Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeUnderstanding plasticity in neural networks
Plasticity, the ability of a neural network to quickly change its predictions in response to new information, is essential for the adaptability and robustness of deep reinforcement learning systems. Deep neural networks are known to lose plasticity over the course of training even in relatively simple learning problems, but the mechanisms driving this phenomenon are still poorly understood. This paper conducts a systematic empirical analysis into plasticity loss, with the goal of understanding the phenomenon mechanistically in order to guide the future development of targeted solutions. We find that loss of plasticity is deeply connected to changes in the curvature of the loss landscape, but that it typically occurs in the absence of saturated units or divergent gradient norms. Based on this insight, we identify a number of parameterization and optimization design choices which enable networks to better preserve plasticity over the course of training. We validate the utility of these findings in larger-scale learning problems by applying the best-performing intervention, layer normalization, to a deep RL agent trained on the Arcade Learning Environment.
Learning to acquire novel cognitive tasks with evolution, plasticity and meta-meta-learning
A hallmark of intelligence is the ability to autonomously learn new flexible, cognitive behaviors - that is, behaviors where the appropriate action depends not just on immediate stimuli (as in simple reflexive stimulus-response associations), but on contextual information that must be adequately acquired, stored and processed. While many meta-learning algorithms can design agents that autonomously learn new tasks, cognitive tasks adds another level of learning and memory to typical ``learning-to-learn'' problems. Here we evolve neural networks, endowed with plastic connections and neuromodulation, over a sizable set of simple cognitive tasks adapted from a computational neuroscience framework. The resulting evolved networks can automatically modify their own connectivity to acquire a novel simple cognitive task, never seen during evolution, from stimuli and rewards alone, through the spontaneous operation of their evolved neural organization and plasticity system. Our results emphasize the importance of carefully considering the multiple learning loops involved in the emergence of intelligent behavior.
Effects of Plasticity Functions on Neural Assemblies
We explore the effects of various plasticity functions on assemblies of neurons. To bridge the gap between experimental and computational theories we make use of a conceptual framework, the Assembly Calculus, which is a formal system for the description of brain function based on assemblies of neurons. The Assembly Calculus includes operations for projecting, associating, and merging assemblies of neurons. Our research is focused on simulating different plasticity functions with Assembly Calculus. Our main contribution is the modification and evaluation of the projection operation. We experiment with Oja's and Spike Time-Dependent Plasticity (STDP) rules and test the effect of various hyper-parameters.
Loss of Plasticity in Deep Continual Learning
Modern deep-learning systems are specialized to problem settings in which training occurs once and then never again, as opposed to continual-learning settings in which training occurs continually. If deep-learning systems are applied in a continual learning setting, then it is well known that they may fail to remember earlier examples. More fundamental, but less well known, is that they may also lose their ability to learn on new examples, a phenomenon called loss of plasticity. We provide direct demonstrations of loss of plasticity using the MNIST and ImageNet datasets repurposed for continual learning as sequences of tasks. In ImageNet, binary classification performance dropped from 89\% accuracy on an early task down to 77\%, about the level of a linear network, on the 2000th task. Loss of plasticity occurred with a wide range of deep network architectures, optimizers, activation functions, batch normalization, dropout, but was substantially eased by L^2-regularization, particularly when combined with weight perturbation. Further, we introduce a new algorithm -- continual backpropagation -- which slightly modifies conventional backpropagation to reinitialize a small fraction of less-used units after each example and appears to maintain plasticity indefinitely.
Sparse Training via Boosting Pruning Plasticity with Neuroregeneration
Works on lottery ticket hypothesis (LTH) and single-shot network pruning (SNIP) have raised a lot of attention currently on post-training pruning (iterative magnitude pruning), and before-training pruning (pruning at initialization). The former method suffers from an extremely large computation cost and the latter usually struggles with insufficient performance. In comparison, during-training pruning, a class of pruning methods that simultaneously enjoys the training/inference efficiency and the comparable performance, temporarily, has been less explored. To better understand during-training pruning, we quantitatively study the effect of pruning throughout training from the perspective of pruning plasticity (the ability of the pruned networks to recover the original performance). Pruning plasticity can help explain several other empirical observations about neural network pruning in literature. We further find that pruning plasticity can be substantially improved by injecting a brain-inspired mechanism called neuroregeneration, i.e., to regenerate the same number of connections as pruned. We design a novel gradual magnitude pruning (GMP) method, named gradual pruning with zero-cost neuroregeneration (GraNet), that advances state of the art. Perhaps most impressively, its sparse-to-sparse version for the first time boosts the sparse-to-sparse training performance over various dense-to-sparse methods with ResNet-50 on ImageNet without extending the training time. We release all codes in https://github.com/Shiweiliuiiiiiii/GraNet.
Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules and Training Stages
Plasticity, the ability of a neural network to evolve with new data, is crucial for high-performance and sample-efficient visual reinforcement learning (VRL). Although methods like resetting and regularization can potentially mitigate plasticity loss, the influences of various components within the VRL framework on the agent's plasticity are still poorly understood. In this work, we conduct a systematic empirical exploration focusing on three primary underexplored facets and derive the following insightful conclusions: (1) data augmentation is essential in maintaining plasticity; (2) the critic's plasticity loss serves as the principal bottleneck impeding efficient training; and (3) without timely intervention to recover critic's plasticity in the early stages, its loss becomes catastrophic. These insights suggest a novel strategy to address the high replay ratio (RR) dilemma, where exacerbated plasticity loss hinders the potential improvements of sample efficiency brought by increased reuse frequency. Rather than setting a static RR for the entire training process, we propose Adaptive RR, which dynamically adjusts the RR based on the critic's plasticity level. Extensive evaluations indicate that Adaptive RR not only avoids catastrophic plasticity loss in the early stages but also benefits from more frequent reuse in later phases, resulting in superior sample efficiency.
Rethinking the Stability-Plasticity Trade-off in Continual Learning from an Architectural Perspective
The quest for Continual Learning (CL) seeks to empower neural networks with the ability to learn and adapt incrementally. Central to this pursuit is addressing the stability-plasticity dilemma, which involves striking a balance between two conflicting objectives: preserving previously learned knowledge and acquiring new knowledge. While numerous CL methods aim to achieve this trade-off, they often overlook the impact of network architecture on stability and plasticity, restricting the trade-off to the parameter level. In this paper, we delve into the conflict between stability and plasticity at the architectural level. We reveal that under an equal parameter constraint, deeper networks exhibit better plasticity, while wider networks are characterized by superior stability. To address this architectural-level dilemma, we introduce a novel framework denoted Dual-Arch, which serves as a plug-in component for CL. This framework leverages the complementary strengths of two distinct and independent networks: one dedicated to plasticity and the other to stability. Each network is designed with a specialized and lightweight architecture, tailored to its respective objective. Extensive experiments demonstrate that Dual-Arch enhances the performance of existing CL methods while being up to 87% more compact in terms of parameters.
Continual Lifelong Learning with Neural Networks: A Review
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
How connectivity structure shapes rich and lazy learning in neural circuits
In theoretical neuroscience, recent work leverages deep learning tools to explore how some network attributes critically influence its learning dynamics. Notably, initial weight distributions with small (resp. large) variance may yield a rich (resp. lazy) regime, where significant (resp. minor) changes to network states and representation are observed over the course of learning. However, in biology, neural circuit connectivity could exhibit a low-rank structure and therefore differs markedly from the random initializations generally used for these studies. As such, here we investigate how the structure of the initial weights -- in particular their effective rank -- influences the network learning regime. Through both empirical and theoretical analyses, we discover that high-rank initializations typically yield smaller network changes indicative of lazier learning, a finding we also confirm with experimentally-driven initial connectivity in recurrent neural networks. Conversely, low-rank initialization biases learning towards richer learning. Importantly, however, as an exception to this rule, we find lazier learning can still occur with a low-rank initialization that aligns with task and data statistics. Our research highlights the pivotal role of initial weight structures in shaping learning regimes, with implications for metabolic costs of plasticity and risks of catastrophic forgetting.
Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity
The liquid state machine (LSM) combines low training complexity and biological plausibility, which has made it an attractive machine learning framework for edge and neuromorphic computing paradigms. Originally proposed as a model of brain computation, the LSM tunes its internal weights without backpropagation of gradients, which results in lower performance compared to multi-layer neural networks. Recent findings in neuroscience suggest that astrocytes, a long-neglected non-neuronal brain cell, modulate synaptic plasticity and brain dynamics, tuning brain networks to the vicinity of the computationally optimal critical phase transition between order and chaos. Inspired by this disruptive understanding of how brain networks self-tune, we propose the neuron-astrocyte liquid state machine (NALSM) that addresses under-performance through self-organized near-critical dynamics. Similar to its biological counterpart, the astrocyte model integrates neuronal activity and provides global feedback to spike-timing-dependent plasticity (STDP), which self-organizes NALSM dynamics around a critical branching factor that is associated with the edge-of-chaos. We demonstrate that NALSM achieves state-of-the-art accuracy versus comparable LSM methods, without the need for data-specific hand-tuning. With a top accuracy of 97.61% on MNIST, 97.51% on N-MNIST, and 85.84% on Fashion-MNIST, NALSM achieved comparable performance to current fully-connected multi-layer spiking neural networks trained via backpropagation. Our findings suggest that the further development of brain-inspired machine learning methods has the potential to reach the performance of deep learning, with the added benefits of supporting robust and energy-efficient neuromorphic computing on the edge.
Dis-inhibitory neuronal circuits can control the sign of synaptic plasticity
How neuronal circuits achieve credit assignment remains a central unsolved question in systems neuroscience. Various studies have suggested plausible solutions for back-propagating error signals through multi-layer networks. These purely functionally motivated models assume distinct neuronal compartments to represent local error signals that determine the sign of synaptic plasticity. However, this explicit error modulation is inconsistent with phenomenological plasticity models in which the sign depends primarily on postsynaptic activity. Here we show how a plausible microcircuit model and Hebbian learning rule derived within an adaptive control theory framework can resolve this discrepancy. Assuming errors are encoded in top-down dis-inhibitory synaptic afferents, we show that error-modulated learning emerges naturally at the circuit level when recurrent inhibition explicitly influences Hebbian plasticity. The same learning rule accounts for experimentally observed plasticity in the absence of inhibition and performs comparably to back-propagation of error (BP) on several non-linearly separable benchmarks. Our findings bridge the gap between functional and experimentally observed plasticity rules and make concrete predictions on inhibitory modulation of excitatory plasticity.
Learning Continually by Spectral Regularization
Loss of plasticity is a phenomenon where neural networks become more difficult to train during the course of learning. Continual learning algorithms seek to mitigate this effect by sustaining good predictive performance while maintaining network trainability. We develop new techniques for improving continual learning by first reconsidering how initialization can ensure trainability during early phases of learning. From this perspective, we derive new regularization strategies for continual learning that ensure beneficial initialization properties are better maintained throughout training. In particular, we investigate two new regularization techniques for continual learning: (i) Wasserstein regularization toward the initial weight distribution, which is less restrictive than regularizing toward initial weights; and (ii) regularizing weight matrix singular values, which directly ensures gradient diversity is maintained throughout training. We present an experimental analysis that shows these alternative regularizers can improve continual learning performance across a range of supervised learning tasks and model architectures. The alternative regularizers prove to be less sensitive to hyperparameters while demonstrating better training in individual tasks, sustaining trainability as new tasks arrive, and achieving better generalization performance.
Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration
Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.
Adapt before Continual Learning
Continual Learning (CL) seeks to enable neural networks to incrementally acquire new knowledge (plasticity) while retaining existing knowledge (stability). While pre-trained models (PTMs) have become pivotal in CL, prevailing approaches freeze the PTM backbone to preserve stability, limiting their plasticity, particularly when encountering significant domain gaps in incremental tasks. Conversely, sequentially finetuning the entire PTM risks catastrophic forgetting of generalizable knowledge, exposing a critical stability-plasticity trade-off. To address this challenge, we propose Adapting PTMs before the core CL process (ACL), a novel framework that refines the PTM backbone through a plug-and-play adaptation phase before learning each new task with existing CL approaches (e.g., prompt tuning). ACL enhances plasticity by aligning embeddings with their original class prototypes while distancing them from others, theoretically and empirically shown to balance stability and plasticity. Extensive experiments demonstrate that ACL significantly improves CL performance across benchmarks and integrated methods, offering a versatile solution for PTM-based CL.
CLR: Channel-wise Lightweight Reprogramming for Continual Learning
Continual learning aims to emulate the human ability to continually accumulate knowledge over sequential tasks. The main challenge is to maintain performance on previously learned tasks after learning new tasks, i.e., to avoid catastrophic forgetting. We propose a Channel-wise Lightweight Reprogramming (CLR) approach that helps convolutional neural networks (CNNs) overcome catastrophic forgetting during continual learning. We show that a CNN model trained on an old task (or self-supervised proxy task) could be ``reprogrammed" to solve a new task by using our proposed lightweight (very cheap) reprogramming parameter. With the help of CLR, we have a better stability-plasticity trade-off to solve continual learning problems: To maintain stability and retain previous task ability, we use a common task-agnostic immutable part as the shared ``anchor" parameter set. We then add task-specific lightweight reprogramming parameters to reinterpret the outputs of the immutable parts, to enable plasticity and integrate new knowledge. To learn sequential tasks, we only train the lightweight reprogramming parameters to learn each new task. Reprogramming parameters are task-specific and exclusive to each task, which makes our method immune to catastrophic forgetting. To minimize the parameter requirement of reprogramming to learn new tasks, we make reprogramming lightweight by only adjusting essential kernels and learning channel-wise linear mappings from anchor parameters to task-specific domain knowledge. We show that, for general CNNs, the CLR parameter increase is less than 0.6\% for any new task. Our method outperforms 13 state-of-the-art continual learning baselines on a new challenging sequence of 53 image classification datasets. Code and data are available at https://github.com/gyhandy/Channel-wise-Lightweight-Reprogramming
Synaptic Weight Distributions Depend on the Geometry of Plasticity
A growing literature in computational neuroscience leverages gradient descent and learning algorithms that approximate it to study synaptic plasticity in the brain. However, the vast majority of this work ignores a critical underlying assumption: the choice of distance for synaptic changes - i.e. the geometry of synaptic plasticity. Gradient descent assumes that the distance is Euclidean, but many other distances are possible, and there is no reason that biology necessarily uses Euclidean geometry. Here, using the theoretical tools provided by mirror descent, we show that the distribution of synaptic weights will depend on the geometry of synaptic plasticity. We use these results to show that experimentally-observed log-normal weight distributions found in several brain areas are not consistent with standard gradient descent (i.e. a Euclidean geometry), but rather with non-Euclidean distances. Finally, we show that it should be possible to experimentally test for different synaptic geometries by comparing synaptic weight distributions before and after learning. Overall, our work shows that the current paradigm in theoretical work on synaptic plasticity that assumes Euclidean synaptic geometry may be misguided and that it should be possible to experimentally determine the true geometry of synaptic plasticity in the brain.
Neural Circuit Architectural Priors for Embodied Control
Artificial neural networks for motor control usually adopt generic architectures like fully connected MLPs. While general, these tabula rasa architectures rely on large amounts of experience to learn, are not easily transferable to new bodies, and have internal dynamics that are difficult to interpret. In nature, animals are born with highly structured connectivity in their nervous systems shaped by evolution; this innate circuitry acts synergistically with learning mechanisms to provide inductive biases that enable most animals to function well soon after birth and learn efficiently. Convolutional networks inspired by visual circuitry have encoded useful biases for vision. However, it is unknown the extent to which ANN architectures inspired by neural circuitry can yield useful biases for other AI domains. In this work, we ask what advantages biologically inspired ANN architecture can provide in the domain of motor control. Specifically, we translate C. elegans locomotion circuits into an ANN model controlling a simulated Swimmer agent. On a locomotion task, our architecture achieves good initial performance and asymptotic performance comparable with MLPs, while dramatically improving data efficiency and requiring orders of magnitude fewer parameters. Our architecture is interpretable and transfers to new body designs. An ablation analysis shows that constrained excitation/inhibition is crucial for learning, while weight initialization contributes to good initial performance. Our work demonstrates several advantages of biologically inspired ANN architecture and encourages future work in more complex embodied control.
Hebbian Learning based Orthogonal Projection for Continual Learning of Spiking Neural Networks
Neuromorphic computing with spiking neural networks is promising for energy-efficient artificial intelligence (AI) applications. However, different from humans who continually learn different tasks in a lifetime, neural network models suffer from catastrophic forgetting. How could neuronal operations solve this problem is an important question for AI and neuroscience. Many previous studies draw inspiration from observed neuroscience phenomena and propose episodic replay or synaptic metaplasticity, but they are not guaranteed to explicitly preserve knowledge for neuron populations. Other works focus on machine learning methods with more mathematical grounding, e.g., orthogonal projection on high dimensional spaces, but there is no neural correspondence for neuromorphic computing. In this work, we develop a new method with neuronal operations based on lateral connections and Hebbian learning, which can protect knowledge by projecting activity traces of neurons into an orthogonal subspace so that synaptic weight update will not interfere with old tasks. We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities and enable orthogonal projection. This provides new insights into how neural circuits and Hebbian learning can help continual learning, and also how the concept of orthogonal projection can be realized in neuronal systems. Our method is also flexible to utilize arbitrary training methods based on presynaptic activities/traces. Experiments show that our method consistently solves forgetting for spiking neural networks with nearly zero forgetting under various supervised training methods with different error propagation approaches, and outperforms previous approaches under various settings. Our method can pave a solid path for building continual neuromorphic computing systems.
BrainTransformers: SNN-LLM
This study introduces BrainTransformers, an innovative Large Language Model (LLM) implemented using Spiking Neural Networks (SNN). Our key contributions include: (1) designing SNN-compatible Transformer components such as SNNMatmul, SNNSoftmax, and SNNSiLU; (2) implementing an SNN approximation of the SiLU activation function; and (3) developing a Synapsis module to simulate synaptic plasticity. Our 3-billion parameter model, BrainTransformers-3B-Chat, demonstrates competitive performance across various benchmarks, including MMLU (63.2), BBH (54.1), ARC-C (54.3), and GSM8K (76.3), while potentially offering improved energy efficiency and biological plausibility. The model employs a three-stage training approach, including SNN-specific neuronal synaptic plasticity training. This research opens new avenues for brain-like AI systems in natural language processing and neuromorphic computing. Future work will focus on hardware optimization, developing specialized SNN fine-tuning tools, and exploring practical applications in energy-efficient computing environments.
Need is All You Need: Homeostatic Neural Networks Adapt to Concept Shift
In living organisms, homeostasis is the natural regulation of internal states aimed at maintaining conditions compatible with life. Typical artificial systems are not equipped with comparable regulatory features. Here, we introduce an artificial neural network that incorporates homeostatic features. Its own computing substrate is placed in a needful and vulnerable relation to the very objects over which it computes. For example, artificial neurons performing classification of MNIST digits or Fashion-MNIST articles of clothing may receive excitatory or inhibitory effects, which alter their own learning rate as a direct result of perceiving and classifying the digits. In this scenario, accurate recognition is desirable to the agent itself because it guides decisions to regulate its vulnerable internal states and functionality. Counterintuitively, the addition of vulnerability to a learner does not necessarily impair its performance. On the contrary, self-regulation in response to vulnerability confers benefits under certain conditions. We show that homeostatic design confers increased adaptability under concept shift, in which the relationships between labels and data change over time, and that the greatest advantages are obtained under the highest rates of shift. This necessitates the rapid un-learning of past associations and the re-learning of new ones. We also demonstrate the superior abilities of homeostatic learners in environments with dynamically changing rates of concept shift. Our homeostatic design exposes the artificial neural network's thinking machinery to the consequences of its own "thoughts", illustrating the advantage of putting one's own "skin in the game" to improve fluid intelligence.
Adaptive coding efficiency in recurrent cortical circuits via gain control
Sensory systems across all modalities and species exhibit adaptation to continuously changing input statistics. Individual neurons have been shown to modulate their response gains so as to maximize information transmission in different stimulus contexts. Experimental measurements have revealed additional, nuanced sensory adaptation effects including changes in response maxima and minima, tuning curve repulsion from the adapter stimulus, and stimulus-driven response decorrelation. Existing explanations of these phenomena rely on changes in inter-neuronal synaptic efficacy, which, while more flexible, are unlikely to operate as rapidly or reversibly as single neuron gain modulations. Using published V1 population adaptation data, we show that propagation of single neuron gain changes in a recurrent network is sufficient to capture the entire set of observed adaptation effects. We propose a novel adaptive efficient coding objective with which single neuron gains are modulated, maximizing the fidelity of the stimulus representation while minimizing overall activity in the network. From this objective, we analytically derive a set of gains that optimize the trade-off between preserving information about the stimulus and conserving metabolic resources. Our model generalizes well-established concepts of single neuron adaptive gain control to recurrent populations, and parsimoniously explains experimental adaptation data.
On the Benefits of Biophysical Synapses
The approximation capability of ANNs and their RNN instantiations, is strongly correlated with the number of parameters packed into these networks. However, the complexity barrier for human understanding, is arguably related to the number of neurons and synapses in the networks, and to the associated nonlinear transformations. In this paper we show that the use of biophysical synapses, as found in LTCs, have two main benefits. First, they allow to pack more parameters for a given number of neurons and synapses. Second, they allow to formulate the nonlinear-network transformation, as a linear system with state-dependent coefficients. Both increase interpretability, as for a given task, they allow to learn a system linear in its input features, that is smaller in size compared to the state of the art. We substantiate the above claims on various time-series prediction tasks, but we believe that our results are applicable to any feedforward or recurrent ANN.
How do neurons operate on sparse distributed representations? A mathematical theory of sparsity, neurons and active dendrites
We propose a formal mathematical model for sparse representations and active dendrites in neocortex. Our model is inspired by recent experimental findings on active dendritic processing and NMDA spikes in pyramidal neurons. These experimental and modeling studies suggest that the basic unit of pattern memory in the neocortex is instantiated by small clusters of synapses operated on by localized non-linear dendritic processes. We derive a number of scaling laws that characterize the accuracy of such dendrites in detecting activation patterns in a neuronal population under adverse conditions. We introduce the union property which shows that synapses for multiple patterns can be randomly mixed together within a segment and still lead to highly accurate recognition. We describe simulation results that provide further insight into sparse representations as well as two primary results. First we show that pattern recognition by a neuron with active dendrites can be extremely accurate and robust with high dimensional sparse inputs even when using a tiny number of synapses to recognize large patterns. Second, equations representing recognition accuracy of a dendrite predict optimal NMDA spiking thresholds under a generous set of assumptions. The prediction tightly matches NMDA spiking thresholds measured in the literature. Our model matches many of the known properties of pyramidal neurons. As such the theory provides a mathematical framework for understanding the benefits and limits of sparse representations in cortical networks.
Emergent representations in networks trained with the Forward-Forward algorithm
The Backpropagation algorithm, widely used to train neural networks, has often been criticised for its lack of biological realism. In an attempt to find a more biologically plausible alternative, and avoid to back-propagate gradients in favour of using local learning rules, the recently introduced Forward-Forward algorithm replaces the traditional forward and backward passes of Backpropagation with two forward passes. In this work, we show that internal representations obtained with the Forward-Forward algorithm organize into robust, category-specific ensembles, composed by an extremely low number of active units (high sparsity). This is remarkably similar to what is observed in cortical representations during sensory processing. While not found in models trained with standard Backpropagation, sparsity emerges also in networks optimized by Backpropagation, on the same training objective of Forward-Forward. These results suggest that the learning procedure proposed by Forward-Forward may be superior to Backpropagation in modelling learning in the cortex, even when a backward pass is used.
Towards Self-Assembling Artificial Neural Networks through Neural Developmental Programs
Biological nervous systems are created in a fundamentally different way than current artificial neural networks. Despite its impressive results in a variety of different domains, deep learning often requires considerable engineering effort to design high-performing neural architectures. By contrast, biological nervous systems are grown through a dynamic self-organizing process. In this paper, we take initial steps toward neural networks that grow through a developmental process that mirrors key properties of embryonic development in biological organisms. The growth process is guided by another neural network, which we call a Neural Developmental Program (NDP) and which operates through local communication alone. We investigate the role of neural growth on different machine learning benchmarks and different optimization methods (evolutionary training, online RL, offline RL, and supervised learning). Additionally, we highlight future research directions and opportunities enabled by having self-organization driving the growth of neural networks.
Few-shot Continual Learning: a Brain-inspired Approach
It is an important yet challenging setting to continually learn new tasks from a few examples. Although numerous efforts have been devoted to either continual learning or few-shot learning, little work has considered this new setting of few-shot continual learning (FSCL), which needs to minimize the catastrophic forgetting to the old tasks and gradually improve the ability of few-shot generalization. In this paper, we provide a first systematic study on FSCL and present an effective solution with deep neural networks. Our solution is based on the observation that continual learning of a task sequence inevitably interferes few-shot generalization, which makes it highly nontrivial to extend few-shot learning strategies to continual learning scenarios. We draw inspirations from the robust brain system and develop a method that (1) interdependently updates a pair of fast / slow weights for continual learning and few-shot learning to disentangle their divergent objectives, inspired by the biological model of meta-plasticity and fast / slow synapse; and (2) applies a brain-inspired two-step consolidation strategy to learn a task sequence without forgetting in the fast weights while improve generalization without overfitting in the slow weights. Extensive results on various benchmarks show that our method achieves a better performance than joint training of all the tasks ever seen. The ability of few-shot generalization is also substantially improved from incoming tasks and examples.
Generalizable Neural Fields as Partially Observed Neural Processes
Neural fields, which represent signals as a function parameterized by a neural network, are a promising alternative to traditional discrete vector or grid-based representations. Compared to discrete representations, neural representations both scale well with increasing resolution, are continuous, and can be many-times differentiable. However, given a dataset of signals that we would like to represent, having to optimize a separate neural field for each signal is inefficient, and cannot capitalize on shared information or structures among signals. Existing generalization methods view this as a meta-learning problem and employ gradient-based meta-learning to learn an initialization which is then fine-tuned with test-time optimization, or learn hypernetworks to produce the weights of a neural field. We instead propose a new paradigm that views the large-scale training of neural representations as a part of a partially-observed neural process framework, and leverage neural process algorithms to solve this task. We demonstrate that this approach outperforms both state-of-the-art gradient-based meta-learning approaches and hypernetwork approaches.
Beyond Attention: Toward Machines with Intrinsic Higher Mental States
Attending to what is relevant is fundamental to both the mammalian brain and modern machine learning models such as Transformers. Yet, determining relevance remains a core challenge, traditionally offloaded to learning algorithms like backpropagation. Inspired by recent cellular neurobiological evidence linking neocortical pyramidal cells to distinct mental states, this work shows how models (e.g., Transformers) can emulate high-level perceptual processing and awake thought (imagination) states to pre-select relevant information before applying attention. Triadic neuronal-level modulation loops among questions (Q), clues (keys, K), and hypotheses (values, V) enable diverse, deep, parallel reasoning chains at the representation level and allow a rapid shift from initial biases to refined understanding. This leads to orders-of-magnitude faster learning with significantly reduced computational demand (e.g., fewer heads, layers, and tokens), at an approximate cost of O(N), where N is the number of input tokens. Results span reinforcement learning (e.g., CarRacing in a high-dimensional visual setup), computer vision, and natural language question answering.
Traveling Waves Encode the Recent Past and Enhance Sequence Learning
Traveling waves of neural activity have been observed throughout the brain at a diversity of regions and scales; however, their precise computational role is still debated. One physically inspired hypothesis suggests that the cortical sheet may act like a wave-propagating system capable of invertibly storing a short-term memory of sequential stimuli through induced waves traveling across the cortical surface, and indeed many experimental results from neuroscience correlate wave activity with memory tasks. To date, however, the computational implications of this idea have remained hypothetical due to the lack of a simple recurrent neural network architecture capable of exhibiting such waves. In this work, we introduce a model to fill this gap, which we denote the Wave-RNN (wRNN), and demonstrate how such an architecture indeed efficiently encodes the recent past through a suite of synthetic memory tasks where wRNNs learn faster and reach significantly lower error than wave-free counterparts. We further explore the implications of this memory storage system on more complex sequence modeling tasks such as sequential image classification and find that wave-based models not only again outperform comparable wave-free RNNs while using significantly fewer parameters, but additionally perform comparably to more complex gated architectures such as LSTMs and GRUs.
Spiking Diffusion Models
Recent years have witnessed Spiking Neural Networks (SNNs) gaining attention for their ultra-low energy consumption and high biological plausibility compared with traditional Artificial Neural Networks (ANNs). Despite their distinguished properties, the application of SNNs in the computationally intensive field of image generation is still under exploration. In this paper, we propose the Spiking Diffusion Models (SDMs), an innovative family of SNN-based generative models that excel in producing high-quality samples with significantly reduced energy consumption. In particular, we propose a Temporal-wise Spiking Mechanism (TSM) that allows SNNs to capture more temporal features from a bio-plasticity perspective. In addition, we propose a threshold-guided strategy that can further improve the performances by up to 16.7% without any additional training. We also make the first attempt to use the ANN-SNN approach for SNN-based generation tasks. Extensive experimental results reveal that our approach not only exhibits comparable performance to its ANN counterpart with few spiking time steps, but also outperforms previous SNN-based generative models by a large margin. Moreover, we also demonstrate the high-quality generation ability of SDM on large-scale datasets, e.g., LSUN bedroom. This development marks a pivotal advancement in the capabilities of SNN-based generation, paving the way for future research avenues to realize low-energy and low-latency generative applications. Our code is available at https://github.com/AndyCao1125/SDM.
Critical Learning Periods Emerge Even in Deep Linear Networks
Critical learning periods are periods early in development where temporary sensory deficits can have a permanent effect on behavior and learned representations. Despite the radical differences between biological and artificial networks, critical learning periods have been empirically observed in both systems. This suggests that critical periods may be fundamental to learning and not an accident of biology. Yet, why exactly critical periods emerge in deep networks is still an open question, and in particular it is unclear whether the critical periods observed in both systems depend on particular architectural or optimization details. To isolate the key underlying factors, we focus on deep linear network models, and show that, surprisingly, such networks also display much of the behavior seen in biology and artificial networks, while being amenable to analytical treatment. We show that critical periods depend on the depth of the model and structure of the data distribution. We also show analytically and in simulations that the learning of features is tied to competition between sources. Finally, we extend our analysis to multi-task learning to show that pre-training on certain tasks can damage the transfer performance on new tasks, and show how this depends on the relationship between tasks and the duration of the pre-training stage. To the best of our knowledge, our work provides the first analytically tractable model that sheds light into why critical learning periods emerge in biological and artificial networks.
Learning dynamic representations of the functional connectome in neurobiological networks
The static synaptic connectivity of neuronal circuits stands in direct contrast to the dynamics of their function. As in changing community interactions, different neurons can participate actively in various combinations to effect behaviors at different times. We introduce an unsupervised approach to learn the dynamic affinities between neurons in live, behaving animals, and to reveal which communities form among neurons at different times. The inference occurs in two major steps. First, pairwise non-linear affinities between neuronal traces from brain-wide calcium activity are organized by non-negative tensor factorization (NTF). Each factor specifies which groups of neurons are most likely interacting for an inferred interval in time, and for which animals. Finally, a generative model that allows for weighted community detection is applied to the functional motifs produced by NTF to reveal a dynamic functional connectome. Since time codes the different experimental variables (e.g., application of chemical stimuli), this provides an atlas of neural motifs active during separate stages of an experiment (e.g., stimulus application or spontaneous behaviors). Results from our analysis are experimentally validated, confirming that our method is able to robustly predict causal interactions between neurons to generate behavior. Code is available at https://github.com/dyballa/dynamic-connectomes.
A brain basis of dynamical intelligence for AI and computational neuroscience
The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improvements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures
Despite being the workhorse of deep learning, the backpropagation algorithm is no panacea. It enforces sequential layer updates, thus preventing efficient parallelization of the training process. Furthermore, its biological plausibility is being challenged. Alternative schemes have been devised; yet, under the constraint of synaptic asymmetry, none have scaled to modern deep learning tasks and architectures. Here, we challenge this perspective, and study the applicability of Direct Feedback Alignment to neural view synthesis, recommender systems, geometric learning, and natural language processing. In contrast with previous studies limited to computer vision tasks, our findings show that it successfully trains a large range of state-of-the-art deep learning architectures, with performance close to fine-tuned backpropagation. At variance with common beliefs, our work supports that challenging tasks can be tackled in the absence of weight transport.
Why do networks have inhibitory/negative connections?
Why do brains have inhibitory connections? Why do deep networks have negative weights? We propose an answer from the perspective of representation capacity. We believe representing functions is the primary role of both (i) the brain in natural intelligence, and (ii) deep networks in artificial intelligence. Our answer to why there are inhibitory/negative weights is: to learn more functions. We prove that, in the absence of negative weights, neural networks with non-decreasing activation functions are not universal approximators. While this may be an intuitive result to some, to the best of our knowledge, there is no formal theory, in either machine learning or neuroscience, that demonstrates why negative weights are crucial in the context of representation capacity. Further, we provide insights on the geometric properties of the representation space that non-negative deep networks cannot represent. We expect these insights will yield a deeper understanding of more sophisticated inductive priors imposed on the distribution of weights that lead to more efficient biological and machine learning.
Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data
State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis. Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive spatiotemporal generation problem. Neuroformer is a multimodal, multitask generative pretrained transformer (GPT) model that is specifically designed to handle the intricacies of data in systems neuroscience. It scales linearly with feature size, can process an arbitrary number of modalities, and is adaptable to downstream tasks, such as predicting behavior. We first trained Neuroformer on simulated datasets, and found that it both accurately predicted simulated neuronal circuit activity, and also intrinsically inferred the underlying neural circuit connectivity, including direction. When pretrained to decode neural responses, the model predicted the behavior of a mouse with only few-shot fine-tuning, suggesting that the model begins learning how to do so directly from the neural representations themselves, without any explicit supervision. We used an ablation study to show that joint training on neuronal responses and behavior boosted performance, highlighting the model's ability to associate behavioral and neural representations in an unsupervised manner. These findings show that Neuroformer can analyze neural datasets and their emergent properties, informing the development of models and hypotheses associated with the brain.
RNNs of RNNs: Recursive Construction of Stable Assemblies of Recurrent Neural Networks
Recurrent neural networks (RNNs) are widely used throughout neuroscience as models of local neural activity. Many properties of single RNNs are well characterized theoretically, but experimental neuroscience has moved in the direction of studying multiple interacting areas, and RNN theory needs to be likewise extended. We take a constructive approach towards this problem, leveraging tools from nonlinear control theory and machine learning to characterize when combinations of stable RNNs will themselves be stable. Importantly, we derive conditions which allow for massive feedback connections between interacting RNNs. We parameterize these conditions for easy optimization using gradient-based techniques, and show that stability-constrained "networks of networks" can perform well on challenging sequential-processing benchmark tasks. Altogether, our results provide a principled approach towards understanding distributed, modular function in the brain.
Statistical mechanics of continual learning: variational principle and mean-field potential
An obstacle to artificial general intelligence is set by continual learning of multiple tasks of different nature. Recently, various heuristic tricks, both from machine learning and from neuroscience angles, were proposed, but they lack a unified theory ground. Here, we focus on continual learning in single-layered and multi-layered neural networks of binary weights. A variational Bayesian learning setting is thus proposed, where the neural networks are trained in a field-space, rather than gradient-ill-defined discrete-weight space, and furthermore, weight uncertainty is naturally incorporated, and modulates synaptic resources among tasks. From a physics perspective, we translate the variational continual learning into Franz-Parisi thermodynamic potential framework, where previous task knowledge acts as a prior and a reference as well. We thus interpret the continual learning of the binary perceptron in a teacher-student setting as a Franz-Parisi potential computation. The learning performance can then be analytically studied with mean-field order parameters, whose predictions coincide with numerical experiments using stochastic gradient descent methods. Based on the variational principle and Gaussian field approximation of internal preactivations in hidden layers, we also derive the learning algorithm considering weight uncertainty, which solves the continual learning with binary weights using multi-layered neural networks, and performs better than the currently available metaplasticity algorithm. Our proposed principled frameworks also connect to elastic weight consolidation, weight-uncertainty modulated learning, and neuroscience inspired metaplasticity, providing a theory-grounded method for the real-world multi-task learning with deep networks.
Flexible Phase Dynamics for Bio-Plausible Contrastive Learning
Many learning algorithms used as normative models in neuroscience or as candidate approaches for learning on neuromorphic chips learn by contrasting one set of network states with another. These Contrastive Learning (CL) algorithms are traditionally implemented with rigid, temporally non-local, and periodic learning dynamics that could limit the range of physical systems capable of harnessing CL. In this study, we build on recent work exploring how CL might be implemented by biological or neurmorphic systems and show that this form of learning can be made temporally local, and can still function even if many of the dynamical requirements of standard training procedures are relaxed. Thanks to a set of general theorems corroborated by numerical experiments across several CL models, our results provide theoretical foundations for the study and development of CL methods for biological and neuromorphic neural networks.
A precortical module for robust CNNs to light variations
We present a simple mathematical model for the mammalian low visual pathway, taking into account its key elements: retina, lateral geniculate nucleus (LGN), primary visual cortex (V1). The analogies between the cortical level of the visual system and the structure of popular CNNs, used in image classification tasks, suggests the introduction of an additional preliminary convolutional module inspired to precortical neuronal circuits to improve robustness with respect to global light intensity and contrast variations in the input images. We validate our hypothesis on the popular databases MNIST, FashionMNIST and SVHN, obtaining significantly more robust CNNs with respect to these variations, once such extra module is added.
Astrocyte-Enabled Advancements in Spiking Neural Networks for Large Language Modeling
Within the complex neuroarchitecture of the brain, astrocytes play crucial roles in development, structure, and metabolism. These cells regulate neural activity through tripartite synapses, directly impacting cognitive processes such as learning and memory. Despite the growing recognition of astrocytes' significance, traditional Spiking Neural Network (SNN) models remain predominantly neuron-centric, overlooking the profound influence of astrocytes on neural dynamics. Inspired by these biological insights, we have developed an Astrocyte-Modulated Spiking Unit (AM-SU), an innovative framework that integrates neuron-astrocyte interactions into the computational paradigm, demonstrating wide applicability across various hardware platforms. Our Astrocyte-Modulated Spiking Neural Network (AstroSNN) exhibits exceptional performance in tasks involving memory retention and natural language generation, particularly in handling long-term dependencies and complex linguistic structures. The design of AstroSNN not only enhances its biological authenticity but also introduces novel computational dynamics, enabling more effective processing of complex temporal dependencies. Furthermore, AstroSNN shows low latency, high throughput, and reduced memory usage in practical applications, making it highly suitable for resource-constrained environments. By successfully integrating astrocytic dynamics into intelligent neural networks, our work narrows the gap between biological plausibility and neural modeling, laying the groundwork for future biologically-inspired neural computing research that includes both neurons and astrocytes.
Adaptive whitening in neural populations with gain-modulating interneurons
Statistical whitening transformations play a fundamental role in many computational systems, and may also play an important role in biological sensory systems. Existing neural circuit models of adaptive whitening operate by modifying synaptic interactions; however, such modifications would seem both too slow and insufficiently reversible. Motivated by the extensive neuroscience literature on gain modulation, we propose an alternative model that adaptively whitens its responses by modulating the gains of individual neurons. Starting from a novel whitening objective, we derive an online algorithm that whitens its outputs by adjusting the marginal variances of an overcomplete set of projections. We map the algorithm onto a recurrent neural network with fixed synaptic weights and gain-modulating interneurons. We demonstrate numerically that sign-constraining the gains improves robustness of the network to ill-conditioned inputs, and a generalization of the circuit achieves a form of local whitening in convolutional populations, such as those found throughout the visual or auditory systems.
Three Decades of Activations: A Comprehensive Survey of 400 Activation Functions for Neural Networks
Neural networks have proven to be a highly effective tool for solving complex problems in many areas of life. Recently, their importance and practical usability have further been reinforced with the advent of deep learning. One of the important conditions for the success of neural networks is the choice of an appropriate activation function introducing non-linearity into the model. Many types of these functions have been proposed in the literature in the past, but there is no single comprehensive source containing their exhaustive overview. The absence of this overview, even in our experience, leads to redundancy and the unintentional rediscovery of already existing activation functions. To bridge this gap, our paper presents an extensive survey involving 400 activation functions, which is several times larger in scale than previous surveys. Our comprehensive compilation also references these surveys; however, its main goal is to provide the most comprehensive overview and systematization of previously published activation functions with links to their original sources. The secondary aim is to update the current understanding of this family of functions.
Improving visual image reconstruction from human brain activity using latent diffusion models via multiple decoded inputs
The integration of deep learning and neuroscience has been advancing rapidly, which has led to improvements in the analysis of brain activity and the understanding of deep learning models from a neuroscientific perspective. The reconstruction of visual experience from human brain activity is an area that has particularly benefited: the use of deep learning models trained on large amounts of natural images has greatly improved its quality, and approaches that combine the diverse information contained in visual experiences have proliferated rapidly in recent years. In this technical paper, by taking advantage of the simple and generic framework that we proposed (Takagi and Nishimoto, CVPR 2023), we examine the extent to which various additional decoding techniques affect the performance of visual experience reconstruction. Specifically, we combined our earlier work with the following three techniques: using decoded text from brain activity, nonlinear optimization for structural image reconstruction, and using decoded depth information from brain activity. We confirmed that these techniques contributed to improving accuracy over the baseline. We also discuss what researchers should consider when performing visual reconstruction using deep generative models trained on large datasets. Please check our webpage at https://sites.google.com/view/stablediffusion-with-brain/. Code is also available at https://github.com/yu-takagi/StableDiffusionReconstruction.
Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
Deep neural networks (DNNs) have demonstrated state-of-the-art results on many pattern recognition tasks, especially vision classification problems. Understanding the inner workings of such computational brains is both fascinating basic science that is interesting in its own right - similar to why we study the human brain - and will enable researchers to further improve DNNs. One path to understanding how a neural network functions internally is to study what each of its neurons has learned to detect. One such method is called activation maximization (AM), which synthesizes an input (e.g. an image) that highly activates a neuron. Here we dramatically improve the qualitative state of the art of activation maximization by harnessing a powerful, learned prior: a deep generator network (DGN). The algorithm (1) generates qualitatively state-of-the-art synthetic images that look almost real, (2) reveals the features learned by each neuron in an interpretable way, (3) generalizes well to new datasets and somewhat well to different network architectures without requiring the prior to be relearned, and (4) can be considered as a high-quality generative method (in this case, by generating novel, creative, interesting, recognizable images).
Boosting Reservoir Computing with Brain-inspired Adaptive Dynamics
Reservoir computers (RCs) provide a computationally efficient alternative to deep learning while also offering a framework for incorporating brain-inspired computational principles. By using an internal neural network with random, fixed connections-the 'reservoir'-and training only the output weights, RCs simplify the training process but remain sensitive to the choice of hyperparameters that govern activation functions and network architecture. Moreover, typical RC implementations overlook a critical aspect of neuronal dynamics: the balance between excitatory and inhibitory (E-I) signals, which is essential for robust brain function. We show that RCs characteristically perform best in balanced or slightly over-inhibited regimes, outperforming excitation-dominated ones. To reduce the need for precise hyperparameter tuning, we introduce a self-adapting mechanism that locally adjusts E/I balance to achieve target neuronal firing rates, improving performance by up to 130% in tasks like memory capacity and time series prediction compared with globally tuned RCs. Incorporating brain-inspired heterogeneity in target neuronal firing rates further reduces the need for fine-tuning hyperparameters and enables RCs to excel across linear and non-linear tasks. These results support a shift from static optimization to dynamic adaptation in reservoir design, demonstrating how brain-inspired mechanisms improve RC performance and robustness while deepening our understanding of neural computation.
Task structure and nonlinearity jointly determine learned representational geometry
The utility of a learned neural representation depends on how well its geometry supports performance in downstream tasks. This geometry depends on the structure of the inputs, the structure of the target outputs, and the architecture of the network. By studying the learning dynamics of networks with one hidden layer, we discovered that the network's activation function has an unexpectedly strong impact on the representational geometry: Tanh networks tend to learn representations that reflect the structure of the target outputs, while ReLU networks retain more information about the structure of the raw inputs. This difference is consistently observed across a broad class of parameterized tasks in which we modulated the degree of alignment between the geometry of the task inputs and that of the task labels. We analyzed the learning dynamics in weight space and show how the differences between the networks with Tanh and ReLU nonlinearities arise from the asymmetric asymptotic behavior of ReLU, which leads feature neurons to specialize for different regions of input space. By contrast, feature neurons in Tanh networks tend to inherit the task label structure. Consequently, when the target outputs are low dimensional, Tanh networks generate neural representations that are more disentangled than those obtained with a ReLU nonlinearity. Our findings shed light on the interplay between input-output geometry, nonlinearity, and learned representations in neural networks.
Neural Network Quine
Self-replication is a key aspect of biological life that has been largely overlooked in Artificial Intelligence systems. Here we describe how to build and train self-replicating neural networks. The network replicates itself by learning to output its own weights. The network is designed using a loss function that can be optimized with either gradient-based or non-gradient-based methods. We also describe a method we call regeneration to train the network without explicit optimization, by injecting the network with predictions of its own parameters. The best solution for a self-replicating network was found by alternating between regeneration and optimization steps. Finally, we describe a design for a self-replicating neural network that can solve an auxiliary task such as MNIST image classification. We observe that there is a trade-off between the network's ability to classify images and its ability to replicate, but training is biased towards increasing its specialization at image classification at the expense of replication. This is analogous to the trade-off between reproduction and other tasks observed in nature. We suggest that a self-replication mechanism for artificial intelligence is useful because it introduces the possibility of continual improvement through natural selection.
Neuralizer: General Neuroimage Analysis without Re-Training
Neuroimage processing tasks like segmentation, reconstruction, and registration are central to the study of neuroscience. Robust deep learning strategies and architectures used to solve these tasks are often similar. Yet, when presented with a new task or a dataset with different visual characteristics, practitioners most often need to train a new model, or fine-tune an existing one. This is a time-consuming process that poses a substantial barrier for the thousands of neuroscientists and clinical researchers who often lack the resources or machine-learning expertise to train deep learning models. In practice, this leads to a lack of adoption of deep learning, and neuroscience tools being dominated by classical frameworks. We introduce Neuralizer, a single model that generalizes to previously unseen neuroimaging tasks and modalities without the need for re-training or fine-tuning. Tasks do not have to be known a priori, and generalization happens in a single forward pass during inference. The model can solve processing tasks across multiple image modalities, acquisition methods, and datasets, and generalize to tasks and modalities it has not been trained on. Our experiments on coronal slices show that when few annotated subjects are available, our multi-task network outperforms task-specific baselines without training on the task.
Fast & Slow Learning: Incorporating Synthetic Gradients in Neural Memory Controllers
Neural Memory Networks (NMNs) have received increased attention in recent years compared to deep architectures that use a constrained memory. Despite their new appeal, the success of NMNs hinges on the ability of the gradient-based optimiser to perform incremental training of the NMN controllers, determining how to leverage their high capacity for knowledge retrieval. This means that while excellent performance can be achieved when the training data is consistent and well distributed, rare data samples are hard to learn from as the controllers fail to incorporate them effectively during model training. Drawing inspiration from the human cognition process, in particular the utilisation of neuromodulators in the human brain, we propose to decouple the learning process of the NMN controllers to allow them to achieve flexible, rapid adaptation in the presence of new information. This trait is highly beneficial for meta-learning tasks where the memory controllers must quickly grasp abstract concepts in the target domain, and adapt stored knowledge. This allows the NMN controllers to quickly determine which memories are to be retained and which are to be erased, and swiftly adapt their strategy to the new task at hand. Through both quantitative and qualitative evaluations on multiple public benchmarks, including classification and regression tasks, we demonstrate the utility of the proposed approach. Our evaluations not only highlight the ability of the proposed NMN architecture to outperform the current state-of-the-art methods, but also provide insights on how the proposed augmentations help achieve such superior results. In addition, we demonstrate the practical implications of the proposed learning strategy, where the feedback path can be shared among multiple neural memory networks as a mechanism for knowledge sharing.
Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings
Spiking Neural Networks (SNNs) are a promising research direction for building power-efficient information processing systems, especially for temporal tasks such as speech recognition. In SNNs, delays refer to the time needed for one spike to travel from one neuron to another. These delays matter because they influence the spike arrival times, and it is well-known that spiking neurons respond more strongly to coincident input spikes. More formally, it has been shown theoretically that plastic delays greatly increase the expressivity in SNNs. Yet, efficient algorithms to learn these delays have been lacking. Here, we propose a new discrete-time algorithm that addresses this issue in deep feedforward SNNs using backpropagation, in an offline manner. To simulate delays between consecutive layers, we use 1D convolutions across time. The kernels contain only a few non-zero weights - one per synapse - whose positions correspond to the delays. These positions are learned together with the weights using the recently proposed Dilated Convolution with Learnable Spacings (DCLS). We evaluated our method on three datasets: the Spiking Heidelberg Dataset (SHD), the Spiking Speech Commands (SSC) and its non-spiking version Google Speech Commands v0.02 (GSC) benchmarks, which require detecting temporal patterns. We used feedforward SNNs with two or three hidden fully connected layers, and vanilla leaky integrate-and-fire neurons. We showed that fixed random delays help and that learning them helps even more. Furthermore, our method outperformed the state-of-the-art in the three datasets without using recurrent connections and with substantially fewer parameters. Our work demonstrates the potential of delay learning in developing accurate and precise models for temporal data processing. Our code is based on PyTorch / SpikingJelly and available at: https://github.com/Thvnvtos/SNN-delays
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Inspired by the phenomenon of catastrophic forgetting, we investigate the learning dynamics of neural networks as they train on single classification tasks. Our goal is to understand whether a related phenomenon occurs when data does not undergo a clear distributional shift. We define a `forgetting event' to have occurred when an individual training example transitions from being classified correctly to incorrectly over the course of learning. Across several benchmark data sets, we find that: (i) certain examples are forgotten with high frequency, and some not at all; (ii) a data set's (un)forgettable examples generalize across neural architectures; and (iii) based on forgetting dynamics, a significant fraction of examples can be omitted from the training data set while still maintaining state-of-the-art generalization performance.
Incorporating brain-inspired mechanisms for multimodal learning in artificial intelligence
Multimodal learning enhances the perceptual capabilities of cognitive systems by integrating information from different sensory modalities. However, existing multimodal fusion research typically assumes static integration, not fully incorporating key dynamic mechanisms found in the brain. Specifically, the brain exhibits an inverse effectiveness phenomenon, wherein weaker unimodal cues yield stronger multisensory integration benefits; conversely, when individual modal cues are stronger, the effect of fusion is diminished. This mechanism enables biological systems to achieve robust cognition even with scarce or noisy perceptual cues. Inspired by this biological mechanism, we explore the relationship between multimodal output and information from individual modalities, proposing an inverse effectiveness driven multimodal fusion (IEMF) strategy. By incorporating this strategy into neural networks, we achieve more efficient integration with improved model performance and computational efficiency, demonstrating up to 50% reduction in computational cost across diverse fusion methods. We conduct experiments on audio-visual classification, continual learning, and question answering tasks to validate our method. Results consistently demonstrate that our method performs excellently in these tasks. To verify universality and generalization, we also conduct experiments on Artificial Neural Networks (ANN) and Spiking Neural Networks (SNN), with results showing good adaptability to both network types. Our research emphasizes the potential of incorporating biologically inspired mechanisms into multimodal networks and provides promising directions for the future development of multimodal artificial intelligence. The code is available at https://github.com/Brain-Cog-Lab/IEMF.
Cooperation Is All You Need
Going beyond 'dendritic democracy', we introduce a 'democracy of local processors', termed Cooperator. Here we compare their capabilities when used in permutation-invariant neural networks for reinforcement learning (RL), with machine learning algorithms based on Transformers, such as ChatGPT. Transformers are based on the long-standing conception of integrate-and-fire 'point' neurons, whereas Cooperator is inspired by recent neurobiological breakthroughs suggesting that the cellular foundations of mental life depend on context-sensitive pyramidal neurons in the neocortex which have two functionally distinct points. We show that when used for RL, an algorithm based on Cooperator learns far quicker than that based on Transformer, even while having the same number of parameters.
NeuroSynth: MRI-Derived Neuroanatomical Generative Models and Associated Dataset of 18,000 Samples
Availability of large and diverse medical datasets is often challenged by privacy and data sharing restrictions. For successful application of machine learning techniques for disease diagnosis, prognosis, and precision medicine, large amounts of data are necessary for model building and optimization. To help overcome such limitations in the context of brain MRI, we present NeuroSynth: a collection of generative models of normative regional volumetric features derived from structural brain imaging. NeuroSynth models are trained on real brain imaging regional volumetric measures from the iSTAGING consortium, which encompasses over 40,000 MRI scans across 13 studies, incorporating covariates such as age, sex, and race. Leveraging NeuroSynth, we produce and offer 18,000 synthetic samples spanning the adult lifespan (ages 22-90 years), alongside the model's capability to generate unlimited data. Experimental results indicate that samples generated from NeuroSynth agree with the distributions obtained from real data. Most importantly, the generated normative data significantly enhance the accuracy of downstream machine learning models on tasks such as disease classification. Data and models are available at: https://huggingface.co/spaces/rongguangw/neuro-synth.
Multi-Task Structural Learning using Local Task Similarity induced Neuron Creation and Removal
Multi-task learning has the potential to improve generalization by maximizing positive transfer between tasks while reducing task interference. Fully achieving this potential is hindered by manually designed architectures that remain static throughout training. On the contrary, learning in the brain occurs through structural changes that are in tandem with changes in synaptic strength. Thus, we propose Multi-Task Structural Learning (MTSL) that simultaneously learns the multi-task architecture and its parameters. MTSL begins with an identical single-task network for each task and alternates between a task-learning phase and a structural-learning phase. In the task learning phase, each network specializes in the corresponding task. In each of the structural learning phases, starting from the earliest layer, locally similar task layers first transfer their knowledge to a newly created group layer before being removed. MTSL then uses the group layer in place of the corresponding removed task layers and moves on to the next layers. Our empirical results show that MTSL achieves competitive generalization with various baselines and improves robustness to out-of-distribution data.
Robust Associative Memories Naturally Occuring From Recurrent Hebbian Networks Under Noise
The brain is a noisy system subject to energy constraints. These facts are rarely taken into account when modelling artificial neural networks. In this paper, we are interested in demonstrating that those factors can actually lead to the appearance of robust associative memories. We first propose a simplified model of noise in the brain, taking into account synaptic noise and interference from neurons external to the network. When coarsely quantized, we show that this noise can be reduced to insertions and erasures. We take a neural network with recurrent modifiable connections, and subject it to noisy external inputs. We introduce an energy usage limitation principle in the network as well as consolidated Hebbian learning, resulting in an incremental processing of inputs. We show that the connections naturally formed correspond to state-of-the-art binary sparse associative memories.
A streamable large-scale clinical EEG dataset for Deep Learning
Deep Learning has revolutionized various fields, including Computer Vision, Natural Language Processing, as well as Biomedical research. Within the field of neuroscience, specifically in electrophysiological neuroimaging, researchers are starting to explore leveraging deep learning to make predictions on their data without extensive feature engineering. The availability of large-scale datasets is a crucial aspect of allowing the experimentation of Deep Learning models. We are publishing the first large-scale clinical EEG dataset that simplifies data access and management for Deep Learning. This dataset contains eyes-closed EEG data prepared from a collection of 1,574 juvenile participants from the Healthy Brain Network. We demonstrate a use case integrating this framework, and discuss why providing such neuroinformatics infrastructure to the community is critical for future scientific discoveries.
Reducing Information Loss for Spiking Neural Networks
The Spiking Neural Network (SNN) has attracted more and more attention recently. It adopts binary spike signals to transmit information. Benefitting from the information passing paradigm of SNNs, the multiplications of activations and weights can be replaced by additions, which are more energy-efficient. However, its ``Hard Reset" mechanism for the firing activity would ignore the difference among membrane potentials when the membrane potential is above the firing threshold, causing information loss. Meanwhile, quantifying the membrane potential to 0/1 spikes at the firing instants will inevitably introduce the quantization error thus bringing about information loss too. To address these problems, we propose to use the ``Soft Reset" mechanism for the supervised training-based SNNs, which will drive the membrane potential to a dynamic reset potential according to its magnitude, and Membrane Potential Rectifier (MPR) to reduce the quantization error via redistributing the membrane potential to a range close to the spikes. Results show that the SNNs with the ``Soft Reset" mechanism and MPR outperform their vanilla counterparts on both static and dynamic datasets.
Understanding Gated Neurons in Transformers from Their Input-Output Functionality
Interpretability researchers have attempted to understand MLP neurons of language models based on both the contexts in which they activate and their output weight vectors. They have paid little attention to a complementary aspect: the interactions between input and output. For example, when neurons detect a direction in the input, they might add much the same direction to the residual stream ("enrichment neurons") or reduce its presence ("depletion neurons"). We address this aspect by examining the cosine similarity between input and output weights of a neuron. We apply our method to 12 models and find that enrichment neurons dominate in early-middle layers whereas later layers tend more towards depletion. To explain this finding, we argue that enrichment neurons are largely responsible for enriching concept representations, one of the first steps of factual recall. Our input-output perspective is a complement to activation-dependent analyses and to approaches that treat input and output separately.
The Butterfly Effect: Neural Network Training Trajectories Are Highly Sensitive to Initial Conditions
Neural network training is inherently sensitive to initialization and the randomness induced by stochastic gradient descent. However, it is unclear to what extent such effects lead to meaningfully different networks, either in terms of the models' weights or the underlying functions that were learned. In this work, we show that during the initial "chaotic" phase of training, even extremely small perturbations reliably causes otherwise identical training trajectories to diverge-an effect that diminishes rapidly over training time. We quantify this divergence through (i) L^2 distance between parameters, (ii) the loss barrier when interpolating between networks, (iii) L^2 and barrier between parameters after permutation alignment, and (iv) representational similarity between intermediate activations; revealing how perturbations across different hyperparameter or fine-tuning settings drive training trajectories toward distinct loss minima. Our findings provide insights into neural network training stability, with practical implications for fine-tuning, model merging, and diversity of model ensembles.
Bio-inspired computational memory model of the Hippocampus: an approach to a neuromorphic spike-based Content-Addressable Memory
The brain has computational capabilities that surpass those of modern systems, being able to solve complex problems efficiently in a simple way. Neuromorphic engineering aims to mimic biology in order to develop new systems capable of incorporating such capabilities. Bio-inspired learning systems continue to be a challenge that must be solved, and much work needs to be done in this regard. Among all brain regions, the hippocampus stands out as an autoassociative short-term memory with the capacity to learn and recall memories from any fragment of them. These characteristics make the hippocampus an ideal candidate for developing bio-inspired learning systems that, in addition, resemble content-addressable memories. Therefore, in this work we propose a bio-inspired spiking content-addressable memory model based on the CA3 region of the hippocampus with the ability to learn, forget and recall memories, both orthogonal and non-orthogonal, from any fragment of them. The model was implemented on the SpiNNaker hardware platform using Spiking Neural Networks. A set of experiments based on functional, stress and applicability tests were performed to demonstrate its correct functioning. This work presents the first hardware implementation of a fully-functional bio-inspired spiking hippocampal content-addressable memory model, paving the way for the development of future more complex neuromorphic systems.
Convergent Learning: Do different neural networks learn the same representations?
Recent success in training deep neural networks have prompted active investigation into the features learned on their intermediate layers. Such research is difficult because it requires making sense of non-linear computations performed by millions of parameters, but valuable because it increases our ability to understand current models and create improved versions of them. In this paper we investigate the extent to which neural networks exhibit what we call convergent learning, which is when the representations learned by multiple nets converge to a set of features which are either individually similar between networks or where subsets of features span similar low-dimensional spaces. We propose a specific method of probing representations: training multiple networks and then comparing and contrasting their individual, learned representations at the level of neurons or groups of neurons. We begin research into this question using three techniques to approximately align different neural networks on a feature level: a bipartite matching approach that makes one-to-one assignments between neurons, a sparse prediction approach that finds one-to-many mappings, and a spectral clustering approach that finds many-to-many mappings. This initial investigation reveals a few previously unknown properties of neural networks, and we argue that future research into the question of convergent learning will yield many more. The insights described here include (1) that some features are learned reliably in multiple networks, yet other features are not consistently learned; (2) that units learn to span low-dimensional subspaces and, while these subspaces are common to multiple networks, the specific basis vectors learned are not; (3) that the representation codes show evidence of being a mix between a local code and slightly, but not fully, distributed codes across multiple units.
Universal Neurons in GPT2 Language Models
A basic question within the emerging field of mechanistic interpretability is the degree to which neural networks learn the same underlying mechanisms. In other words, are neural mechanisms universal across different models? In this work, we study the universality of individual neurons across GPT2 models trained from different initial random seeds, motivated by the hypothesis that universal neurons are likely to be interpretable. In particular, we compute pairwise correlations of neuron activations over 100 million tokens for every neuron pair across five different seeds and find that 1-5\% of neurons are universal, that is, pairs of neurons which consistently activate on the same inputs. We then study these universal neurons in detail, finding that they usually have clear interpretations and taxonomize them into a small number of neuron families. We conclude by studying patterns in neuron weights to establish several universal functional roles of neurons in simple circuits: deactivating attention heads, changing the entropy of the next token distribution, and predicting the next token to (not) be within a particular set.
Precise spiking motifs in neurobiological and neuromorphic data
Why do neurons communicate through spikes? By definition, spikes are all-or-none neural events which occur at continuous times. In other words, spikes are on one side binary, existing or not without further details, and on the other can occur at any asynchronous time, without the need for a centralized clock. This stands in stark contrast to the analog representation of values and the discretized timing classically used in digital processing and at the base of modern-day neural networks. As neural systems almost systematically use this so-called event-based representation in the living world, a better understanding of this phenomenon remains a fundamental challenge in neurobiology in order to better interpret the profusion of recorded data. With the growing need for intelligent embedded systems, it also emerges as a new computing paradigm to enable the efficient operation of a new class of sensors and event-based computers, called neuromorphic, which could enable significant gains in computation time and energy consumption -- a major societal issue in the era of the digital economy and global warming. In this review paper, we provide evidence from biology, theory and engineering that the precise timing of spikes plays a crucial role in our understanding of the efficiency of neural networks.
Deep neural networks as nested dynamical systems
There is an analogy that is often made between deep neural networks and actual brains, suggested by the nomenclature itself: the "neurons" in deep neural networks should correspond to neurons (or nerve cells, to avoid confusion) in the brain. We claim, however, that this analogy doesn't even type check: it is structurally flawed. In agreement with the slightly glib summary of Hebbian learning as "cells that fire together wire together", this article makes the case that the analogy should be different. Since the "neurons" in deep neural networks are managing the changing weights, they are more akin to the synapses in the brain; instead, it is the wires in deep neural networks that are more like nerve cells, in that they are what cause the information to flow. An intuition that nerve cells seem like more than mere wires is exactly right, and is justified by a precise category-theoretic analogy which we will explore in this article. Throughout, we will continue to highlight the error in equating artificial neurons with nerve cells by leaving "neuron" in quotes or by calling them artificial neurons. We will first explain how to view deep neural networks as nested dynamical systems with a very restricted sort of interaction pattern, and then explain a more general sort of interaction for dynamical systems that is useful throughout engineering, but which fails to adapt to changing circumstances. As mentioned, an analogy is then forced upon us by the mathematical formalism in which they are both embedded. We call the resulting encompassing generalization deeply interacting learning systems: they have complex interaction as in control theory, but adaptation to circumstances as in deep neural networks.
Counter-Current Learning: A Biologically Plausible Dual Network Approach for Deep Learning
Despite its widespread use in neural networks, error backpropagation has faced criticism for its lack of biological plausibility, suffering from issues such as the backward locking problem and the weight transport problem. These limitations have motivated researchers to explore more biologically plausible learning algorithms that could potentially shed light on how biological neural systems adapt and learn. Inspired by the counter-current exchange mechanisms observed in biological systems, we propose counter-current learning (CCL), a biologically plausible framework for credit assignment in neural networks. This framework employs a feedforward network to process input data and a feedback network to process targets, with each network enhancing the other through anti-parallel signal propagation. By leveraging the more informative signals from the bottom layer of the feedback network to guide the updates of the top layer of the feedforward network and vice versa, CCL enables the simultaneous transformation of source inputs to target outputs and the dynamic mutual influence of these transformations. Experimental results on MNIST, FashionMNIST, CIFAR10, and CIFAR100 datasets using multi-layer perceptrons and convolutional neural networks demonstrate that CCL achieves comparable performance to other biologically plausible algorithms while offering a more biologically realistic learning mechanism. Furthermore, we showcase the applicability of our approach to an autoencoder task, underscoring its potential for unsupervised representation learning. Our work presents a direction for biologically inspired and plausible learning algorithms, offering an alternative mechanism of learning and adaptation in neural networks.
Membrane Potential Batch Normalization for Spiking Neural Networks
As one of the energy-efficient alternatives of conventional neural networks (CNNs), spiking neural networks (SNNs) have gained more and more interest recently. To train the deep models, some effective batch normalization (BN) techniques are proposed in SNNs. All these BNs are suggested to be used after the convolution layer as usually doing in CNNs. However, the spiking neuron is much more complex with the spatio-temporal dynamics. The regulated data flow after the BN layer will be disturbed again by the membrane potential updating operation before the firing function, i.e., the nonlinear activation. Therefore, we advocate adding another BN layer before the firing function to normalize the membrane potential again, called MPBN. To eliminate the induced time cost of MPBN, we also propose a training-inference-decoupled re-parameterization technique to fold the trained MPBN into the firing threshold. With the re-parameterization technique, the MPBN will not introduce any extra time burden in the inference. Furthermore, the MPBN can also adopt the element-wised form, while these BNs after the convolution layer can only use the channel-wised form. Experimental results show that the proposed MPBN performs well on both popular non-spiking static and neuromorphic datasets. Our code is open-sourced at https://github.com/yfguo91/MPBN{MPBN}.
RobustFill: Neural Program Learning under Noisy I/O
The problem of automatically generating a computer program from some specification has been studied since the early days of AI. Recently, two competing approaches for automatic program learning have received significant attention: (1) neural program synthesis, where a neural network is conditioned on input/output (I/O) examples and learns to generate a program, and (2) neural program induction, where a neural network generates new outputs directly using a latent program representation. Here, for the first time, we directly compare both approaches on a large-scale, real-world learning task. We additionally contrast to rule-based program synthesis, which uses hand-crafted semantics to guide the program generation. Our neural models use a modified attention RNN to allow encoding of variable-sized sets of I/O pairs. Our best synthesis model achieves 92% accuracy on a real-world test set, compared to the 34% accuracy of the previous best neural synthesis approach. The synthesis model also outperforms a comparable induction model on this task, but we more importantly demonstrate that the strength of each approach is highly dependent on the evaluation metric and end-user application. Finally, we show that we can train our neural models to remain very robust to the type of noise expected in real-world data (e.g., typos), while a highly-engineered rule-based system fails entirely.
The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks
Biological cortical neurons are remarkably sophisticated computational devices, temporally integrating their vast synaptic input over an intricate dendritic tree, subject to complex, nonlinearly interacting internal biological processes. A recent study proposed to characterize this complexity by fitting accurate surrogate models to replicate the input-output relationship of a detailed biophysical cortical pyramidal neuron model and discovered it needed temporal convolutional networks (TCN) with millions of parameters. Requiring these many parameters, however, could stem from a misalignment between the inductive biases of the TCN and cortical neuron's computations. In light of this, and to explore the computational implications of leaky memory units and nonlinear dendritic processing, we introduce the Expressive Leaky Memory (ELM) neuron model, a biologically inspired phenomenological model of a cortical neuron. Remarkably, by exploiting such slowly decaying memory-like hidden states and two-layered nonlinear integration of synaptic input, our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters. To further assess the computational ramifications of our neuron design, we evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets, as well as a novel neuromorphic dataset based on the Spiking Heidelberg Digits dataset (SHD-Adding). Leveraging a larger number of memory units with sufficiently long timescales, and correspondingly sophisticated synaptic integration, the ELM neuron displays substantial long-range processing capabilities, reliably outperforming the classic Transformer or Chrono-LSTM architectures on LRA, and even solving the Pathfinder-X task with over 70% accuracy (16k context length).
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
The weight matrix (WM) of a neural network (NN) is its program. The programs of many traditional NNs are learned through gradient descent in some error function, then remain fixed. The WM of a self-referential NN, however, can keep rapidly modifying all of itself during runtime. In principle, such NNs can meta-learn to learn, and meta-meta-learn to meta-learn to learn, and so on, in the sense of recursive self-improvement. While NN architectures potentially capable of implementing such behaviour have been proposed since the '90s, there have been few if any practical studies. Here we revisit such NNs, building upon recent successes of fast weight programmers and closely related linear Transformers. We propose a scalable self-referential WM (SRWM) that learns to use outer products and the delta update rule to modify itself. We evaluate our SRWM in supervised few-shot learning and in multi-task reinforcement learning with procedurally generated game environments. Our experiments demonstrate both practical applicability and competitive performance of the proposed SRWM. Our code is public.
Artificial Kuramoto Oscillatory Neurons
It has long been known in both neuroscience and AI that ``binding'' between neurons leads to a form of competitive learning where representations are compressed in order to represent more abstract concepts in deeper layers of the network. More recently, it was also hypothesized that dynamic (spatiotemporal) representations play an important role in both neuroscience and AI. Building on these ideas, we introduce Artificial Kuramoto Oscillatory Neurons (AKOrN) as a dynamical alternative to threshold units, which can be combined with arbitrary connectivity designs such as fully connected, convolutional, or attentive mechanisms. Our generalized Kuramoto updates bind neurons together through their synchronization dynamics. We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, calibrated uncertainty quantification, and reasoning. We believe that these empirical results show the importance of rethinking our assumptions at the most basic neuronal level of neural representation, and in particular show the importance of dynamical representations.
BrainBERT: Self-supervised representation learning for intracranial recordings
We create a reusable Transformer, BrainBERT, for intracranial recordings bringing modern representation learning approaches to neuroscience. Much like in NLP and speech recognition, this Transformer enables classifying complex concepts, i.e., decoding neural data, with higher accuracy and with much less data by being pretrained in an unsupervised manner on a large corpus of unannotated neural recordings. Our approach generalizes to new subjects with electrodes in new positions and to unrelated tasks showing that the representations robustly disentangle the neural signal. Just like in NLP where one can study language by investigating what a language model learns, this approach opens the door to investigating the brain by what a model of the brain learns. As a first step along this path, we demonstrate a new analysis of the intrinsic dimensionality of the computations in different areas of the brain. To construct these representations, we combine a technique for producing super-resolution spectrograms of neural data with an approach designed for generating contextual representations of audio by masking. In the future, far more concepts will be decodable from neural recordings by using representation learning, potentially unlocking the brain like language models unlocked language.
Convergent transformations of visual representation in brains and models
A fundamental question in cognitive neuroscience is what shapes visual perception: the external world's structure or the brain's internal architecture. Although some perceptual variability can be traced to individual differences, brain responses to naturalistic stimuli evoke similar activity patterns across individuals, suggesting a convergent representational principle. Here, we test if this stimulus-driven convergence follows a common trajectory across people and deep neural networks (DNNs) during its transformation from sensory to high-level internal representations. We introduce a unified framework that traces representational flow by combining inter-subject similarity with alignment to model hierarchies. Applying this framework to three independent fMRI datasets of visual scene perception, we reveal a cortex-wide network, conserved across individuals, organized into two pathways: a medial-ventral stream for scene structure and a lateral-dorsal stream tuned for social and biological content. This functional organization is captured by the hierarchies of vision DNNs but not language models, reinforcing the specificity of the visual-to-semantic transformation. These findings show a convergent computational solution for visual encoding in both human and artificial vision, driven by the structure of the external world.
MixtureGrowth: Growing Neural Networks by Recombining Learned Parameters
Most deep neural networks are trained under fixed network architectures and require retraining when the architecture changes. If expanding the network's size is needed, it is necessary to retrain from scratch, which is expensive. To avoid this, one can grow from a small network by adding random weights over time to gradually achieve the target network size. However, this naive approach falls short in practice as it brings too much noise to the growing process. Prior work tackled this issue by leveraging the already learned weights and training data for generating new weights through conducting a computationally expensive analysis step. In this paper, we introduce MixtureGrowth, a new approach to growing networks that circumvents the initialization overhead in prior work. Before growing, each layer in our model is generated with a linear combination of parameter templates. Newly grown layer weights are generated by using a new linear combination of existing templates for a layer. On one hand, these templates are already trained for the task, providing a strong initialization. On the other, the new coefficients provide flexibility for the added layer weights to learn something new. We show that our approach boosts top-1 accuracy over the state-of-the-art by 2-2.5% on CIFAR-100 and ImageNet datasets, while achieving comparable performance with fewer FLOPs to a larger network trained from scratch. Code is available at https://github.com/chaudatascience/mixturegrowth.
Exploring Neuron Interactions and Emergence in LLMs: From the Multifractal Analysis Perspective
Prior studies on the emergence in large models have primarily focused on how the functional capabilities of large language models (LLMs) scale with model size. Our research, however, transcends this traditional paradigm, aiming to deepen our understanding of the emergence within LLMs by placing a special emphasis not just on the model size but more significantly on the complex behavior of neuron interactions during the training process. By introducing the concepts of "self-organization" and "multifractal analysis," we explore how neuron interactions dynamically evolve during training, leading to "emergence," mirroring the phenomenon in natural systems where simple micro-level interactions give rise to complex macro-level behaviors. To quantitatively analyze the continuously evolving interactions among neurons in large models during training, we propose the Neuron-based Multifractal Analysis (NeuroMFA). Utilizing NeuroMFA, we conduct a comprehensive examination of the emergent behavior in LLMs through the lens of both model size and training process, paving new avenues for research into the emergence in large models.
One-hot Generalized Linear Model for Switching Brain State Discovery
Exposing meaningful and interpretable neural interactions is critical to understanding neural circuits. Inferred neural interactions from neural signals primarily reflect functional interactions. In a long experiment, subject animals may experience different stages defined by the experiment, stimuli, or behavioral states, and hence functional interactions can change over time. To model dynamically changing functional interactions, prior work employs state-switching generalized linear models with hidden Markov models (i.e., HMM-GLMs). However, we argue they lack biological plausibility, as functional interactions are shaped and confined by the underlying anatomical connectome. Here, we propose a novel prior-informed state-switching GLM. We introduce both a Gaussian prior and a one-hot prior over the GLM in each state. The priors are learnable. We will show that the learned prior should capture the state-constant interaction, shedding light on the underlying anatomical connectome and revealing more likely physical neuron interactions. The state-dependent interaction modeled by each GLM offers traceability to capture functional variations across multiple brain states. Our methods effectively recover true interaction structures in simulated data, achieve the highest predictive likelihood with real neural datasets, and render interaction structures and hidden states more interpretable when applied to real neural data.
Understanding and controlling the geometry of memory organization in RNNs
Training recurrent neural networks (RNNs) is a high-dimensional process that requires updating numerous parameters. Therefore, it is often difficult to pinpoint the underlying learning mechanisms. To address this challenge, we propose to gain mechanistic insights into the phenomenon of abrupt learning by studying RNNs trained to perform diverse short-term memory tasks. In these tasks, RNN training begins with an initial search phase. Following a long period of plateau in accuracy, the values of the loss function suddenly drop, indicating abrupt learning. Analyzing the neural computation performed by these RNNs reveals geometric restructuring (GR) in their phase spaces prior to the drop. To promote these GR events, we introduce a temporal consistency regularization that accelerates (bioplausible) training, facilitates attractor formation, and enables efficient learning in strongly connected networks. Our findings offer testable predictions for neuroscientists and emphasize the need for goal-agnostic secondary mechanisms to facilitate learning in biological and artificial networks.
Continual Learning via Neural Pruning
We introduce Continual Learning via Neural Pruning (CLNP), a new method aimed at lifelong learning in fixed capacity models based on neuronal model sparsification. In this method, subsequent tasks are trained using the inactive neurons and filters of the sparsified network and cause zero deterioration to the performance of previous tasks. In order to deal with the possible compromise between model sparsity and performance, we formalize and incorporate the concept of graceful forgetting: the idea that it is preferable to suffer a small amount of forgetting in a controlled manner if it helps regain network capacity and prevents uncontrolled loss of performance during the training of future tasks. CLNP also provides simple continual learning diagnostic tools in terms of the number of free neurons left for the training of future tasks as well as the number of neurons that are being reused. In particular, we see in experiments that CLNP verifies and automatically takes advantage of the fact that the features of earlier layers are more transferable. We show empirically that CLNP leads to significantly improved results over current weight elasticity based methods.
Overcoming catastrophic forgetting in neural networks
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.
Accurate Detection of Spiking Motifs by Learning Heterogeneous Delays of a Spiking Neural Network
Recently, interest has grown in exploring the hypothesis that neural activity conveys information through precise spiking motifs. To investigate this phenomenon, various algorithms have been proposed to detect such motifs in Single Unit Activity (SUA) recorded from populations of neurons. In this study, we present a novel detection model based on the inversion of a generative model of raster plot synthesis. Using this generative model, we derive an optimal detection procedure that takes the form of logistic regression combined with temporal convolution. A key advantage of this model is its differentiability, which allows us to formulate a supervised learning approach using a gradient descent on the binary cross-entropy loss. To assess the model's ability to detect spiking motifs in synthetic data, we first perform numerical evaluations. This analysis highlights the advantages of using spiking motifs over traditional firing rate based population codes. We then successfully demonstrate that our learning method can recover synthetically generated spiking motifs, indicating its potential for further applications. In the future, we aim to extend this method to real neurobiological data, where the ground truth is unknown, to explore and detect spiking motifs in a more natural and biologically relevant context.
Brain3D: Generating 3D Objects from fMRI
Understanding the hidden mechanisms behind human's visual perception is a fundamental question in neuroscience. To that end, investigating into the neural responses of human mind activities, such as functional Magnetic Resonance Imaging (fMRI), has been a significant research vehicle. However, analyzing fMRI signals is challenging, costly, daunting, and demanding for professional training. Despite remarkable progress in fMRI analysis, existing approaches are limited to generating 2D images and far away from being biologically meaningful and practically useful. Under this insight, we propose to generate visually plausible and functionally more comprehensive 3D outputs decoded from brain signals, enabling more sophisticated modeling of fMRI data. Conceptually, we reformulate this task as a {\em fMRI conditioned 3D object generation} problem. We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject who was presented with a 2D image, and yields as output the corresponding 3D object images. The key capabilities of this model include tackling the noises with high-level semantic signals and a two-stage architecture design for progressive high-level information integration. Extensive experiments validate the superior capability of our model over previous state-of-the-art 3D object generation methods. Importantly, we show that our model captures the distinct functionalities of each region of human vision system as well as their intricate interplay relationships, aligning remarkably with the established discoveries in neuroscience. Further, preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios, such as V1, V2, V3, V4, and the medial temporal lobe (MTL) within the human visual system. Our data and code will be available at https://brain-3d.github.io/.
A learning gap between neuroscience and reinforcement learning
Historically, artificial intelligence has drawn much inspiration from neuroscience to fuel advances in the field. However, current progress in reinforcement learning is largely focused on benchmark problems that fail to capture many of the aspects that are of interest in neuroscience today. We illustrate this point by extending a T-maze task from neuroscience for use with reinforcement learning algorithms, and show that state-of-the-art algorithms are not capable of solving this problem. Finally, we point out where insights from neuroscience could help explain some of the issues encountered.
In-context Learning and Induction Heads
"Induction heads" are attention heads that implement a simple algorithm to complete token sequences like [A][B] ... [A] -> [B]. In this work, we present preliminary and indirect evidence for a hypothesis that induction heads might constitute the mechanism for the majority of all "in-context learning" in large transformer models (i.e. decreasing loss at increasing token indices). We find that induction heads develop at precisely the same point as a sudden sharp increase in in-context learning ability, visible as a bump in the training loss. We present six complementary lines of evidence, arguing that induction heads may be the mechanistic source of general in-context learning in transformer models of any size. For small attention-only models, we present strong, causal evidence; for larger models with MLPs, we present correlational evidence.
Understanding Neural Networks via Feature Visualization: A survey
A neuroscience method to understanding the brain is to find and study the preferred stimuli that highly activate an individual cell or groups of cells. Recent advances in machine learning enable a family of methods to synthesize preferred stimuli that cause a neuron in an artificial or biological brain to fire strongly. Those methods are known as Activation Maximization (AM) or Feature Visualization via Optimization. In this chapter, we (1) review existing AM techniques in the literature; (2) discuss a probabilistic interpretation for AM; and (3) review the applications of AM in debugging and explaining networks.
Neural Foundations of Mental Simulation: Future Prediction of Latent Representations on Dynamic Scenes
Humans and animals have a rich and flexible understanding of the physical world, which enables them to infer the underlying dynamical trajectories of objects and events, plausible future states, and use that to plan and anticipate the consequences of actions. However, the neural mechanisms underlying these computations are unclear. We combine a goal-driven modeling approach with dense neurophysiological data and high-throughput human behavioral readouts to directly impinge on this question. Specifically, we construct and evaluate several classes of sensory-cognitive networks to predict the future state of rich, ethologically-relevant environments, ranging from self-supervised end-to-end models with pixel-wise or object-centric objectives, to models that future predict in the latent space of purely static image-based or dynamic video-based pretrained foundation models. We find strong differentiation across these model classes in their ability to predict neural and behavioral data both within and across diverse environments. In particular, we find that neural responses are currently best predicted by models trained to predict the future state of their environment in the latent space of pretrained foundation models optimized for dynamic scenes in a self-supervised manner. Notably, models that future predict in the latent space of video foundation models that are optimized to support a diverse range of sensorimotor tasks, reasonably match both human behavioral error patterns and neural dynamics across all environmental scenarios that we were able to test. Overall, these findings suggest that the neural mechanisms and behaviors of primate mental simulation are thus far most consistent with being optimized to future predict on dynamic, reusable visual representations that are useful for embodied AI more generally.
An Informal Introduction to Multiplet Neural Networks
In the artificial neuron, I replace the dot product with the weighted Lehmer mean, which may emulate different cases of a generalized mean. The single neuron instance is replaced by a multiplet of neurons which have the same averaging weights. A group of outputs feed forward, in lieu of the single scalar. The generalization parameter is typically set to a different value for each neuron in the multiplet. I further extend the concept to a multiplet taken from the Gini mean. Derivatives with respect to the weight parameters and with respect to the two generalization parameters are given. Some properties of the network are investigated, showing the capacity to emulate the classical exclusive-or problem organically in two layers and perform some multiplication and division. The network can instantiate truncated power series and variants, which can be used to approximate different functions, provided that parameters are constrained. Moreover, a mean case slope score is derived that can facilitate a learning-rate novelty based on homogeneity of the selected elements. The multiplet neuron equation provides a way to segment regularization timeframes and approaches.
Alice's Adventures in a Differentiable Wonderland -- Volume I, A Tour of the Land
Neural networks surround us, in the form of large language models, speech transcription systems, molecular discovery algorithms, robotics, and much more. Stripped of anything else, neural networks are compositions of differentiable primitives, and studying them means learning how to program and how to interact with these models, a particular example of what is called differentiable programming. This primer is an introduction to this fascinating field imagined for someone, like Alice, who has just ventured into this strange differentiable wonderland. I overview the basics of optimizing a function via automatic differentiation, and a selection of the most common designs for handling sequences, graphs, texts, and audios. The focus is on a intuitive, self-contained introduction to the most important design techniques, including convolutional, attentional, and recurrent blocks, hoping to bridge the gap between theory and code (PyTorch and JAX) and leaving the reader capable of understanding some of the most advanced models out there, such as large language models (LLMs) and multimodal architectures.
Accelerating Training with Neuron Interaction and Nowcasting Networks
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However, learnable update rules can be costly and unstable to train and use. A simpler recently proposed approach to accelerate training is to use Adam for most of the optimization steps and periodically, only every few steps, nowcast (predict future) parameters. We improve this approach by Neuron interaction and Nowcasting (NiNo) networks. NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters by learning in a supervised way from a set of training trajectories over multiple tasks. We show that in some networks, such as Transformers, neuron connectivity is non-trivial. By accurately modeling neuron connectivity, we allow NiNo to accelerate Adam training by up to 50\% in vision and language tasks.
Exemplar-free Continual Learning of Vision Transformers via Gated Class-Attention and Cascaded Feature Drift Compensation
We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.
Beyond ell_1 sparse coding in V1
Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ell_1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ell_1 norm is highly suboptimal compared to other functions suited to approximating ell_q with 0 leq q < 1 (including recently proposed Continuous Exact relaxations), both in terms of performance and in the production of features that are akin to signatures of the primary visual cortex. We show that ell_1 sparsity produces a denser code or employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. For all the penalty functions tested, a subset of the neurons develop orientation selectivity similarly to V1 neurons. When their code is sparse enough, the methods also develop receptive fields with varying functionalities, another signature of V1. Compared to other methods, soft thresholding achieves this level of sparsity at the expense of much degraded reconstruction performance, that more likely than not is not acceptable in biological vision. Our results indicate that V1 uses a sparsity inducing regularization that is closer to the ell_0 pseudo-norm rather than to the ell_1 norm.
Emergent mechanisms for long timescales depend on training curriculum and affect performance in memory tasks
Recurrent neural networks (RNNs) in the brain and in silico excel at solving tasks with intricate temporal dependencies. Long timescales required for solving such tasks can arise from properties of individual neurons (single-neuron timescale, tau, e.g., membrane time constant in biological neurons) or recurrent interactions among them (network-mediated timescale). However, the contribution of each mechanism for optimally solving memory-dependent tasks remains poorly understood. Here, we train RNNs to solve N-parity and N-delayed match-to-sample tasks with increasing memory requirements controlled by N by simultaneously optimizing recurrent weights and taus. We find that for both tasks RNNs develop longer timescales with increasing N, but depending on the learning objective, they use different mechanisms. Two distinct curricula define learning objectives: sequential learning of a single-N (single-head) or simultaneous learning of multiple Ns (multi-head). Single-head networks increase their tau with N and are able to solve tasks for large N, but they suffer from catastrophic forgetting. However, multi-head networks, which are explicitly required to hold multiple concurrent memories, keep tau constant and develop longer timescales through recurrent connectivity. Moreover, we show that the multi-head curriculum increases training speed and network stability to ablations and perturbations, and allows RNNs to generalize better to tasks beyond their training regime. This curriculum also significantly improves training GRUs and LSTMs for large-N tasks. Our results suggest that adapting timescales to task requirements via recurrent interactions allows learning more complex objectives and improves the RNN's performance.
The Dormant Neuron Phenomenon in Deep Reinforcement Learning
In this work we identify the dormant neuron phenomenon in deep reinforcement learning, where an agent's network suffers from an increasing number of inactive neurons, thereby affecting network expressivity. We demonstrate the presence of this phenomenon across a variety of algorithms and environments, and highlight its effect on learning. To address this issue, we propose a simple and effective method (ReDo) that Recycles Dormant neurons throughout training. Our experiments demonstrate that ReDo maintains the expressive power of networks by reducing the number of dormant neurons and results in improved performance.
Predictive auxiliary objectives in deep RL mimic learning in the brain
The ability to predict upcoming events has been hypothesized to comprise a key aspect of natural and machine cognition. This is supported by trends in deep reinforcement learning (RL), where self-supervised auxiliary objectives such as prediction are widely used to support representation learning and improve task performance. Here, we study the effects predictive auxiliary objectives have on representation learning across different modules of an RL system and how these mimic representational changes observed in the brain. We find that predictive objectives improve and stabilize learning particularly in resource-limited architectures, and we identify settings where longer predictive horizons better support representational transfer. Furthermore, we find that representational changes in this RL system bear a striking resemblance to changes in neural activity observed in the brain across various experiments. Specifically, we draw a connection between the auxiliary predictive model of the RL system and hippocampus, an area thought to learn a predictive model to support memory-guided behavior. We also connect the encoder network and the value learning network of the RL system to visual cortex and striatum in the brain, respectively. This work demonstrates how representation learning in deep RL systems can provide an interpretable framework for modeling multi-region interactions in the brain. The deep RL perspective taken here also suggests an additional role of the hippocampus in the brain -- that of an auxiliary learning system that benefits representation learning in other regions.
Learned feature representations are biased by complexity, learning order, position, and more
Representation learning, and interpreting learned representations, are key areas of focus in machine learning and neuroscience. Both fields generally use representations as a means to understand or improve a system's computations. In this work, however, we explore surprising dissociations between representation and computation that may pose challenges for such efforts. We create datasets in which we attempt to match the computational role that different features play, while manipulating other properties of the features or the data. We train various deep learning architectures to compute these multiple abstract features about their inputs. We find that their learned feature representations are systematically biased towards representing some features more strongly than others, depending upon extraneous properties such as feature complexity, the order in which features are learned, and the distribution of features over the inputs. For example, features that are simpler to compute or learned first tend to be represented more strongly and densely than features that are more complex or learned later, even if all features are learned equally well. We also explore how these biases are affected by architectures, optimizers, and training regimes (e.g., in transformers, features decoded earlier in the output sequence also tend to be represented more strongly). Our results help to characterize the inductive biases of gradient-based representation learning. These results also highlight a key challenge for interpretability - or for comparing the representations of models and brains - disentangling extraneous biases from the computationally important aspects of a system's internal representations.
Hard ASH: Sparsity and the right optimizer make a continual learner
In class incremental learning, neural networks typically suffer from catastrophic forgetting. We show that an MLP featuring a sparse activation function and an adaptive learning rate optimizer can compete with established regularization techniques in the Split-MNIST task. We highlight the effectiveness of the Adaptive SwisH (ASH) activation function in this context and introduce a novel variant, Hard Adaptive SwisH (Hard ASH) to further enhance the learning retention.
Interpreting the Second-Order Effects of Neurons in CLIP
We interpret the function of individual neurons in CLIP by automatically describing them using text. Analyzing the direct effects (i.e. the flow from a neuron through the residual stream to the output) or the indirect effects (overall contribution) fails to capture the neurons' function in CLIP. Therefore, we present the "second-order lens", analyzing the effect flowing from a neuron through the later attention heads, directly to the output. We find that these effects are highly selective: for each neuron, the effect is significant for <2% of the images. Moreover, each effect can be approximated by a single direction in the text-image space of CLIP. We describe neurons by decomposing these directions into sparse sets of text representations. The sets reveal polysemantic behavior - each neuron corresponds to multiple, often unrelated, concepts (e.g. ships and cars). Exploiting this neuron polysemy, we mass-produce "semantic" adversarial examples by generating images with concepts spuriously correlated to the incorrect class. Additionally, we use the second-order effects for zero-shot segmentation and attribute discovery in images. Our results indicate that a scalable understanding of neurons can be used for model deception and for introducing new model capabilities.
Task-Optimized Convolutional Recurrent Networks Align with Tactile Processing in the Rodent Brain
Tactile sensing remains far less understood in neuroscience and less effective in artificial systems compared to more mature modalities such as vision and language. We bridge these gaps by introducing a novel Encoder-Attender-Decoder (EAD) framework to systematically explore the space of task-optimized temporal neural networks trained on realistic tactile input sequences from a customized rodent whisker-array simulator. We identify convolutional recurrent neural networks (ConvRNNs) as superior encoders to purely feedforward and state-space architectures for tactile categorization. Crucially, these ConvRNN-encoder-based EAD models achieve neural representations closely matching rodent somatosensory cortex, saturating the explainable neural variability and revealing a clear linear relationship between supervised categorization performance and neural alignment. Furthermore, contrastive self-supervised ConvRNN-encoder-based EADs, trained with tactile-specific augmentations, match supervised neural fits, serving as an ethologically-relevant, label-free proxy. For neuroscience, our findings highlight nonlinear recurrent processing as important for general-purpose tactile representations in somatosensory cortex, providing the first quantitative characterization of the underlying inductive biases in this system. For embodied AI, our results emphasize the importance of recurrent EAD architectures to handle realistic tactile inputs, along with tailored self-supervised learning methods for achieving robust tactile perception with the same type of sensors animals use to sense in unstructured environments.
On the Stability-Plasticity Dilemma of Class-Incremental Learning
A primary goal of class-incremental learning is to strike a balance between stability and plasticity, where models should be both stable enough to retain knowledge learned from previously seen classes, and plastic enough to learn concepts from new classes. While previous works demonstrate strong performance on class-incremental benchmarks, it is not clear whether their success comes from the models being stable, plastic, or a mixture of both. This paper aims to shed light on how effectively recent class-incremental learning algorithms address the stability-plasticity trade-off. We establish analytical tools that measure the stability and plasticity of feature representations, and employ such tools to investigate models trained with various algorithms on large-scale class-incremental benchmarks. Surprisingly, we find that the majority of class-incremental learning algorithms heavily favor stability over plasticity, to the extent that the feature extractor of a model trained on the initial set of classes is no less effective than that of the final incremental model. Our observations not only inspire two simple algorithms that highlight the importance of feature representation analysis, but also suggest that class-incremental learning approaches, in general, should strive for better feature representation learning.
Rosetta Neurons: Mining the Common Units in a Model Zoo
Do different neural networks, trained for various vision tasks, share some common representations? In this paper, we demonstrate the existence of common features we call "Rosetta Neurons" across a range of models with different architectures, different tasks (generative and discriminative), and different types of supervision (class-supervised, text-supervised, self-supervised). We present an algorithm for mining a dictionary of Rosetta Neurons across several popular vision models: Class Supervised-ResNet50, DINO-ResNet50, DINO-ViT, MAE, CLIP-ResNet50, BigGAN, StyleGAN-2, StyleGAN-XL. Our findings suggest that certain visual concepts and structures are inherently embedded in the natural world and can be learned by different models regardless of the specific task or architecture, and without the use of semantic labels. We can visualize shared concepts directly due to generative models included in our analysis. The Rosetta Neurons facilitate model-to-model translation enabling various inversion-based manipulations, including cross-class alignments, shifting, zooming, and more, without the need for specialized training.
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization
This paper studies the problem of training a two-layer ReLU network for binary classification using gradient flow with small initialization. We consider a training dataset with well-separated input vectors: Any pair of input data with the same label are positively correlated, and any pair with different labels are negatively correlated. Our analysis shows that, during the early phase of training, neurons in the first layer try to align with either the positive data or the negative data, depending on its corresponding weight on the second layer. A careful analysis of the neurons' directional dynamics allows us to provide an O(log n{mu}) upper bound on the time it takes for all neurons to achieve good alignment with the input data, where n is the number of data points and mu measures how well the data are separated. After the early alignment phase, the loss converges to zero at a O(1{t}) rate, and the weight matrix on the first layer is approximately low-rank. Numerical experiments on the MNIST dataset illustrate our theoretical findings.
Equivariant Architectures for Learning in Deep Weight Spaces
Designing machine learning architectures for processing neural networks in their raw weight matrix form is a newly introduced research direction. Unfortunately, the unique symmetry structure of deep weight spaces makes this design very challenging. If successful, such architectures would be capable of performing a wide range of intriguing tasks, from adapting a pre-trained network to a new domain to editing objects represented as functions (INRs or NeRFs). As a first step towards this goal, we present here a novel network architecture for learning in deep weight spaces. It takes as input a concatenation of weights and biases of a pre-trained MLP and processes it using a composition of layers that are equivariant to the natural permutation symmetry of the MLP's weights: Changing the order of neurons in intermediate layers of the MLP does not affect the function it represents. We provide a full characterization of all affine equivariant and invariant layers for these symmetries and show how these layers can be implemented using three basic operations: pooling, broadcasting, and fully connected layers applied to the input in an appropriate manner. We demonstrate the effectiveness of our architecture and its advantages over natural baselines in a variety of learning tasks.
Polarity is all you need to learn and transfer faster
Natural intelligences (NIs) thrive in a dynamic world - they learn quickly, sometimes with only a few samples. In contrast, artificial intelligences (AIs) typically learn with a prohibitive number of training samples and computational power. What design principle difference between NI and AI could contribute to such a discrepancy? Here, we investigate the role of weight polarity: development processes initialize NIs with advantageous polarity configurations; as NIs grow and learn, synapse magnitudes update, yet polarities are largely kept unchanged. We demonstrate with simulation and image classification tasks that if weight polarities are adequately set a priori, then networks learn with less time and data. We also explicitly illustrate situations in which a priori setting the weight polarities is disadvantageous for networks. Our work illustrates the value of weight polarities from the perspective of statistical and computational efficiency during learning.
Hidden symmetries of ReLU networks
The parameter space for any fixed architecture of feedforward ReLU neural networks serves as a proxy during training for the associated class of functions - but how faithful is this representation? It is known that many different parameter settings can determine the same function. Moreover, the degree of this redundancy is inhomogeneous: for some networks, the only symmetries are permutation of neurons in a layer and positive scaling of parameters at a neuron, while other networks admit additional hidden symmetries. In this work, we prove that, for any network architecture where no layer is narrower than the input, there exist parameter settings with no hidden symmetries. We also describe a number of mechanisms through which hidden symmetries can arise, and empirically approximate the functional dimension of different network architectures at initialization. These experiments indicate that the probability that a network has no hidden symmetries decreases towards 0 as depth increases, while increasing towards 1 as width and input dimension increase.
Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptation
Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. We take inspiration from the biological plausibility learning where the neuron responses are tuned based on a local synapse-change procedure and activated by competitive lateral inhibition rules. Based on these feed-forward learning rules, we design a soft Hebbian learning process which provides an unsupervised and effective mechanism for online adaptation. We observe that the performance of this feed-forward Hebbian learning for fully test-time adaptation can be significantly improved by incorporating a feedback neuro-modulation layer. It is able to fine-tune the neuron responses based on the external feedback generated by the error back-propagation from the top inference layers. This leads to our proposed neuro-modulated Hebbian learning (NHL) method for fully test-time adaptation. With the unsupervised feed-forward soft Hebbian learning being combined with a learned neuro-modulator to capture feedback from external responses, the source model can be effectively adapted during the testing process. Experimental results on benchmark datasets demonstrate that our proposed method can significantly improve the adaptation performance of network models and outperforms existing state-of-the-art methods.
Continual Learning with Dependency Preserving Hypernetworks
Humans learn continually throughout their lifespan by accumulating diverse knowledge and fine-tuning it for future tasks. When presented with a similar goal, neural networks suffer from catastrophic forgetting if data distributions across sequential tasks are not stationary over the course of learning. An effective approach to address such continual learning (CL) problems is to use hypernetworks which generate task dependent weights for a target network. However, the continual learning performance of existing hypernetwork based approaches are affected by the assumption of independence of the weights across the layers in order to maintain parameter efficiency. To address this limitation, we propose a novel approach that uses a dependency preserving hypernetwork to generate weights for the target network while also maintaining the parameter efficiency. We propose to use recurrent neural network (RNN) based hypernetwork that can generate layer weights efficiently while allowing for dependencies across them. In addition, we propose novel regularisation and network growth techniques for the RNN based hypernetwork to further improve the continual learning performance. To demonstrate the effectiveness of the proposed methods, we conducted experiments on several image classification continual learning tasks and settings. We found that the proposed methods based on the RNN hypernetworks outperformed the baselines in all these CL settings and tasks.
Towards flexible perception with visual memory
Training a neural network is a monolithic endeavor, akin to carving knowledge into stone: once the process is completed, editing the knowledge in a network is nearly impossible, since all information is distributed across the network's weights. We here explore a simple, compelling alternative by marrying the representational power of deep neural networks with the flexibility of a database. Decomposing the task of image classification into image similarity (from a pre-trained embedding) and search (via fast nearest neighbor retrieval from a knowledge database), we build a simple and flexible visual memory that has the following key capabilities: (1.) The ability to flexibly add data across scales: from individual samples all the way to entire classes and billion-scale data; (2.) The ability to remove data through unlearning and memory pruning; (3.) An interpretable decision-mechanism on which we can intervene to control its behavior. Taken together, these capabilities comprehensively demonstrate the benefits of an explicit visual memory. We hope that it might contribute to a conversation on how knowledge should be represented in deep vision models -- beyond carving it in ``stone'' weights.
Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning
A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs
Neural Turing Machines
We extend the capabilities of neural networks by coupling them to external memory resources, which they can interact with by attentional processes. The combined system is analogous to a Turing Machine or Von Neumann architecture but is differentiable end-to-end, allowing it to be efficiently trained with gradient descent. Preliminary results demonstrate that Neural Turing Machines can infer simple algorithms such as copying, sorting, and associative recall from input and output examples.
Resistive memory-based zero-shot liquid state machine for multimodal event data learning
The human brain is a complex spiking neural network (SNN) that learns multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, the brain achieves this with minimal power consumption, using event-based signals that propagate within its structure. However, mimicking the human brain in neuromorphic hardware presents both hardware and software challenges. Hardware limitations, such as the slowdown of Moore's law and the von Neumann bottleneck, hinder the efficiency of digital computers. On the software side, SNNs are known for their difficult training, especially when learning multimodal signals. To overcome these challenges, we propose a hardware-software co-design that combines a fixed and random liquid state machine (LSM) SNN encoder with trainable artificial neural network (ANN) projections. The LSM is physically implemented using analogue resistive memory, leveraging the inherent stochasticity of resistive switching to generate random weights. This highly efficient and nanoscale in-memory computing approach effectively addresses the von Neumann bottleneck and the slowdown of Moore's law. The ANN projections are implemented digitally, allowing for easy optimization using contrastive loss, which helps to overcome the difficulties associated with SNN training. We experimentally implement this co-design on a 40nm 256Kb in-memory computing macro. We first demonstrate LSM-based event encoding through supervised classification and linear probing on the N-MNIST and N-TIDIGITS datasets.
Dynamically Learning to Integrate in Recurrent Neural Networks
Learning to remember over long timescales is fundamentally challenging for recurrent neural networks (RNNs). While much prior work has explored why RNNs struggle to learn long timescales and how to mitigate this, we still lack a clear understanding of the dynamics involved when RNNs learn long timescales via gradient descent. Here we build a mathematical theory of the learning dynamics of linear RNNs trained to integrate white noise. We show that when the initial recurrent weights are small, the dynamics of learning are described by a low-dimensional system that tracks a single outlier eigenvalue of the recurrent weights. This reveals the precise manner in which the long timescale associated with white noise integration is learned. We extend our analyses to RNNs learning a damped oscillatory filter, and find rich dynamical equations for the evolution of a conjugate pair of outlier eigenvalues. Taken together, our analyses build a rich mathematical framework for studying dynamical learning problems salient for both machine learning and neuroscience.
Learnable latent embeddings for joint behavioral and neural analysis
Mapping behavioral actions to neural activity is a fundamental goal of neuroscience. As our ability to record large neural and behavioral data increases, there is growing interest in modeling neural dynamics during adaptive behaviors to probe neural representations. In particular, neural latent embeddings can reveal underlying correlates of behavior, yet, we lack non-linear techniques that can explicitly and flexibly leverage joint behavior and neural data. Here, we fill this gap with a novel method, CEBRA, that jointly uses behavioral and neural data in a hypothesis- or discovery-driven manner to produce consistent, high-performance latent spaces. We validate its accuracy and demonstrate our tool's utility for both calcium and electrophysiology datasets, across sensory and motor tasks, and in simple or complex behaviors across species. It allows for single and multi-session datasets to be leveraged for hypothesis testing or can be used label-free. Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, and rapid, high-accuracy decoding of natural movies from visual cortex.
Neurons in Large Language Models: Dead, N-gram, Positional
We analyze a family of large language models in such a lightweight manner that can be done on a single GPU. Specifically, we focus on the OPT family of models ranging from 125m to 66b parameters and rely only on whether an FFN neuron is activated or not. First, we find that the early part of the network is sparse and represents many discrete features. Here, many neurons (more than 70% in some layers of the 66b model) are "dead", i.e. they never activate on a large collection of diverse data. At the same time, many of the alive neurons are reserved for discrete features and act as token and n-gram detectors. Interestingly, their corresponding FFN updates not only promote next token candidates as could be expected, but also explicitly focus on removing the information about triggering them tokens, i.e., current input. To the best of our knowledge, this is the first example of mechanisms specialized at removing (rather than adding) information from the residual stream. With scale, models become more sparse in a sense that they have more dead neurons and token detectors. Finally, some neurons are positional: them being activated or not depends largely (or solely) on position and less so (or not at all) on textual data. We find that smaller models have sets of neurons acting as position range indicators while larger models operate in a less explicit manner.
Left/Right Brain, human motor control and the implications for robotics
Neural Network movement controllers promise a variety of advantages over conventional control methods however they are not widely adopted due to their inability to produce reliably precise movements. This research explores a bilateral neural network architecture as a control system for motor tasks. We aimed to achieve hemispheric specialisation similar to what is observed in humans across different tasks; the dominant system (usually the right hand, left hemisphere) excels at tasks involving coordination and efficiency of movement, and the non-dominant system performs better at tasks requiring positional stability. Specialisation was achieved by training the hemispheres with different loss functions tailored toward the expected behaviour of the respective hemispheres. We compared bilateral models with and without specialised hemispheres, with and without inter-hemispheric connectivity (representing the biological Corpus Callosum), and unilateral models with and without specialisation. The models were trained and tested on two tasks common in the human motor control literature: the random reach task, suited to the dominant system, a model with better coordination, and the hold position task, suited to the non-dominant system, a model with more stable movement. Each system out-performed the non-favoured system in its preferred task. For both tasks, a bilateral model outperforms the 'non-preferred' hand, and is as good or better than the 'preferred' hand. The Corpus Callosum tends to improve performance, but not always for the specialised models.
Scaling MLPs: A Tale of Inductive Bias
In this work we revisit the most fundamental building block in deep learning, the multi-layer perceptron (MLP), and study the limits of its performance on vision tasks. Empirical insights into MLPs are important for multiple reasons. (1) Given the recent narrative "less inductive bias is better", popularized due to transformers eclipsing convolutional models, it is natural to explore the limits of this hypothesis. To that end, MLPs offer an ideal test bed, being completely free of any inductive bias. (2) MLPs have almost exclusively been the main protagonist in the deep learning theory literature due to their mathematical simplicity, serving as a proxy to explain empirical phenomena observed for more complex architectures. Surprisingly, experimental datapoints for MLPs are very difficult to find in the literature, especially when coupled with large pre-training protocols. This discrepancy between practice and theory is worrying: Do MLPs reflect the empirical advances exhibited by practical models? Or do theorists need to rethink the role of MLPs as a proxy? We provide insights into both these aspects. We show that the performance of MLPs drastically improves with scale (93% on CIFAR10, 79% on CIFAR100, 69% on TinyImageNet), highlighting that lack of inductive bias can indeed be compensated. We observe that MLPs mimic the behaviour of their modern counterparts faithfully, with some components in the learning setting however surprisingly exhibiting stronger or unexpected behaviours. Due to their inherent computational efficiency, large pre-training experiments become more accessible for academic researchers. All of our experiments were run on a single GPU.
Questioning Representational Optimism in Deep Learning: The Fractured Entangled Representation Hypothesis
Much of the excitement in modern AI is driven by the observation that scaling up existing systems leads to better performance. But does better performance necessarily imply better internal representations? While the representational optimist assumes it must, this position paper challenges that view. We compare neural networks evolved through an open-ended search process to networks trained via conventional stochastic gradient descent (SGD) on the simple task of generating a single image. This minimal setup offers a unique advantage: each hidden neuron's full functional behavior can be easily visualized as an image, thus revealing how the network's output behavior is internally constructed neuron by neuron. The result is striking: while both networks produce the same output behavior, their internal representations differ dramatically. The SGD-trained networks exhibit a form of disorganization that we term fractured entangled representation (FER). Interestingly, the evolved networks largely lack FER, even approaching a unified factored representation (UFR). In large models, FER may be degrading core model capacities like generalization, creativity, and (continual) learning. Therefore, understanding and mitigating FER could be critical to the future of representation learning.
Revisiting Bi-Linear State Transitions in Recurrent Neural Networks
The role of hidden units in recurrent neural networks is typically seen as modeling memory, with research focusing on enhancing information retention through gating mechanisms. A less explored perspective views hidden units as active participants in the computation performed by the network, rather than passive memory stores. In this work, we revisit bi-linear operations, which involve multiplicative interactions between hidden units and input embeddings. We demonstrate theoretically and empirically that they constitute a natural inductive bias for representing the evolution of hidden states in state tracking tasks. These are the simplest type of task that require hidden units to actively contribute to the behavior of the network. We also show that bi-linear state updates form a natural hierarchy corresponding to state tracking tasks of increasing complexity, with popular linear recurrent networks such as Mamba residing at the lowest-complexity center of that hierarchy.
Natural Language Descriptions of Deep Visual Features
Some neurons in deep networks specialize in recognizing highly specific perceptual, structural, or semantic features of inputs. In computer vision, techniques exist for identifying neurons that respond to individual concept categories like colors, textures, and object classes. But these techniques are limited in scope, labeling only a small subset of neurons and behaviors in any network. Is a richer characterization of neuron-level computation possible? We introduce a procedure (called MILAN, for mutual-information-guided linguistic annotation of neurons) that automatically labels neurons with open-ended, compositional, natural language descriptions. Given a neuron, MILAN generates a description by searching for a natural language string that maximizes pointwise mutual information with the image regions in which the neuron is active. MILAN produces fine-grained descriptions that capture categorical, relational, and logical structure in learned features. These descriptions obtain high agreement with human-generated feature descriptions across a diverse set of model architectures and tasks, and can aid in understanding and controlling learned models. We highlight three applications of natural language neuron descriptions. First, we use MILAN for analysis, characterizing the distribution and importance of neurons selective for attribute, category, and relational information in vision models. Second, we use MILAN for auditing, surfacing neurons sensitive to human faces in datasets designed to obscure them. Finally, we use MILAN for editing, improving robustness in an image classifier by deleting neurons sensitive to text features spuriously correlated with class labels.
MgNO: Efficient Parameterization of Linear Operators via Multigrid
In this work, we propose a concise neural operator architecture for operator learning. Drawing an analogy with a conventional fully connected neural network, we define the neural operator as follows: the output of the i-th neuron in a nonlinear operator layer is defined by mathcal O_i(u) = sigmaleft( sum_j mathcal W_{ij} u + mathcal B_{ij}right). Here, mathcal W_{ij} denotes the bounded linear operator connecting j-th input neuron to i-th output neuron, and the bias mathcal B_{ij} takes the form of a function rather than a scalar. Given its new universal approximation property, the efficient parameterization of the bounded linear operators between two neurons (Banach spaces) plays a critical role. As a result, we introduce MgNO, utilizing multigrid structures to parameterize these linear operators between neurons. This approach offers both mathematical rigor and practical expressivity. Additionally, MgNO obviates the need for conventional lifting and projecting operators typically required in previous neural operators. Moreover, it seamlessly accommodates diverse boundary conditions. Our empirical observations reveal that MgNO exhibits superior ease of training compared to other CNN-based models, while also displaying a reduced susceptibility to overfitting when contrasted with spectral-type neural operators. We demonstrate the efficiency and accuracy of our method with consistently state-of-the-art performance on different types of partial differential equations (PDEs).
Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases
Visual search is a ubiquitous and often challenging daily task, exemplified by looking for the car keys at home or a friend in a crowd. An intriguing property of some classical search tasks is an asymmetry such that finding a target A among distractors B can be easier than finding B among A. To elucidate the mechanisms responsible for asymmetry in visual search, we propose a computational model that takes a target and a search image as inputs and produces a sequence of eye movements until the target is found. The model integrates eccentricity-dependent visual recognition with target-dependent top-down cues. We compared the model against human behavior in six paradigmatic search tasks that show asymmetry in humans. Without prior exposure to the stimuli or task-specific training, the model provides a plausible mechanism for search asymmetry. We hypothesized that the polarity of search asymmetry arises from experience with the natural environment. We tested this hypothesis by training the model on augmented versions of ImageNet where the biases of natural images were either removed or reversed. The polarity of search asymmetry disappeared or was altered depending on the training protocol. This study highlights how classical perceptual properties can emerge in neural network models, without the need for task-specific training, but rather as a consequence of the statistical properties of the developmental diet fed to the model. All source code and data are publicly available at https://github.com/kreimanlab/VisualSearchAsymmetry.
A Dynamical Model of Neural Scaling Laws
On a variety of tasks, the performance of neural networks predictably improves with training time, dataset size and model size across many orders of magnitude. This phenomenon is known as a neural scaling law. Of fundamental importance is the compute-optimal scaling law, which reports the performance as a function of units of compute when choosing model sizes optimally. We analyze a random feature model trained with gradient descent as a solvable model of network training and generalization. This reproduces many observations about neural scaling laws. First, our model makes a prediction about why the scaling of performance with training time and with model size have different power law exponents. Consequently, the theory predicts an asymmetric compute-optimal scaling rule where the number of training steps are increased faster than model parameters, consistent with recent empirical observations. Second, it has been observed that early in training, networks converge to their infinite-width dynamics at a rate 1/width but at late time exhibit a rate width^{-c}, where c depends on the structure of the architecture and task. We show that our model exhibits this behavior. Lastly, our theory shows how the gap between training and test loss can gradually build up over time due to repeated reuse of data.
Continual Learning with Pretrained Backbones by Tuning in the Input Space
The intrinsic difficulty in adapting deep learning models to non-stationary environments limits the applicability of neural networks to real-world tasks. This issue is critical in practical supervised learning settings, such as the ones in which a pre-trained model computes projections toward a latent space where different task predictors are sequentially learned over time. As a matter of fact, incrementally fine-tuning the whole model to better adapt to new tasks usually results in catastrophic forgetting, with decreasing performance over the past experiences and losing valuable knowledge from the pre-training stage. In this paper, we propose a novel strategy to make the fine-tuning procedure more effective, by avoiding to update the pre-trained part of the network and learning not only the usual classification head, but also a set of newly-introduced learnable parameters that are responsible for transforming the input data. This process allows the network to effectively leverage the pre-training knowledge and find a good trade-off between plasticity and stability with modest computational efforts, thus especially suitable for on-the-edge settings. Our experiments on four image classification problems in a continual learning setting confirm the quality of the proposed approach when compared to several fine-tuning procedures and to popular continual learning methods.
MindBridge: A Cross-Subject Brain Decoding Framework
Brain decoding, a pivotal field in neuroscience, aims to reconstruct stimuli from acquired brain signals, primarily utilizing functional magnetic resonance imaging (fMRI). Currently, brain decoding is confined to a per-subject-per-model paradigm, limiting its applicability to the same individual for whom the decoding model is trained. This constraint stems from three key challenges: 1) the inherent variability in input dimensions across subjects due to differences in brain size; 2) the unique intrinsic neural patterns, influencing how different individuals perceive and process sensory information; 3) limited data availability for new subjects in real-world scenarios hampers the performance of decoding models. In this paper, we present a novel approach, MindBridge, that achieves cross-subject brain decoding by employing only one model. Our proposed framework establishes a generic paradigm capable of addressing these challenges by introducing biological-inspired aggregation function and novel cyclic fMRI reconstruction mechanism for subject-invariant representation learning. Notably, by cycle reconstruction of fMRI, MindBridge can enable novel fMRI synthesis, which also can serve as pseudo data augmentation. Within the framework, we also devise a novel reset-tuning method for adapting a pretrained model to a new subject. Experimental results demonstrate MindBridge's ability to reconstruct images for multiple subjects, which is competitive with dedicated subject-specific models. Furthermore, with limited data for a new subject, we achieve a high level of decoding accuracy, surpassing that of subject-specific models. This advancement in cross-subject brain decoding suggests promising directions for wider applications in neuroscience and indicates potential for more efficient utilization of limited fMRI data in real-world scenarios. Project page: https://littlepure2333.github.io/MindBridge
SHARP: Sparsity and Hidden Activation RePlay for Neuro-Inspired Continual Learning
Deep neural networks (DNNs) struggle to learn in dynamic environments since they rely on fixed datasets or stationary environments. Continual learning (CL) aims to address this limitation and enable DNNs to accumulate knowledge incrementally, similar to human learning. Inspired by how our brain consolidates memories, a powerful strategy in CL is replay, which involves training the DNN on a mixture of new and all seen classes. However, existing replay methods overlook two crucial aspects of biological replay: 1) the brain replays processed neural patterns instead of raw input, and 2) it prioritizes the replay of recently learned information rather than revisiting all past experiences. To address these differences, we propose SHARP, an efficient neuro-inspired CL method that leverages sparse dynamic connectivity and activation replay. Unlike other activation replay methods, which assume layers not subjected to replay have been pretrained and fixed, SHARP can continually update all layers. Also, SHARP is unique in that it only needs to replay few recently seen classes instead of all past classes. Our experiments on five datasets demonstrate that SHARP outperforms state-of-the-art replay methods in class incremental learning. Furthermore, we showcase SHARP's flexibility in a novel CL scenario where the boundaries between learning episodes are blurry. The SHARP code is available at https://github.com/BurakGurbuz97/SHARP-Continual-Learning.
LaVCa: LLM-assisted Visual Cortex Captioning
Understanding the property of neural populations (or voxels) in the human brain can advance our comprehension of human perceptual and cognitive processing capabilities and contribute to developing brain-inspired computer models. Recent encoding models using deep neural networks (DNNs) have successfully predicted voxel-wise activity. However, interpreting the properties that explain voxel responses remains challenging because of the black-box nature of DNNs. As a solution, we propose LLM-assisted Visual Cortex Captioning (LaVCa), a data-driven approach that uses large language models (LLMs) to generate natural-language captions for images to which voxels are selective. By applying LaVCa for image-evoked brain activity, we demonstrate that LaVCa generates captions that describe voxel selectivity more accurately than the previously proposed method. Furthermore, the captions generated by LaVCa quantitatively capture more detailed properties than the existing method at both the inter-voxel and intra-voxel levels. Furthermore, a more detailed analysis of the voxel-specific properties generated by LaVCa reveals fine-grained functional differentiation within regions of interest (ROIs) in the visual cortex and voxels that simultaneously represent multiple distinct concepts. These findings offer profound insights into human visual representations by assigning detailed captions throughout the visual cortex while highlighting the potential of LLM-based methods in understanding brain representations. Please check out our webpage at https://sites.google.com/view/lavca-llm/
Neural Redshift: Random Networks are not Random Functions
Our understanding of the generalization capabilities of neural networks (NNs) is still incomplete. Prevailing explanations are based on implicit biases of gradient descent (GD) but they cannot account for the capabilities of models from gradient-free methods nor the simplicity bias recently observed in untrained networks. This paper seeks other sources of generalization in NNs. Findings. To understand the inductive biases provided by architectures independently from GD, we examine untrained, random-weight networks. Even simple MLPs show strong inductive biases: uniform sampling in weight space yields a very biased distribution of functions in terms of complexity. But unlike common wisdom, NNs do not have an inherent "simplicity bias". This property depends on components such as ReLUs, residual connections, and layer normalizations. Alternative architectures can be built with a bias for any level of complexity. Transformers also inherit all these properties from their building blocks. Implications. We provide a fresh explanation for the success of deep learning independent from gradient-based training. It points at promising avenues for controlling the solutions implemented by trained models.
A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive Coding Networks
Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience. Training such models, however, is quite inefficient and unstable. In this work, we show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one, and has theoretical guarantees in terms of convergence. The proposed algorithm, that we call incremental predictive coding (iPC) is also more biologically plausible than the original one, as it it fully automatic. In an extensive set of experiments, we show that iPC constantly performs better than the original formulation on a large number of benchmarks for image classification, as well as for the training of both conditional and masked language models, in terms of test accuracy, efficiency, and convergence with respect to a large set of hyperparameters.
Quadratic models for understanding neural network dynamics
While neural networks can be approximated by linear models as their width increases, certain properties of wide neural networks cannot be captured by linear models. In this work we show that recently proposed Neural Quadratic Models can exhibit the "catapult phase" [Lewkowycz et al. 2020] that arises when training such models with large learning rates. We then empirically show that the behaviour of neural quadratic models parallels that of neural networks in generalization, especially in the catapult phase regime. Our analysis further demonstrates that quadratic models can be an effective tool for analysis of neural networks.
Elephant Neural Networks: Born to Be a Continual Learner
Catastrophic forgetting remains a significant challenge to continual learning for decades. While recent works have proposed effective methods to mitigate this problem, they mainly focus on the algorithmic side. Meanwhile, we do not fully understand what architectural properties of neural networks lead to catastrophic forgetting. This study aims to fill this gap by studying the role of activation functions in the training dynamics of neural networks and their impact on catastrophic forgetting. Our study reveals that, besides sparse representations, the gradient sparsity of activation functions also plays an important role in reducing forgetting. Based on this insight, we propose a new class of activation functions, elephant activation functions, that can generate both sparse representations and sparse gradients. We show that by simply replacing classical activation functions with elephant activation functions, we can significantly improve the resilience of neural networks to catastrophic forgetting. Our method has broad applicability and benefits for continual learning in regression, class incremental learning, and reinforcement learning tasks. Specifically, we achieves excellent performance on Split MNIST dataset in just one single pass, without using replay buffer, task boundary information, or pre-training.
Meta-Learning Update Rules for Unsupervised Representation Learning
A major goal of unsupervised learning is to discover data representations that are useful for subsequent tasks, without access to supervised labels during training. Typically, this involves minimizing a surrogate objective, such as the negative log likelihood of a generative model, with the hope that representations useful for subsequent tasks will arise as a side effect. In this work, we propose instead to directly target later desired tasks by meta-learning an unsupervised learning rule which leads to representations useful for those tasks. Specifically, we target semi-supervised classification performance, and we meta-learn an algorithm -- an unsupervised weight update rule -- that produces representations useful for this task. Additionally, we constrain our unsupervised update rule to a be a biologically-motivated, neuron-local function, which enables it to generalize to different neural network architectures, datasets, and data modalities. We show that the meta-learned update rule produces useful features and sometimes outperforms existing unsupervised learning techniques. We further show that the meta-learned unsupervised update rule generalizes to train networks with different widths, depths, and nonlinearities. It also generalizes to train on data with randomly permuted input dimensions and even generalizes from image datasets to a text task.
NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions
We present a novel type of neural fields that uses general radial bases for signal representation. State-of-the-art neural fields typically rely on grid-based representations for storing local neural features and N-dimensional linear kernels for interpolating features at continuous query points. The spatial positions of their neural features are fixed on grid nodes and cannot well adapt to target signals. Our method instead builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals. To further improve the channel-wise capacity of radial basis functions, we propose to compose them with multi-frequency sinusoid functions. This technique extends a radial basis to multiple Fourier radial bases of different frequency bands without requiring extra parameters, facilitating the representation of details. Moreover, by marrying adaptive radial bases with grid-based ones, our hybrid combination inherits both adaptivity and interpolation smoothness. We carefully designed weighting schemes to let radial bases adapt to different types of signals effectively. Our experiments on 2D image and 3D signed distance field representation demonstrate the higher accuracy and compactness of our method than prior arts. When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.
Recurrent Neural Networks Learn to Store and Generate Sequences using Non-Linear Representations
The Linear Representation Hypothesis (LRH) states that neural networks learn to encode concepts as directions in activation space, and a strong version of the LRH states that models learn only such encodings. In this paper, we present a counterexample to this strong LRH: when trained to repeat an input token sequence, gated recurrent neural networks (RNNs) learn to represent the token at each position with a particular order of magnitude, rather than a direction. These representations have layered features that are impossible to locate in distinct linear subspaces. To show this, we train interventions to predict and manipulate tokens by learning the scaling factor corresponding to each sequence position. These interventions indicate that the smallest RNNs find only this magnitude-based solution, while larger RNNs have linear representations. These findings strongly indicate that interpretability research should not be confined by the LRH.
Word class representations spontaneously emerge in a deep neural network trained on next word prediction
How do humans learn language, and can the first language be learned at all? These fundamental questions are still hotly debated. In contemporary linguistics, there are two major schools of thought that give completely opposite answers. According to Chomsky's theory of universal grammar, language cannot be learned because children are not exposed to sufficient data in their linguistic environment. In contrast, usage-based models of language assume a profound relationship between language structure and language use. In particular, contextual mental processing and mental representations are assumed to have the cognitive capacity to capture the complexity of actual language use at all levels. The prime example is syntax, i.e., the rules by which words are assembled into larger units such as sentences. Typically, syntactic rules are expressed as sequences of word classes. However, it remains unclear whether word classes are innate, as implied by universal grammar, or whether they emerge during language acquisition, as suggested by usage-based approaches. Here, we address this issue from a machine learning and natural language processing perspective. In particular, we trained an artificial deep neural network on predicting the next word, provided sequences of consecutive words as input. Subsequently, we analyzed the emerging activation patterns in the hidden layers of the neural network. Strikingly, we find that the internal representations of nine-word input sequences cluster according to the word class of the tenth word to be predicted as output, even though the neural network did not receive any explicit information about syntactic rules or word classes during training. This surprising result suggests, that also in the human brain, abstract representational categories such as word classes may naturally emerge as a consequence of predictive coding and processing during language acquisition.
Learning heterogeneous delays in a layer of spiking neurons for fast motion detection
The precise timing of spikes emitted by neurons plays a crucial role in shaping the response of efferent biological neurons. This temporal dimension of neural activity holds significant importance in understanding information processing in neurobiology, especially for the performance of neuromorphic hardware, such as event-based cameras. Nonetheless, many artificial neural models disregard this critical temporal dimension of neural activity. In this study, we present a model designed to efficiently detect temporal spiking motifs using a layer of spiking neurons equipped with heterogeneous synaptic delays. Our model capitalizes on the diverse synaptic delays present on the dendritic tree, enabling specific arrangements of temporally precise synaptic inputs to synchronize upon reaching the basal dendritic tree. We formalize this process as a time-invariant logistic regression, which can be trained using labeled data. To demonstrate its practical efficacy, we apply the model to naturalistic videos transformed into event streams, simulating the output of the biological retina or event-based cameras. To evaluate the robustness of the model in detecting visual motion, we conduct experiments by selectively pruning weights and demonstrate that the model remains efficient even under significantly reduced workloads. In conclusion, by providing a comprehensive, event-driven computational building block, the incorporation of heterogeneous delays has the potential to greatly improve the performance of future spiking neural network algorithms, particularly in the context of neuromorphic chips.
Catastrophic Interference is Mitigated in Naturalistic Power-Law Learning Environments
Neural networks often suffer from catastrophic interference (CI): performance on previously learned tasks drops off significantly when learning a new task. This contrasts strongly with humans, who can sequentially learn new tasks without appreciably forgetting previous tasks. Prior work has explored various techniques for mitigating CI such as regularization, rehearsal, generative replay, and distillation methods. The current work takes a different approach, one guided by cognitive science research showing that in naturalistic environments, the probability of encountering a task decreases as a power-law of the time since it was last performed. We argue that a realistic evaluation of techniques for the mitigation of CI should be performed in simulated naturalistic learning environments. Thus, we evaluate the extent of mitigation of CI when training simple rehearsal-based methods in power-law environments similar to the ones humans face. Our work explores this novel rehearsal-based approach for a domain-incremental task: learning permutations in the MNIST task. We compare our rehearsal environment with other baselines to show its efficacy in promoting continual learning. Additionally, we investigate whether this environment shows forward facilitation, i.e., faster learning of later tasks. Next, we explore the robustness of our learning environment to the number of tasks, model size, and amount of data rehearsed after each task. Notably, our results show that the performance is comparable or superior to that of models trained using popular regularization methods and also to rehearsals in non-power-law environments. The benefits of this training paradigm include simplicity and the lack of a need for extra neural circuitry. In addition, because our method is orthogonal to other methods, future research can combine training in power-law environments with other continual learning mechanisms.
The boundary of neural network trainability is fractal
Some fractals -- for instance those associated with the Mandelbrot and quadratic Julia sets -- are computed by iterating a function, and identifying the boundary between hyperparameters for which the resulting series diverges or remains bounded. Neural network training similarly involves iterating an update function (e.g. repeated steps of gradient descent), can result in convergent or divergent behavior, and can be extremely sensitive to small changes in hyperparameters. Motivated by these similarities, we experimentally examine the boundary between neural network hyperparameters that lead to stable and divergent training. We find that this boundary is fractal over more than ten decades of scale in all tested configurations.
GateON: an unsupervised method for large scale continual learning
The objective of continual learning (CL) is to learn tasks sequentially without retraining on earlier tasks. However, when subjected to CL, traditional neural networks exhibit catastrophic forgetting and limited generalization. To overcome these problems, we introduce a novel method called 'Gate and Obstruct Network' (GateON). GateON combines learnable gating of activity and online estimation of parameter relevance to safeguard crucial knowledge from being overwritten. Our method generates partially overlapping pathways between tasks which permits forward and backward transfer during sequential learning. GateON addresses the issue of network saturation after parameter fixation by a re-activation mechanism of fixed neurons, enabling large-scale continual learning. GateON is implemented on a wide range of networks (fully-connected, CNN, Transformers), has low computational complexity, effectively learns up to 100 MNIST learning tasks, and achieves top-tier results for pre-trained BERT in CL-based NLP tasks.
End-To-End Memory Networks
We introduce a neural network with a recurrent attention model over a possibly large external memory. The architecture is a form of Memory Network (Weston et al., 2015) but unlike the model in that work, it is trained end-to-end, and hence requires significantly less supervision during training, making it more generally applicable in realistic settings. It can also be seen as an extension of RNNsearch to the case where multiple computational steps (hops) are performed per output symbol. The flexibility of the model allows us to apply it to tasks as diverse as (synthetic) question answering and to language modeling. For the former our approach is competitive with Memory Networks, but with less supervision. For the latter, on the Penn TreeBank and Text8 datasets our approach demonstrates comparable performance to RNNs and LSTMs. In both cases we show that the key concept of multiple computational hops yields improved results.
What needs to go right for an induction head? A mechanistic study of in-context learning circuits and their formation
In-context learning is a powerful emergent ability in transformer models. Prior work in mechanistic interpretability has identified a circuit element that may be critical for in-context learning -- the induction head (IH), which performs a match-and-copy operation. During training of large transformers on natural language data, IHs emerge around the same time as a notable phase change in the loss. Despite the robust evidence for IHs and this interesting coincidence with the phase change, relatively little is known about the diversity and emergence dynamics of IHs. Why is there more than one IH, and how are they dependent on each other? Why do IHs appear all of a sudden, and what are the subcircuits that enable them to emerge? We answer these questions by studying IH emergence dynamics in a controlled setting by training on synthetic data. In doing so, we develop and share a novel optogenetics-inspired causal framework for modifying activations throughout training. Using this framework, we delineate the diverse and additive nature of IHs. By clamping subsets of activations throughout training, we then identify three underlying subcircuits that interact to drive IH formation, yielding the phase change. Furthermore, these subcircuits shed light on data-dependent properties of formation, such as phase change timing, already showing the promise of this more in-depth understanding of subcircuits that need to "go right" for an induction head.
Hyperbolic Brain Representations
Artificial neural networks (ANN) were inspired by the architecture and functions of the human brain and have revolutionised the field of artificial intelligence (AI). Inspired by studies on the latent geometry of the brain we posit that an increase in the research and application of hyperbolic geometry in machine learning will lead to increased accuracy, improved feature space representations and more efficient models across a range of tasks. We look at the structure and functions of the human brain, highlighting the alignment between the brain's hierarchical nature and hyperbolic geometry. By examining the brain's complex network of neuron connections and its cognitive processes, we illustrate how hyperbolic geometry plays a pivotal role in human intelligence. Empirical evidence indicates that hyperbolic neural networks outperform Euclidean models for tasks including natural language processing, computer vision and complex network analysis, requiring fewer parameters and exhibiting better generalisation. Despite its nascent adoption, hyperbolic geometry holds promise for improving machine learning models and advancing the field toward AGI.
The Road to Generalizable Neuro-Symbolic Learning Should be Paved with Foundation Models
Neuro-symbolic learning was proposed to address challenges with training neural networks for complex reasoning tasks with the added benefits of interpretability, reliability, and efficiency. Neuro-symbolic learning methods traditionally train neural models in conjunction with symbolic programs, but they face significant challenges that limit them to simplistic problems. On the other hand, purely-neural foundation models now reach state-of-the-art performance through prompting rather than training, but they are often unreliable and lack interpretability. Supplementing foundation models with symbolic programs, which we call neuro-symbolic prompting, provides a way to use these models for complex reasoning tasks. Doing so raises the question: What role does specialized model training as part of neuro-symbolic learning have in the age of foundation models? To explore this question, we highlight three pitfalls of traditional neuro-symbolic learning with respect to the compute, data, and programs leading to generalization problems. This position paper argues that foundation models enable generalizable neuro-symbolic solutions, offering a path towards achieving the original goals of neuro-symbolic learning without the downsides of training from scratch.
Homogenized C. elegans Neural Activity and Connectivity Data
There is renewed interest in modeling and understanding the nervous system of the nematode Caenorhabditis elegans (C. elegans), as this small model system provides a path to bridge the gap between nervous system structure (connectivity) and function (physiology). However, existing physiology datasets, whether involving passive recording or stimulation, are in distinct formats, and connectome datasets require preprocessing before analysis can commence. Here we compile and homogenize datasets of neural activity and connectivity. Our neural activity dataset is derived from 11 C. elegans neuroimaging experiments, while our connectivity dataset is compiled from 9 connectome annotations based on 3 primary electron microscopy studies and 1 signal propagation study. Physiology datasets, collected under varying protocols, measure calcium fluorescence in labeled subsets of the worm's 300 neurons. Our preprocessing pipeline standardizes these datasets by consistently ordering labeled neurons and resampling traces to a common sampling rate, yielding recordings from approximately 900 worms and 250 uniquely labeled neurons. The connectome datasets, collected from electron microscopy reconstructions, represent the entire nervous system as a graph of connections. Our collection is accessible on HuggingFace, facilitating analysis of the structure-function relationship in biology using modern neural network architectures and enabling cross-lab and cross-animal comparisons.
Transformation of stimulus correlations by the retina
Redundancies and correlations in the responses of sensory neurons seem to waste neural resources but can carry cues about structured stimuli and may help the brain to correct for response errors. To assess how the retina negotiates this tradeoff, we measured simultaneous responses from populations of ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure. We found that pairwise correlations in the retinal output remained similar across stimuli with widely different spatio-temporal correlations including white noise and natural movies. Meanwhile, purely spatial correlations tended to increase correlations in the retinal response. Responding to more correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the similarity of pairwise correlations across stimuli where receptive field measurements were possible.
Learned Initializations for Optimizing Coordinate-Based Neural Representations
Coordinate-based neural representations have shown significant promise as an alternative to discrete, array-based representations for complex low dimensional signals. However, optimizing a coordinate-based network from randomly initialized weights for each new signal is inefficient. We propose applying standard meta-learning algorithms to learn the initial weight parameters for these fully-connected networks based on the underlying class of signals being represented (e.g., images of faces or 3D models of chairs). Despite requiring only a minor change in implementation, using these learned initial weights enables faster convergence during optimization and can serve as a strong prior over the signal class being modeled, resulting in better generalization when only partial observations of a given signal are available. We explore these benefits across a variety of tasks, including representing 2D images, reconstructing CT scans, and recovering 3D shapes and scenes from 2D image observations.
Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond
Deep learning sometimes appears to work in unexpected ways. In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network consisting of a sequence of first-order approximations telescoping out into a single empirically operational tool for practical analysis. Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena in the literature -- including double descent, grokking, linear mode connectivity, and the challenges of applying deep learning on tabular data -- highlighting that this model allows us to construct and extract metrics that help predict and understand the a priori unexpected performance of neural networks. We also demonstrate that this model presents a pedagogical formalism allowing us to isolate components of the training process even in complex contemporary settings, providing a lens to reason about the effects of design choices such as architecture & optimization strategy, and reveals surprising parallels between neural network learning and gradient boosting.
Coordinate-Aware Modulation for Neural Fields
Neural fields, mapping low-dimensional input coordinates to corresponding signals, have shown promising results in representing various signals. Numerous methodologies have been proposed, and techniques employing MLPs and grid representations have achieved substantial success. MLPs allow compact and high expressibility, yet often suffer from spectral bias and slow convergence speed. On the other hand, methods using grids are free from spectral bias and achieve fast training speed, however, at the expense of high spatial complexity. In this work, we propose a novel way for exploiting both MLPs and grid representations in neural fields. Unlike the prevalent methods that combine them sequentially (extract features from the grids first and feed them to the MLP), we inject spectral bias-free grid representations into the intermediate features in the MLP. More specifically, we suggest a Coordinate-Aware Modulation (CAM), which modulates the intermediate features using scale and shift parameters extracted from the grid representations. This can maintain the strengths of MLPs while mitigating any remaining potential biases, facilitating the rapid learning of high-frequency components. In addition, we empirically found that the feature normalizations, which have not been successful in neural filed literature, proved to be effective when applied in conjunction with the proposed CAM. Experimental results demonstrate that CAM enhances the performance of neural representation and improves learning stability across a range of signals. Especially in the novel view synthesis task, we achieved state-of-the-art performance with the least number of parameters and fast training speed for dynamic scenes and the best performance under 1MB memory for static scenes. CAM also outperforms the best-performing video compression methods using neural fields by a large margin.
Key-value memory in the brain
Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored patterns, where similarity is a function of retrieval cues and the stored patterns. While parsimonious, these models do not allow distinct representations for storage and retrieval, despite their distinct computational demands. Key-value memory systems, in contrast, distinguish representations used for storage (values) and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value memory, its role in modern machine learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.
Center Loss Regularization for Continual Learning
The ability to learn different tasks sequentially is essential to the development of artificial intelligence. In general, neural networks lack this capability, the major obstacle being catastrophic forgetting. It occurs when the incrementally available information from non-stationary data distributions is continually acquired, disrupting what the model has already learned. Our approach remembers old tasks by projecting the representations of new tasks close to that of old tasks while keeping the decision boundaries unchanged. We employ the center loss as a regularization penalty that enforces new tasks' features to have the same class centers as old tasks and makes the features highly discriminative. This, in turn, leads to the least forgetting of already learned information. This method is easy to implement, requires minimal computational and memory overhead, and allows the neural network to maintain high performance across many sequentially encountered tasks. We also demonstrate that using the center loss in conjunction with the memory replay outperforms other replay-based strategies. Along with standard MNIST variants for continual learning, we apply our method to continual domain adaptation scenarios with the Digits and PACS datasets. We demonstrate that our approach is scalable, effective, and gives competitive performance compared to state-of-the-art continual learning methods.