individual preference by 80% to 90% in comparison with them.
Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective
Aligning the output of Large Language Models (LLMs) with human preferences (e.g., by means of reinforcement learning with human feedback, or RLHF) is essential for ensuring their effectiveness in real-world scenarios. Despite significant advancements in LLM alignment techniques, the impact of different type of preference data on model performance has yet to be systematically explored. In this study, we investigate the scalability, data efficiency, and effectiveness of Direct Preference Optimization (DPO) in fine-tuning pre-trained LLMs, aiming to reduce their dependency on extensive amounts of preference data, which is expensive to collect. We (1) systematically compare the performance of models fine-tuned with varying percentages of a combined preference judgement dataset to define the improvement curve of DPO and assess its effectiveness in data-constrained environments; and (2) provide insights for the development of an optimal approach for selective preference data usage. Our study reveals that increasing the amount of data used for training generally enhances and stabilizes model performance. Moreover, the use of a combination of diverse datasets significantly improves model effectiveness. Furthermore, when models are trained separately using different types of prompts, models trained with conversational prompts outperformed those trained with question answering prompts.
Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models
Existing Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs, leaving open the question of whether they can handle inconsistencies in real-world, layout-rich content. To bridge this gap, we propose the Multimodal Inconsistency Reasoning (MMIR) benchmark to assess MLLMs' ability to detect and reason about semantic mismatches in artifacts such as webpages, presentation slides, and posters. MMIR comprises 534 challenging samples, each containing synthetically injected errors across five reasoning-heavy categories: Factual Contradiction, Identity Misattribution, Contextual Mismatch, Quantitative Discrepancy, and Temporal/Spatial Incoherence. We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts while open-source models remain particularly vulnerable to inconsistency errors. Detailed error analyses further show that models excel in detecting inconsistencies confined to a single modality, particularly in text, but struggle with cross-modal conflicts and complex layouts. Probing experiments reveal that single-modality prompting, including Chain-of-Thought (CoT) and Set-of-Mark (SoM) methods, yields marginal gains, revealing a key bottleneck in cross-modal reasoning. Our findings highlight the need for advanced multimodal reasoning and point to future research on multimodal inconsistency.
Tackling Data Bias in MUSIC-AVQA: Crafting a Balanced Dataset for Unbiased Question-Answering
In recent years, there has been a growing emphasis on the intersection of audio, vision, and text modalities, driving forward the advancements in multimodal research. However, strong bias that exists in any modality can lead to the model neglecting the others. Consequently, the model's ability to effectively reason across these diverse modalities is compromised, impeding further advancement. In this paper, we meticulously review each question type from the original dataset, selecting those with pronounced answer biases. To counter these biases, we gather complementary videos and questions, ensuring that no answers have outstanding skewed distribution. In particular, for binary questions, we strive to ensure that both answers are almost uniformly spread within each question category. As a result, we construct a new dataset, named MUSIC-AVQA v2.0, which is more challenging and we believe could better foster the progress of AVQA task. Furthermore, we present a novel baseline model that delves deeper into the audio-visual-text interrelation. On MUSIC-AVQA v2.0, this model surpasses all the existing benchmarks, improving accuracy by 2% on MUSIC-AVQA v2.0, setting a new state-of-the-art performance.
Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization
A common technique for aligning large language models (LLMs) relies on acquiring human preferences by comparing multiple generations conditioned on a fixed context. This only leverages the pairwise comparisons when the generations are placed in an identical context. However, such conditional rankings often fail to capture the complex and multidimensional aspects of human preferences. In this work, we revisit the traditional paradigm of preference acquisition and propose a new axis that is based on eliciting preferences jointly over the instruction-response pairs. While prior preference optimizations are designed for conditional ranking protocols (e.g., DPO), our proposed preference acquisition protocol introduces DOVE, a new preference optimization objective that upweights the joint probability of the chosen instruction-response pair over the rejected instruction-response pair. Interestingly, we find that the LLM trained with joint instruction-response preference data using DOVE outperforms the LLM trained with DPO by 5.2% and 3.3% win-rate for the summarization and open-ended dialogue datasets, respectively. Our findings reveal that joint preferences over instruction and response pairs can significantly enhance the alignment of LLMs by tapping into a broader spectrum of human preference elicitation. The data and code is available at https://github.com/Hritikbansal/dove.
MixEval-X: Any-to-Any Evaluations from Real-World Data Mixtures
Perceiving and generating diverse modalities are crucial for AI models to effectively learn from and engage with real-world signals, necessitating reliable evaluations for their development. We identify two major issues in current evaluations: (1) inconsistent standards, shaped by different communities with varying protocols and maturity levels; and (2) significant query, grading, and generalization biases. To address these, we introduce MixEval-X, the first any-to-any real-world benchmark designed to optimize and standardize evaluations across input and output modalities. We propose multi-modal benchmark mixture and adaptation-rectification pipelines to reconstruct real-world task distributions, ensuring evaluations generalize effectively to real-world use cases. Extensive meta-evaluations show our approach effectively aligns benchmark samples with real-world task distributions and the model rankings correlate strongly with that of crowd-sourced real-world evaluations (up to 0.98). We provide comprehensive leaderboards to rerank existing models and organizations and offer insights to enhance understanding of multi-modal evaluations and inform future research.
On Robustness in Multimodal Learning
Multimodal learning is defined as learning over multiple heterogeneous input modalities such as video, audio, and text. In this work, we are concerned with understanding how models behave as the type of modalities differ between training and deployment, a situation that naturally arises in many applications of multimodal learning to hardware platforms. We present a multimodal robustness framework to provide a systematic analysis of common multimodal representation learning methods. Further, we identify robustness short-comings of these approaches and propose two intervention techniques leading to 1.5times-4times robustness improvements on three datasets, AudioSet, Kinetics-400 and ImageNet-Captions. Finally, we demonstrate that these interventions better utilize additional modalities, if present, to achieve competitive results of 44.2 mAP on AudioSet 20K.
Configurable Preference Tuning with Rubric-Guided Synthetic Data
Models of human feedback for AI alignment, such as those underpinning Direct Preference Optimization (DPO), often bake in a singular, static set of preferences, limiting adaptability. This paper challenges the assumption of monolithic preferences by introducing Configurable Preference Tuning (CPT), a novel framework for endowing language models with the ability to dynamically adjust their behavior based on explicit, human-interpretable directives. CPT leverages synthetically generated preference data, conditioned on system prompts derived from structured, fine-grained rubrics that define desired attributes like writing style. By fine-tuning with these rubric-guided preferences, the LLM learns to modulate its outputs at inference time in response to the system prompt, without retraining. This approach not only offers fine-grained control but also provides a mechanism for modeling more nuanced and context-dependent human feedback. Several experimental artifacts, such as training code, generated datasets and fine-tuned models are released at https://github.com/vicgalle/configurable-preference-tuning
Think Again! The Effect of Test-Time Compute on Preferences, Opinions, and Beliefs of Large Language Models
As Large Language Models (LLMs) become deeply integrated into human life and increasingly influence decision-making, it's crucial to evaluate whether and to what extent they exhibit subjective preferences, opinions, and beliefs. These tendencies may stem from biases within the models, which may shape their behavior, influence the advice and recommendations they offer to users, and potentially reinforce certain viewpoints. This paper presents the Preference, Opinion, and Belief survey (POBs), a benchmark developed to assess LLMs' subjective inclinations across societal, cultural, ethical, and personal domains. We applied our benchmark to evaluate leading open- and closed-source LLMs, measuring desired properties such as reliability, neutrality, and consistency. In addition, we investigated the effect of increasing the test-time compute, through reasoning and self-reflection mechanisms, on those metrics. While effective in other tasks, our results show that these mechanisms offer only limited gains in our domain. Furthermore, we reveal that newer model versions are becoming less consistent and more biased toward specific viewpoints, highlighting a blind spot and a concerning trend. POBS: https://ibm.github.io/POBS
UrbanCLIP: Learning Text-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web
Urban region profiling from web-sourced data is of utmost importance for urban planning and sustainable development. We are witnessing a rising trend of LLMs for various fields, especially dealing with multi-modal data research such as vision-language learning, where the text modality serves as a supplement information for the image. Since textual modality has never been introduced into modality combinations in urban region profiling, we aim to answer two fundamental questions in this paper: i) Can textual modality enhance urban region profiling? ii) and if so, in what ways and with regard to which aspects? To answer the questions, we leverage the power of Large Language Models (LLMs) and introduce the first-ever LLM-enhanced framework that integrates the knowledge of textual modality into urban imagery profiling, named LLM-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining (UrbanCLIP). Specifically, it first generates a detailed textual description for each satellite image by an open-source Image-to-Text LLM. Then, the model is trained on the image-text pairs, seamlessly unifying natural language supervision for urban visual representation learning, jointly with contrastive loss and language modeling loss. Results on predicting three urban indicators in four major Chinese metropolises demonstrate its superior performance, with an average improvement of 6.1% on R^2 compared to the state-of-the-art methods. Our code and the image-language dataset will be released upon paper notification.
Contrasting with Symile: Simple Model-Agnostic Representation Learning for Unlimited Modalities
Contrastive learning methods, such as CLIP, leverage naturally paired data-for example, images and their corresponding text captions-to learn general representations that transfer efficiently to downstream tasks. While such approaches are generally applied to two modalities, domains such as robotics, healthcare, and video need to support many types of data at once. We show that the pairwise application of CLIP fails to capture joint information between modalities, thereby limiting the quality of the learned representations. To address this issue, we present Symile, a simple contrastive learning approach that captures higher-order information between any number of modalities. Symile provides a flexible, architecture-agnostic objective for learning modality-specific representations. To develop Symile's objective, we derive a lower bound on total correlation, and show that Symile representations for any set of modalities form a sufficient statistic for predicting the remaining modalities. Symile outperforms pairwise CLIP, even with modalities missing in the data, on cross-modal classification and retrieval across several experiments including on an original multilingual dataset of 33M image, text and audio samples and a clinical dataset of chest X-rays, electrocardiograms, and laboratory measurements. All datasets and code used in this work are publicly available at https://github.com/rajesh-lab/symile.
Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data
Learning from preference labels plays a crucial role in fine-tuning large language models. There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning. Different methods come with different implementation tradeoffs and performance differences, and existing empirical findings present different conclusions, for instance, some results show that online RL is quite important to attain good fine-tuning results, while others find (offline) contrastive or even purely supervised methods sufficient. This raises a natural question: what kind of approaches are important for fine-tuning with preference data and why? In this paper, we answer this question by performing a rigorous analysis of a number of fine-tuning techniques on didactic and full-scale LLM problems. Our main finding is that, in general, approaches that use on-policy sampling or attempt to push down the likelihood on certain responses (i.e., employ a "negative gradient") outperform offline and maximum likelihood objectives. We conceptualize our insights and unify methods that use on-policy sampling or negative gradient under a notion of mode-seeking objectives for categorical distributions. Mode-seeking objectives are able to alter probability mass on specific bins of a categorical distribution at a fast rate compared to maximum likelihood, allowing them to relocate masses across bins more effectively. Our analysis prescribes actionable insights for preference fine-tuning of LLMs and informs how data should be collected for maximal improvement.
GPT-4V(ision) is a Human-Aligned Evaluator for Text-to-3D Generation
Despite recent advances in text-to-3D generative methods, there is a notable absence of reliable evaluation metrics. Existing metrics usually focus on a single criterion each, such as how well the asset aligned with the input text. These metrics lack the flexibility to generalize to different evaluation criteria and might not align well with human preferences. Conducting user preference studies is an alternative that offers both adaptability and human-aligned results. User studies, however, can be very expensive to scale. This paper presents an automatic, versatile, and human-aligned evaluation metric for text-to-3D generative models. To this end, we first develop a prompt generator using GPT-4V to generate evaluating prompts, which serve as input to compare text-to-3D models. We further design a method instructing GPT-4V to compare two 3D assets according to user-defined criteria. Finally, we use these pairwise comparison results to assign these models Elo ratings. Experimental results suggest our metric strongly align with human preference across different evaluation criteria.
Towards a Unified View of Preference Learning for Large Language Models: A Survey
Large Language Models (LLMs) exhibit remarkably powerful capabilities. One of the crucial factors to achieve success is aligning the LLM's output with human preferences. This alignment process often requires only a small amount of data to efficiently enhance the LLM's performance. While effective, research in this area spans multiple domains, and the methods involved are relatively complex to understand. The relationships between different methods have been under-explored, limiting the development of the preference alignment. In light of this, we break down the existing popular alignment strategies into different components and provide a unified framework to study the current alignment strategies, thereby establishing connections among them. In this survey, we decompose all the strategies in preference learning into four components: model, data, feedback, and algorithm. This unified view offers an in-depth understanding of existing alignment algorithms and also opens up possibilities to synergize the strengths of different strategies. Furthermore, we present detailed working examples of prevalent existing algorithms to facilitate a comprehensive understanding for the readers. Finally, based on our unified perspective, we explore the challenges and future research directions for aligning large language models with human preferences.
Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback
Learning from preference feedback has emerged as an essential step for improving the generation quality and performance of modern language models (LMs). Despite its widespread use, the way preference-based learning is applied varies wildly, with differing data, learning algorithms, and evaluations used, making disentangling the impact of each aspect difficult. In this work, we identify four core aspects of preference-based learning: preference data, learning algorithm, reward model, and policy training prompts, systematically investigate the impact of these components on downstream model performance, and suggest a recipe for strong learning for preference feedback. Our findings indicate that all aspects are important for performance, with better preference data leading to the largest improvements, followed by the choice of learning algorithm, the use of improved reward models, and finally the use of additional unlabeled prompts for policy training. Notably, PPO outperforms DPO by up to 2.5% in math and 1.2% in general domains. High-quality preference data leads to improvements of up to 8% in instruction following and truthfulness. Despite significant gains of up to 5% in mathematical evaluation when scaling up reward models, we surprisingly observe marginal improvements in other categories. We publicly release the code used for training (https://github.com/hamishivi/EasyLM) and evaluating (https://github.com/allenai/open-instruct) our models, along with the models and datasets themselves (https://huggingface.co/collections/allenai/tulu-v25-suite-66676520fd578080e126f618).
Preference Optimization as Probabilistic Inference
Existing preference optimization methods are mainly designed for directly learning from human feedback with the assumption that paired examples (preferred vs. dis-preferred) are available. In contrast, we propose a method that can leverage unpaired preferred or dis-preferred examples, and works even when only one type of feedback (positive or negative) is available. This flexibility allows us to apply it in scenarios with varying forms of feedback and models, including training generative language models based on human feedback as well as training policies for sequential decision-making problems, where learned (value) functions are available. Our approach builds upon the probabilistic framework introduced in (Dayan and Hinton, 1997), which proposes to use expectation-maximization (EM) to directly optimize the probability of preferred outcomes (as opposed to classic expected reward maximization). To obtain a practical algorithm, we identify and address a key limitation in current EM-based methods: when applied to preference optimization, they solely maximize the likelihood of preferred examples, while neglecting dis-preferred samples. We show how one can extend EM algorithms to explicitly incorporate dis-preferred outcomes, leading to a novel, theoretically grounded, preference optimization algorithm that offers an intuitive and versatile way to learn from both positive and negative feedback.
VinTAGe: Joint Video and Text Conditioning for Holistic Audio Generation
Recent advances in audio generation have focused on text-to-audio (T2A) and video-to-audio (V2A) tasks. However, T2A or V2A methods cannot generate holistic sounds (onscreen and off-screen). This is because T2A cannot generate sounds aligning with onscreen objects, while V2A cannot generate semantically complete (offscreen sounds missing). In this work, we address the task of holistic audio generation: given a video and a text prompt, we aim to generate both onscreen and offscreen sounds that are temporally synchronized with the video and semantically aligned with text and video. Previous approaches for joint text and video-to-audio generation often suffer from modality bias, favoring one modality over the other. To overcome this limitation, we introduce VinTAGe, a flow-based transformer model that jointly considers text and video to guide audio generation. Our framework comprises two key components: a Visual-Text Encoder and a Joint VT-SiT model. To reduce modality bias and improve generation quality, we employ pretrained uni-modal text-to-audio and video-to-audio generation models for additional guidance. Due to the lack of appropriate benchmarks, we also introduce VinTAGe-Bench, a dataset of 636 video-text-audio pairs containing both onscreen and offscreen sounds. Our comprehensive experiments on VinTAGe-Bench demonstrate that joint text and visual interaction is necessary for holistic audio generation. Furthermore, VinTAGe achieves state-of-the-art results on the VGGSound benchmark. Our source code and pre-trained models will be released. Demo is available at: https://www.youtube.com/watch?v=QmqWhUjPkJI.
Direct Preference Optimization of Video Large Multimodal Models from Language Model Reward
Preference modeling techniques, such as direct preference optimization (DPO), has shown effective in enhancing the generalization abilities of large language model (LLM). However, in tasks involving video instruction-following, providing informative feedback, especially for detecting hallucinations in generated responses, remains a significant challenge. Previous studies have explored using large large multimodal models (LMMs) as reward models to guide preference modeling, but their ability to accurately assess the factuality of generated responses compared to corresponding videos has not been conclusively established. This paper introduces a novel framework that utilizes detailed video captions as a proxy of video content, enabling language models to incorporate this information as supporting evidence for scoring video Question Answering (QA) predictions. Our approach demonstrates robust alignment with OpenAI GPT-4V model's reward mechanism, which directly takes video frames as input. Furthermore, we show that applying this tailored reward through DPO significantly improves the performance of video LMMs on video QA tasks.
Stream-Omni: Simultaneous Multimodal Interactions with Large Language-Vision-Speech Model
The emergence of GPT-4o-like large multimodal models (LMMs) has raised the exploration of integrating text, vision, and speech modalities to support more flexible multimodal interaction. Existing LMMs typically concatenate representation of modalities along the sequence dimension and feed them into a large language model (LLM) backbone. While sequence-dimension concatenation is straightforward for modality integration, it often relies heavily on large-scale data to learn modality alignments. In this paper, we aim to model the relationships between modalities more purposefully, thereby achieving more efficient and flexible modality alignments. To this end, we propose Stream-Omni, a large language-vision-speech model with efficient modality alignments, which can simultaneously support interactions under various modality combinations. Stream-Omni employs LLM as the backbone and aligns the vision and speech to the text based on their relationships. For vision that is semantically complementary to text, Stream-Omni uses sequence-dimension concatenation to achieve vision-text alignment. For speech that is semantically consistent with text, Stream-Omni introduces a CTC-based layer-dimension mapping to achieve speech-text alignment. In this way, Stream-Omni can achieve modality alignments with less data (especially speech), enabling the transfer of text capabilities to other modalities. Experiments on various benchmarks demonstrate that Stream-Omni achieves strong performance on visual understanding, speech interaction, and vision-grounded speech interaction tasks. Owing to the layer-dimensional mapping, Stream-Omni can simultaneously provide intermediate text outputs (such as ASR transcriptions and model responses) during speech interaction, offering users a comprehensive multimodal experience.
Multimodal Graph Learning for Generative Tasks
Multimodal learning combines multiple data modalities, broadening the types and complexity of data our models can utilize: for example, from plain text to image-caption pairs. Most multimodal learning algorithms focus on modeling simple one-to-one pairs of data from two modalities, such as image-caption pairs, or audio-text pairs. However, in most real-world settings, entities of different modalities interact with each other in more complex and multifaceted ways, going beyond one-to-one mappings. We propose to represent these complex relationships as graphs, allowing us to capture data with any number of modalities, and with complex relationships between modalities that can flexibly vary from one sample to another. Toward this goal, we propose Multimodal Graph Learning (MMGL), a general and systematic framework for capturing information from multiple multimodal neighbors with relational structures among them. In particular, we focus on MMGL for generative tasks, building upon pretrained Language Models (LMs), aiming to augment their text generation with multimodal neighbor contexts. We study three research questions raised by MMGL: (1) how can we infuse multiple neighbor information into the pretrained LMs, while avoiding scalability issues? (2) how can we infuse the graph structure information among multimodal neighbors into the LMs? and (3) how can we finetune the pretrained LMs to learn from the neighbor context in a parameter-efficient manner? We conduct extensive experiments to answer these three questions on MMGL and analyze the empirical results to pave the way for future MMGL research.
HEMM: Holistic Evaluation of Multimodal Foundation Models
Multimodal foundation models that can holistically process text alongside images, video, audio, and other sensory modalities are increasingly used in a variety of real-world applications. However, it is challenging to characterize and study progress in multimodal foundation models, given the range of possible modeling decisions, tasks, and domains. In this paper, we introduce Holistic Evaluation of Multimodal Models (HEMM) to systematically evaluate the capabilities of multimodal foundation models across a set of 3 dimensions: basic skills, information flow, and real-world use cases. Basic multimodal skills are internal abilities required to solve problems, such as learning interactions across modalities, fine-grained alignment, multi-step reasoning, and the ability to handle external knowledge. Information flow studies how multimodal content changes during a task through querying, translation, editing, and fusion. Use cases span domain-specific challenges introduced in real-world multimedia, affective computing, natural sciences, healthcare, and human-computer interaction applications. Through comprehensive experiments across the 30 tasks in HEMM, we (1) identify key dataset dimensions (e.g., basic skills, information flows, and use cases) that pose challenges to today's models, and (2) distill performance trends regarding how different modeling dimensions (e.g., scale, pre-training data, multimodal alignment, pre-training, and instruction tuning objectives) influence performance. Our conclusions regarding challenging multimodal interactions, use cases, and tasks requiring reasoning and external knowledge, the benefits of data and model scale, and the impacts of instruction tuning yield actionable insights for future work in multimodal foundation models.
Multimodal Large Language Model is a Human-Aligned Annotator for Text-to-Image Generation
Recent studies have demonstrated the exceptional potentials of leveraging human preference datasets to refine text-to-image generative models, enhancing the alignment between generated images and textual prompts. Despite these advances, current human preference datasets are either prohibitively expensive to construct or suffer from a lack of diversity in preference dimensions, resulting in limited applicability for instruction tuning in open-source text-to-image generative models and hinder further exploration. To address these challenges and promote the alignment of generative models through instruction tuning, we leverage multimodal large language models to create VisionPrefer, a high-quality and fine-grained preference dataset that captures multiple preference aspects. We aggregate feedback from AI annotators across four aspects: prompt-following, aesthetic, fidelity, and harmlessness to construct VisionPrefer. To validate the effectiveness of VisionPrefer, we train a reward model VP-Score over VisionPrefer to guide the training of text-to-image generative models and the preference prediction accuracy of VP-Score is comparable to human annotators. Furthermore, we use two reinforcement learning methods to supervised fine-tune generative models to evaluate the performance of VisionPrefer, and extensive experimental results demonstrate that VisionPrefer significantly improves text-image alignment in compositional image generation across diverse aspects, e.g., aesthetic, and generalizes better than previous human-preference metrics across various image distributions. Moreover, VisionPrefer indicates that the integration of AI-generated synthetic data as a supervisory signal is a promising avenue for achieving improved alignment with human preferences in vision generative models.
Does Cross-Cultural Alignment Change the Commonsense Morality of Language Models?
Alignment of the language model with human preferences is a common approach to making a language model useful to end users. However, most alignment work is done in English, and human preference datasets are dominated by English, reflecting only the preferences of English-speaking annotators. Nevertheless, it is common practice to use the English preference data, either directly or by translating it into the target language, when aligning a multilingual language model. The question is whether such an alignment strategy marginalizes the preference of non-English speaking users. To this end, we investigate the effect of aligning Japanese language models with (mostly) English resources. In particular, we focus on evaluating whether the commonsense morality of the resulting fine-tuned models is aligned with Japanese culture using the JCommonsenseMorality (JCM) and ETHICS datasets. The experimental results show that the fine-tuned model outperforms the SFT model. However, it does not demonstrate the same level of improvement as a model fine-tuned using the JCM, suggesting that while some aspects of commonsense morality are transferable, others may not be.
What Do Llamas Really Think? Revealing Preference Biases in Language Model Representations
Do large language models (LLMs) exhibit sociodemographic biases, even when they decline to respond? To bypass their refusal to "speak," we study this research question by probing contextualized embeddings and exploring whether this bias is encoded in its latent representations. We propose a logistic Bradley-Terry probe which predicts word pair preferences of LLMs from the words' hidden vectors. We first validate our probe on three pair preference tasks and thirteen LLMs, where we outperform the word embedding association test (WEAT), a standard approach in testing for implicit association, by a relative 27% in error rate. We also find that word pair preferences are best represented in the middle layers. Next, we transfer probes trained on harmless tasks (e.g., pick the larger number) to controversial ones (compare ethnicities) to examine biases in nationality, politics, religion, and gender. We observe substantial bias for all target classes: for instance, the Mistral model implicitly prefers Europe to Africa, Christianity to Judaism, and left-wing to right-wing politics, despite declining to answer. This suggests that instruction fine-tuning does not necessarily debias contextualized embeddings. Our codebase is at https://github.com/castorini/biasprobe.
Explore the Limits of Omni-modal Pretraining at Scale
We propose to build omni-modal intelligence, which is capable of understanding any modality and learning universal representations. In specific, we propose a scalable pretraining paradigm, named Multimodal Context (MiCo), which can scale up the numbers of modalities and amount of data, together with the model parameters, in the pretraining process. With MiCo, the pretrained models show significant emergent abilities in multimodal learning, which are evaluated on the following tasks: i) single-modality perception benchmarks of 10 different modalities, ii) 25 cross-modality understanding tasks of retrieval, question-answering, captioning, and iii) 18 multimodal large language model benchmarks. Our models establish 37 new records for state-of-the-art performance. We hope that our research could contribute to the development of omni-modal intelligence. Code and Models are at https://github.com/invictus717/MiCo
Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts
In the field of large language models (LLMs), aligning models with the diverse preferences of users is a critical challenge. Direct Preference Optimization (DPO) has played a key role in this area. It works by using pairs of preferences derived from the same prompts, and it functions without needing an additional reward model. However, DPO does not fully reflect the complex nature of human learning, which often involves understanding contrasting responses to not only identical but also similar questions. To overcome this shortfall, we propose Relative Preference Optimization (RPO). RPO is designed to discern between more and less preferred responses derived from both identical and related prompts. It introduces a contrastive weighting mechanism, enabling the tuning of LLMs using a broader range of preference data, including both paired and unpaired sets. This approach expands the learning capabilities of the model, allowing it to leverage insights from a more varied set of prompts. Through empirical tests, including dialogue and summarization tasks, and evaluations using the AlpacaEval2.0 leaderboard, RPO has demonstrated a superior ability to align LLMs with user preferences and to improve their adaptability during the training process. Our code can be viewed at https://github.com/yinyueqin/relative-preference-optimization
PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences
Large foundation models pretrained on raw web-scale data are not readily deployable without additional step of extensive alignment to human preferences. Such alignment is typically done by collecting large amounts of pairwise comparisons from humans ("Do you prefer output A or B?") and learning a reward model or a policy with the Bradley-Terry-Luce (BTL) model as a proxy for a human's underlying implicit preferences. These methods generally suffer from assuming a universal preference shared by all humans, which lacks the flexibility of adapting to plurality of opinions and preferences. In this work, we propose PAL, a framework to model human preference complementary to existing pretraining strategies, which incorporates plurality from the ground up. We propose using the ideal point model as a lens to view alignment using preference comparisons. Together with our novel reformulation and using mixture modeling, our framework captures the plurality of population preferences while simultaneously learning a common preference latent space across different preferences, which can few-shot generalize to new, unseen users. Our approach enables us to use the penultimate-layer representation of large foundation models and simple MLP layers to learn reward functions that are on-par with the existing large state-of-the-art reward models, thereby enhancing efficiency of reward modeling significantly. We show that PAL achieves competitive reward model accuracy compared to strong baselines on 1) Language models with Summary dataset ; 2) Image Generative models with Pick-a-Pic dataset ; 3) A new semisynthetic heterogeneous dataset generated using Anthropic Personas. Finally, our experiments also highlight the shortcoming of current preference datasets that are created using rigid rubrics which wash away heterogeneity, and call for more nuanced data collection approaches.
Nexus-O: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
Human beings perceive the real world through a spectrum of sensory modalities, encompassing auditory, visual, and linguistic faculties. The journey towards achieving Artificial General Intelligence (AGI) necessitates the development of models that can emulate these multifaceted perceptual capabilities and comprehensively understand these diversified data. To this end, we introduce Nexus-O, an industry-level omni-perceptive and -interactive model capable of efficiently processing Audio, Image, Video, and Text data in any combination and output audio/text in an end-to-end way. We systematically investigate Nexus-O by addressing three key research questions: First, how can models be efficiently designed and trained to achieve tri-modal alignment, understanding and reasoning capabilities across multiple modalities? Second, what approaches can be implemented to evaluate tri-modal model robustness, ensuring reliable performance and applicability in real-world scenarios? Third, what strategies can be employed to curate and obtain high-quality, real-life scenario speech datasets? For the first question, we design and pre-train Nexus-O based on the vision-language model, rather than the language model. By pre-training the model over high-quality synthetic audio data, our model is capable of tri-modal perception and interaction. For the second question, we introduce a new audio testbed, Nexus-O-audio, comprising diverse Automatic Speech Recognition (ASR) samples, spanning various real-world scenarios, such as corporate meetings and live stream. For the third question, we design the speech data synthesis pipeline to obtain high-quality speech training datasets, covering various real-world scenarios. Comprehensive experimentation and an in-depth analysis of tri-modal alignment over latent space demonstrate the advantages of our model on downstream tasks.
Enabling Chatbots with Eyes and Ears: An Immersive Multimodal Conversation System for Dynamic Interactions
As chatbots continue to evolve toward human-like, real-world, interactions, multimodality remains an active area of research and exploration. So far, efforts to integrate multimodality into chatbots have primarily focused on image-centric tasks, such as visual dialogue and image-based instructions, placing emphasis on the "eyes" of human perception while neglecting the "ears", namely auditory aspects. Moreover, these studies often center around static interactions that focus on discussing the modality rather than naturally incorporating it into the conversation, which limits the richness of simultaneous, dynamic engagement. Furthermore, while multimodality has been explored in multi-party and multi-session conversations, task-specific constraints have hindered its seamless integration into dynamic, natural conversations. To address these challenges, this study aims to equip chatbots with "eyes and ears" capable of more immersive interactions with humans. As part of this effort, we introduce a new multimodal conversation dataset, Multimodal Multi-Session Multi-Party Conversation (M^3C), and propose a novel multimodal conversation model featuring multimodal memory retrieval. Our model, trained on the M^3C, demonstrates the ability to seamlessly engage in long-term conversations with multiple speakers in complex, real-world-like settings, effectively processing visual and auditory inputs to understand and respond appropriately. Human evaluations highlight the model's strong performance in maintaining coherent and dynamic interactions, demonstrating its potential for advanced multimodal conversational agents.
Learning to Reason via Mixture-of-Thought for Logical Reasoning
Human beings naturally utilize multiple reasoning modalities to learn and solve logical problems, i.e., different representational formats such as natural language, code, and symbolic logic. In contrast, most existing LLM-based approaches operate with a single reasoning modality during training, typically natural language. Although some methods explored modality selection or augmentation at inference time, the training process remains modality-blind, limiting synergy among modalities. To fill in this gap, we propose Mixture-of-Thought (MoT), a framework that enables LLMs to reason across three complementary modalities: natural language, code, and a newly introduced symbolic modality, truth-table, which systematically enumerates logical cases and partially mitigates key failure modes in natural language reasoning. MoT adopts a two-phase design: (1) self-evolving MoT training, which jointly learns from filtered, self-generated rationales across modalities; and (2) MoT inference, which fully leverages the synergy of three modalities to produce better predictions. Experiments on logical reasoning benchmarks including FOLIO and ProofWriter demonstrate that our MoT framework consistently and significantly outperforms strong LLM baselines with single-modality chain-of-thought approaches, achieving up to +11.7pp average accuracy gain. Further analyses show that our MoT framework benefits both training and inference stages; that it is particularly effective on harder logical reasoning problems; and that different modalities contribute complementary strengths, with truth-table reasoning helping to overcome key bottlenecks in natural language inference.
Quadratic Interest Network for Multimodal Click-Through Rate Prediction
Multimodal click-through rate (CTR) prediction is a key technique in industrial recommender systems. It leverages heterogeneous modalities such as text, images, and behavioral logs to capture high-order feature interactions between users and items, thereby enhancing the system's understanding of user interests and its ability to predict click behavior. The primary challenge in this field lies in effectively utilizing the rich semantic information from multiple modalities while satisfying the low-latency requirements of online inference in real-world applications. To foster progress in this area, the Multimodal CTR Prediction Challenge Track of the WWW 2025 EReL@MIR Workshop formulates the problem into two tasks: (1) Task 1 of Multimodal Item Embedding: this task aims to explore multimodal information extraction and item representation learning methods that enhance recommendation tasks; and (2) Task 2 of Multimodal CTR Prediction: this task aims to explore what multimodal recommendation model can effectively leverage multimodal embedding features and achieve better performance. In this paper, we propose a novel model for Task 2, named Quadratic Interest Network (QIN) for Multimodal CTR Prediction. Specifically, QIN employs adaptive sparse target attention to extract multimodal user behavior features, and leverages Quadratic Neural Networks to capture high-order feature interactions. As a result, QIN achieved an AUC of 0.9798 on the leaderboard and ranked second in the competition. The model code, training logs, hyperparameter configurations, and checkpoints are available at https://github.com/salmon1802/QIN.
RESTORE: Towards Feature Shift for Vision-Language Prompt Learning
Prompt learning is effective for fine-tuning foundation models to improve their generalization across a variety of downstream tasks. However, the prompts that are independently optimized along a single modality path, may sacrifice the vision-language alignment of pre-trained models in return for improved performance on specific tasks and classes, leading to poorer generalization. In this paper, we first demonstrate that prompt tuning along only one single branch of CLIP (e.g., language or vision) is the reason why the misalignment occurs. Without proper regularization across the learnable parameters in different modalities, prompt learning violates the original pre-training constraints inherent in the two-tower architecture. To address such misalignment, we first propose feature shift, which is defined as the variation of embeddings after introducing the learned prompts, to serve as an explanatory tool. We dive into its relation with generalizability and thereafter propose RESTORE, a multi-modal prompt learning method that exerts explicit constraints on cross-modal consistency. To be more specific, to prevent feature misalignment, a feature shift consistency is introduced to synchronize inter-modal feature shifts by measuring and regularizing the magnitude of discrepancy during prompt tuning. In addition, we propose a "surgery" block to avoid short-cut hacking, where cross-modal misalignment can still be severe if the feature shift of each modality varies drastically at the same rate. It is implemented as feed-forward adapters upon both modalities to alleviate the misalignment problem. Extensive experiments on 15 datasets demonstrate that our method outperforms the state-of-the-art prompt tuning methods without compromising feature alignment.
Can LVLMs and Automatic Metrics Capture Underlying Preferences of Blind and Low-Vision Individuals for Navigational Aid?
Vision is a primary means of how humans perceive the environment, but Blind and Low-Vision (BLV) people need assistance understanding their surroundings, especially in unfamiliar environments. The emergence of semantic-based systems as assistance tools for BLV users has motivated many researchers to explore responses from Large Vision-Language Models (LVLMs). However, it has yet been studied preferences of BLV users on diverse types/styles of responses from LVLMs, specifically for navigational aid. To fill this gap, we first construct Eye4B dataset, consisting of human-validated 1.1k curated outdoor/indoor scenes with 5-10 relevant requests per scene. Then, we conduct an in-depth user study with eight BLV users to evaluate their preferences on six LVLMs from five perspectives: Afraidness, Nonactionability, Sufficiency, and Conciseness. Finally, we introduce Eye4B benchmark for evaluating alignment between widely used model-based image-text metrics and our collected BLV preferences. Our work can be set as a guideline for developing BLV-aware LVLMs towards a Barrier-Free AI system.
Hypergraph Multi-modal Large Language Model: Exploiting EEG and Eye-tracking Modalities to Evaluate Heterogeneous Responses for Video Understanding
Understanding of video creativity and content often varies among individuals, with differences in focal points and cognitive levels across different ages, experiences, and genders. There is currently a lack of research in this area, and most existing benchmarks suffer from several drawbacks: 1) a limited number of modalities and answers with restrictive length; 2) the content and scenarios within the videos are excessively monotonous, transmitting allegories and emotions that are overly simplistic. To bridge the gap to real-world applications, we introduce a large-scale Subjective Response Indicators for Advertisement Videos dataset, namely SRI-ADV. Specifically, we collected real changes in Electroencephalographic (EEG) and eye-tracking regions from different demographics while they viewed identical video content. Utilizing this multi-modal dataset, we developed tasks and protocols to analyze and evaluate the extent of cognitive understanding of video content among different users. Along with the dataset, we designed a Hypergraph Multi-modal Large Language Model (HMLLM) to explore the associations among different demographics, video elements, EEG, and eye-tracking indicators. HMLLM could bridge semantic gaps across rich modalities and integrate information beyond different modalities to perform logical reasoning. Extensive experimental evaluations on SRI-ADV and other additional video-based generative performance benchmarks demonstrate the effectiveness of our method. The codes and dataset will be released at https://github.com/suay1113/HMLLM.
PILL: Plug Into LLM with Adapter Expert and Attention Gate
Due to the remarkable capabilities of powerful Large Language Models (LLMs) in effectively following instructions, there has been a growing number of assistants in the community to assist humans. Recently, significant progress has been made in the development of Vision Language Models (VLMs), expanding the capabilities of LLMs and enabling them to execute more diverse instructions. However, it is foreseeable that models will likely need to handle tasks involving additional modalities such as speech, video, and others. This poses a particularly prominent challenge of dealing with the complexity of mixed modalities. To address this, we introduce a novel architecture called PILL: Plug Into LLM with adapter expert and attention gate to better decouple these complex modalities and leverage efficient fine-tuning. We introduce two modules: Firstly, utilizing Mixture-of-Modality-Adapter-Expert to independently handle different modalities, enabling better adaptation to downstream tasks while preserving the expressive capability of the original model. Secondly, by introducing Modality-Attention-Gating, which enables adaptive control of the contribution of modality tokens to the overall representation. In addition, we have made improvements to the Adapter to enhance its learning and expressive capabilities. Experimental results demonstrate that our approach exhibits competitive performance compared to other mainstream methods for modality fusion. For researchers interested in our work, we provide free access to the code and models at https://github.com/DsaltYfish/PILL.
Multimodal Deep Learning of Word-of-Mouth Text and Demographics to Predict Customer Rating: Handling Consumer Heterogeneity in Marketing
In the marketing field, understanding consumer heterogeneity, which is the internal or psychological difference among consumers that cannot be captured by behavioral logs, has long been a critical challenge. However, a number of consumers today usually post their evaluation on the specific product on the online platform, which can be the valuable source of such unobservable differences among consumers. Several previous studies have shown the validity of the analysis on text modality, but on the other hand, such analyses may not necessarily demonstrate sufficient predictive accuracy for text alone, as they may not include information readily available from cross-sectional data, such as consumer profile data. In addition, recent advances in machine learning techniques, such as large-scale language models (LLMs) and multimodal learning have made it possible to deal with the various kind of dataset simultaneously, including textual data and the traditional cross-sectional data, and the joint representations can be effectively obtained from multiple modalities. Therefore, this study constructs a product evaluation model that takes into account consumer heterogeneity by multimodal learning of online product reviews and consumer profile information. We also compare multiple models using different modalities or hyper-parameters to demonstrate the robustness of multimodal learning in marketing analysis.
SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling
Human preference alignment is critical in building powerful and reliable large language models (LLMs). However, current methods either ignore the multi-dimensionality of human preferences (e.g. helpfulness and harmlessness) or struggle with the complexity of managing multiple reward models. To address these issues, we propose Sequential Preference Optimization (SPO), a method that sequentially fine-tunes LLMs to align with multiple dimensions of human preferences. SPO avoids explicit reward modeling, directly optimizing the models to align with nuanced human preferences. We theoretically derive closed-form optimal SPO policy and loss function. Gradient analysis is conducted to show how SPO manages to fine-tune the LLMs while maintaining alignment on previously optimized dimensions. Empirical results on LLMs of different size and multiple evaluation datasets demonstrate that SPO successfully aligns LLMs across multiple dimensions of human preferences and significantly outperforms the baselines.
Aligning Diffusion Models with Noise-Conditioned Perception
Recent advancements in human preference optimization, initially developed for Language Models (LMs), have shown promise for text-to-image Diffusion Models, enhancing prompt alignment, visual appeal, and user preference. Unlike LMs, Diffusion Models typically optimize in pixel or VAE space, which does not align well with human perception, leading to slower and less efficient training during the preference alignment stage. We propose using a perceptual objective in the U-Net embedding space of the diffusion model to address these issues. Our approach involves fine-tuning Stable Diffusion 1.5 and XL using Direct Preference Optimization (DPO), Contrastive Preference Optimization (CPO), and supervised fine-tuning (SFT) within this embedding space. This method significantly outperforms standard latent-space implementations across various metrics, including quality and computational cost. For SDXL, our approach provides 60.8\% general preference, 62.2\% visual appeal, and 52.1\% prompt following against original open-sourced SDXL-DPO on the PartiPrompts dataset, while significantly reducing compute. Our approach not only improves the efficiency and quality of human preference alignment for diffusion models but is also easily integrable with other optimization techniques. The training code and LoRA weights will be available here: https://huggingface.co/alexgambashidze/SDXL\_NCP-DPO\_v0.1
Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models
Multimodal learning typically relies on the assumption that all modalities are fully available during both the training and inference phases. However, in real-world scenarios, consistently acquiring complete multimodal data presents significant challenges due to various factors. This often leads to the issue of missing modalities, where data for certain modalities are absent, posing considerable obstacles not only for the availability of multimodal pretrained models but also for their fine-tuning and the preservation of robustness in downstream tasks. To address these challenges, we propose a novel framework integrating parameter-efficient fine-tuning of unimodal pretrained models with a self-supervised joint-embedding learning method. This framework enables the model to predict the embedding of a missing modality in the representation space during inference. Our method effectively predicts the missing embedding through prompt tuning, leveraging information from available modalities. We evaluate our approach on several multimodal benchmark datasets and demonstrate its effectiveness and robustness across various scenarios of missing modalities.
Do LLMs Recognize Your Preferences? Evaluating Personalized Preference Following in LLMs
Large Language Models (LLMs) are increasingly used as chatbots, yet their ability to personalize responses to user preferences remains limited. We introduce PrefEval, a benchmark for evaluating LLMs' ability to infer, memorize and adhere to user preferences in a long-context conversational setting. PrefEval comprises 3,000 manually curated user preference and query pairs spanning 20 topics. PrefEval contains user personalization or preference information in both explicit and implicit forms, and evaluates LLM performance using a generation and a classification task. With PrefEval, we evaluated the aforementioned preference following capabilities of 10 open-source and proprietary LLMs in multi-session conversations with varying context lengths up to 100k tokens. We benchmark with various prompting, iterative feedback, and retrieval-augmented generation methods. Our benchmarking effort reveals that state-of-the-art LLMs face significant challenges in proactively following users' preferences during conversations. In particular, in zero-shot settings, preference following accuracy falls below 10% at merely 10 turns (~3k tokens) across most evaluated models. Even with advanced prompting and retrieval methods, preference following still deteriorates in long-context conversations. Furthermore, we show that fine-tuning on PrefEval significantly improves performance. We believe PrefEval serves as a valuable resource for measuring, understanding, and enhancing LLMs' preference following abilities, paving the way for personalized conversational agents. Our code and dataset are available at https://prefeval.github.io/.
The Moral Machine Experiment on Large Language Models
As large language models (LLMs) become more deeply integrated into various sectors, understanding how they make moral judgments has become crucial, particularly in the realm of autonomous driving. This study utilized the Moral Machine framework to investigate the ethical decision-making tendencies of prominent LLMs, including GPT-3.5, GPT-4, PaLM 2, and Llama 2, comparing their responses to human preferences. While LLMs' and humans' preferences such as prioritizing humans over pets and favoring saving more lives are broadly aligned, PaLM 2 and Llama 2, especially, evidence distinct deviations. Additionally, despite the qualitative similarities between the LLM and human preferences, there are significant quantitative disparities, suggesting that LLMs might lean toward more uncompromising decisions, compared to the milder inclinations of humans. These insights elucidate the ethical frameworks of LLMs and their potential implications for autonomous driving.
X-VILA: Cross-Modality Alignment for Large Language Model
We introduce X-VILA, an omni-modality model designed to extend the capabilities of large language models (LLMs) by incorporating image, video, and audio modalities. By aligning modality-specific encoders with LLM inputs and diffusion decoders with LLM outputs, X-VILA achieves cross-modality understanding, reasoning, and generation. To facilitate this cross-modality alignment, we curate an effective interleaved any-to-any modality instruction-following dataset. Furthermore, we identify a significant problem with the current cross-modality alignment method, which results in visual information loss. To address the issue, we propose a visual alignment mechanism with a visual embedding highway module. We then introduce a resource-efficient recipe for training X-VILA, that exhibits proficiency in any-to-any modality conversation, surpassing previous approaches by large margins. X-VILA also showcases emergent properties across modalities even in the absence of similar training data. The project will be made open-source.
Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts
Medical vision-and-language pre-training (Med-VLP) has shown promising improvements on many downstream medical tasks owing to its applicability to extracting generic representations from medical images and texts. Practically, there exist two typical types, i.e., the fusion-encoder type and the dual-encoder type, depending on whether a heavy fusion module is used. The former is superior at multi-modal tasks owing to the sufficient interaction between modalities; the latter is good at uni-modal and cross-modal tasks due to the single-modality encoding ability. To take advantage of these two types, we propose an effective yet straightforward scheme named PTUnifier to unify the two types. We first unify the input format by introducing visual and textual prompts, which serve as a feature bank that stores the most representative images/texts. By doing so, a single model could serve as a foundation model that processes various tasks adopting different input formats (i.e., image-only, text-only, and image-text-pair). Furthermore, we construct a prompt pool (instead of static ones) to improve diversity and scalability. Experimental results show that our approach achieves state-of-the-art results on a broad range of tasks, spanning uni-modal tasks (i.e., image/text classification and text summarization), cross-modal tasks (i.e., image-to-text generation and image-text/text-image retrieval), and multi-modal tasks (i.e., visual question answering), demonstrating the effectiveness of our approach. Note that the adoption of prompts is orthogonal to most existing Med-VLP approaches and could be a beneficial and complementary extension to these approaches.
What Looks Good with my Sofa: Multimodal Search Engine for Interior Design
In this paper, we propose a multi-modal search engine for interior design that combines visual and textual queries. The goal of our engine is to retrieve interior objects, e.g. furniture or wall clocks, that share visual and aesthetic similarities with the query. Our search engine allows the user to take a photo of a room and retrieve with a high recall a list of items identical or visually similar to those present in the photo. Additionally, it allows to return other items that aesthetically and stylistically fit well together. To achieve this goal, our system blends the results obtained using textual and visual modalities. Thanks to this blending strategy, we increase the average style similarity score of the retrieved items by 11%. Our work is implemented as a Web-based application and it is planned to be opened to the public.
Predicting emotion from music videos: exploring the relative contribution of visual and auditory information to affective responses
Although media content is increasingly produced, distributed, and consumed in multiple combinations of modalities, how individual modalities contribute to the perceived emotion of a media item remains poorly understood. In this paper we present MusicVideos (MuVi), a novel dataset for affective multimedia content analysis to study how the auditory and visual modalities contribute to the perceived emotion of media. The data were collected by presenting music videos to participants in three conditions: music, visual, and audiovisual. Participants annotated the music videos for valence and arousal over time, as well as the overall emotion conveyed. We present detailed descriptive statistics for key measures in the dataset and the results of feature importance analyses for each condition. Finally, we propose a novel transfer learning architecture to train Predictive models Augmented with Isolated modality Ratings (PAIR) and demonstrate the potential of isolated modality ratings for enhancing multimodal emotion recognition. Our results suggest that perceptions of arousal are influenced primarily by auditory information, while perceptions of valence are more subjective and can be influenced by both visual and auditory information. The dataset is made publicly available.
Fair-PP: A Synthetic Dataset for Aligning LLM with Personalized Preferences of Social Equity
Human preference plays a crucial role in the refinement of large language models (LLMs). However, collecting human preference feedback is costly and most existing datasets neglect the correlation between personalization and preferences. To address this issue, we introduce Fair-PP, a synthetic dataset of personalized preferences targeting social equity, derived from real-world social survey data, which includes 28 social groups, 98 equity topics, and 5 personal preference dimensions. Leveraging GPT-4o-mini, we engage in role-playing based on seven representative persona portrayals guided by existing social survey data, yielding a total of 238,623 preference records. Through Fair-PP, we also contribute (i) An automated framework for generating preference data, along with a more fine-grained dataset of personalized preferences; (ii) analysis of the positioning of the existing mainstream LLMs across five major global regions within the personalized preference space; and (iii) a sample reweighting method for personalized preference alignment, enabling alignment with a target persona while maximizing the divergence from other personas. Empirical experiments show our method outperforms the baselines.
A Concept-Centric Approach to Multi-Modality Learning
In an effort to create a more efficient AI system, we introduce a new multi-modality learning framework that leverages a modality-agnostic concept space possessing abstract knowledge and a set of modality-specific projection models tailored to process distinct modality inputs and map them onto the concept space. Decoupled from specific modalities and their associated projection models, the concept space focuses on learning abstract knowledge that is universally applicable across modalities. Subsequently, the knowledge embedded into the concept space streamlines the learning processes of modality-specific projection models. We evaluate our framework on two popular tasks: Image-Text Matching and Visual Question Answering. Our framework achieves performance on par with benchmark models while demonstrating more efficient learning curves.
Sample Efficient Preference Alignment in LLMs via Active Exploration
Preference-based feedback is important for many applications in machine learning where evaluation of a reward function is not feasible. Notable recent examples arise in preference alignment for large language models, including in reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO). For many applications of preference alignment, the cost of acquiring human feedback can be substantial. In this work, we take advantage of the fact that one can often choose contexts at which to obtain human feedback to most efficiently identify a good policy, and formalize the setting as an active contextual dueling bandit problem. We propose an active exploration algorithm to efficiently select the data and provide theoretical proof that it has a polynomial worst-case regret bound. We extend the setting and methodology for practical use in preference alignment of large language models. We provide two extensions, an online and an offline approach. Our method outperforms the baselines with limited samples of human preferences on several language models and four real-world datasets including two new datasets that we contribute to the literature.
Align on the Fly: Adapting Chatbot Behavior to Established Norms
In this paper, we aim to align large language models with the ever-changing, complex, and diverse human values (e.g., social norms) across time and locations. This presents a challenge to existing alignment techniques, such as supervised fine-tuning, which internalize values within model parameters. To overcome this, we propose an On-the-fly Preference Optimization (OPO) method, which is a real-time alignment that works in a streaming way. It employs an external memory to store established rules for alignment, which can constrain LLMs' behaviors without further training, allowing for convenient updates and customization of human values. We also introduce a scalable evaluation to assess the proposed method more effectively. Experimental results on both human-annotated and auto-generated questions from legal and moral domains indicate the effectiveness of the proposed OPO method. Our code and data are released at https://github.com/GAIR-NLP/OPO.
Multi-level Matching Network for Multimodal Entity Linking
Multimodal entity linking (MEL) aims to link ambiguous mentions within multimodal contexts to corresponding entities in a multimodal knowledge base. Most existing approaches to MEL are based on representation learning or vision-and-language pre-training mechanisms for exploring the complementary effect among multiple modalities. However, these methods suffer from two limitations. On the one hand, they overlook the possibility of considering negative samples from the same modality. On the other hand, they lack mechanisms to capture bidirectional cross-modal interaction. To address these issues, we propose a Multi-level Matching network for Multimodal Entity Linking (M3EL). Specifically, M3EL is composed of three different modules: (i) a Multimodal Feature Extraction module, which extracts modality-specific representations with a multimodal encoder and introduces an intra-modal contrastive learning sub-module to obtain better discriminative embeddings based on uni-modal differences; (ii) an Intra-modal Matching Network module, which contains two levels of matching granularity: Coarse-grained Global-to-Global and Fine-grained Global-to-Local, to achieve local and global level intra-modal interaction; (iii) a Cross-modal Matching Network module, which applies bidirectional strategies, Textual-to-Visual and Visual-to-Textual matching, to implement bidirectional cross-modal interaction. Extensive experiments conducted on WikiMEL, RichpediaMEL, and WikiDiverse datasets demonstrate the outstanding performance of M3EL when compared to the state-of-the-art baselines.
Deep Multimodal Fusion for Surgical Feedback Classification
Quantification of real-time informal feedback delivered by an experienced surgeon to a trainee during surgery is important for skill improvements in surgical training. Such feedback in the live operating room is inherently multimodal, consisting of verbal conversations (e.g., questions and answers) as well as non-verbal elements (e.g., through visual cues like pointing to anatomic elements). In this work, we leverage a clinically-validated five-category classification of surgical feedback: "Anatomic", "Technical", "Procedural", "Praise" and "Visual Aid". We then develop a multi-label machine learning model to classify these five categories of surgical feedback from inputs of text, audio, and video modalities. The ultimate goal of our work is to help automate the annotation of real-time contextual surgical feedback at scale. Our automated classification of surgical feedback achieves AUCs ranging from 71.5 to 77.6 with the fusion improving performance by 3.1%. We also show that high-quality manual transcriptions of feedback audio from experts improve AUCs to between 76.5 and 96.2, which demonstrates a clear path toward future improvements. Empirically, we find that the Staged training strategy, with first pre-training each modality separately and then training them jointly, is more effective than training different modalities altogether. We also present intuitive findings on the importance of modalities for different feedback categories. This work offers an important first look at the feasibility of automated classification of real-world live surgical feedback based on text, audio, and video modalities.
Do language models practice what they preach? Examining language ideologies about gendered language reform encoded in LLMs
We study language ideologies in text produced by LLMs through a case study on English gendered language reform (related to role nouns like congressperson/-woman/-man, and singular they). First, we find political bias: when asked to use language that is "correct" or "natural", LLMs use language most similarly to when asked to align with conservative (vs. progressive) values. This shows how LLMs' metalinguistic preferences can implicitly communicate the language ideologies of a particular political group, even in seemingly non-political contexts. Second, we find LLMs exhibit internal inconsistency: LLMs use gender-neutral variants more often when more explicit metalinguistic context is provided. This shows how the language ideologies expressed in text produced by LLMs can vary, which may be unexpected to users. We discuss the broader implications of these findings for value alignment.
ORPO: Monolithic Preference Optimization without Reference Model
While recent preference alignment algorithms for language models have demonstrated promising results, supervised fine-tuning (SFT) remains imperative for achieving successful convergence. In this paper, we study the crucial role of SFT within the context of preference alignment, emphasizing that a minor penalty for the disfavored generation style is sufficient for preference-aligned SFT. Building on this foundation, we introduce a straightforward and innovative reference model-free monolithic odds ratio preference optimization algorithm, ORPO, eliminating the necessity for an additional preference alignment phase. We demonstrate, both empirically and theoretically, that the odds ratio is a sensible choice for contrasting favored and disfavored styles during SFT across the diverse sizes from 125M to 7B. Specifically, fine-tuning Phi-2 (2.7B), Llama-2 (7B), and Mistral (7B) with ORPO on the UltraFeedback alone surpasses the performance of state-of-the-art language models with more than 7B and 13B parameters: achieving up to 12.20% on AlpacaEval_{2.0} (Figure 1), 66.19% on IFEval (instruction-level loose, Table 6), and 7.32 in MT-Bench (Figure 12). We release code and model checkpoints for Mistral-ORPO-alpha (7B) and Mistral-ORPO-beta (7B).
A General Language Assistant as a Laboratory for Alignment
Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.
Active Preference Learning for Large Language Models
As large language models (LLMs) become more capable, fine-tuning techniques for aligning with human intent are increasingly important. A key consideration for aligning these models is how to most effectively use human resources, or model resources in the case where LLMs themselves are used as oracles. Reinforcement learning from Human or AI preferences (RLHF/RLAIF) is the most prominent example of such a technique, but is complex and often unstable. Direct Preference Optimization (DPO) has recently been proposed as a simpler and more stable alternative. In this work, we develop an active learning strategy for DPO to make better use of preference labels. We propose a practical acquisition function for prompt/completion pairs based on the predictive entropy of the language model and a measure of certainty of the implicit preference model optimized by DPO. We demonstrate how our approach improves both the rate of learning and final performance of fine-tuning on pairwise preference data.
Varying Shades of Wrong: Aligning LLMs with Wrong Answers Only
In the absence of abundant reliable annotations for challenging tasks and contexts, how can we expand the frontier of LLM capabilities with potentially wrong answers? We focus on two research questions: (1) Can LLMs generate reliable preferences among wrong options? And if so, (2) Would alignment with such wrong-over-wrong preferences be helpful? We employ methods based on self-consistency, token probabilities, and LLM-as-a-judge to elicit wrong-over-wrong preferences, and fine-tune language models with preference optimization approaches using these synthesized preferences. Extensive experiments with seven LLMs and eight datasets demonstrate that (1) LLMs do have preliminary capability in distinguishing various shades of wrong, achieving up to 20.9% higher performance than random guess; (2) Alignment with wrong-over-wrong preferences helps LLMs to produce less wrong and sometimes even outright correct answers, while overall improving model calibration.
Any-to-Any Generation via Composable Diffusion
We present Composable Diffusion (CoDi), a novel generative model capable of generating any combination of output modalities, such as language, image, video, or audio, from any combination of input modalities. Unlike existing generative AI systems, CoDi can generate multiple modalities in parallel and its input is not limited to a subset of modalities like text or image. Despite the absence of training datasets for many combinations of modalities, we propose to align modalities in both the input and output space. This allows CoDi to freely condition on any input combination and generate any group of modalities, even if they are not present in the training data. CoDi employs a novel composable generation strategy which involves building a shared multimodal space by bridging alignment in the diffusion process, enabling the synchronized generation of intertwined modalities, such as temporally aligned video and audio. Highly customizable and flexible, CoDi achieves strong joint-modality generation quality, and outperforms or is on par with the unimodal state-of-the-art for single-modality synthesis. The project page with demonstrations and code is at https://codi-gen.github.io
Connect, Collapse, Corrupt: Learning Cross-Modal Tasks with Uni-Modal Data
Building cross-modal applications is challenging due to limited paired multi-modal data. Recent works have shown that leveraging a pre-trained multi-modal contrastive representation space enables cross-modal tasks to be learned from uni-modal data. This is based on the assumption that contrastive optimization makes embeddings from different modalities interchangeable. However, this assumption is under-explored due to the poorly understood geometry of the multi-modal contrastive space, where a modality gap exists. In our study, we provide a theoretical explanation of this space's geometry and introduce a three-step method, C^3 (Connect, Collapse, Corrupt), to bridge the modality gap, enhancing the interchangeability of embeddings. Our C^3 method significantly improves cross-modal learning from uni-modal data, achieving state-of-the-art results on zero-shot image / audio / video captioning and text-to-image generation.
Multimodal Image Synthesis and Editing: The Generative AI Era
As information exists in various modalities in real world, effective interaction and fusion among multimodal information plays a key role for the creation and perception of multimodal data in computer vision and deep learning research. With superb power in modeling the interaction among multimodal information, multimodal image synthesis and editing has become a hot research topic in recent years. Instead of providing explicit guidance for network training, multimodal guidance offers intuitive and flexible means for image synthesis and editing. On the other hand, this field is also facing several challenges in alignment of multimodal features, synthesis of high-resolution images, faithful evaluation metrics, etc. In this survey, we comprehensively contextualize the advance of the recent multimodal image synthesis and editing and formulate taxonomies according to data modalities and model types. We start with an introduction to different guidance modalities in image synthesis and editing, and then describe multimodal image synthesis and editing approaches extensively according to their model types. After that, we describe benchmark datasets and evaluation metrics as well as corresponding experimental results. Finally, we provide insights about the current research challenges and possible directions for future research. A project associated with this survey is available at https://github.com/fnzhan/Generative-AI.
Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness
Recently, there has been significant interest in replacing the reward model in Reinforcement Learning with Human Feedback (RLHF) methods for Large Language Models (LLMs), such as Direct Preference Optimization (DPO) and its variants. These approaches commonly use a binary cross-entropy mechanism on pairwise samples, i.e., minimizing and maximizing the loss based on preferred or dis-preferred responses, respectively. However, while this training strategy omits the reward model, it also overlooks the varying preference degrees within different responses. We hypothesize that this is a key factor hindering LLMs from sufficiently understanding human preferences. To address this problem, we propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss, thereby helping LLMs improve their ability to understand the degree of preference. Extensive experiments are conducted on two widely used datasets of different tasks. The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods and significantly boost their performance to achieve state-of-the-art performance. We also conduct detailed analyses to offer comprehensive insights into SPO, which verifies its effectiveness. The code is available at https://github.com/lijian16/SPO.
Multi-Modal Open-Domain Dialogue
Recent work in open-domain conversational agents has demonstrated that significant improvements in model engagingness and humanness metrics can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 2020). However, if we want to build agents with human-like abilities, we must expand beyond handling just text. A particularly important topic is the ability to see images and communicate about what is perceived. With the goal of engaging humans in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to engagingness metrics.
mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data
Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space. However, the limited labeled multimodal data often hinders embedding performance. Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck. In this work, we identify three criteria for high-quality synthetic multimodal data. First, broad scope ensures that the generated data covers diverse tasks and modalities, making it applicable to various downstream scenarios. Second, robust cross-modal alignment makes different modalities semantically consistent. Third, high fidelity ensures that the synthetic data maintains realistic details to enhance its reliability. Guided by these principles, we synthesize datasets that: (1) cover a wide range of tasks, modality combinations, and languages, (2) are generated via a deep thinking process within a single pass of a multimodal large language model, and (3) incorporate real-world images with accurate and relevant texts, ensuring fidelity through self-evaluation and refinement. Leveraging these high-quality synthetic and labeled datasets, we train a multimodal multilingual E5 model mmE5. Extensive experiments demonstrate that mmE5 achieves state-of-the-art performance on the MMEB Benchmark and superior multilingual performance on the XTD benchmark. Our codes, datasets and models are released in https://github.com/haon-chen/mmE5.
MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation
The burgeoning presence of multimodal content-sharing platforms propels the development of personalized recommender systems. Previous works usually suffer from data sparsity and cold-start problems, and may fail to adequately explore semantic user-product associations from multimodal data. To address these issues, we propose a novel Multi-Modal Hypergraph Contrastive Learning (MMHCL) framework for user recommendation. For a comprehensive information exploration from user-product relations, we construct two hypergraphs, i.e. a user-to-user (u2u) hypergraph and an item-to-item (i2i) hypergraph, to mine shared preferences among users and intricate multimodal semantic resemblance among items, respectively. This process yields denser second-order semantics that are fused with first-order user-item interaction as complementary to alleviate the data sparsity issue. Then, we design a contrastive feature enhancement paradigm by applying synergistic contrastive learning. By maximizing/minimizing the mutual information between second-order (e.g. shared preference pattern for users) and first-order (information of selected items for users) embeddings of the same/different users and items, the feature distinguishability can be effectively enhanced. Compared with using sparse primary user-item interaction only, our MMHCL obtains denser second-order hypergraphs and excavates more abundant shared attributes to explore the user-product associations, which to a certain extent alleviates the problems of data sparsity and cold-start. Extensive experiments have comprehensively demonstrated the effectiveness of our method. Our code is publicly available at: https://github.com/Xu107/MMHCL.
The PRISM Alignment Project: What Participatory, Representative and Individualised Human Feedback Reveals About the Subjective and Multicultural Alignment of Large Language Models
Human feedback plays a central role in the alignment of Large Language Models (LLMs). However, open questions remain about the methods (how), domains (where), people (who) and objectives (to what end) of human feedback collection. To navigate these questions, we introduce PRISM, a new dataset which maps the sociodemographics and stated preferences of 1,500 diverse participants from 75 countries, to their contextual preferences and fine-grained feedback in 8,011 live conversations with 21 LLMs. PRISM contributes (i) wide geographic and demographic participation in human feedback data; (ii) two census-representative samples for understanding collective welfare (UK and US); and (iii) individualised feedback where every rating is linked to a detailed participant profile, thus permitting exploration of personalisation and attribution of sample artefacts. We focus on collecting conversations that centre subjective and multicultural perspectives on value-laden and controversial topics, where we expect the most interpersonal and cross-cultural disagreement. We demonstrate the usefulness of PRISM via three case studies of dialogue diversity, preference diversity, and welfare outcomes, showing that it matters which humans set alignment norms. As well as offering a rich community resource, we advocate for broader participation in AI development and a more inclusive approach to technology design.
RAG-Check: Evaluating Multimodal Retrieval Augmented Generation Performance
Retrieval-augmented generation (RAG) improves large language models (LLMs) by using external knowledge to guide response generation, reducing hallucinations. However, RAG, particularly multi-modal RAG, can introduce new hallucination sources: (i) the retrieval process may select irrelevant pieces (e.g., documents, images) as raw context from the database, and (ii) retrieved images are processed into text-based context via vision-language models (VLMs) or directly used by multi-modal language models (MLLMs) like GPT-4o, which may hallucinate. To address this, we propose a novel framework to evaluate the reliability of multi-modal RAG using two performance measures: (i) the relevancy score (RS), assessing the relevance of retrieved entries to the query, and (ii) the correctness score (CS), evaluating the accuracy of the generated response. We train RS and CS models using a ChatGPT-derived database and human evaluator samples. Results show that both models achieve ~88% accuracy on test data. Additionally, we construct a 5000-sample human-annotated database evaluating the relevancy of retrieved pieces and the correctness of response statements. Our RS model aligns with human preferences 20% more often than CLIP in retrieval, and our CS model matches human preferences ~91% of the time. Finally, we assess various RAG systems' selection and generation performances using RS and CS.
Human Learning by Model Feedback: The Dynamics of Iterative Prompting with Midjourney
Generating images with a Text-to-Image model often requires multiple trials, where human users iteratively update their prompt based on feedback, namely the output image. Taking inspiration from cognitive work on reference games and dialogue alignment, this paper analyzes the dynamics of the user prompts along such iterations. We compile a dataset of iterative interactions of human users with Midjourney. Our analysis then reveals that prompts predictably converge toward specific traits along these iterations. We further study whether this convergence is due to human users, realizing they missed important details, or due to adaptation to the model's ``preferences'', producing better images for a specific language style. We show initial evidence that both possibilities are at play. The possibility that users adapt to the model's preference raises concerns about reusing user data for further training. The prompts may be biased towards the preferences of a specific model, rather than align with human intentions and natural manner of expression.
Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment
Current multimodal large language models (MLLMs) struggle with fine-grained or precise understanding of visuals though they give comprehensive perception and reasoning in a spectrum of vision applications. Recent studies either develop tool-using or unify specific visual tasks into the autoregressive framework, often at the expense of overall multimodal performance. To address this issue and enhance MLLMs with visual tasks in a scalable fashion, we propose Task Preference Optimization (TPO), a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks. TPO introduces learnable task tokens that establish connections between multiple task-specific heads and the MLLM. By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance. Through multi-task co-training within TPO, we observe synergistic benefits that elevate individual task performance beyond what is achievable through single-task training methodologies. Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models. Additionally, MLLM-TPO demonstrates robust zero-shot capabilities across various tasks, performing comparably to state-of-the-art supervised models. The code will be released at https://github.com/OpenGVLab/TPO
"I Want It That Way": Enabling Interactive Decision Support Using Large Language Models and Constraint Programming
A critical factor in the success of decision support systems is the accurate modeling of user preferences. Psychology research has demonstrated that users often develop their preferences during the elicitation process, highlighting the pivotal role of system-user interaction in developing personalized systems. This paper introduces a novel approach, combining Large Language Models (LLMs) with Constraint Programming to facilitate interactive decision support. We study this hybrid framework through the lens of meeting scheduling, a time-consuming daily activity faced by a multitude of information workers. We conduct three studies to evaluate the novel framework, including a diary study (n=64) to characterize contextual scheduling preferences, a quantitative evaluation of the system's performance, and a user study (n=10) with a prototype system. Our work highlights the potential for a hybrid LLM and optimization approach for iterative preference elicitation and design considerations for building systems that support human-system collaborative decision-making processes.
Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning
Reinforcement Learning from Human Feedback (RLHF) is a powerful paradigm for aligning foundation models to human values and preferences. However, current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population. When these differences arise, traditional RLHF frameworks simply average over them, leading to inaccurate rewards and poor performance for individual subgroups. To address the need for pluralistic alignment, we develop a class of multimodal RLHF methods. Our proposed techniques are based on a latent variable formulation - inferring a novel user-specific latent and learning reward models and policies conditioned on this latent without additional user-specific data. While conceptually simple, we show that in practice, this reward modeling requires careful algorithmic considerations around model architecture and reward scaling. To empirically validate our proposed technique, we first show that it can provide a way to combat underspecification in simulated control problems, inferring and optimizing user-specific reward functions. Next, we conduct experiments on pluralistic language datasets representing diverse user preferences and demonstrate improved reward function accuracy. We additionally show the benefits of this probabilistic framework in terms of measuring uncertainty, and actively learning user preferences. This work enables learning from diverse populations of users with divergent preferences, an important challenge that naturally occurs in problems from robot learning to foundation model alignment.
Music Arena: Live Evaluation for Text-to-Music
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare, as study protocols may differ across systems. Moreover, human preferences might help researchers align their TTM systems or improve automatic evaluation metrics, but an open and renewable source of preferences does not currently exist. We aim to fill these gaps by offering *live* evaluation for TTM. In Music Arena, real-world users input text prompts of their choosing and compare outputs from two TTM systems, and their preferences are used to compile a leaderboard. While Music Arena follows recent evaluation trends in other AI domains, we also design it with key features tailored to music: an LLM-based routing system to navigate the heterogeneous type signatures of TTM systems, and the collection of *detailed* preferences including listening data and natural language feedback. We also propose a rolling data release policy with user privacy guarantees, providing a renewable source of preference data and increasing platform transparency. Through its standardized evaluation protocol, transparent data access policies, and music-specific features, Music Arena not only addresses key challenges in the TTM ecosystem but also demonstrates how live evaluation can be thoughtfully adapted to unique characteristics of specific AI domains. Music Arena is available at: https://music-arena.org
Fork-Merge Decoding: Enhancing Multimodal Understanding in Audio-Visual Large Language Models
The goal of this work is to enhance balanced multimodal understanding in audio-visual large language models (AV-LLMs) by addressing modality bias without requiring additional training. In current AV-LLMs, audio and video features are typically processed jointly in the decoder. While this strategy facilitates unified multimodal understanding, it may introduce modality bias, where the model tends to over-rely on one modality due to imbalanced training signals. To mitigate this, we propose Fork-Merge Decoding (FMD), a simple yet effective inference-time strategy that requires no additional training or architectural modifications. FMD first performs modality-specific reasoning by processing audio-only and video-only inputs through the early decoder layers (a fork phase), and then merges the resulting hidden states for joint reasoning in the remaining layers (a merge phase). This approach promotes balanced modality contributions and leverages complementary information across modalities. We evaluate our method on two representative AV-LLMs, VideoLLaMA2 and video-SALMONN, using three benchmark datasets. Experimental results demonstrate consistent performance improvements on tasks focused on audio, video, and combined audio-visual reasoning, demonstrating the effectiveness of inference-time interventions for robust multimodal understanding.
Multi-Modality Guidance Network For Missing Modality Inference
Multimodal models have gained significant success in recent years. Standard multimodal approaches often assume unchanged modalities from training stage to inference stage. In practice, however, many scenarios fail to satisfy such assumptions with missing modalities during inference, leading to limitations on where multimodal models can be applied. While existing methods mitigate the problem through reconstructing the missing modalities, it increases unnecessary computational cost, which could be just as critical, especially for large, deployed systems. To solve the problem from both sides, we propose a novel guidance network that promotes knowledge sharing during training, taking advantage of the multimodal representations to train better single-modality models for inference. Real-life experiment in violence detection shows that our proposed framework trains single-modality models that significantly outperform its traditionally trained counterparts while maintaining the same inference cost.
Rethinking Direct Preference Optimization in Diffusion Models
Aligning text-to-image (T2I) diffusion models with human preferences has emerged as a critical research challenge. While recent advances in this area have extended preference optimization techniques from large language models (LLMs) to the diffusion setting, they often struggle with limited exploration. In this work, we propose a novel and orthogonal approach to enhancing diffusion-based preference optimization. First, we introduce a stable reference model update strategy that relaxes the frozen reference model, encouraging exploration while maintaining a stable optimization anchor through reference model regularization. Second, we present a timestep-aware training strategy that mitigates the reward scale imbalance problem across timesteps. Our method can be integrated into various preference optimization algorithms. Experimental results show that our approach improves the performance of state-of-the-art methods on human preference evaluation benchmarks.
3D-Properties: Identifying Challenges in DPO and Charting a Path Forward
Aligning large language models (LLMs) with human preference has recently gained tremendous attention, with the canonical yet costly RLHF-PPO and the simple and straightforward Direct Preference Optimization (DPO) as two examples. Despite the efficiency, DPO has rarely be used in the state-of-the-art production-level LLMs, implying its potential pathologies. In this work, we revisit DPO with a comprehensive examination of its empirical efficacy and a systematic comparison with RLHF-PPO. We identify the 3D-properties of DPO's learning outcomes: the Drastic drop in the likelihood of rejected responses, the Degradation into LLM unlearning, and the Dispersion effect on unseen responses through experiments with both a carefully designed toy model and practical LLMs on tasks including mathematical problem-solving and instruction following. These findings inherently connect to some observations made by related works and we additionally contribute a plausible theoretical explanation for them. Accordingly, we propose easy regularization methods to mitigate the issues caused by 3D-properties, improving the training stability and final performance of DPO. Our contributions also include an investigation into how the distribution of the paired preference data impacts the effectiveness of DPO. We hope this work could offer research directions to narrow the gap between reward-free preference learning methods and reward-based ones.
Multi-Domain Explainability of Preferences
Preference mechanisms, such as human preference, LLM-as-a-Judge (LaaJ), and reward models, are central to aligning and evaluating large language models (LLMs). Yet, the underlying concepts that drive these preferences remain poorly understood. In this work, we propose a fully automated method for generating local and global concept-based explanations of preferences across multiple domains. Our method utilizes an LLM to identify concepts that distinguish between chosen and rejected responses, and to represent them with concept-based vectors. To model the relationships between concepts and preferences, we propose a white-box Hierarchical Multi-Domain Regression model that captures both domain-general and domain-specific effects. To evaluate our method, we curate a dataset spanning eight challenging and diverse domains and explain twelve mechanisms. Our method achieves strong preference prediction performance, outperforming baselines while also being explainable. Additionally, we assess explanations in two application-driven settings. First, guiding LLM outputs with concepts from LaaJ explanations yields responses that those judges consistently prefer. Second, prompting LaaJs with concepts explaining humans improves their preference predictions. Together, our work establishes a new paradigm for explainability in the era of LLMs.
DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life
As we increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of the users. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma includes two possible actions and with each action, the affected parties and human values invoked. Based on these dilemmas, we consolidated a set of human values across everyday topics e.g., interpersonal relationships, workplace, and environmental issues. We evaluated LLMs on these dilemmas to determine what action they will take and the values represented by these actions. Then, we analyzed these values through the lens of five popular theories inspired by sociology, psychology and philosophy. These theories are: World Value Survey, Moral Foundation Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik Wheel of Emotion. We find that LLMs are most aligned with the self-expression over survival values in terms of World Value Survey, care over loyalty in Moral Foundation Theory. Interestingly, we find large preferences differences in models for some core values such as truthfulness e.g., Mixtral-8x7B model tends to neglect it by 9.7% while GPT-4-turbo model tends to select it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their released principles reflect their actual value prioritization when facing nuanced moral reasoning in daily-life settings. We find that end users cannot effectively steer such prioritization using system prompts.
Lightweight In-Context Tuning for Multimodal Unified Models
In-context learning (ICL) involves reasoning from given contextual examples. As more modalities comes, this procedure is becoming more challenging as the interleaved input modalities convolutes the understanding process. This is exemplified by the observation that multimodal models often struggle to effectively extrapolate from contextual examples to perform ICL. To address these challenges, we introduce MultiModal In-conteXt Tuning (M^2IXT), a lightweight module to enhance the ICL capabilities of multimodal unified models. The proposed M^2IXT module perceives an expandable context window to incorporate various labeled examples of multiple modalities (e.g., text, image, and coordinates). It can be prepended to various multimodal unified models (e.g., OFA, Unival, LLaVA) of different architectures and trained via a mixed-tasks strategy to enable rapid few-shot adaption on multiple tasks and datasets. When tuned on as little as 50K multimodal data, M^2IXT can boost the few-shot ICL performance significantly (e.g., 18\% relative increase for OFA), and obtained state-of-the-art results across an array of tasks including visual question answering, image captioning, visual grounding, and visual entailment, while being considerably small in terms of model parameters (e.g., sim20times smaller than Flamingo or MMICL), highlighting the flexibility and effectiveness of M^2IXT as a multimodal in-context learner.
Let's Negotiate! A Survey of Negotiation Dialogue Systems
Negotiation is one of the crucial abilities in human communication, and there has been a resurgent research interest in negotiation dialogue systems recently, which goal is to empower intelligent agents with such ability that can efficiently help humans resolve conflicts or reach beneficial agreements. Although there have been many explorations in negotiation dialogue systems, a systematic review of this task has to date remained notably absent. To this end, we aim to fill this gap by reviewing contemporary studies in the emerging field of negotiation dialogue systems, covering benchmarks, evaluations, and methodologies. Furthermore, we also discuss potential future directions, including multi-modal, multi-party, and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.
Image Anything: Towards Reasoning-coherent and Training-free Multi-modal Image Generation
The multifaceted nature of human perception and comprehension indicates that, when we think, our body can naturally take any combination of senses, a.k.a., modalities and form a beautiful picture in our brain. For example, when we see a cattery and simultaneously perceive the cat's purring sound, our brain can construct a picture of a cat in the cattery. Intuitively, generative AI models should hold the versatility of humans and be capable of generating images from any combination of modalities efficiently and collaboratively. This paper presents ImgAny, a novel end-to-end multi-modal generative model that can mimic human reasoning and generate high-quality images. Our method serves as the first attempt in its capacity of efficiently and flexibly taking any combination of seven modalities, ranging from language, audio to vision modalities, including image, point cloud, thermal, depth, and event data. Our key idea is inspired by human-level cognitive processes and involves the integration and harmonization of multiple input modalities at both the entity and attribute levels without specific tuning across modalities. Accordingly, our method brings two novel training-free technical branches: 1) Entity Fusion Branch ensures the coherence between inputs and outputs. It extracts entity features from the multi-modal representations powered by our specially constructed entity knowledge graph; 2) Attribute Fusion Branch adeptly preserves and processes the attributes. It efficiently amalgamates distinct attributes from diverse input modalities via our proposed attribute knowledge graph. Lastly, the entity and attribute features are adaptively fused as the conditional inputs to the pre-trained Stable Diffusion model for image generation. Extensive experiments under diverse modality combinations demonstrate its exceptional capability for visual content creation.
Generative Echo Chamber? Effects of LLM-Powered Search Systems on Diverse Information Seeking
Large language models (LLMs) powered conversational search systems have already been used by hundreds of millions of people, and are believed to bring many benefits over conventional search. However, while decades of research and public discourse interrogated the risk of search systems in increasing selective exposure and creating echo chambers -- limiting exposure to diverse opinions and leading to opinion polarization, little is known about such a risk of LLM-powered conversational search. We conduct two experiments to investigate: 1) whether and how LLM-powered conversational search increases selective exposure compared to conventional search; 2) whether and how LLMs with opinion biases that either reinforce or challenge the user's view change the effect. Overall, we found that participants engaged in more biased information querying with LLM-powered conversational search, and an opinionated LLM reinforcing their views exacerbated this bias. These results present critical implications for the development of LLMs and conversational search systems, and the policy governing these technologies.
Leveraging Domain Knowledge for Efficient Reward Modelling in RLHF: A Case-Study in E-Commerce Opinion Summarization
Reinforcement Learning from Human Feedback (RLHF) has become a dominating strategy in steering Language Models (LMs) towards human values/goals. The key to the strategy is employing a reward model ({varphi}) which can reflect a latent reward model with humans. While this strategy has proven to be effective, the training methodology requires a lot of human preference annotation (usually of the order of tens of thousands) to train {varphi}. Such large-scale preference annotations can be achievable if the reward model can be ubiquitously used. However, human values/goals are subjective and depend on the nature of the task. This poses a challenge in collecting diverse preferences for downstream applications. To address this, we propose a novel methodology to infuse domain knowledge into {varphi}, which reduces the size of preference annotation required. We validate our approach in E-Commerce Opinion Summarization, with a significant reduction in dataset size (just 940 samples) while advancing the state-of-the-art. Our contributions include a novel Reward Modelling technique, a new dataset (PromptOpinSumm) for Opinion Summarization, and a human preference dataset (OpinPref). The proposed methodology opens avenues for efficient RLHF, making it more adaptable to diverse applications with varying human values. We release the artifacts for usage under MIT License.
Aligning Large Language Models with Self-generated Preference Data
Aligning large language models (LLMs) with human preferences becomes a key component to obtaining state-of-the-art performance, but it yields a huge cost to construct a large human-annotated preference dataset. To tackle this problem, we propose a new framework that boosts the alignment of LLMs through Self-generated Preference data (Selfie) using only a very small amount of human-annotated preference data. Our key idea is leveraging the human prior knowledge within the small (seed) data and progressively improving the alignment of LLM, by iteratively generating the responses and learning from them with the self-annotated preference data. To be specific, we propose to derive the preference label from the logits of LLM to explicitly extract the model's inherent preference. Compared to the previous approaches using external reward models or implicit in-context learning, we observe that the proposed approach is significantly more effective. In addition, we introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data. Our experimental results demonstrate that the proposed framework significantly boosts the alignment of LLMs. For example, we achieve superior alignment performance on AlpacaEval 2.0 with only 3.3\% of the ground-truth preference labels in the Ultrafeedback data compared to the cases using the entire data or state-of-the-art baselines.
Retrieval-Augmented Dynamic Prompt Tuning for Incomplete Multimodal Learning
Multimodal learning with incomplete modality is practical and challenging. Recently, researchers have focused on enhancing the robustness of pre-trained MultiModal Transformers (MMTs) under missing modality conditions by applying learnable prompts. However, these prompt-based methods face several limitations: (1) incomplete modalities provide restricted modal cues for task-specific inference, (2) dummy imputation for missing content causes information loss and introduces noise, and (3) static prompts are instance-agnostic, offering limited knowledge for instances with various missing conditions. To address these issues, we propose RAGPT, a novel Retrieval-AuGmented dynamic Prompt Tuning framework. RAGPT comprises three modules: (I) the multi-channel retriever, which identifies similar instances through a within-modality retrieval strategy, (II) the missing modality generator, which recovers missing information using retrieved contexts, and (III) the context-aware prompter, which captures contextual knowledge from relevant instances and generates dynamic prompts to largely enhance the MMT's robustness. Extensive experiments conducted on three real-world datasets show that RAGPT consistently outperforms all competitive baselines in handling incomplete modality problems. The code of our work and prompt-based baselines is available at https://github.com/Jian-Lang/RAGPT.
AdParaphrase: Paraphrase Dataset for Analyzing Linguistic Features toward Generating Attractive Ad Texts
Effective linguistic choices that attract potential customers play crucial roles in advertising success. This study aims to explore the linguistic features of ad texts that influence human preferences. Although the creation of attractive ad texts is an active area of research, progress in understanding the specific linguistic features that affect attractiveness is hindered by several obstacles. First, human preferences are complex and influenced by multiple factors, including their content, such as brand names, and their linguistic styles, making analysis challenging. Second, publicly available ad text datasets that include human preferences are lacking, such as ad performance metrics and human feedback, which reflect people's interests. To address these problems, we present AdParaphrase, a paraphrase dataset that contains human preferences for pairs of ad texts that are semantically equivalent but differ in terms of wording and style. This dataset allows for preference analysis that focuses on the differences in linguistic features. Our analysis revealed that ad texts preferred by human judges have higher fluency, longer length, more nouns, and use of bracket symbols. Furthermore, we demonstrate that an ad text-generation model that considers these findings significantly improves the attractiveness of a given text. The dataset is publicly available at: https://github.com/CyberAgentAILab/AdParaphrase.
CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision Models
Recent work has studied text-to-audio synthesis using large amounts of paired text-audio data. However, audio recordings with high-quality text annotations can be difficult to acquire. In this work, we approach text-to-audio synthesis using unlabeled videos and pretrained language-vision models. We propose to learn the desired text-audio correspondence by leveraging the visual modality as a bridge. We train a conditional diffusion model to generate the audio track of a video, given a video frame encoded by a pretrained contrastive language-image pretraining (CLIP) model. At test time, we first explore performing a zero-shot modality transfer and condition the diffusion model with a CLIP-encoded text query. However, we observe a noticeable performance drop with respect to image queries. To close this gap, we further adopt a pretrained diffusion prior model to generate a CLIP image embedding given a CLIP text embedding. Our results show the effectiveness of the proposed method, and that the pretrained diffusion prior can reduce the modality transfer gap. While we focus on text-to-audio synthesis, the proposed model can also generate audio from image queries, and it shows competitive performance against a state-of-the-art image-to-audio synthesis model in a subjective listening test. This study offers a new direction of approaching text-to-audio synthesis that leverages the naturally-occurring audio-visual correspondence in videos and the power of pretrained language-vision models.
Which One Are You Referring To? Multimodal Object Identification in Situated Dialogue
The demand for multimodal dialogue systems has been rising in various domains, emphasizing the importance of interpreting multimodal inputs from conversational and situational contexts. We explore three methods to tackle this problem and evaluate them on the largest situated dialogue dataset, SIMMC 2.1. Our best method, scene-dialogue alignment, improves the performance by ~20% F1-score compared to the SIMMC 2.1 baselines. We provide analysis and discussion regarding the limitation of our methods and the potential directions for future works. Our code is publicly available at https://github.com/holylovenia/multimodal-object-identification.
SimMMDG: A Simple and Effective Framework for Multi-modal Domain Generalization
In real-world scenarios, achieving domain generalization (DG) presents significant challenges as models are required to generalize to unknown target distributions. Generalizing to unseen multi-modal distributions poses even greater difficulties due to the distinct properties exhibited by different modalities. To overcome the challenges of achieving domain generalization in multi-modal scenarios, we propose SimMMDG, a simple yet effective multi-modal DG framework. We argue that mapping features from different modalities into the same embedding space impedes model generalization. To address this, we propose splitting the features within each modality into modality-specific and modality-shared components. We employ supervised contrastive learning on the modality-shared features to ensure they possess joint properties and impose distance constraints on modality-specific features to promote diversity. In addition, we introduce a cross-modal translation module to regularize the learned features, which can also be used for missing-modality generalization. We demonstrate that our framework is theoretically well-supported and achieves strong performance in multi-modal DG on the EPIC-Kitchens dataset and the novel Human-Animal-Cartoon (HAC) dataset introduced in this paper. Our source code and HAC dataset are available at https://github.com/donghao51/SimMMDG.
A Multimodal Symphony: Integrating Taste and Sound through Generative AI
In recent decades, neuroscientific and psychological research has traced direct relationships between taste and auditory perceptions. This article explores multimodal generative models capable of converting taste information into music, building on this foundational research. We provide a brief review of the state of the art in this field, highlighting key findings and methodologies. We present an experiment in which a fine-tuned version of a generative music model (MusicGEN) is used to generate music based on detailed taste descriptions provided for each musical piece. The results are promising: according the participants' (n=111) evaluation, the fine-tuned model produces music that more coherently reflects the input taste descriptions compared to the non-fine-tuned model. This study represents a significant step towards understanding and developing embodied interactions between AI, sound, and taste, opening new possibilities in the field of generative AI. We release our dataset, code and pre-trained model at: https://osf.io/xs5jy/.
T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
To address the interpretability challenge in machine learning (ML) systems, counterfactual explanations (CEs) have emerged as a promising solution. CEs are unique as they provide workable suggestions to users, in addition to explaining why a certain outcome was predicted. The application of CEs encounters two main challenges: general user preferences and variable ML systems. User preferences tend to be general rather than specific, and CEs need to be adaptable to variable ML models while maintaining robustness even as these models change. Facing these challenges, we present a solution rooted in validated general user preferences, which are derived from thorough user research. We map these preferences to the properties of CEs. Additionally, we introduce a novel method, Tree-based Conditions Optional Links (T-COL), which incorporates two optional structures and multiple condition groups for generating CEs adaptable to general user preferences. Meanwhile, we employ T-COL to enhance the robustness of CEs with specific conditions, making them more valid even when the ML model is replaced. Our experimental comparisons under different user preferences show that T-COL outperforms all baselines, including Large Language Models which are shown to be able to generate counterfactuals.
The Greatest Good Benchmark: Measuring LLMs' Alignment with Utilitarian Moral Dilemmas
The question of how to make decisions that maximise the well-being of all persons is very relevant to design language models that are beneficial to humanity and free from harm. We introduce the Greatest Good Benchmark to evaluate the moral judgments of LLMs using utilitarian dilemmas. Our analysis across 15 diverse LLMs reveals consistently encoded moral preferences that diverge from established moral theories and lay population moral standards. Most LLMs have a marked preference for impartial beneficence and rejection of instrumental harm. These findings showcase the 'artificial moral compass' of LLMs, offering insights into their moral alignment.