new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 29

Exploring the Inquiry-Diagnosis Relationship with Advanced Patient Simulators

Online medical consultation (OMC) restricts doctors to gathering patient information solely through inquiries, making the already complex sequential decision-making process of diagnosis even more challenging. Recently, the rapid advancement of large language models has demonstrated a significant potential to transform OMC. However, most studies have primarily focused on improving diagnostic accuracy under conditions of relatively sufficient information, while paying limited attention to the "inquiry" phase of the consultation process. This lack of focus has left the relationship between "inquiry" and "diagnosis" insufficiently explored. In this paper, we first extract real patient interaction strategies from authentic doctor-patient conversations and use these strategies to guide the training of a patient simulator that closely mirrors real-world behavior. By inputting medical records into our patient simulator to simulate patient responses, we conduct extensive experiments to explore the relationship between "inquiry" and "diagnosis" in the consultation process. Experimental results demonstrate that inquiry and diagnosis adhere to the Liebig's law: poor inquiry quality limits the effectiveness of diagnosis, regardless of diagnostic capability, and vice versa. Furthermore, the experiments reveal significant differences in the inquiry performance of various models. To investigate this phenomenon, we categorize the inquiry process into four types: (1) chief complaint inquiry; (2) specification of known symptoms; (3) inquiry about accompanying symptoms; and (4) gathering family or medical history. We analyze the distribution of inquiries across the four types for different models to explore the reasons behind their significant performance differences. We plan to open-source the weights and related code of our patient simulator at https://github.com/LIO-H-ZEN/PatientSimulator.

PATIENT-Ψ: Using Large Language Models to Simulate Patients for Training Mental Health Professionals

Mental illness remains one of the most critical public health issues. Despite its importance, many mental health professionals highlight a disconnect between their training and actual real-world patient practice. To help bridge this gap, we propose PATIENT-{\Psi}, a novel patient simulation framework for cognitive behavior therapy (CBT) training. To build PATIENT-{\Psi}, we construct diverse patient cognitive models based on CBT principles and use large language models (LLMs) programmed with these cognitive models to act as a simulated therapy patient. We propose an interactive training scheme, PATIENT-{\Psi}-TRAINER, for mental health trainees to practice a key skill in CBT -- formulating the cognitive model of the patient -- through role-playing a therapy session with PATIENT-{\Psi}. To evaluate PATIENT-{\Psi}, we conducted a comprehensive user study of 13 mental health trainees and 20 experts. The results demonstrate that practice using PATIENT-{\Psi}-TRAINER enhances the perceived skill acquisition and confidence of the trainees beyond existing forms of training such as textbooks, videos, and role-play with non-patients. Based on the experts' perceptions, PATIENT-{\Psi} is perceived to be closer to real patient interactions than GPT-4, and PATIENT-{\Psi}-TRAINER holds strong promise to improve trainee competencies. Our code and data are released at https://github.com/ruiyiw/patient-psi.

Synthetic Patients: Simulating Difficult Conversations with Multimodal Generative AI for Medical Education

Problem: Effective patient-centered communication is a core competency for physicians. However, both seasoned providers and medical trainees report decreased confidence in leading conversations on sensitive topics such as goals of care or end-of-life discussions. The significant administrative burden and the resources required to provide dedicated training in leading difficult conversations has been a long-standing problem in medical education. Approach: In this work, we present a novel educational tool designed to facilitate interactive, real-time simulations of difficult conversations in a video-based format through the use of multimodal generative artificial intelligence (AI). Leveraging recent advances in language modeling, computer vision, and generative audio, this tool creates realistic, interactive scenarios with avatars, or "synthetic patients." These synthetic patients interact with users throughout various stages of medical care using a custom-built video chat application, offering learners the chance to practice conversations with patients from diverse belief systems, personalities, and ethnic backgrounds. Outcomes: While the development of this platform demanded substantial upfront investment in labor, it offers a highly-realistic simulation experience with minimal financial investment. For medical trainees, this educational tool can be implemented within programs to simulate patient-provider conversations and can be incorporated into existing palliative care curriculum to provide a scalable, high-fidelity simulation environment for mastering difficult conversations. Next Steps: Future developments will explore enhancing the authenticity of these encounters by working with patients to incorporate their histories and personalities, as well as employing the use of AI-generated evaluations to offer immediate, constructive feedback to learners post-simulation.

Am I eligible? Natural Language Inference for Clinical Trial Patient Recruitment: the Patient's Point of View

Recruiting patients to participate in clinical trials can be challenging and time-consuming. Usually, participation in a clinical trial is initiated by a healthcare professional and proposed to the patient. Promoting clinical trials directly to patients via online recruitment might help to reach them more efficiently. In this study, we address the case where a patient is initiating their own recruitment process and wants to determine whether they are eligible for a given clinical trial, using their own language to describe their medical profile. To study whether this creates difficulties in the patient trial matching process, we design a new dataset and task, Natural Language Inference for Patient Recruitment (NLI4PR), in which patient language profiles must be matched to clinical trials. We create it by adapting the TREC 2022 Clinical Trial Track dataset, which provides patients' medical profiles, and rephrasing them manually using patient language. We also use the associated clinical trial reports where the patients are either eligible or excluded. We prompt several open-source Large Language Models on our task and achieve from 56.5 to 71.8 of F1 score using patient language, against 64.7 to 73.1 for the same task using medical language. When using patient language, we observe only a small loss in performance for the best model, suggesting that having the patient as a starting point could be adopted to help recruit patients for clinical trials. The corpus and code bases are all freely available on our Github and HuggingFace repositories.

Towards Conversational Diagnostic AI

At the heart of medicine lies the physician-patient dialogue, where skillful history-taking paves the way for accurate diagnosis, effective management, and enduring trust. Artificial Intelligence (AI) systems capable of diagnostic dialogue could increase accessibility, consistency, and quality of care. However, approximating clinicians' expertise is an outstanding grand challenge. Here, we introduce AMIE (Articulate Medical Intelligence Explorer), a Large Language Model (LLM) based AI system optimized for diagnostic dialogue. AMIE uses a novel self-play based simulated environment with automated feedback mechanisms for scaling learning across diverse disease conditions, specialties, and contexts. We designed a framework for evaluating clinically-meaningful axes of performance including history-taking, diagnostic accuracy, management reasoning, communication skills, and empathy. We compared AMIE's performance to that of primary care physicians (PCPs) in a randomized, double-blind crossover study of text-based consultations with validated patient actors in the style of an Objective Structured Clinical Examination (OSCE). The study included 149 case scenarios from clinical providers in Canada, the UK, and India, 20 PCPs for comparison with AMIE, and evaluations by specialist physicians and patient actors. AMIE demonstrated greater diagnostic accuracy and superior performance on 28 of 32 axes according to specialist physicians and 24 of 26 axes according to patient actors. Our research has several limitations and should be interpreted with appropriate caution. Clinicians were limited to unfamiliar synchronous text-chat which permits large-scale LLM-patient interactions but is not representative of usual clinical practice. While further research is required before AMIE could be translated to real-world settings, the results represent a milestone towards conversational diagnostic AI.

MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders

Mental health disorders are one of the most serious diseases in the world. Most people with such a disease lack access to adequate care, which highlights the importance of training models for the diagnosis and treatment of mental health disorders. However, in the mental health domain, privacy concerns limit the accessibility of personalized treatment data, making it challenging to build powerful models. In this paper, we introduce MentalArena, a self-play framework to train language models by generating domain-specific personalized data, where we obtain a better model capable of making a personalized diagnosis and treatment (as a therapist) and providing information (as a patient). To accurately model human-like mental health patients, we devise Symptom Encoder, which simulates a real patient from both cognition and behavior perspectives. To address intent bias during patient-therapist interactions, we propose Symptom Decoder to compare diagnosed symptoms with encoded symptoms, and dynamically manage the dialogue between patient and therapist according to the identified deviations. We evaluated MentalArena against 6 benchmarks, including biomedicalQA and mental health tasks, compared to 6 advanced models. Our models, fine-tuned on both GPT-3.5 and Llama-3-8b, significantly outperform their counterparts, including GPT-4o. We hope that our work can inspire future research on personalized care. Code is available in https://github.com/Scarelette/MentalArena/tree/main

AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments

Diagnosing and managing a patient is a complex, sequential decision making process that requires physicians to obtain information -- such as which tests to perform -- and to act upon it. Recent advances in artificial intelligence (AI) and large language models (LLMs) promise to profoundly impact clinical care. However, current evaluation schemes overrely on static medical question-answering benchmarks, falling short on interactive decision-making that is required in real-life clinical work. Here, we present AgentClinic: a multimodal benchmark to evaluate LLMs in their ability to operate as agents in simulated clinical environments. In our benchmark, the doctor agent must uncover the patient's diagnosis through dialogue and active data collection. We present two open medical agent benchmarks: a multimodal image and dialogue environment, AgentClinic-NEJM, and a dialogue-only environment, AgentClinic-MedQA. We embed cognitive and implicit biases both in patient and doctor agents to emulate realistic interactions between biased agents. We find that introducing bias leads to large reductions in diagnostic accuracy of the doctor agents, as well as reduced compliance, confidence, and follow-up consultation willingness in patient agents. Evaluating a suite of state-of-the-art LLMs, we find that several models that excel in benchmarks like MedQA are performing poorly in AgentClinic-MedQA. We find that the LLM used in the patient agent is an important factor for performance in the AgentClinic benchmark. We show that both having limited interactions as well as too many interaction reduces diagnostic accuracy in doctor agents. The code and data for this work is publicly available at https://AgentClinic.github.io.

MedAgentBench: A Realistic Virtual EHR Environment to Benchmark Medical LLM Agents

Recent large language models (LLMs) have demonstrated significant advancements, particularly in their ability to serve as agents thereby surpassing their traditional role as chatbots. These agents can leverage their planning and tool utilization capabilities to address tasks specified at a high level. However, a standardized dataset to benchmark the agent capabilities of LLMs in medical applications is currently lacking, making the evaluation of LLMs on complex tasks in interactive healthcare environments challenging. To address this gap, we introduce MedAgentBench, a broad evaluation suite designed to assess the agent capabilities of large language models within medical records contexts. MedAgentBench encompasses 300 patient-specific clinically-derived tasks from 10 categories written by human physicians, realistic profiles of 100 patients with over 700,000 data elements, a FHIR-compliant interactive environment, and an accompanying codebase. The environment uses the standard APIs and communication infrastructure used in modern EMR systems, so it can be easily migrated into live EMR systems. MedAgentBench presents an unsaturated agent-oriented benchmark that current state-of-the-art LLMs exhibit some ability to succeed at. The best model (Claude 3.5 Sonnet v2) achieves a success rate of 69.67%. However, there is still substantial space for improvement which gives the community a next direction to optimize. Furthermore, there is significant variation in performance across task categories. MedAgentBench establishes this and is publicly available at https://github.com/stanfordmlgroup/MedAgentBench , offering a valuable framework for model developers to track progress and drive continuous improvements in the agent capabilities of large language models within the medical domain.

Spoken Dialogue System for Medical Prescription Acquisition on Smartphone: Development, Corpus and Evaluation

Hospital information systems (HIS) have become an essential part of healthcare institutions and now incorporate prescribing support software. Prescription support software allows for structured information capture, which improves the safety, appropriateness and efficiency of prescriptions and reduces the number of adverse drug events (ADEs). However, such a system increases the amount of time physicians spend at a computer entering information instead of providing medical care. In addition, any new visiting clinician must learn to manage complex interfaces since each HIS has its own interfaces. In this paper, we present a natural language interface for e-prescribing software in the form of a spoken dialogue system accessible on a smartphone. This system allows prescribers to record their prescriptions verbally, a form of interaction closer to their usual practice. The system extracts the formal representation of the prescription ready to be checked by the prescribing software and uses the dialogue to request mandatory information, correct errors or warn of particular situations. Since, to the best of our knowledge, there is no existing voice-based prescription dialogue system, we present the system developed in a low-resource environment, focusing on dialogue modeling, semantic extraction and data augmentation. The system was evaluated in the wild with 55 participants. This evaluation showed that our system has an average prescription time of 66.15 seconds for physicians and 35.64 seconds for other experts, and a task success rate of 76\% for physicians and 72\% for other experts. All evaluation data were recorded and annotated to form PxCorpus, the first spoken drug prescription corpus that has been made fully available to the community (https://doi.org/10.5281/zenodo.6524162).

Vision-Language Generative Model for View-Specific Chest X-ray Generation

Synthetic medical data generation has opened up new possibilities in the healthcare domain, offering a powerful tool for simulating clinical scenarios, enhancing diagnostic and treatment quality, gaining granular medical knowledge, and accelerating the development of unbiased algorithms. In this context, we present a novel approach called ViewXGen, designed to overcome the limitations of existing methods that rely on general domain pipelines using only radiology reports to generate frontal-view chest X-rays. Our approach takes into consideration the diverse view positions found in the dataset, enabling the generation of chest X-rays with specific views, which marks a significant advancement in the field. To achieve this, we introduce a set of specially designed tokens for each view position, tailoring the generation process to the user's preferences. Furthermore, we leverage multi-view chest X-rays as input, incorporating valuable information from different views within the same study. This integration rectifies potential errors and contributes to faithfully capturing abnormal findings in chest X-ray generation. To validate the effectiveness of our approach, we conducted statistical analyses, evaluating its performance in a clinical efficacy metric on the MIMIC-CXR dataset. Also, human evaluation demonstrates the remarkable capabilities of ViewXGen, particularly in producing realistic view-specific X-rays that closely resemble the original images.

DoctorAgent-RL: A Multi-Agent Collaborative Reinforcement Learning System for Multi-Turn Clinical Dialogue

Large language models (LLMs) have demonstrated excellent capabilities in the field of biomedical question answering, but their application in real-world clinical consultations still faces core challenges. Existing systems rely on a one-way information transmission mode where patients must fully describe their symptoms in a single round, leading to nonspecific diagnostic recommendations when complaints are vague. Traditional multi-turn dialogue methods based on supervised learning are constrained by static data-driven paradigms, lacking generalizability and struggling to intelligently extract key clinical information. To address these limitations, we propose DoctorAgent-RL, a reinforcement learning (RL)-based multi-agent collaborative framework that models medical consultations as a dynamic decision-making process under uncertainty. The doctor agent continuously optimizes its questioning strategy within the RL framework through multi-turn interactions with the patient agent, dynamically adjusting its information-gathering path based on comprehensive rewards from the Consultation Evaluator. This RL fine-tuning mechanism enables LLMs to autonomously develop interaction strategies aligned with clinical reasoning logic, rather than superficially imitating patterns in existing dialogue data. Notably, we constructed MTMedDialog, the first English multi-turn medical consultation dataset capable of simulating patient interactions. Experiments demonstrate that DoctorAgent-RL outperforms existing models in both multi-turn reasoning capability and final diagnostic performance, demonstrating practical value in assisting clinical consultations. https://github.com/JarvisUSTC/DoctorAgent-RL

Human-in-the-loop Embodied Intelligence with Interactive Simulation Environment for Surgical Robot Learning

Surgical robot automation has attracted increasing research interest over the past decade, expecting its potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied intelligence has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant research. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how the human demonstrations would affect policy learning. In this work, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. We showcase the improvement of our simulation environment with the designed new features, and validate effectiveness of incorporating human factors in embodied intelligence through the use of human demonstrations and reinforcement learning as a representative example. Promising results are obtained in terms of learning efficiency. Lastly, five new surgical robot training tasks are developed and released, with which we hope to pave the way for future research on surgical embodied intelligence. Our learning platform is publicly released and will be continuously updated in the website: https://med-air.github.io/SurRoL.

NOTE: Notable generation Of patient Text summaries through Efficient approach based on direct preference optimization

The discharge summary is a one of critical documents in the patient journey, encompassing all events experienced during hospitalization, including multiple visits, medications, tests, surgery/procedures, and admissions/discharge. Providing a summary of the patient's progress is crucial, as it significantly influences future care and planning. Consequently, clinicians face the laborious and resource-intensive task of manually collecting, organizing, and combining all the necessary data for a discharge summary. Therefore, we propose "NOTE", which stands for "Notable generation Of patient Text summaries through an Efficient approach based on direct preference optimization". NOTE is based on Medical Information Mart for Intensive Care- III dataset and summarizes a single hospitalization of a patient. Patient events are sequentially combined and used to generate a discharge summary for each hospitalization. In the present circumstances, large language models' application programming interfaces (LLMs' APIs) are widely available, but importing and exporting medical data presents significant challenges due to privacy protection policies in healthcare institutions. Moreover, to ensure optimal performance, it is essential to implement a lightweight model for internal server or program within the hospital. Therefore, we utilized DPO and parameter efficient fine tuning (PEFT) techniques to apply a fine-tuning method that guarantees superior performance. To demonstrate the practical application of the developed NOTE, we provide a webpage-based demonstration software. In the future, we will aim to deploy the software available for actual use by clinicians in hospital. NOTE can be utilized to generate various summaries not only discharge summaries but also throughout a patient's journey, thereby alleviating the labor-intensive workload of clinicians and aiming for increased efficiency.

Automatic Differential Diagnosis using Transformer-Based Multi-Label Sequence Classification

As the field of artificial intelligence progresses, assistive technologies are becoming more widely used across all industries. The healthcare industry is no different, with numerous studies being done to develop assistive tools for healthcare professionals. Automatic diagnostic systems are one such beneficial tool that can assist with a variety of tasks, including collecting patient information, analyzing test results, and diagnosing patients. However, the idea of developing systems that can provide a differential diagnosis has been largely overlooked in most of these research studies. In this study, we propose a transformer-based approach for providing differential diagnoses based on a patient's age, sex, medical history, and symptoms. We use the DDXPlus dataset, which provides differential diagnosis information for patients based on 49 disease types. Firstly, we propose a method to process the tabular patient data from the dataset and engineer them into patient reports to make them suitable for our research. In addition, we introduce two data modification modules to diversify the training data and consequently improve the robustness of the models. We approach the task as a multi-label classification problem and conduct extensive experiments using four transformer models. All the models displayed promising results by achieving over 97% F1 score on the held-out test set. Moreover, we design additional behavioral tests to get a broader understanding of the models. In particular, for one of our test cases, we prepared a custom test set of 100 samples with the assistance of a doctor. The results on the custom set showed that our proposed data modification modules improved the model's generalization capabilities. We hope our findings will provide future researchers with valuable insights and inspire them to develop reliable systems for automatic differential diagnosis.

MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning

Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy that progressively teaches the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL not only outperforms both open-source and proprietary Med-LVLMs, but also exhibits human-like reasoning patterns. Notably, it achieves an average performance gain of 20.7% over supervised fine-tuning baselines.

MeNTi: Bridging Medical Calculator and LLM Agent with Nested Tool Calling

Integrating tools into Large Language Models (LLMs) has facilitated the widespread application. Despite this, in specialized downstream task contexts, reliance solely on tools is insufficient to fully address the complexities of the real world. This particularly restricts the effective deployment of LLMs in fields such as medicine. In this paper, we focus on the downstream tasks of medical calculators, which use standardized tests to assess an individual's health status. We introduce MeNTi, a universal agent architecture for LLMs. MeNTi integrates a specialized medical toolkit and employs meta-tool and nested calling mechanisms to enhance LLM tool utilization. Specifically, it achieves flexible tool selection and nested tool calling to address practical issues faced in intricate medical scenarios, including calculator selection, slot filling, and unit conversion. To assess the capabilities of LLMs for quantitative assessment throughout the clinical process of calculator scenarios, we introduce CalcQA. This benchmark requires LLMs to use medical calculators to perform calculations and assess patient health status. CalcQA is constructed by professional physicians and includes 100 case-calculator pairs, complemented by a toolkit of 281 medical tools. The experimental results demonstrate significant performance improvements with our framework. This research paves new directions for applying LLMs in demanding scenarios of medicine.

The impact of using an AI chatbot to respond to patient messages

Documentation burden is a major contributor to clinician burnout, which is rising nationally and is an urgent threat to our ability to care for patients. Artificial intelligence (AI) chatbots, such as ChatGPT, could reduce clinician burden by assisting with documentation. Although many hospitals are actively integrating such systems into electronic medical record systems, AI chatbots utility and impact on clinical decision-making have not been studied for this intended use. We are the first to examine the utility of large language models in assisting clinicians draft responses to patient questions. In our two-stage cross-sectional study, 6 oncologists responded to 100 realistic synthetic cancer patient scenarios and portal messages developed to reflect common medical situations, first manually, then with AI assistance. We find AI-assisted responses were longer, less readable, but provided acceptable drafts without edits 58% of time. AI assistance improved efficiency 77% of time, with low harm risk (82% safe). However, 7.7% unedited AI responses could severely harm. In 31% cases, physicians thought AI drafts were human-written. AI assistance led to more patient education recommendations, fewer clinical actions than manual responses. Results show promise for AI to improve clinician efficiency and patient care through assisting documentation, if used judiciously. Monitoring model outputs and human-AI interaction remains crucial for safe implementation.

A Corpus for Detecting High-Context Medical Conditions in Intensive Care Patient Notes Focusing on Frequently Readmitted Patients

A crucial step within secondary analysis of electronic health records (EHRs) is to identify the patient cohort under investigation. While EHRs contain medical billing codes that aim to represent the conditions and treatments patients may have, much of the information is only present in the patient notes. Therefore, it is critical to develop robust algorithms to infer patients' conditions and treatments from their written notes. In this paper, we introduce a dataset for patient phenotyping, a task that is defined as the identification of whether a patient has a given medical condition (also referred to as clinical indication or phenotype) based on their patient note. Nursing Progress Notes and Discharge Summaries from the Intensive Care Unit of a large tertiary care hospital were manually annotated for the presence of several high-context phenotypes relevant to treatment and risk of re-hospitalization. This dataset contains 1102 Discharge Summaries and 1000 Nursing Progress Notes. Each Discharge Summary and Progress Note has been annotated by at least two expert human annotators (one clinical researcher and one resident physician). Annotated phenotypes include treatment non-adherence, chronic pain, advanced/metastatic cancer, as well as 10 other phenotypes. This dataset can be utilized for academic and industrial research in medicine and computer science, particularly within the field of medical natural language processing.

Polaris: A Safety-focused LLM Constellation Architecture for Healthcare

We develop Polaris, the first safety-focused LLM constellation for real-time patient-AI healthcare conversations. Unlike prior LLM works in healthcare focusing on tasks like question answering, our work specifically focuses on long multi-turn voice conversations. Our one-trillion parameter constellation system is composed of several multibillion parameter LLMs as co-operative agents: a stateful primary agent that focuses on driving an engaging conversation and several specialist support agents focused on healthcare tasks performed by nurses to increase safety and reduce hallucinations. We develop a sophisticated training protocol for iterative co-training of the agents that optimize for diverse objectives. We train our models on proprietary data, clinical care plans, healthcare regulatory documents, medical manuals, and other medical reasoning documents. We align our models to speak like medical professionals, using organic healthcare conversations and simulated ones between patient actors and experienced nurses. This allows our system to express unique capabilities such as rapport building, trust building, empathy and bedside manner. Finally, we present the first comprehensive clinician evaluation of an LLM system for healthcare. We recruited over 1100 U.S. licensed nurses and over 130 U.S. licensed physicians to perform end-to-end conversational evaluations of our system by posing as patients and rating the system on several measures. We demonstrate Polaris performs on par with human nurses on aggregate across dimensions such as medical safety, clinical readiness, conversational quality, and bedside manner. Additionally, we conduct a challenging task-based evaluation of the individual specialist support agents, where we demonstrate our LLM agents significantly outperform a much larger general-purpose LLM (GPT-4) as well as from its own medium-size class (LLaMA-2 70B).

3MDBench: Medical Multimodal Multi-agent Dialogue Benchmark

Large Vision-Language Models (LVLMs) are increasingly being explored for applications in telemedicine, yet their ability to engage with diverse patient behaviors remains underexplored. We introduce 3MDBench (Medical Multimodal Multi-agent Dialogue Benchmark), an open-source evaluation framework designed to assess LLM-driven medical consultations. Unlike existing benchmarks, 3MDBench simulates real-world patient variability by incorporating four temperament-driven Patient Agents and an Assessor Agent that evaluates diagnostic accuracy and dialogue quality. The benchmark integrates textual and image-based patient data across 34 common diagnoses, mirroring real-world telemedicine interactions. Under different diagnostic strategies, we evaluate state-of-the-art LVLMs. Our findings demonstrate that incorporating dialogue improves the F1 score from 50.4 to 54.2 compared to non-dialogue settings, underscoring the value of context-driven, information-seeking questioning. Additionally, we demonstrate that multimodal inputs enhance diagnostic efficiency. Image-supported models outperform text-only counterparts by raising the diagnostic F1 score from 52.8 to 54.2 in a similar dialogue setting. Finally, we suggest an approach that improves the diagnostic F1-score to 70.3 by training the CNN model on the diagnosis prediction task and incorporating its top-3 predictions into the LVLM context. 3MDBench provides a reproducible and extendable evaluation framework for AI-driven medical assistants. It offers insights into how patient temperament, dialogue strategies, and multimodal reasoning influence diagnosis quality. By addressing real-world complexities in telemedicine, our benchmark paves the way for more empathetic, reliable, and context-aware AI-driven healthcare solutions. The source code of our benchmark is publicly available: https://github.com/univanxx/3mdbench

Medical World Model: Generative Simulation of Tumor Evolution for Treatment Planning

Providing effective treatment and making informed clinical decisions are essential goals of modern medicine and clinical care. We are interested in simulating disease dynamics for clinical decision-making, leveraging recent advances in large generative models. To this end, we introduce the Medical World Model (MeWM), the first world model in medicine that visually predicts future disease states based on clinical decisions. MeWM comprises (i) vision-language models to serve as policy models, and (ii) tumor generative models as dynamics models. The policy model generates action plans, such as clinical treatments, while the dynamics model simulates tumor progression or regression under given treatment conditions. Building on this, we propose the inverse dynamics model that applies survival analysis to the simulated post-treatment tumor, enabling the evaluation of treatment efficacy and the selection of the optimal clinical action plan. As a result, the proposed MeWM simulates disease dynamics by synthesizing post-treatment tumors, with state-of-the-art specificity in Turing tests evaluated by radiologists. Simultaneously, its inverse dynamics model outperforms medical-specialized GPTs in optimizing individualized treatment protocols across all metrics. Notably, MeWM improves clinical decision-making for interventional physicians, boosting F1-score in selecting the optimal TACE protocol by 13%, paving the way for future integration of medical world models as the second readers.

Demystifying Large Language Models for Medicine: A Primer

Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare by generating human-like responses across diverse contexts and adapting to novel tasks following human instructions. Their potential application spans a broad range of medical tasks, such as clinical documentation, matching patients to clinical trials, and answering medical questions. In this primer paper, we propose an actionable guideline to help healthcare professionals more efficiently utilize LLMs in their work, along with a set of best practices. This approach consists of several main phases, including formulating the task, choosing LLMs, prompt engineering, fine-tuning, and deployment. We start with the discussion of critical considerations in identifying healthcare tasks that align with the core capabilities of LLMs and selecting models based on the selected task and data, performance requirements, and model interface. We then review the strategies, such as prompt engineering and fine-tuning, to adapt standard LLMs to specialized medical tasks. Deployment considerations, including regulatory compliance, ethical guidelines, and continuous monitoring for fairness and bias, are also discussed. By providing a structured step-by-step methodology, this tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice, ensuring that these powerful technologies are applied in a safe, reliable, and impactful manner.

AgentMD: Empowering Language Agents for Risk Prediction with Large-Scale Clinical Tool Learning

Clinical calculators play a vital role in healthcare by offering accurate evidence-based predictions for various purposes such as prognosis. Nevertheless, their widespread utilization is frequently hindered by usability challenges, poor dissemination, and restricted functionality. Augmenting large language models with extensive collections of clinical calculators presents an opportunity to overcome these obstacles and improve workflow efficiency, but the scalability of the manual curation process poses a significant challenge. In response, we introduce AgentMD, a novel language agent capable of curating and applying clinical calculators across various clinical contexts. Using the published literature, AgentMD has automatically curated a collection of 2,164 diverse clinical calculators with executable functions and structured documentation, collectively named RiskCalcs. Manual evaluations show that RiskCalcs tools achieve an accuracy of over 80% on three quality metrics. At inference time, AgentMD can automatically select and apply the relevant RiskCalcs tools given any patient description. On the newly established RiskQA benchmark, AgentMD significantly outperforms chain-of-thought prompting with GPT-4 (87.7% vs. 40.9% in accuracy). Additionally, we also applied AgentMD to real-world clinical notes for analyzing both population-level and risk-level patient characteristics. In summary, our study illustrates the utility of language agents augmented with clinical calculators for healthcare analytics and patient care.