new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 20

Generative Diffusion Prior for Unified Image Restoration and Enhancement

Existing image restoration methods mostly leverage the posterior distribution of natural images. However, they often assume known degradation and also require supervised training, which restricts their adaptation to complex real applications. In this work, we propose the Generative Diffusion Prior (GDP) to effectively model the posterior distributions in an unsupervised sampling manner. GDP utilizes a pre-train denoising diffusion generative model (DDPM) for solving linear inverse, non-linear, or blind problems. Specifically, GDP systematically explores a protocol of conditional guidance, which is verified more practical than the commonly used guidance way. Furthermore, GDP is strength at optimizing the parameters of degradation model during the denoising process, achieving blind image restoration. Besides, we devise hierarchical guidance and patch-based methods, enabling the GDP to generate images of arbitrary resolutions. Experimentally, we demonstrate GDP's versatility on several image datasets for linear problems, such as super-resolution, deblurring, inpainting, and colorization, as well as non-linear and blind issues, such as low-light enhancement and HDR image recovery. GDP outperforms the current leading unsupervised methods on the diverse benchmarks in reconstruction quality and perceptual quality. Moreover, GDP also generalizes well for natural images or synthesized images with arbitrary sizes from various tasks out of the distribution of the ImageNet training set.

Region-Adaptive Deformable Network for Image Quality Assessment

Image quality assessment (IQA) aims to assess the perceptual quality of images. The outputs of the IQA algorithms are expected to be consistent with human subjective perception. In image restoration and enhancement tasks, images generated by generative adversarial networks (GAN) can achieve better visual performance than traditional CNN-generated images, although they have spatial shift and texture noise. Unfortunately, the existing IQA methods have unsatisfactory performance on the GAN-based distortion partially because of their low tolerance to spatial misalignment. To this end, we propose the reference-oriented deformable convolution, which can improve the performance of an IQA network on GAN-based distortion by adaptively considering this misalignment. We further propose a patch-level attention module to enhance the interaction among different patch regions, which are processed independently in previous patch-based methods. The modified residual block is also proposed by applying modifications to the classic residual block to construct a patch-region-based baseline called WResNet. Equipping this baseline with the two proposed modules, we further propose Region-Adaptive Deformable Network (RADN). The experiment results on the NTIRE 2021 Perceptual Image Quality Assessment Challenge dataset show the superior performance of RADN, and the ensemble approach won fourth place in the final testing phase of the challenge. Code is available at https://github.com/IIGROUP/RADN.

Value-Driven Mixed-Precision Quantization for Patch-Based Inference on Microcontrollers

Deploying neural networks on microcontroller units (MCUs) presents substantial challenges due to their constrained computation and memory resources. Previous researches have explored patch-based inference as a strategy to conserve memory without sacrificing model accuracy. However, this technique suffers from severe redundant computation overhead, leading to a substantial increase in execution latency. A feasible solution to address this issue is mixed-precision quantization, but it faces the challenges of accuracy degradation and a time-consuming search time. In this paper, we propose QuantMCU, a novel patch-based inference method that utilizes value-driven mixed-precision quantization to reduce redundant computation. We first utilize value-driven patch classification (VDPC) to maintain the model accuracy. VDPC classifies patches into two classes based on whether they contain outlier values. For patches containing outlier values, we apply 8-bit quantization to the feature maps on the dataflow branches that follow. In addition, for patches without outlier values, we utilize value-driven quantization search (VDQS) on the feature maps of their following dataflow branches to reduce search time. Specifically, VDQS introduces a novel quantization search metric that takes into account both computation and accuracy, and it employs entropy as an accuracy representation to avoid additional training. VDQS also adopts an iterative approach to determine the bitwidth of each feature map to further accelerate the search process. Experimental results on real-world MCU devices show that QuantMCU can reduce computation by 2.2x on average while maintaining comparable model accuracy compared to the state-of-the-art patch-based inference methods.

Patch-Depth Fusion: Dichotomous Image Segmentation via Fine-Grained Patch Strategy and Depth Integrity-Prior

Dichotomous Image Segmentation (DIS) is a high-precision object segmentation task for high-resolution natural images. The current mainstream methods focus on the optimization of local details but overlook the fundamental challenge of modeling the integrity of objects. We have found that the depth integrity-prior implicit in the the pseudo-depth maps generated by Depth Anything Model v2 and the local detail features of image patches can jointly address the above dilemmas. Based on the above findings, we have designed a novel Patch-Depth Fusion Network (PDFNet) for high-precision dichotomous image segmentation. The core of PDFNet consists of three aspects. Firstly, the object perception is enhanced through multi-modal input fusion. By utilizing the patch fine-grained strategy, coupled with patch selection and enhancement, the sensitivity to details is improved. Secondly, by leveraging the depth integrity-prior distributed in the depth maps, we propose an integrity-prior loss to enhance the uniformity of the segmentation results in the depth maps. Finally, we utilize the features of the shared encoder and, through a simple depth refinement decoder, improve the ability of the shared encoder to capture subtle depth-related information in the images. Experiments on the DIS-5K dataset show that PDFNet significantly outperforms state-of-the-art non-diffusion methods. Due to the incorporation of the depth integrity-prior, PDFNet achieves or even surpassing the performance of the latest diffusion-based methods while using less than 11% of the parameters of diffusion-based methods. The source code at https://github.com/Tennine2077/PDFNet.

ResizeMix: Mixing Data with Preserved Object Information and True Labels

Data augmentation is a powerful technique to increase the diversity of data, which can effectively improve the generalization ability of neural networks in image recognition tasks. Recent data mixing based augmentation strategies have achieved great success. Especially, CutMix uses a simple but effective method to improve the classifiers by randomly cropping a patch from one image and pasting it on another image. To further promote the performance of CutMix, a series of works explore to use the saliency information of the image to guide the mixing. We systematically study the importance of the saliency information for mixing data, and find that the saliency information is not so necessary for promoting the augmentation performance. Furthermore, we find that the cutting based data mixing methods carry two problems of label misallocation and object information missing, which cannot be resolved simultaneously. We propose a more effective but very easily implemented method, namely ResizeMix. We mix the data by directly resizing the source image to a small patch and paste it on another image. The obtained patch preserves more substantial object information compared with conventional cut-based methods. ResizeMix shows evident advantages over CutMix and the saliency-guided methods on both image classification and object detection tasks without additional computation cost, which even outperforms most costly search-based automatic augmentation methods.

Vision-guided and Mask-enhanced Adaptive Denoising for Prompt-based Image Editing

Text-to-image diffusion models have demonstrated remarkable progress in synthesizing high-quality images from text prompts, which boosts researches on prompt-based image editing that edits a source image according to a target prompt. Despite their advances, existing methods still encounter three key issues: 1) limited capacity of the text prompt in guiding target image generation, 2) insufficient mining of word-to-patch and patch-to-patch relationships for grounding editing areas, and 3) unified editing strength for all regions during each denoising step. To address these issues, we present a Vision-guided and Mask-enhanced Adaptive Editing (ViMAEdit) method with three key novel designs. First, we propose to leverage image embeddings as explicit guidance to enhance the conventional textual prompt-based denoising process, where a CLIP-based target image embedding estimation strategy is introduced. Second, we devise a self-attention-guided iterative editing area grounding strategy, which iteratively exploits patch-to-patch relationships conveyed by self-attention maps to refine those word-to-patch relationships contained in cross-attention maps. Last, we present a spatially adaptive variance-guided sampling, which highlights sampling variances for critical image regions to promote the editing capability. Experimental results demonstrate the superior editing capacity of ViMAEdit over all existing methods.

APRMCTS: Improving LLM-based Automated Program Repair with Iterative Tree Search

Automated Program Repair (APR) attempts to fix software bugs without human intervention, which plays a crucial role in software development and maintenance. Recently, with the advances in Large Language Models (LLMs), a rapidly increasing number of APR techniques have been proposed with remarkable performance. However, existing LLM-based APR techniques typically adopt trial-and-error strategies, which suffer from two major drawbacks: (1) inherently limited patch effectiveness due to local exploration, and (2) low search efficiency due to redundant exploration. In this paper, we propose APRMCTS, which uses iterative tree search to improve LLM-based APR. APRMCTS incorporates Monte Carlo Tree Search (MCTS) into patch searching by performing a global evaluation of the explored patches and selecting the most promising one for subsequent refinement and generation. APRMCTS effectively resolves the problems of falling into local optima and thus helps improve the efficiency of patch searching. Our experiments on 835 bugs from Defects4J demonstrate that, when integrated with GPT-3.5, APRMCTS can fix a total of 201 bugs, which outperforms all state-of-the-art baselines. Besides, APRMCTS helps GPT-4o-mini, GPT-3.5, Yi-Coder-9B, and Qwen2.5-Coder-7B to fix 30, 27, 37, and 28 more bugs, respectively. More importantly, APRMCTS boasts a significant performance advantage while employing small patch size (16 and 32), notably fewer than the 500 and 10,000 patches adopted in previous studies. In terms of cost, compared to existing state-of-the-art LLM-based APR methods, APRMCTS has time and monetary costs of less than 20% and 50%, respectively. Our extensive study demonstrates that APRMCTS exhibits good effectiveness and efficiency, with particular advantages in addressing complex bugs.

Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Image quality assessment (IQA) algorithm aims to quantify the human perception of image quality. Unfortunately, there is a performance drop when assessing the distortion images generated by generative adversarial network (GAN) with seemingly realistic texture. In this work, we conjecture that this maladaptation lies in the backbone of IQA models, where patch-level prediction methods use independent image patches as input to calculate their scores separately, but lack spatial relationship modeling among image patches. Therefore, we propose an Attention-based Hybrid Image Quality Assessment Network (AHIQ) to deal with the challenge and get better performance on the GAN-based IQA task. Firstly, we adopt a two-branch architecture, including a vision transformer (ViT) branch and a convolutional neural network (CNN) branch for feature extraction. The hybrid architecture combines interaction information among image patches captured by ViT and local texture details from CNN. To make the features from shallow CNN more focused on the visually salient region, a deformable convolution is applied with the help of semantic information from the ViT branch. Finally, we use a patch-wise score prediction module to obtain the final score. The experiments show that our model outperforms the state-of-the-art methods on four standard IQA datasets and AHIQ ranked first on the Full Reference (FR) track of the NTIRE 2022 Perceptual Image Quality Assessment Challenge.

RConE: Rough Cone Embedding for Multi-Hop Logical Query Answering on Multi-Modal Knowledge Graphs

Multi-hop query answering over a Knowledge Graph (KG) involves traversing one or more hops from the start node to answer a query. Path-based and logic-based methods are state-of-the-art for multi-hop question answering. The former is used in link prediction tasks. The latter is for answering complex logical queries. The logical multi-hop querying technique embeds the KG and queries in the same embedding space. The existing work incorporates First Order Logic (FOL) operators, such as conjunction (wedge), disjunction (vee), and negation (neg), in queries. Though current models have most of the building blocks to execute the FOL queries, they cannot use the dense information of multi-modal entities in the case of Multi-Modal Knowledge Graphs (MMKGs). We propose RConE, an embedding method to capture the multi-modal information needed to answer a query. The model first shortlists candidate (multi-modal) entities containing the answer. It then finds the solution (sub-entities) within those entities. Several existing works tackle path-based question-answering in MMKGs. However, to our knowledge, we are the first to introduce logical constructs in querying MMKGs and to answer queries that involve sub-entities of multi-modal entities as the answer. Extensive evaluation of four publicly available MMKGs indicates that RConE outperforms the current state-of-the-art.

Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension

Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.

Are Vision Transformers Robust to Patch Perturbations?

Recent advances in Vision Transformer (ViT) have demonstrated its impressive performance in image classification, which makes it a promising alternative to Convolutional Neural Network (CNN). Unlike CNNs, ViT represents an input image as a sequence of image patches. The patch-based input image representation makes the following question interesting: How does ViT perform when individual input image patches are perturbed with natural corruptions or adversarial perturbations, compared to CNNs? In this work, we study the robustness of ViT to patch-wise perturbations. Surprisingly, we find that ViTs are more robust to naturally corrupted patches than CNNs, whereas they are more vulnerable to adversarial patches. Furthermore, we discover that the attention mechanism greatly affects the robustness of vision transformers. Specifically, the attention module can help improve the robustness of ViT by effectively ignoring natural corrupted patches. However, when ViTs are attacked by an adversary, the attention mechanism can be easily fooled to focus more on the adversarially perturbed patches and cause a mistake. Based on our analysis, we propose a simple temperature-scaling based method to improve the robustness of ViT against adversarial patches. Extensive qualitative and quantitative experiments are performed to support our findings, understanding, and improvement of ViT robustness to patch-wise perturbations across a set of transformer-based architectures.

SCONE: Surface Coverage Optimization in Unknown Environments by Volumetric Integration

Next Best View computation (NBV) is a long-standing problem in robotics, and consists in identifying the next most informative sensor position(s) for reconstructing a 3D object or scene efficiently and accurately. Like most current methods, we consider NBV prediction from a depth sensor like Lidar systems. Learning-based methods relying on a volumetric representation of the scene are suitable for path planning, but have lower accuracy than methods using a surface-based representation. However, the latter do not scale well with the size of the scene and constrain the camera to a small number of poses. To obtain the advantages of both representations, we show that we can maximize surface metrics by Monte Carlo integration over a volumetric representation. In particular, we propose an approach, SCONE, that relies on two neural modules: The first module predicts occupancy probability in the entire volume of the scene. Given any new camera pose, the second module samples points in the scene based on their occupancy probability and leverages a self-attention mechanism to predict the visibility of the samples. Finally, we integrate the visibility to evaluate the gain in surface coverage for the new camera pose. NBV is selected as the pose that maximizes the gain in total surface coverage. Our method scales to large scenes and handles free camera motion: It takes as input an arbitrarily large point cloud gathered by a depth sensor as well as camera poses to predict NBV. We demonstrate our approach on a novel dataset made of large and complex 3D scenes.

A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images

Automatic identification of brain lesions from magnetic resonance imaging (MRI) scans of stroke survivors would be a useful aid in patient diagnosis and treatment planning. We propose a multi-modal multi-path convolutional neural network system for automating stroke lesion segmentation. Our system has nine end-to-end UNets that take as input 2-dimensional (2D) slices and examines all three planes with three different normalizations. Outputs from these nine total paths are concatenated into a 3D volume that is then passed to a 3D convolutional neural network to output a final lesion mask. We trained and tested our method on datasets from three sources: Medical College of Wisconsin (MCW), Kessler Foundation (KF), and the publicly available Anatomical Tracings of Lesions After Stroke (ATLAS) dataset. Cross-study validation results (with independent training and validation datasets) were obtained to compare with previous methods based on naive Bayes, random forests, and three recently published convolutional neural networks. Model performance was quantified in terms of the Dice coefficient. Training on the KF and MCW images and testing on the ATLAS images yielded a mean Dice coefficient of 0.54. This was reliably better than the next best previous model, UNet, at 0.47. Reversing the train and test datasets yields a mean Dice of 0.47 on KF and MCW images, whereas the next best UNet reaches 0.45. With all three datasets combined, the current system compared to previous methods also attained a reliably higher cross-validation accuracy. It also achieved high Dice values for many smaller lesions that existing methods have difficulty identifying. Overall, our system is a clear improvement over previous methods for automating stroke lesion segmentation, bringing us an important step closer to the inter-rater accuracy level of human experts.

TransRef: Multi-Scale Reference Embedding Transformer for Reference-Guided Image Inpainting

Image inpainting for completing complicated semantic environments and diverse hole patterns of corrupted images is challenging even for state-of-the-art learning-based inpainting methods trained on large-scale data. A reference image capturing the same scene of a corrupted image offers informative guidance for completing the corrupted image as it shares similar texture and structure priors to that of the holes of the corrupted image. In this work, we propose a transformer-based encoder-decoder network, named TransRef, for reference-guided image inpainting. Specifically, the guidance is conducted progressively through a reference embedding procedure, in which the referencing features are subsequently aligned and fused with the features of the corrupted image. For precise utilization of the reference features for guidance, a reference-patch alignment (Ref-PA) module is proposed to align the patch features of the reference and corrupted images and harmonize their style differences, while a reference-patch transformer (Ref-PT) module is proposed to refine the embedded reference feature. Moreover, to facilitate the research of reference-guided image restoration tasks, we construct a publicly accessible benchmark dataset containing 50K pairs of input and reference images. Both quantitative and qualitative evaluations demonstrate the efficacy of the reference information and the proposed method over the state-of-the-art methods in completing complex holes. Code and dataset can be accessed at https://github.com/Cameltr/TransRef.

All Patches Matter, More Patches Better: Enhance AI-Generated Image Detection via Panoptic Patch Learning

The exponential growth of AI-generated images (AIGIs) underscores the urgent need for robust and generalizable detection methods. In this paper, we establish two key principles for AIGI detection through systematic analysis: (1) All Patches Matter: Unlike conventional image classification where discriminative features concentrate on object-centric regions, each patch in AIGIs inherently contains synthetic artifacts due to the uniform generation process, suggesting that every patch serves as an important artifact source for detection. (2) More Patches Better: Leveraging distributed artifacts across more patches improves detection robustness by capturing complementary forensic evidence and reducing over-reliance on specific patches, thereby enhancing robustness and generalization. However, our counterfactual analysis reveals an undesirable phenomenon: naively trained detectors often exhibit a Few-Patch Bias, discriminating between real and synthetic images based on minority patches. We identify Lazy Learner as the root cause: detectors preferentially learn conspicuous artifacts in limited patches while neglecting broader artifact distributions. To address this bias, we propose the Panoptic Patch Learning (PPL) framework, involving: (1) Random Patch Replacement that randomly substitutes synthetic patches with real counterparts to compel models to identify artifacts in underutilized regions, encouraging the broader use of more patches; (2) Patch-wise Contrastive Learning that enforces consistent discriminative capability across all patches, ensuring uniform utilization of all patches. Extensive experiments across two different settings on several benchmarks verify the effectiveness of our approach.

Learned representation-guided diffusion models for large-image generation

To synthesize high-fidelity samples, diffusion models typically require auxiliary data to guide the generation process. However, it is impractical to procure the painstaking patch-level annotation effort required in specialized domains like histopathology and satellite imagery; it is often performed by domain experts and involves hundreds of millions of patches. Modern-day self-supervised learning (SSL) representations encode rich semantic and visual information. In this paper, we posit that such representations are expressive enough to act as proxies to fine-grained human labels. We introduce a novel approach that trains diffusion models conditioned on embeddings from SSL. Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images. In addition, we construct larger images by assembling spatially consistent patches inferred from SSL embeddings, preserving long-range dependencies. Augmenting real data by generating variations of real images improves downstream classifier accuracy for patch-level and larger, image-scale classification tasks. Our models are effective even on datasets not encountered during training, demonstrating their robustness and generalizability. Generating images from learned embeddings is agnostic to the source of the embeddings. The SSL embeddings used to generate a large image can either be extracted from a reference image, or sampled from an auxiliary model conditioned on any related modality (e.g. class labels, text, genomic data). As proof of concept, we introduce the text-to-large image synthesis paradigm where we successfully synthesize large pathology and satellite images out of text descriptions.

Bootstrap Masked Visual Modeling via Hard Patches Mining

Masked visual modeling has attracted much attention due to its promising potential in learning generalizable representations. Typical approaches urge models to predict specific contents of masked tokens, which can be intuitively considered as teaching a student (the model) to solve given problems (predicting masked contents). Under such settings, the performance is highly correlated with mask strategies (the difficulty of provided problems). We argue that it is equally important for the model to stand in the shoes of a teacher to produce challenging problems by itself. Intuitively, patches with high values of reconstruction loss can be regarded as hard samples, and masking those hard patches naturally becomes a demanding reconstruction task. To empower the model as a teacher, we propose Hard Patches Mining (HPM), predicting patch-wise losses and subsequently determining where to mask. Technically, we introduce an auxiliary loss predictor, which is trained with a relative objective to prevent overfitting to exact loss values. Also, to gradually guide the training procedure, we propose an easy-to-hard mask strategy. Empirically, HPM brings significant improvements under both image and video benchmarks. Interestingly, solely incorporating the extra loss prediction objective leads to better representations, verifying the efficacy of determining where is hard to reconstruct. The code is available at https://github.com/Haochen-Wang409/HPM.

PatchDPO: Patch-level DPO for Finetuning-free Personalized Image Generation

Finetuning-free personalized image generation can synthesize customized images without test-time finetuning, attracting wide research interest owing to its high efficiency. Current finetuning-free methods simply adopt a single training stage with a simple image reconstruction task, and they typically generate low-quality images inconsistent with the reference images during test-time. To mitigate this problem, inspired by the recent DPO (i.e., direct preference optimization) technique, this work proposes an additional training stage to improve the pre-trained personalized generation models. However, traditional DPO only determines the overall superiority or inferiority of two samples, which is not suitable for personalized image generation because the generated images are commonly inconsistent with the reference images only in some local image patches. To tackle this problem, this work proposes PatchDPO that estimates the quality of image patches within each generated image and accordingly trains the model. To this end, PatchDPO first leverages the pre-trained vision model with a proposed self-supervised training method to estimate the patch quality. Next, PatchDPO adopts a weighted training approach to train the model with the estimated patch quality, which rewards the image patches with high quality while penalizing the image patches with low quality. Experiment results demonstrate that PatchDPO significantly improves the performance of multiple pre-trained personalized generation models, and achieves state-of-the-art performance on both single-object and multi-object personalized image generation. Our code is available at https://github.com/hqhQAQ/PatchDPO.

MultiMend: Multilingual Program Repair with Context Augmentation and Multi-Hunk Patch Generation

Context: Bugs in code are inevitable and can lead to severe consequences, ranging from security vulnerabilities to operational failures. Debugging software remains challenging despite advances in testing and verification, often requiring extensive manual effort. Learning-based automated program repair (APR) has shown promise in reducing the time, effort, and cost of manually fixing bugs. However, existing techniques face several challenges, including language-dependent strategies, limited bug context utilization, and difficulties in handling bugs that span multiple locations in the code. Objective: This paper introduces MultiMend, a learning-based APR approach designed to improve repair performance on multiple programming languages with language-independent context augmentation and multi-hunk patch generation. Method: MultiMend fine-tunes a pre-trained encoder-decoder transformer model (CodeT5) to generate bug-fixing patches. It embeds source code lines and applies retrieval-augmented generation to augment the buggy context with relevant lines during patch generation. The approach systematically constructs patches for multi-hunk bugs to reduce the needed patch validations. We evaluate MultiMend on four benchmarks with four programming languages and compare it with state-of-the-art methods. Results: Experimental results show that MultiMend achieves competitive effectiveness and efficiency against compared tools. Across all benchmarks, MultiMend fixes 2,077 bugs, of which 1,455 are identical to the developer's patch, and 106 are for multi-hunk bugs. Both context augmentation and multi-hunk patch generation positively contribute to the results. Conclusion: MultiMend shows promising performance across benchmarks. The findings highlight its applicability to real-world software maintenance and its potential to reduce manual debugging efforts.

Hardwiring ViT Patch Selectivity into CNNs using Patch Mixing

Vision transformers (ViTs) have significantly changed the computer vision landscape and have periodically exhibited superior performance in vision tasks compared to convolutional neural networks (CNNs). Although the jury is still out on which model type is superior, each has unique inductive biases that shape their learning and generalization performance. For example, ViTs have interesting properties with respect to early layer non-local feature dependence, as well as self-attention mechanisms which enhance learning flexibility, enabling them to ignore out-of-context image information more effectively. We hypothesize that this power to ignore out-of-context information (which we name patch selectivity), while integrating in-context information in a non-local manner in early layers, allows ViTs to more easily handle occlusion. In this study, our aim is to see whether we can have CNNs simulate this ability of patch selectivity by effectively hardwiring this inductive bias using Patch Mixing data augmentation, which consists of inserting patches from another image onto a training image and interpolating labels between the two image classes. Specifically, we use Patch Mixing to train state-of-the-art ViTs and CNNs, assessing its impact on their ability to ignore out-of-context patches and handle natural occlusions. We find that ViTs do not improve nor degrade when trained using Patch Mixing, but CNNs acquire new capabilities to ignore out-of-context information and improve on occlusion benchmarks, leaving us to conclude that this training method is a way of simulating in CNNs the abilities that ViTs already possess. We will release our Patch Mixing implementation and proposed datasets for public use. Project page: https://arielnlee.github.io/PatchMixing/

REAP: A Large-Scale Realistic Adversarial Patch Benchmark

Machine learning models are known to be susceptible to adversarial perturbation. One famous attack is the adversarial patch, a sticker with a particularly crafted pattern that makes the model incorrectly predict the object it is placed on. This attack presents a critical threat to cyber-physical systems that rely on cameras such as autonomous cars. Despite the significance of the problem, conducting research in this setting has been difficult; evaluating attacks and defenses in the real world is exceptionally costly while synthetic data are unrealistic. In this work, we propose the REAP (REalistic Adversarial Patch) benchmark, a digital benchmark that allows the user to evaluate patch attacks on real images, and under real-world conditions. Built on top of the Mapillary Vistas dataset, our benchmark contains over 14,000 traffic signs. Each sign is augmented with a pair of geometric and lighting transformations, which can be used to apply a digitally generated patch realistically onto the sign. Using our benchmark, we perform the first large-scale assessments of adversarial patch attacks under realistic conditions. Our experiments suggest that adversarial patch attacks may present a smaller threat than previously believed and that the success rate of an attack on simpler digital simulations is not predictive of its actual effectiveness in practice. We release our benchmark publicly at https://github.com/wagner-group/reap-benchmark.

Attention, Please! Revisiting Attentive Probing for Masked Image Modeling

As fine-tuning (FT) becomes increasingly impractical at scale, probing is emerging as the preferred evaluation protocol for self-supervised learning (SSL). Yet, the standard linear probing (LP) fails to adequately reflect the potential of models trained with Masked Image Modeling (MIM), due to the distributed nature of patch tokens. This motivates the need for attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite its growing adoption, attentive probing remains under-explored, with existing methods suffering from excessive parameterization and poor computational efficiency. In this work, we revisit attentive probing through the lens of the accuracy-efficiency trade-off. We conduct a systematic study of existing methods, analyzing their mechanisms and benchmarking their performance. We introduce efficient probing (EP), a multi-query cross-attention mechanism that eliminates redundant projections, reduces the number of trainable parameters, and achieves up to a 10times speed-up over conventional multi-head attention. Despite its simplicity, EP outperforms LP and prior attentive probing approaches across seven benchmarks, generalizes well beyond MIM to diverse pre-training paradigms, produces interpretable attention maps, and achieves strong gains in low-shot and layer-wise settings. Code available at https://github.com/billpsomas/efficient-probing.

PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation

Single image depth estimation is a foundational task in computer vision and generative modeling. However, prevailing depth estimation models grapple with accommodating the increasing resolutions commonplace in today's consumer cameras and devices. Existing high-resolution strategies show promise, but they often face limitations, ranging from error propagation to the loss of high-frequency details. We present PatchFusion, a novel tile-based framework with three key components to improve the current state of the art: (1) A patch-wise fusion network that fuses a globally-consistent coarse prediction with finer, inconsistent tiled predictions via high-level feature guidance, (2) A Global-to-Local (G2L) module that adds vital context to the fusion network, discarding the need for patch selection heuristics, and (3) A Consistency-Aware Training (CAT) and Inference (CAI) approach, emphasizing patch overlap consistency and thereby eradicating the necessity for post-processing. Experiments on UnrealStereo4K, MVS-Synth, and Middleburry 2014 demonstrate that our framework can generate high-resolution depth maps with intricate details. PatchFusion is independent of the base model for depth estimation. Notably, our framework built on top of SOTA ZoeDepth brings improvements for a total of 17.3% and 29.4% in terms of the root mean squared error (RMSE) on UnrealStereo4K and MVS-Synth, respectively.

EpiGRAF: Rethinking training of 3D GANs

A very recent trend in generative modeling is building 3D-aware generators from 2D image collections. To induce the 3D bias, such models typically rely on volumetric rendering, which is expensive to employ at high resolutions. During the past months, there appeared more than 10 works that address this scaling issue by training a separate 2D decoder to upsample a low-resolution image (or a feature tensor) produced from a pure 3D generator. But this solution comes at a cost: not only does it break multi-view consistency (i.e. shape and texture change when the camera moves), but it also learns the geometry in a low fidelity. In this work, we show that it is possible to obtain a high-resolution 3D generator with SotA image quality by following a completely different route of simply training the model patch-wise. We revisit and improve this optimization scheme in two ways. First, we design a location- and scale-aware discriminator to work on patches of different proportions and spatial positions. Second, we modify the patch sampling strategy based on an annealed beta distribution to stabilize training and accelerate the convergence. The resulted model, named EpiGRAF, is an efficient, high-resolution, pure 3D generator, and we test it on four datasets (two introduced in this work) at 256^2 and 512^2 resolutions. It obtains state-of-the-art image quality, high-fidelity geometry and trains {approx} 2.5 times faster than the upsampler-based counterparts. Project website: https://universome.github.io/epigraf.

Efficient Decision-based Black-box Patch Attacks on Video Recognition

Although Deep Neural Networks (DNNs) have demonstrated excellent performance, they are vulnerable to adversarial patches that introduce perceptible and localized perturbations to the input. Generating adversarial patches on images has received much attention, while adversarial patches on videos have not been well investigated. Further, decision-based attacks, where attackers only access the predicted hard labels by querying threat models, have not been well explored on video models either, even if they are practical in real-world video recognition scenes. The absence of such studies leads to a huge gap in the robustness assessment for video models. To bridge this gap, this work first explores decision-based patch attacks on video models. We analyze that the huge parameter space brought by videos and the minimal information returned by decision-based models both greatly increase the attack difficulty and query burden. To achieve a query-efficient attack, we propose a spatial-temporal differential evolution (STDE) framework. First, STDE introduces target videos as patch textures and only adds patches on keyframes that are adaptively selected by temporal difference. Second, STDE takes minimizing the patch area as the optimization objective and adopts spatialtemporal mutation and crossover to search for the global optimum without falling into the local optimum. Experiments show STDE has demonstrated state-of-the-art performance in terms of threat, efficiency and imperceptibility. Hence, STDE has the potential to be a powerful tool for evaluating the robustness of video recognition models.

PaRot: Patch-Wise Rotation-Invariant Network via Feature Disentanglement and Pose Restoration

Recent interest in point cloud analysis has led rapid progress in designing deep learning methods for 3D models. However, state-of-the-art models are not robust to rotations, which remains an unknown prior to real applications and harms the model performance. In this work, we introduce a novel Patch-wise Rotation-invariant network (PaRot), which achieves rotation invariance via feature disentanglement and produces consistent predictions for samples with arbitrary rotations. Specifically, we design a siamese training module which disentangles rotation invariance and equivariance from patches defined over different scales, e.g., the local geometry and global shape, via a pair of rotations. However, our disentangled invariant feature loses the intrinsic pose information of each patch. To solve this problem, we propose a rotation-invariant geometric relation to restore the relative pose with equivariant information for patches defined over different scales. Utilising the pose information, we propose a hierarchical module which implements intra-scale and inter-scale feature aggregation for 3D shape learning. Moreover, we introduce a pose-aware feature propagation process with the rotation-invariant relative pose information embedded. Experiments show that our disentanglement module extracts high-quality rotation-robust features and the proposed lightweight model achieves competitive results in rotated 3D object classification and part segmentation tasks. Our project page is released at: https://patchrot.github.io/.

Hybrid guiding: A multi-resolution refinement approach for semantic segmentation of gigapixel histopathological images

Histopathological cancer diagnostics has become more complex, and the increasing number of biopsies is a challenge for most pathology laboratories. Thus, development of automatic methods for evaluation of histopathological cancer sections would be of value. In this study, we used 624 whole slide images (WSIs) of breast cancer from a Norwegian cohort. We propose a cascaded convolutional neural network design, called H2G-Net, for semantic segmentation of gigapixel histopathological images. The design involves a detection stage using a patch-wise method, and a refinement stage using a convolutional autoencoder. To validate the design, we conducted an ablation study to assess the impact of selected components in the pipeline on tumour segmentation. Guiding segmentation, using hierarchical sampling and deep heatmap refinement, proved to be beneficial when segmenting the histopathological images. We found a significant improvement when using a refinement network for postprocessing the generated tumour segmentation heatmaps. The overall best design achieved a Dice score of 0.933 on an independent test set of 90 WSIs. The design outperformed single-resolution approaches, such as cluster-guided, patch-wise high-resolution classification using MobileNetV2 (0.872) and a low-resolution U-Net (0.874). In addition, segmentation on a representative x400 WSI took ~58 seconds, using only the CPU. The findings demonstrate the potential of utilizing a refinement network to improve patch-wise predictions. The solution is efficient and does not require overlapping patch inference or ensembling. Furthermore, we showed that deep neural networks can be trained using a random sampling scheme that balances on multiple different labels simultaneously, without the need of storing patches on disk. Future work should involve more efficient patch generation and sampling, as well as improved clustering.

Puzzle Similarity: A Perceptually-guided No-Reference Metric for Artifact Detection in 3D Scene Reconstructions

Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of no-reference image metrics in predicting detailed artifact maps. The absence of such quality metrics hinders accurate predictions of the quality of generated views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. In this work, we propose a new no-reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the input views to establish a scene-specific distribution that is later used to identify poorly reconstructed regions in the novel views. We test and evaluate our method in the context of 3D reconstruction; to this end, we collected a novel dataset of human quality assessment in unseen reconstructed views. Through this dataset, we demonstrate that our method can not only successfully localize artifacts in novel views, correlating with human assessment, but do so without direct references. Surprisingly, our metric outperforms both no-reference metrics and popular full-reference image metrics. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs.

Interactive Medical Image Analysis with Concept-based Similarity Reasoning

The ability to interpret and intervene model decisions is important for the adoption of computer-aided diagnosis methods in clinical workflows. Recent concept-based methods link the model predictions with interpretable concepts and modify their activation scores to interact with the model. However, these concepts are at the image level, which hinders the model from pinpointing the exact patches the concepts are activated. Alternatively, prototype-based methods learn representations from training image patches and compare these with test image patches, using the similarity scores for final class prediction. However, interpreting the underlying concepts of these patches can be challenging and often necessitates post-hoc guesswork. To address this issue, this paper introduces the novel Concept-based Similarity Reasoning network (CSR), which offers (i) patch-level prototype with intrinsic concept interpretation, and (ii) spatial interactivity. First, the proposed CSR provides localized explanation by grounding prototypes of each concept on image regions. Second, our model introduces novel spatial-level interaction, allowing doctors to engage directly with specific image areas, making it an intuitive and transparent tool for medical imaging. CSR improves upon prior state-of-the-art interpretable methods by up to 4.5\% across three biomedical datasets. Our code is released at https://github.com/tadeephuy/InteractCSR.

Adaptive Supervised PatchNCE Loss for Learning H&E-to-IHC Stain Translation with Inconsistent Groundtruth Image Pairs

Immunohistochemical (IHC) staining highlights the molecular information critical to diagnostics in tissue samples. However, compared to H&E staining, IHC staining can be much more expensive in terms of both labor and the laboratory equipment required. This motivates recent research that demonstrates that the correlations between the morphological information present in the H&E-stained slides and the molecular information in the IHC-stained slides can be used for H&E-to-IHC stain translation. However, due to a lack of pixel-perfect H&E-IHC groundtruth pairs, most existing methods have resorted to relying on expert annotations. To remedy this situation, we present a new loss function, Adaptive Supervised PatchNCE (ASP), to directly deal with the input to target inconsistencies in a proposed H&E-to-IHC image-to-image translation framework. The ASP loss is built upon a patch-based contrastive learning criterion, named Supervised PatchNCE (SP), and augments it further with weight scheduling to mitigate the negative impact of noisy supervision. Lastly, we introduce the Multi-IHC Stain Translation (MIST) dataset, which contains aligned H&E-IHC patches for 4 different IHC stains critical to breast cancer diagnosis. In our experiment, we demonstrate that our proposed method outperforms existing image-to-image translation methods for stain translation to multiple IHC stains. All of our code and datasets are available at https://github.com/lifangda01/AdaptiveSupervisedPatchNCE.

There and Back Again: Revisiting Backpropagation Saliency Methods

Saliency methods seek to explain the predictions of a model by producing an importance map across each input sample. A popular class of such methods is based on backpropagating a signal and analyzing the resulting gradient. Despite much research on such methods, relatively little work has been done to clarify the differences between such methods as well as the desiderata of these techniques. Thus, there is a need for rigorously understanding the relationships between different methods as well as their failure modes. In this work, we conduct a thorough analysis of backpropagation-based saliency methods and propose a single framework under which several such methods can be unified. As a result of our study, we make three additional contributions. First, we use our framework to propose NormGrad, a novel saliency method based on the spatial contribution of gradients of convolutional weights. Second, we combine saliency maps at different layers to test the ability of saliency methods to extract complementary information at different network levels (e.g.~trading off spatial resolution and distinctiveness) and we explain why some methods fail at specific layers (e.g., Grad-CAM anywhere besides the last convolutional layer). Third, we introduce a class-sensitivity metric and a meta-learning inspired paradigm applicable to any saliency method for improving sensitivity to the output class being explained.

Selfie: Self-supervised Pretraining for Image Embedding

We introduce a pretraining technique called Selfie, which stands for SELFie supervised Image Embedding. Selfie generalizes the concept of masked language modeling of BERT (Devlin et al., 2019) to continuous data, such as images, by making use of the Contrastive Predictive Coding loss (Oord et al., 2018). Given masked-out patches in an input image, our method learns to select the correct patch, among other "distractor" patches sampled from the same image, to fill in the masked location. This classification objective sidesteps the need for predicting exact pixel values of the target patches. The pretraining architecture of Selfie includes a network of convolutional blocks to process patches followed by an attention pooling network to summarize the content of unmasked patches before predicting masked ones. During finetuning, we reuse the convolutional weights found by pretraining. We evaluate Selfie on three benchmarks (CIFAR-10, ImageNet 32 x 32, and ImageNet 224 x 224) with varying amounts of labeled data, from 5% to 100% of the training sets. Our pretraining method provides consistent improvements to ResNet-50 across all settings compared to the standard supervised training of the same network. Notably, on ImageNet 224 x 224 with 60 examples per class (5%), our method improves the mean accuracy of ResNet-50 from 35.6% to 46.7%, an improvement of 11.1 points in absolute accuracy. Our pretraining method also improves ResNet-50 training stability, especially on low data regime, by significantly lowering the standard deviation of test accuracies across different runs.

Scaling Laws in Patchification: An Image Is Worth 50,176 Tokens And More

Since the introduction of Vision Transformer (ViT), patchification has long been regarded as a de facto image tokenization approach for plain visual architectures. By compressing the spatial size of images, this approach can effectively shorten the token sequence and reduce the computational cost of ViT-like plain architectures. In this work, we aim to thoroughly examine the information loss caused by this patchification-based compressive encoding paradigm and how it affects visual understanding. We conduct extensive patch size scaling experiments and excitedly observe an intriguing scaling law in patchification: the models can consistently benefit from decreased patch sizes and attain improved predictive performance, until it reaches the minimum patch size of 1x1, i.e., pixel tokenization. This conclusion is broadly applicable across different vision tasks, various input scales, and diverse architectures such as ViT and the recent Mamba models. Moreover, as a by-product, we discover that with smaller patches, task-specific decoder heads become less critical for dense prediction. In the experiments, we successfully scale up the visual sequence to an exceptional length of 50,176 tokens, achieving a competitive test accuracy of 84.6% with a base-sized model on the ImageNet-1k benchmark. We hope this study can provide insights and theoretical foundations for future works of building non-compressive vision models. Code is available at https://github.com/wangf3014/Patch_Scaling.

PA&DA: Jointly Sampling PAth and DAta for Consistent NAS

Based on the weight-sharing mechanism, one-shot NAS methods train a supernet and then inherit the pre-trained weights to evaluate sub-models, largely reducing the search cost. However, several works have pointed out that the shared weights suffer from different gradient descent directions during training. And we further find that large gradient variance occurs during supernet training, which degrades the supernet ranking consistency. To mitigate this issue, we propose to explicitly minimize the gradient variance of the supernet training by jointly optimizing the sampling distributions of PAth and DAta (PA&DA). We theoretically derive the relationship between the gradient variance and the sampling distributions, and reveal that the optimal sampling probability is proportional to the normalized gradient norm of path and training data. Hence, we use the normalized gradient norm as the importance indicator for path and training data, and adopt an importance sampling strategy for the supernet training. Our method only requires negligible computation cost for optimizing the sampling distributions of path and data, but achieves lower gradient variance during supernet training and better generalization performance for the supernet, resulting in a more consistent NAS. We conduct comprehensive comparisons with other improved approaches in various search spaces. Results show that our method surpasses others with more reliable ranking performance and higher accuracy of searched architectures, showing the effectiveness of our method. Code is available at https://github.com/ShunLu91/PA-DA.

HiWave: Training-Free High-Resolution Image Generation via Wavelet-Based Diffusion Sampling

Diffusion models have emerged as the leading approach for image synthesis, demonstrating exceptional photorealism and diversity. However, training diffusion models at high resolutions remains computationally prohibitive, and existing zero-shot generation techniques for synthesizing images beyond training resolutions often produce artifacts, including object duplication and spatial incoherence. In this paper, we introduce HiWave, a training-free, zero-shot approach that substantially enhances visual fidelity and structural coherence in ultra-high-resolution image synthesis using pretrained diffusion models. Our method employs a two-stage pipeline: generating a base image from the pretrained model followed by a patch-wise DDIM inversion step and a novel wavelet-based detail enhancer module. Specifically, we first utilize inversion methods to derive initial noise vectors that preserve global coherence from the base image. Subsequently, during sampling, our wavelet-domain detail enhancer retains low-frequency components from the base image to ensure structural consistency, while selectively guiding high-frequency components to enrich fine details and textures. Extensive evaluations using Stable Diffusion XL demonstrate that HiWave effectively mitigates common visual artifacts seen in prior methods, achieving superior perceptual quality. A user study confirmed HiWave's performance, where it was preferred over the state-of-the-art alternative in more than 80% of comparisons, highlighting its effectiveness for high-quality, ultra-high-resolution image synthesis without requiring retraining or architectural modifications.

From heavy rain removal to detail restoration: A faster and better network

The profound accumulation of precipitation during intense rainfall events can markedly degrade the quality of images, leading to the erosion of textural details. Despite the improvements observed in existing learning-based methods specialized for heavy rain removal, it is discerned that a significant proportion of these methods tend to overlook the precise reconstruction of the intricate details. In this work, we introduce a simple dual-stage progressive enhancement network, denoted as DPENet, aiming to achieve effective deraining while preserving the structural accuracy of rain-free images. This approach comprises two key modules, a rain streaks removal network (R^2Net) focusing on accurate rain removal, and a details reconstruction network (DRNet) designed to recover the textural details of rain-free images. Firstly, we introduce a dilated dense residual block (DDRB) within R^2Net, enabling the aggregation of high-level and low-level features. Secondly, an enhanced residual pixel-wise attention block (ERPAB) is integrated into DRNet to facilitate the incorporation of contextual information. To further enhance the fidelity of our approach, we employ a comprehensive loss function that accentuates both the marginal and regional accuracy of rain-free images. Extensive experiments conducted on publicly available benchmarks demonstrates the noteworthy efficiency and effectiveness of our proposed DPENet. The source code and pre-trained models are currently available at https://github.com/chdwyb/DPENet.

VisPath: Automated Visualization Code Synthesis via Multi-Path Reasoning and Feedback-Driven Optimization

Unprecedented breakthroughs in Large Language Models (LLMs) has amplified its penetration into application of automated visualization code generation. Few-shot prompting and query expansion techniques have notably enhanced data visualization performance, however, still fail to overcome ambiguity and complexity of natural language queries - imposing an inherent burden for manual human intervention. To mitigate such limitations, we propose a holistic framework VisPath : A Multi-Path Reasoning and Feedback-Driven Optimization Framework for Visualization Code Generation, which systematically enhances code quality through structured reasoning and refinement. VisPath is a multi-stage framework, specially designed to handle underspecified queries. To generate a robust final visualization code, it first utilizes initial query to generate diverse reformulated queries via Chain-of-Thought (CoT) prompting, each representing a distinct reasoning path. Refined queries are used to produce candidate visualization scripts, consequently executed to generate multiple images. Comprehensively assessing correctness and quality of outputs, VisPath generates feedback for each image, which are then fed to aggregation module to generate optimal result. Extensive experiments on benchmarks including MatPlotBench and the Qwen-Agent Code Interpreter Benchmark show that VisPath significantly outperforms state-of-the-art (SOTA) methods, increased up to average 17%, offering a more reliable solution for AI-driven visualization code generation.

Recent Advancements in Deep Learning Applications and Methods for Autonomous Navigation: A Comprehensive Review

This review article is an attempt to survey all recent AI based techniques used to deal with major functions in This review paper presents a comprehensive overview of end-to-end deep learning frameworks used in the context of autonomous navigation, including obstacle detection, scene perception, path planning, and control. The paper aims to bridge the gap between autonomous navigation and deep learning by analyzing recent research studies and evaluating the implementation and testing of deep learning methods. It emphasizes the importance of navigation for mobile robots, autonomous vehicles, and unmanned aerial vehicles, while also acknowledging the challenges due to environmental complexity, uncertainty, obstacles, dynamic environments, and the need to plan paths for multiple agents. The review highlights the rapid growth of deep learning in engineering data science and its development of innovative navigation methods. It discusses recent interdisciplinary work related to this field and provides a brief perspective on the limitations, challenges, and potential areas of growth for deep learning methods in autonomous navigation. Finally, the paper summarizes the findings and practices at different stages, correlating existing and future methods, their applicability, scalability, and limitations. The review provides a valuable resource for researchers and practitioners working in the field of autonomous navigation and deep learning.

3D-Properties: Identifying Challenges in DPO and Charting a Path Forward

Aligning large language models (LLMs) with human preference has recently gained tremendous attention, with the canonical yet costly RLHF-PPO and the simple and straightforward Direct Preference Optimization (DPO) as two examples. Despite the efficiency, DPO has rarely be used in the state-of-the-art production-level LLMs, implying its potential pathologies. In this work, we revisit DPO with a comprehensive examination of its empirical efficacy and a systematic comparison with RLHF-PPO. We identify the 3D-properties of DPO's learning outcomes: the Drastic drop in the likelihood of rejected responses, the Degradation into LLM unlearning, and the Dispersion effect on unseen responses through experiments with both a carefully designed toy model and practical LLMs on tasks including mathematical problem-solving and instruction following. These findings inherently connect to some observations made by related works and we additionally contribute a plausible theoretical explanation for them. Accordingly, we propose easy regularization methods to mitigate the issues caused by 3D-properties, improving the training stability and final performance of DPO. Our contributions also include an investigation into how the distribution of the paired preference data impacts the effectiveness of DPO. We hope this work could offer research directions to narrow the gap between reward-free preference learning methods and reward-based ones.

RPBG: Towards Robust Neural Point-based Graphics in the Wild

Point-based representations have recently gained popularity in novel view synthesis, for their unique advantages, e.g., intuitive geometric representation, simple manipulation, and faster convergence. However, based on our observation, these point-based neural re-rendering methods are only expected to perform well under ideal conditions and suffer from noisy, patchy points and unbounded scenes, which are challenging to handle but defacto common in real applications. To this end, we revisit one such influential method, known as Neural Point-based Graphics (NPBG), as our baseline, and propose Robust Point-based Graphics (RPBG). We in-depth analyze the factors that prevent NPBG from achieving satisfactory renderings on generic datasets, and accordingly reform the pipeline to make it more robust to varying datasets in-the-wild. Inspired by the practices in image restoration, we greatly enhance the neural renderer to enable the attention-based correction of point visibility and the inpainting of incomplete rasterization, with only acceptable overheads. We also seek for a simple and lightweight alternative for environment modeling and an iterative method to alleviate the problem of poor geometry. By thorough evaluation on a wide range of datasets with different shooting conditions and camera trajectories, RPBG stably outperforms the baseline by a large margin, and exhibits its great robustness over state-of-the-art NeRF-based variants. Code available at https://github.com/QT-Zhu/RPBG.

PairingNet: A Learning-based Pair-searching and -matching Network for Image Fragments

In this paper, we propose a learning-based image fragment pair-searching and -matching approach to solve the challenging restoration problem. Existing works use rule-based methods to match similar contour shapes or textures, which are always difficult to tune hyperparameters for extensive data and computationally time-consuming. Therefore, we propose a neural network that can effectively utilize neighbor textures with contour shape information to fundamentally improve performance. First, we employ a graph-based network to extract the local contour and texture features of fragments. Then, for the pair-searching task, we adopt a linear transformer-based module to integrate these local features and use contrastive loss to encode the global features of each fragment. For the pair-matching task, we design a weighted fusion module to dynamically fuse extracted local contour and texture features, and formulate a similarity matrix for each pair of fragments to calculate the matching score and infer the adjacent segment of contours. To faithfully evaluate our proposed network, we created a new image fragment dataset through an algorithm we designed that tears complete images into irregular fragments. The experimental results show that our proposed network achieves excellent pair-searching accuracy, reduces matching errors, and significantly reduces computational time. Details, sourcecode, and data are available in our supplementary material.

reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis

This paper presents refined BigEarthNet (reBEN) that is a large-scale, multi-modal remote sensing dataset constructed to support deep learning (DL) studies for remote sensing image analysis. The reBEN dataset consists of 549,488 pairs of Sentinel-1 and Sentinel-2 image patches. To construct reBEN, we initially consider the Sentinel-1 and Sentinel-2 tiles used to construct the BigEarthNet dataset and then divide them into patches of size 1200 m x 1200 m. We apply atmospheric correction to the Sentinel-2 patches using the latest version of the sen2cor tool, resulting in higher-quality patches compared to those present in BigEarthNet. Each patch is then associated with a pixel-level reference map and scene-level multi-labels. This makes reBEN suitable for pixel- and scene-based learning tasks. The labels are derived from the most recent CORINE Land Cover (CLC) map of 2018 by utilizing the 19-class nomenclature as in BigEarthNet. The use of the most recent CLC map results in overcoming the label noise present in BigEarthNet. Furthermore, we introduce a new geographical-based split assignment algorithm that significantly reduces the spatial correlation among the train, validation, and test sets with respect to those present in BigEarthNet. This increases the reliability of the evaluation of DL models. To minimize the DL model training time, we introduce software tools that convert the reBEN dataset into a DL-optimized data format. In our experiments, we show the potential of reBEN for multi-modal multi-label image classification problems by considering several state-of-the-art DL models. The pre-trained model weights, associated code, and complete dataset are available at https://bigearth.net.

Towards Generic Image Manipulation Detection with Weakly-Supervised Self-Consistency Learning

As advanced image manipulation techniques emerge, detecting the manipulation becomes increasingly important. Despite the success of recent learning-based approaches for image manipulation detection, they typically require expensive pixel-level annotations to train, while exhibiting degraded performance when testing on images that are differently manipulated compared with training images. To address these limitations, we propose weakly-supervised image manipulation detection, such that only binary image-level labels (authentic or tampered with) are required for training purpose. Such a weakly-supervised setting can leverage more training images and has the potential to adapt quickly to new manipulation techniques. To improve the generalization ability, we propose weakly-supervised self-consistency learning (WSCL) to leverage the weakly annotated images. Specifically, two consistency properties are learned: multi-source consistency (MSC) and inter-patch consistency (IPC). MSC exploits different content-agnostic information and enables cross-source learning via an online pseudo label generation and refinement process. IPC performs global pair-wise patch-patch relationship reasoning to discover a complete region of manipulation. Extensive experiments validate that our WSCL, even though is weakly supervised, exhibits competitive performance compared with fully-supervised counterpart under both in-distribution and out-of-distribution evaluations, as well as reasonable manipulation localization ability.

CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features

Regional dropout strategies have been proposed to enhance the performance of convolutional neural network classifiers. They have proved to be effective for guiding the model to attend on less discriminative parts of objects (e.g. leg as opposed to head of a person), thereby letting the network generalize better and have better object localization capabilities. On the other hand, current methods for regional dropout remove informative pixels on training images by overlaying a patch of either black pixels or random noise. Such removal is not desirable because it leads to information loss and inefficiency during training. We therefore propose the CutMix augmentation strategy: patches are cut and pasted among training images where the ground truth labels are also mixed proportionally to the area of the patches. By making efficient use of training pixels and retaining the regularization effect of regional dropout, CutMix consistently outperforms the state-of-the-art augmentation strategies on CIFAR and ImageNet classification tasks, as well as on the ImageNet weakly-supervised localization task. Moreover, unlike previous augmentation methods, our CutMix-trained ImageNet classifier, when used as a pretrained model, results in consistent performance gains in Pascal detection and MS-COCO image captioning benchmarks. We also show that CutMix improves the model robustness against input corruptions and its out-of-distribution detection performances. Source code and pretrained models are available at https://github.com/clovaai/CutMix-PyTorch .

Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

Given a robust model trained to be resilient to one or multiple types of distribution shifts (e.g., natural image corruptions), how is that "robustness" encoded in the model weights, and how easily can it be disentangled and/or "zero-shot" transferred to some other models? This paper empirically suggests a surprisingly simple answer: linearly - by straightforward model weight arithmetic! We start by drawing several key observations: (1)assuming that we train the same model architecture on both a clean dataset and its corrupted version, resultant weights mostly differ in shallow layers; (2)the weight difference after projection, which we call "Robust Weight Signature" (RWS), appears to be discriminative and indicative of different corruption types; (3)for the same corruption type, the RWSs obtained by one model architecture are highly consistent and transferable across different datasets. We propose a minimalistic model robustness "patching" framework that carries a model trained on clean data together with its pre-extracted RWSs. In this way, injecting certain robustness to the model is reduced to directly adding the corresponding RWS to its weight. We verify our proposed framework to be remarkably (1)lightweight. since RWSs concentrate on the shallowest few layers and we further show they can be painlessly quantized, storing an RWS is up to 13 x more compact than storing the full weight copy; (2)in-situ adjustable. RWSs can be appended as needed and later taken off to restore the intact clean model. We further demonstrate one can linearly re-scale the RWS to control the patched robustness strength; (3)composable. Multiple RWSs can be added simultaneously to patch more comprehensive robustness at once; and (4)transferable. Even when the clean model backbone is continually adapted or updated, RWSs remain as effective patches due to their outstanding cross-dataset transferability.

Learning multi-domain feature relation for visible and Long-wave Infrared image patch matching

Recently, learning-based algorithms have achieved promising performance on cross-spectral image patch matching, which, however, is still far from satisfactory for practical application. On the one hand, a lack of large-scale dataset with diverse scenes haunts its further improvement for learning-based algorithms, whose performances and generalization rely heavily on the dataset size and diversity. On the other hand, more emphasis has been put on feature relation in the spatial domain whereas the scale dependency between features has often been ignored, leading to performance degeneration especially when encountering significant appearance variations for cross-spectral patches. To address these issues, we publish, to be best of our knowledge, the largest visible and Long-wave Infrared (LWIR) image patch matching dataset, termed VL-CMIM, which contains 1300 pairs of strictly aligned visible and LWIR images and over 2 million patch pairs covering diverse scenes such as asteroid, field, country, build, street and water.In addition, a multi-domain feature relation learning network (MD-FRN) is proposed. Input by the features extracted from a four-branch network, both feature relations in spatial and scale domains are learned via a spatial correlation module (SCM) and multi-scale adaptive aggregation module (MSAG), respectively. To further aggregate the multi-domain relations, a deep domain interactive mechanism (DIM) is applied, where the learnt spatial-relation and scale-relation features are exchanged and further input into MSCRM and SCM. This mechanism allows our model to learn interactive cross-domain feature relations, leading to improved robustness to significant appearance changes due to different modality.

Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models

Seeing clearly with high resolution is a foundation of Large Multimodal Models (LMMs), which has been proven to be vital for visual perception and reasoning. Existing works usually employ a straightforward resolution upscaling method, where the image consists of global and local branches, with the latter being the sliced image patches but resized to the same resolution as the former. This means that higher resolution requires more local patches, resulting in exorbitant computational expenses, and meanwhile, the dominance of local image tokens may diminish the global context. In this paper, we dive into the problems and propose a new framework as well as an elaborate optimization strategy. Specifically, we extract contextual information from the global view using a mixture of adapters, based on the observation that different adapters excel at different tasks. With regard to local patches, learnable query embeddings are introduced to reduce image tokens, the most important tokens accounting for the user question will be further selected by a similarity-based selector. Our empirical results demonstrate a `less is more' pattern, where utilizing fewer but more informative local image tokens leads to improved performance. Besides, a significant challenge lies in the training strategy, as simultaneous end-to-end training of the global mining block and local compression block does not yield optimal results. We thus advocate for an alternating training way, ensuring balanced learning between global and local aspects. Finally, we also introduce a challenging dataset with high requirements for image detail, enhancing the training of the local compression layer. The proposed method, termed LMM with Sophisticated Tasks, Local image compression, and Mixture of global Experts (SliME), achieves leading performance across various benchmarks with only 2 million training data.

Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation

Contemporary domain adaptation offers a practical solution for achieving cross-domain transfer of semantic segmentation between labeled source data and unlabeled target data. These solutions have gained significant popularity; however, they require the model to be retrained when the test environment changes. This can result in unbearable costs in certain applications due to the time-consuming training process and concerns regarding data privacy. One-shot domain adaptation methods attempt to overcome these challenges by transferring the pre-trained source model to the target domain using only one target data. Despite this, the referring style transfer module still faces issues with computation cost and over-fitting problems. To address this problem, we propose a novel framework called Informative Data Mining (IDM) that enables efficient one-shot domain adaptation for semantic segmentation. Specifically, IDM provides an uncertainty-based selection criterion to identify the most informative samples, which facilitates quick adaptation and reduces redundant training. We then perform a model adaptation method using these selected samples, which includes patch-wise mixing and prototype-based information maximization to update the model. This approach effectively enhances adaptation and mitigates the overfitting problem. In general, we provide empirical evidence of the effectiveness and efficiency of IDM. Our approach outperforms existing methods and achieves a new state-of-the-art one-shot performance of 56.7\%/55.4\% on the GTA5/SYNTHIA to Cityscapes adaptation tasks, respectively. The code will be released at https://github.com/yxiwang/IDM.

RALL-E: Robust Codec Language Modeling with Chain-of-Thought Prompting for Text-to-Speech Synthesis

We present RALL-E, a robust language modeling method for text-to-speech (TTS) synthesis. While previous work based on large language models (LLMs) shows impressive performance on zero-shot TTS, such methods often suffer from poor robustness, such as unstable prosody (weird pitch and rhythm/duration) and a high word error rate (WER), due to the autoregressive prediction style of language models. The core idea behind RALL-E is chain-of-thought (CoT) prompting, which decomposes the task into simpler steps to enhance the robustness of LLM-based TTS. To accomplish this idea, RALL-E first predicts prosody features (pitch and duration) of the input text and uses them as intermediate conditions to predict speech tokens in a CoT style. Second, RALL-E utilizes the predicted duration prompt to guide the computing of self-attention weights in Transformer to enforce the model to focus on the corresponding phonemes and prosody features when predicting speech tokens. Results of comprehensive objective and subjective evaluations demonstrate that, compared to a powerful baseline method VALL-E, RALL-E significantly improves the WER of zero-shot TTS from 6.3% (without reranking) and 2.1% (with reranking) to 2.8% and 1.0%, respectively. Furthermore, we demonstrate that RALL-E correctly synthesizes sentences that are hard for VALL-E and reduces the error rate from 68% to 4%.

Rethinking Image Inpainting via a Mutual Encoder-Decoder with Feature Equalizations

Deep encoder-decoder based CNNs have advanced image inpainting methods for hole filling. While existing methods recover structures and textures step-by-step in the hole regions, they typically use two encoder-decoders for separate recovery. The CNN features of each encoder are learned to capture either missing structures or textures without considering them as a whole. The insufficient utilization of these encoder features limit the performance of recovering both structures and textures. In this paper, we propose a mutual encoder-decoder CNN for joint recovery of both. We use CNN features from the deep and shallow layers of the encoder to represent structures and textures of an input image, respectively. The deep layer features are sent to a structure branch and the shallow layer features are sent to a texture branch. In each branch, we fill holes in multiple scales of the CNN features. The filled CNN features from both branches are concatenated and then equalized. During feature equalization, we reweigh channel attentions first and propose a bilateral propagation activation function to enable spatial equalization. To this end, the filled CNN features of structure and texture mutually benefit each other to represent image content at all feature levels. We use the equalized feature to supplement decoder features for output image generation through skip connections. Experiments on the benchmark datasets show the proposed method is effective to recover structures and textures and performs favorably against state-of-the-art approaches.

Semantic-Aware Autoregressive Image Modeling for Visual Representation Learning

The development of autoregressive modeling (AM) in computer vision lags behind natural language processing (NLP) in self-supervised pre-training. This is mainly caused by the challenge that images are not sequential signals and lack a natural order when applying autoregressive modeling. In this study, inspired by human beings' way of grasping an image, i.e., focusing on the main object first, we present a semantic-aware autoregressive image modeling (SemAIM) method to tackle this challenge. The key insight of SemAIM is to autoregressive model images from the semantic patches to the less semantic patches. To this end, we first calculate a semantic-aware permutation of patches according to their feature similarities and then perform the autoregression procedure based on the permutation. In addition, considering that the raw pixels of patches are low-level signals and are not ideal prediction targets for learning high-level semantic representation, we also explore utilizing the patch features as the prediction targets. Extensive experiments are conducted on a broad range of downstream tasks, including image classification, object detection, and instance/semantic segmentation, to evaluate the performance of SemAIM. The results demonstrate SemAIM achieves state-of-the-art performance compared with other self-supervised methods. Specifically, with ViT-B, SemAIM achieves 84.1% top-1 accuracy for fine-tuning on ImageNet, 51.3% AP and 45.4% AP for object detection and instance segmentation on COCO, which outperforms the vanilla MAE by 0.5%, 1.0%, and 0.5%, respectively.

MuSc: Zero-Shot Industrial Anomaly Classification and Segmentation with Mutual Scoring of the Unlabeled Images

This paper studies zero-shot anomaly classification (AC) and segmentation (AS) in industrial vision. We reveal that the abundant normal and abnormal cues implicit in unlabeled test images can be exploited for anomaly determination, which is ignored by prior methods. Our key observation is that for the industrial product images, the normal image patches could find a relatively large number of similar patches in other unlabeled images, while the abnormal ones only have a few similar patches. We leverage such a discriminative characteristic to design a novel zero-shot AC/AS method by Mutual Scoring (MuSc) of the unlabeled images, which does not need any training or prompts. Specifically, we perform Local Neighborhood Aggregation with Multiple Degrees (LNAMD) to obtain the patch features that are capable of representing anomalies in varying sizes. Then we propose the Mutual Scoring Mechanism (MSM) to leverage the unlabeled test images to assign the anomaly score to each other. Furthermore, we present an optimization approach named Re-scoring with Constrained Image-level Neighborhood (RsCIN) for image-level anomaly classification to suppress the false positives caused by noises in normal images. The superior performance on the challenging MVTec AD and VisA datasets demonstrates the effectiveness of our approach. Compared with the state-of-the-art zero-shot approaches, MuSc achieves a 21.1% PRO absolute gain (from 72.7% to 93.8%) on MVTec AD, a 19.4% pixel-AP gain and a 14.7% pixel-AUROC gain on VisA. In addition, our zero-shot approach outperforms most of the few-shot approaches and is comparable to some one-class methods. Code is available at https://github.com/xrli-U/MuSc.

Alleviating Distortion in Image Generation via Multi-Resolution Diffusion Models

This paper presents innovative enhancements to diffusion models by integrating a novel multi-resolution network and time-dependent layer normalization. Diffusion models have gained prominence for their effectiveness in high-fidelity image generation. While conventional approaches rely on convolutional U-Net architectures, recent Transformer-based designs have demonstrated superior performance and scalability. However, Transformer architectures, which tokenize input data (via "patchification"), face a trade-off between visual fidelity and computational complexity due to the quadratic nature of self-attention operations concerning token length. While larger patch sizes enable attention computation efficiency, they struggle to capture fine-grained visual details, leading to image distortions. To address this challenge, we propose augmenting the Diffusion model with the Multi-Resolution network (DiMR), a framework that refines features across multiple resolutions, progressively enhancing detail from low to high resolution. Additionally, we introduce Time-Dependent Layer Normalization (TD-LN), a parameter-efficient approach that incorporates time-dependent parameters into layer normalization to inject time information and achieve superior performance. Our method's efficacy is demonstrated on the class-conditional ImageNet generation benchmark, where DiMR-XL variants outperform prior diffusion models, setting new state-of-the-art FID scores of 1.70 on ImageNet 256 x 256 and 2.89 on ImageNet 512 x 512. Project page: https://qihao067.github.io/projects/DiMR

Quilt-1M: One Million Image-Text Pairs for Histopathology

Recent accelerations in multi-modal applications have been made possible with the plethora of image and text data available online. However, the scarcity of analogous data in the medical field, specifically in histopathology, has halted comparable progress. To enable similar representation learning for histopathology, we turn to YouTube, an untapped resource of videos, offering 1,087 hours of valuable educational histopathology videos from expert clinicians. From YouTube, we curate Quilt: a large-scale vision-language dataset consisting of 768,826 image and text pairs. Quilt was automatically curated using a mixture of models, including large language models, handcrafted algorithms, human knowledge databases, and automatic speech recognition. In comparison, the most comprehensive datasets curated for histopathology amass only around 200K samples. We combine Quilt with datasets from other sources, including Twitter, research papers, and the internet in general, to create an even larger dataset: Quilt-1M, with 1M paired image-text samples, marking it as the largest vision-language histopathology dataset to date. We demonstrate the value of Quilt-1M by fine-tuning a pre-trained CLIP model. Our model outperforms state-of-the-art models on both zero-shot and linear probing tasks for classifying new histopathology images across 13 diverse patch-level datasets of 8 different sub-pathologies and cross-modal retrieval tasks.

PatternNet: Visual Pattern Mining with Deep Neural Network

Visual patterns represent the discernible regularity in the visual world. They capture the essential nature of visual objects or scenes. Understanding and modeling visual patterns is a fundamental problem in visual recognition that has wide ranging applications. In this paper, we study the problem of visual pattern mining and propose a novel deep neural network architecture called PatternNet for discovering these patterns that are both discriminative and representative. The proposed PatternNet leverages the filters in the last convolution layer of a convolutional neural network to find locally consistent visual patches, and by combining these filters we can effectively discover unique visual patterns. In addition, PatternNet can discover visual patterns efficiently without performing expensive image patch sampling, and this advantage provides an order of magnitude speedup compared to most other approaches. We evaluate the proposed PatternNet subjectively by showing randomly selected visual patterns which are discovered by our method and quantitatively by performing image classification with the identified visual patterns and comparing our performance with the current state-of-the-art. We also directly evaluate the quality of the discovered visual patterns by leveraging the identified patterns as proposed objects in an image and compare with other relevant methods. Our proposed network and procedure, PatterNet, is able to outperform competing methods for the tasks described.

AnyPattern: Towards In-context Image Copy Detection

This paper explores in-context learning for image copy detection (ICD), i.e., prompting an ICD model to identify replicated images with new tampering patterns without the need for additional training. The prompts (or the contexts) are from a small set of image-replica pairs that reflect the new patterns and are used at inference time. Such in-context ICD has good realistic value, because it requires no fine-tuning and thus facilitates fast reaction against the emergence of unseen patterns. To accommodate the "seen rightarrow unseen" generalization scenario, we construct the first large-scale pattern dataset named AnyPattern, which has the largest number of tamper patterns (90 for training and 10 for testing) among all the existing ones. We benchmark AnyPattern with popular ICD methods and reveal that existing methods barely generalize to novel tamper patterns. We further propose a simple in-context ICD method named ImageStacker. ImageStacker learns to select the most representative image-replica pairs and employs them as the pattern prompts in a stacking manner (rather than the popular concatenation manner). Experimental results show (1) training with our large-scale dataset substantially benefits pattern generalization (+26.66 % mu AP), (2) the proposed ImageStacker facilitates effective in-context ICD (another round of +16.75 % mu AP), and (3) AnyPattern enables in-context ICD, i.e. without such a large-scale dataset, in-context learning does not emerge even with our ImageStacker. The project (including the proposed dataset AnyPattern and the code for ImageStacker) is publicly available at https://anypattern.github.io under the MIT Licence.

Fast and Accurate Network Embeddings via Very Sparse Random Projection

We present FastRP, a scalable and performant algorithm for learning distributed node representations in a graph. FastRP is over 4,000 times faster than state-of-the-art methods such as DeepWalk and node2vec, while achieving comparable or even better performance as evaluated on several real-world networks on various downstream tasks. We observe that most network embedding methods consist of two components: construct a node similarity matrix and then apply dimension reduction techniques to this matrix. We show that the success of these methods should be attributed to the proper construction of this similarity matrix, rather than the dimension reduction method employed. FastRP is proposed as a scalable algorithm for network embeddings. Two key features of FastRP are: 1) it explicitly constructs a node similarity matrix that captures transitive relationships in a graph and normalizes matrix entries based on node degrees; 2) it utilizes very sparse random projection, which is a scalable optimization-free method for dimension reduction. An extra benefit from combining these two design choices is that it allows the iterative computation of node embeddings so that the similarity matrix need not be explicitly constructed, which further speeds up FastRP. FastRP is also advantageous for its ease of implementation, parallelization and hyperparameter tuning. The source code is available at https://github.com/GTmac/FastRP.

Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks

The rapid development of AI systems has been greatly influenced by the emergence of foundation models. A common approach for targeted problems involves fine-tuning these pre-trained foundation models for specific target tasks, resulting in a rapid spread of models fine-tuned across a diverse array of tasks. This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks. We introduce a new simple method, Model Breadcrumbs, which consists of a sparsely defined set of weights that carve out a trajectory within the weight space of a pre-trained model, enhancing task performance when traversed. These breadcrumbs are constructed by subtracting the weights from a pre-trained model before and after fine-tuning, followed by a sparsification process that eliminates weight outliers and negligible perturbations. Our experiments demonstrate the effectiveness of Model Breadcrumbs to simultaneously improve performance across multiple tasks. This contribution aligns with the evolving paradigm of updatable machine learning, reminiscent of the collaborative principles underlying open-source software development, fostering a community-driven effort to reliably update machine learning models. Our method is shown to be more efficient and unlike previous proposals does not require hyperparameter tuning for each new task added. Through extensive experimentation involving various models, tasks, and modalities we establish that integrating Model Breadcrumbs offers a simple, efficient, and highly effective approach for constructing multi-task models and facilitating updates to foundation models.

Harnessing Massive Satellite Imagery with Efficient Masked Image Modeling

Masked Image Modeling (MIM) has become an essential method for building foundational visual models in remote sensing (RS). However, the limitations in size and diversity of existing RS datasets restrict the ability of MIM methods to learn generalizable representations. Additionally, conventional MIM techniques, which require reconstructing all tokens, introduce unnecessary computational overhead. To address these issues, we present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach. We curated a high-quality dataset named OpticalRS-13M by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication. OpticalRS-13M comprises 13 million optical images covering various RS tasks, such as object detection and pixel segmentation. To enhance efficiency, we propose SelectiveMAE, a pre-training method that dynamically encodes and reconstructs semantically rich patch tokens, thereby reducing the inefficiencies of traditional MIM models caused by redundant background pixels in RS images. Extensive experiments show that OpticalRS-13M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2times times. This highlights the effectiveness and scalability of our pipeline in developing RS foundational models. The dataset, source code, and trained models will be released at https://github.com/MiliLab/SelectiveMAE.

CMAMRNet: A Contextual Mask-Aware Network Enhancing Mural Restoration Through Comprehensive Mask Guidance

Murals, as invaluable cultural artifacts, face continuous deterioration from environmental factors and human activities. Digital restoration of murals faces unique challenges due to their complex degradation patterns and the critical need to preserve artistic authenticity. Existing learning-based methods struggle with maintaining consistent mask guidance throughout their networks, leading to insufficient focus on damaged regions and compromised restoration quality. We propose CMAMRNet, a Contextual Mask-Aware Mural Restoration Network that addresses these limitations through comprehensive mask guidance and multi-scale feature extraction. Our framework introduces two key components: (1) the Mask-Aware Up/Down-Sampler (MAUDS), which ensures consistent mask sensitivity across resolution scales through dedicated channel-wise feature selection and mask-guided feature fusion; and (2) the Co-Feature Aggregator (CFA), operating at both the highest and lowest resolutions to extract complementary features for capturing fine textures and global structures in degraded regions. Experimental results on benchmark datasets demonstrate that CMAMRNet outperforms state-of-the-art methods, effectively preserving both structural integrity and artistic details in restored murals. The code is available at~https://github.com/CXH-Research/CMAMRNet{https://github.com/CXH-Research/CMAMRNet}.

Building Variable-sized Models via Learngene Pool

Recently, Stitchable Neural Networks (SN-Net) is proposed to stitch some pre-trained networks for quickly building numerous networks with different complexity and performance trade-offs. In this way, the burdens of designing or training the variable-sized networks, which can be used in application scenarios with diverse resource constraints, are alleviated. However, SN-Net still faces a few challenges. 1) Stitching from multiple independently pre-trained anchors introduces high storage resource consumption. 2) SN-Net faces challenges to build smaller models for low resource constraints. 3). SN-Net uses an unlearned initialization method for stitch layers, limiting the final performance. To overcome these challenges, motivated by the recently proposed Learngene framework, we propose a novel method called Learngene Pool. Briefly, Learngene distills the critical knowledge from a large pre-trained model into a small part (termed as learngene) and then expands this small part into a few variable-sized models. In our proposed method, we distill one pretrained large model into multiple small models whose network blocks are used as learngene instances to construct the learngene pool. Since only one large model is used, we do not need to store more large models as SN-Net and after distilling, smaller learngene instances can be created to build small models to satisfy low resource constraints. We also insert learnable transformation matrices between the instances to stitch them into variable-sized models to improve the performance of these models. Exhaustive experiments have been implemented and the results validate the effectiveness of the proposed Learngene Pool compared with SN-Net.