- Human Preferences for Constructive Interactions in Language Model Alignment As large language models (LLMs) enter the mainstream, aligning them to foster constructive dialogue rather than exacerbate societal divisions is critical. Using an individualized and multicultural alignment dataset of over 7,500 conversations of individuals from 74 countries engaging with 21 LLMs, we examined how linguistic attributes linked to constructive interactions are reflected in human preference data used for training AI. We found that users consistently preferred well-reasoned and nuanced responses while rejecting those high in personal storytelling. However, users who believed that AI should reflect their values tended to place less preference on reasoning in LLM responses and more on curiosity. Encouragingly, we observed that users could set the tone for how constructive their conversation would be, as LLMs mirrored linguistic attributes, including toxicity, in user queries. 5 authors · Mar 5
- Generative AI-Driven Storytelling: A New Era for Marketing This paper delves into the transformative power of Generative AI-driven storytelling in the realm of marketing. Generative AI, distinct from traditional machine learning, offers the capability to craft narratives that resonate with consumers on a deeply personal level. Through real-world examples from industry leaders like Google, Netflix and Stitch Fix, we elucidate how this technology shapes marketing strategies, personalizes consumer experiences, and navigates the challenges it presents. The paper also explores future directions and recommendations for generative AI-driven storytelling, including prospective applications such as real-time personalized storytelling, immersive storytelling experiences, and social media storytelling. By shedding light on the potential and impact of generative AI-driven storytelling in marketing, this paper contributes to the understanding of this cutting-edge approach and its transformative power in the field of marketing. 2 authors · Sep 16, 2023
1 ID.8: Co-Creating Visual Stories with Generative AI Storytelling is an integral part of human culture and significantly impacts cognitive and socio-emotional development and connection. Despite the importance of interactive visual storytelling, the process of creating such content requires specialized skills and is labor-intensive. This paper introduces ID.8, an open-source system designed for the co-creation of visual stories with generative AI. We focus on enabling an inclusive storytelling experience by simplifying the content creation process and allowing for customization. Our user evaluation confirms a generally positive user experience in domains such as enjoyment and exploration, while highlighting areas for improvement, particularly in immersiveness, alignment, and partnership between the user and the AI system. Overall, our findings indicate promising possibilities for empowering people to create visual stories with generative AI. This work contributes a novel content authoring system, ID.8, and insights into the challenges and potential of using generative AI for multimedia content creation. 2 authors · Sep 25, 2023
- Hierarchical Neural Story Generation We explore story generation: creative systems that can build coherent and fluent passages of text about a topic. We collect a large dataset of 300K human-written stories paired with writing prompts from an online forum. Our dataset enables hierarchical story generation, where the model first generates a premise, and then transforms it into a passage of text. We gain further improvements with a novel form of model fusion that improves the relevance of the story to the prompt, and adding a new gated multi-scale self-attention mechanism to model long-range context. Experiments show large improvements over strong baselines on both automated and human evaluations. Human judges prefer stories generated by our approach to those from a strong non-hierarchical model by a factor of two to one. 3 authors · May 13, 2018
- Unsupervised Enrichment of Persona-grounded Dialog with Background Stories Humans often refer to personal narratives, life experiences, and events to make a conversation more engaging and rich. While persona-grounded dialog models are able to generate responses that follow a given persona, they often miss out on stating detailed experiences or events related to a persona, often leaving conversations shallow and dull. In this work, we equip dialog models with 'background stories' related to a persona by leveraging fictional narratives from existing story datasets (e.g. ROCStories). Since current dialog datasets do not contain such narratives as responses, we perform an unsupervised adaptation of a retrieved story for generating a dialog response using a gradient-based rewriting technique. Our proposed method encourages the generated response to be fluent (i.e., highly likely) with the dialog history, minimally different from the retrieved story to preserve event ordering and consistent with the original persona. We demonstrate that our method can generate responses that are more diverse, and are rated more engaging and human-like by human evaluators, compared to outputs from existing dialog models. 4 authors · Jun 15, 2021
- Album Storytelling with Iterative Story-aware Captioning and Large Language Models This work studies how to transform an album to vivid and coherent stories, a task we refer to as "album storytelling". While this task can help preserve memories and facilitate experience sharing, it remains an underexplored area in current literature. With recent advances in Large Language Models (LLMs), it is now possible to generate lengthy, coherent text, opening up the opportunity to develop an AI assistant for album storytelling. One natural approach is to use caption models to describe each photo in the album, and then use LLMs to summarize and rewrite the generated captions into an engaging story. However, we find this often results in stories containing hallucinated information that contradicts the images, as each generated caption ("story-agnostic") is not always about the description related to the whole story or miss some necessary information. To address these limitations, we propose a new iterative album storytelling pipeline. Specifically, we start with an initial story and build a story-aware caption model to refine the captions using the whole story as guidance. The polished captions are then fed into the LLMs to generate a new refined story. This process is repeated iteratively until the story contains minimal factual errors while maintaining coherence. To evaluate our proposed pipeline, we introduce a new dataset of image collections from vlogs and a set of systematic evaluation metrics. Our results demonstrate that our method effectively generates more accurate and engaging stories for albums, with enhanced coherence and vividness. 8 authors · May 22, 2023
- MirrorStories: Reflecting Diversity through Personalized Narrative Generation with Large Language Models This study explores the effectiveness of Large Language Models (LLMs) in creating personalized "mirror stories" that reflect and resonate with individual readers' identities, addressing the significant lack of diversity in literature. We present MirrorStories, a corpus of 1,500 personalized short stories generated by integrating elements such as name, gender, age, ethnicity, reader interest, and story moral. We demonstrate that LLMs can effectively incorporate diverse identity elements into narratives, with human evaluators identifying personalized elements in the stories with high accuracy. Through a comprehensive evaluation involving 26 diverse human judges, we compare the effectiveness of MirrorStories against generic narratives. We find that personalized LLM-generated stories not only outscore generic human-written and LLM-generated ones across all metrics of engagement (with average ratings of 4.22 versus 3.37 on a 5-point scale), but also achieve higher textual diversity while preserving the intended moral. We also provide analyses that include bias assessments and a study on the potential for integrating images into personalized stories. 3 authors · Sep 20, 2024
4 GROVE: A Retrieval-augmented Complex Story Generation Framework with A Forest of Evidence Conditional story generation is significant in human-machine interaction, particularly in producing stories with complex plots. While Large language models (LLMs) perform well on multiple NLP tasks, including story generation, it is challenging to generate stories with both complex and creative plots. Existing methods often rely on detailed prompts to guide LLMs to meet target conditions, which inadvertently restrict the creative potential of the generated stories. We argue that leveraging information from exemplary human-written stories facilitates generating more diverse plotlines. Delving deeper into story details helps build complex and credible plots. In this paper, we propose a retrieval-auGmented stoRy generation framework with a fOrest of eVidEnce (GROVE) to enhance stories' complexity. We build a retrieval repository for target conditions to produce few-shot examples to prompt LLMs. Additionally, we design an ``asking-why'' prompting scheme that extracts a forest of evidence, providing compensation for the ambiguities that may occur in the generated story. This iterative process uncovers underlying story backgrounds. Finally, we select the most fitting chains of evidence from the evidence forest and integrate them into the generated story, thereby enhancing the narrative's complexity and credibility. Experimental results and numerous examples verify the effectiveness of our method. 7 authors · Oct 8, 2023
- REVERSUM: A Multi-staged Retrieval-Augmented Generation Method to Enhance Wikipedia Tail Biographies through Personal Narratives Wikipedia is an invaluable resource for factual information about a wide range of entities. However, the quality of articles on less-known entities often lags behind that of the well-known ones. This study proposes a novel approach to enhancing Wikipedia's B and C category biography articles by leveraging personal narratives such as autobiographies and biographies. By utilizing a multi-staged retrieval-augmented generation technique -- REVerSum -- we aim to enrich the informational content of these lesser-known articles. Our study reveals that personal narratives can significantly improve the quality of Wikipedia articles, providing a rich source of reliable information that has been underutilized in previous studies. Based on crowd-based evaluation, REVerSum generated content outperforms the best performing baseline by 17% in terms of integrability to the original Wikipedia article and 28.5\% in terms of informativeness. Code and Data are available at: https://github.com/sayantan11995/wikipedia_enrichment 4 authors · Feb 17
- Persona-Guided Planning for Controlling the Protagonist's Persona in Story Generation Endowing the protagonist with a specific personality is essential for writing an engaging story. In this paper, we aim to control the protagonist's persona in story generation, i.e., generating a story from a leading context and a persona description, where the protagonist should exhibit the specified personality through a coherent event sequence. Considering that personas are usually embodied implicitly and sparsely in stories, we propose a planning-based generation model named CONPER to explicitly model the relationship between personas and events. CONPER first plans events of the protagonist's behavior which are motivated by the specified persona through predicting one target sentence, then plans the plot as a sequence of keywords with the guidance of the predicted persona-related events and commonsense knowledge, and finally generates the whole story. Both automatic and manual evaluation results demonstrate that CONPER outperforms state-of-the-art baselines for generating more coherent and persona-controllable stories. 4 authors · Apr 22, 2022
- Modeling Emotional Trajectories in Written Stories Utilizing Transformers and Weakly-Supervised Learning Telling stories is an integral part of human communication which can evoke emotions and influence the affective states of the audience. Automatically modeling emotional trajectories in stories has thus attracted considerable scholarly interest. However, as most existing works have been limited to unsupervised dictionary-based approaches, there is no benchmark for this task. We address this gap by introducing continuous valence and arousal labels for an existing dataset of children's stories originally annotated with discrete emotion categories. We collect additional annotations for this data and map the categorical labels to the continuous valence and arousal space. For predicting the thus obtained emotionality signals, we fine-tune a DeBERTa model and improve upon this baseline via a weakly supervised learning approach. The best configuration achieves a Concordance Correlation Coefficient (CCC) of .8221 for valence and .7125 for arousal on the test set, demonstrating the efficacy of our proposed approach. A detailed analysis shows the extent to which the results vary depending on factors such as the author, the individual story, or the section within the story. In addition, we uncover the weaknesses of our approach by investigating examples that prove to be difficult to predict. 5 authors · Jun 4, 2024
1 Visual Storytelling with Question-Answer Plans Visual storytelling aims to generate compelling narratives from image sequences. Existing models often focus on enhancing the representation of the image sequence, e.g., with external knowledge sources or advanced graph structures. Despite recent progress, the stories are often repetitive, illogical, and lacking in detail. To mitigate these issues, we present a novel framework which integrates visual representations with pretrained language models and planning. Our model translates the image sequence into a visual prefix, a sequence of continuous embeddings which language models can interpret. It also leverages a sequence of question-answer pairs as a blueprint plan for selecting salient visual concepts and determining how they should be assembled into a narrative. Automatic and human evaluation on the VIST benchmark (Huang et al., 2016) demonstrates that blueprint-based models generate stories that are more coherent, interesting, and natural compared to competitive baselines and state-of-the-art systems. 3 authors · Oct 8, 2023
- Not (yet) the whole story: Evaluating Visual Storytelling Requires More than Measuring Coherence, Grounding, and Repetition Visual storytelling consists in generating a natural language story given a temporally ordered sequence of images. This task is not only challenging for models, but also very difficult to evaluate with automatic metrics since there is no consensus about what makes a story 'good'. In this paper, we introduce a novel method that measures story quality in terms of human likeness regarding three key aspects highlighted in previous work: visual grounding, coherence, and repetitiveness. We then use this method to evaluate the stories generated by several models, showing that the foundation model LLaVA obtains the best result, but only slightly so compared to TAPM, a 50-times smaller visual storytelling model. Upgrading the visual and language components of TAPM results in a model that yields competitive performance with a relatively low number of parameters. Finally, we carry out a human evaluation study, whose results suggest that a 'good' story may require more than a human-like level of visual grounding, coherence, and repetition. 3 authors · Jul 5, 2024
- Guiding Neural Story Generation with Reader Models Automated storytelling has long captured the attention of researchers for the ubiquity of narratives in everyday life. However, it is challenging to maintain coherence and stay on-topic toward a specific ending when generating narratives with neural language models. In this paper, we introduce Story generation with Reader Models (StoRM), a framework in which a reader model is used to reason about the story should progress. A reader model infers what a human reader believes about the concepts, entities, and relations about the fictional story world. We show how an explicit reader model represented as a knowledge graph affords story coherence and provides controllability in the form of achieving a given story world state goal. Experiments show that our model produces significantly more coherent and on-topic stories, outperforming baselines in dimensions including plot plausibility and staying on topic. 6 authors · Dec 15, 2021
2 SWAG: Storytelling With Action Guidance Automated long-form story generation typically employs long-context large language models (LLMs) for one-shot creation, which can produce cohesive but not necessarily engaging content. We introduce Storytelling With Action Guidance (SWAG), a novel approach to storytelling with LLMs. Our approach reduces story writing to a search problem through a two-model feedback loop: one LLM generates story content, and another auxiliary LLM is used to choose the next best "action" to steer the story's future direction. Our results show that SWAG can substantially outperform previous end-to-end story generation techniques when evaluated by GPT-4 and through human evaluation, and our SWAG pipeline using only open-source models surpasses GPT-3.5-Turbo. 4 authors · Feb 5, 2024
- PeaCoK: Persona Commonsense Knowledge for Consistent and Engaging Narratives Sustaining coherent and engaging narratives requires dialogue or storytelling agents to understand how the personas of speakers or listeners ground the narrative. Specifically, these agents must infer personas of their listeners to produce statements that cater to their interests. They must also learn to maintain consistent speaker personas for themselves throughout the narrative, so that their counterparts feel involved in a realistic conversation or story. However, personas are diverse and complex: they entail large quantities of rich interconnected world knowledge that is challenging to robustly represent in general narrative systems (e.g., a singer is good at singing, and may have attended conservatoire). In this work, we construct a new large-scale persona commonsense knowledge graph, PeaCoK, containing ~100K human-validated persona facts. Our knowledge graph schematizes five dimensions of persona knowledge identified in previous studies of human interactive behaviours, and distils facts in this schema from both existing commonsense knowledge graphs and large-scale pretrained language models. Our analysis indicates that PeaCoK contains rich and precise world persona inferences that help downstream systems generate more consistent and engaging narratives. 8 authors · May 3, 2023
- What Makes a Good Story and How Can We Measure It? A Comprehensive Survey of Story Evaluation With the development of artificial intelligence, particularly the success of Large Language Models (LLMs), the quantity and quality of automatically generated stories have significantly increased. This has led to the need for automatic story evaluation to assess the generative capabilities of computing systems and analyze the quality of both automatic-generated and human-written stories. Evaluating a story can be more challenging than other generation evaluation tasks. While tasks like machine translation primarily focus on assessing the aspects of fluency and accuracy, story evaluation demands complex additional measures such as overall coherence, character development, interestingness, etc. This requires a thorough review of relevant research. In this survey, we first summarize existing storytelling tasks, including text-to-text, visual-to-text, and text-to-visual. We highlight their evaluation challenges, identify various human criteria to measure stories, and present existing benchmark datasets. Then, we propose a taxonomy to organize evaluation metrics that have been developed or can be adopted for story evaluation. We also provide descriptions of these metrics, along with the discussion of their merits and limitations. Later, we discuss the human-AI collaboration for story evaluation and generation. Finally, we suggest potential future research directions, extending from story evaluation to general evaluations. 2 authors · Aug 26, 2024
- Detecting Mode Collapse in Language Models via Narration No two authors write alike. Personal flourishes invoked in written narratives, from lexicon to rhetorical devices, imply a particular author--what literary theorists label the implied or virtual author; distinct from the real author or narrator of a text. Early large language models trained on unfiltered training sets drawn from a variety of discordant sources yielded incoherent personalities, problematic for conversational tasks but proving useful for sampling literature from multiple perspectives. Successes in alignment research in recent years have allowed researchers to impose subjectively consistent personae on language models via instruction tuning and reinforcement learning from human feedback (RLHF), but whether aligned models retain the ability to model an arbitrary virtual author has received little scrutiny. By studying 4,374 stories sampled from three OpenAI language models, we show successive versions of GPT-3 suffer from increasing degrees of "mode collapse" whereby overfitting the model during alignment constrains it from generalizing over authorship: models suffering from mode collapse become unable to assume a multiplicity of perspectives. Our method and results are significant for researchers seeking to employ language models in sociological simulations. 1 authors · Feb 6, 2024
1 MM-StoryAgent: Immersive Narrated Storybook Video Generation with a Multi-Agent Paradigm across Text, Image and Audio The rapid advancement of large language models (LLMs) and artificial intelligence-generated content (AIGC) has accelerated AI-native applications, such as AI-based storybooks that automate engaging story production for children. However, challenges remain in improving story attractiveness, enriching storytelling expressiveness, and developing open-source evaluation benchmarks and frameworks. Therefore, we propose and opensource MM-StoryAgent, which creates immersive narrated video storybooks with refined plots, role-consistent images, and multi-channel audio. MM-StoryAgent designs a multi-agent framework that employs LLMs and diverse expert tools (generative models and APIs) across several modalities to produce expressive storytelling videos. The framework enhances story attractiveness through a multi-stage writing pipeline. In addition, it improves the immersive storytelling experience by integrating sound effects with visual, music and narrative assets. MM-StoryAgent offers a flexible, open-source platform for further development, where generative modules can be substituted. Both objective and subjective evaluation regarding textual story quality and alignment between modalities validate the effectiveness of our proposed MM-StoryAgent system. The demo and source code are available. 8 authors · Mar 7
- LongStory: Coherent, Complete and Length Controlled Long story Generation A human author can write any length of story without losing coherence. Also, they always bring the story to a proper ending, an ability that current language models lack. In this work, we present the LongStory for coherent, complete, and length-controlled long story generation. LongStory introduces two novel methodologies: (1) the long and short-term contexts weight calibrator (CWC) and (2) long story structural positions (LSP). The CWC adjusts weights for long-term context Memory and short-term context Cheating, acknowledging their distinct roles. The LSP employs discourse tokens to convey the structural positions of a long story. Trained on three datasets with varied average story lengths, LongStory outperforms other baselines, including the strong story generator Plotmachine, in coherence, completeness, relevance, and repetitiveness. We also perform zero-shot tests on each dataset to assess the model's ability to predict outcomes beyond its training data and validate our methodology by comparing its performance with variants of our model. 3 authors · Nov 26, 2023
16 StoryMaker: Towards Holistic Consistent Characters in Text-to-image Generation Tuning-free personalized image generation methods have achieved significant success in maintaining facial consistency, i.e., identities, even with multiple characters. However, the lack of holistic consistency in scenes with multiple characters hampers these methods' ability to create a cohesive narrative. In this paper, we introduce StoryMaker, a personalization solution that preserves not only facial consistency but also clothing, hairstyles, and body consistency, thus facilitating the creation of a story through a series of images. StoryMaker incorporates conditions based on face identities and cropped character images, which include clothing, hairstyles, and bodies. Specifically, we integrate the facial identity information with the cropped character images using the Positional-aware Perceiver Resampler (PPR) to obtain distinct character features. To prevent intermingling of multiple characters and the background, we separately constrain the cross-attention impact regions of different characters and the background using MSE loss with segmentation masks. Additionally, we train the generation network conditioned on poses to promote decoupling from poses. A LoRA is also employed to enhance fidelity and quality. Experiments underscore the effectiveness of our approach. StoryMaker supports numerous applications and is compatible with other societal plug-ins. Our source codes and model weights are available at https://github.com/RedAIGC/StoryMaker. 5 authors · Sep 19, 2024 2
1 TaleStream: Supporting Story Ideation with Trope Knowledge Story ideation is a critical part of the story-writing process. It is challenging to support computationally due to its exploratory and subjective nature. Tropes, which are recurring narrative elements across stories, are essential in stories as they shape the structure of narratives and our understanding of them. In this paper, we propose to use tropes as an intermediate representation of stories to approach story ideation. We present TaleStream, a canvas system that uses tropes as building blocks of stories while providing steerable suggestions of story ideas in the form of tropes. Our trope suggestion methods leverage data from the tvtropes.org wiki. We find that 97% of the time, trope suggestions generated by our methods provide better story ideation materials than random tropes. Our system evaluation suggests that TaleStream can support writers' creative flow and greatly facilitates story development. Tropes, as a rich lexicon of narratives with available examples, play a key role in TaleStream and hold promise for story-creation support systems. 6 authors · Sep 7, 2023
- Applying Text Mining to Protest Stories as Voice against Media Censorship Data driven activism attempts to collect, analyze and visualize data to foster social change. However, during media censorship it is often impossible to collect such data. Here we demonstrate that data from personal stories can also help us to gain insights about protests and activism which can work as a voice for the activists. We analyze protest story data by extracting location network from the stories and perform emotion mining to get insight about the protest. 4 authors · Dec 29, 2018
- Crafting Narrative Closures: Zero-Shot Learning with SSM Mamba for Short Story Ending Generation Writing stories is an engaging yet challenging endeavor. Often, authors encounter moments of creative block, where the path forward in their narrative becomes obscured. This paper is designed to address such moments by providing an innovative solution: A tool that completes stories based on given prompts. By inputting a short story prompt, users can receive a conclusion to their story, articulated in one sentence or more, thereby enhancing the storytelling process with AI-driven creativity. This tool aims not only to assist authors in navigating writer's block but also to offer a fun and interactive way for anyone to expand on story ideas spontaneously. Through this paper, we explore the intersection of artificial intelligence and creative writing, pushing the boundaries of how stories can be crafted and concluded. To create our final text-generation models, we used a pre-trained GPT-3.5 model and a newly created finetuned SSM-Mamba model, both of which perform well on a comprehensive list of metrics including BERT score, METEOR, BLEU, ROUGE, and Perplexity. The SSM model has also been made public for the NLP community on HuggingFace models as an open source contribution, which for the timebeing is a first of its kind state-space model for story-generation task on HuggingFace. 2 authors · Oct 4, 2024
- Of Human Criteria and Automatic Metrics: A Benchmark of the Evaluation of Story Generation Research on Automatic Story Generation (ASG) relies heavily on human and automatic evaluation. However, there is no consensus on which human evaluation criteria to use, and no analysis of how well automatic criteria correlate with them. In this paper, we propose to re-evaluate ASG evaluation. We introduce a set of 6 orthogonal and comprehensive human criteria, carefully motivated by the social sciences literature. We also present HANNA, an annotated dataset of 1,056 stories produced by 10 different ASG systems. HANNA allows us to quantitatively evaluate the correlations of 72 automatic metrics with human criteria. Our analysis highlights the weaknesses of current metrics for ASG and allows us to formulate practical recommendations for ASG evaluation. 4 authors · Aug 24, 2022
1 A Video Is Worth 4096 Tokens: Verbalize Story Videos To Understand Them In Zero Shot Multimedia content, such as advertisements and story videos, exhibit a rich blend of creativity and multiple modalities. They incorporate elements like text, visuals, audio, and storytelling techniques, employing devices like emotions, symbolism, and slogans to convey meaning. While previous research in multimedia understanding has focused mainly on videos with specific actions like cooking, there is a dearth of large annotated training datasets, hindering the development of supervised learning models with satisfactory performance for real-world applications. However, the rise of large language models (LLMs) has witnessed remarkable zero-shot performance in various natural language processing (NLP) tasks, such as emotion classification, question-answering, and topic classification. To bridge this performance gap in multimedia understanding, we propose verbalizing story videos to generate their descriptions in natural language and then performing video-understanding tasks on the generated story as opposed to the original video. Through extensive experiments on five video-understanding tasks, we demonstrate that our method, despite being zero-shot, achieves significantly better results than supervised baselines for video understanding. Further, alleviating a lack of story understanding benchmarks, we publicly release the first dataset on a crucial task in computational social science, persuasion strategy identification. 5 authors · May 16, 2023 1
14 TF1-EN-3M: Three Million Synthetic Moral Fables for Training Small, Open Language Models Moral stories are a time-tested vehicle for transmitting values, yet modern NLP lacks a large, structured corpus that couples coherent narratives with explicit ethical lessons. We close this gap with TF1-EN-3M, the first open dataset of three million English-language fables generated exclusively by instruction-tuned models no larger than 8B parameters. Each story follows a six-slot scaffold (character -> trait -> setting -> conflict -> resolution -> moral), produced through a combinatorial prompt engine that guarantees genre fidelity while covering a broad thematic space. A hybrid evaluation pipeline blends (i) a GPT-based critic that scores grammar, creativity, moral clarity, and template adherence with (ii) reference-free diversity and readability metrics. Among ten open-weight candidates, an 8B-parameter Llama-3 variant delivers the best quality-speed trade-off, producing high-scoring fables on a single consumer GPU (<24 GB VRAM) at approximately 13.5 cents per 1,000 fables. We release the dataset, generation code, evaluation scripts, and full metadata under a permissive license, enabling exact reproducibility and cost benchmarking. TF1-EN-3M opens avenues for research in instruction following, narrative intelligence, value alignment, and child-friendly educational AI, demonstrating that large-scale moral storytelling no longer requires proprietary giant models. 4 authors · Apr 29 2
2 Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion Models Generative models have recently exhibited exceptional capabilities in various scenarios, for example, image generation based on text description. In this work, we focus on the task of generating a series of coherent image sequence based on a given storyline, denoted as open-ended visual storytelling. We make the following three contributions: (i) to fulfill the task of visual storytelling, we introduce two modules into a pre-trained stable diffusion model, and construct an auto-regressive image generator, termed as StoryGen, that enables to generate the current frame by conditioning on both a text prompt and a preceding frame; (ii) to train our proposed model, we collect paired image and text samples by sourcing from various online sources, such as videos, E-books, and establish a data processing pipeline for constructing a diverse dataset, named StorySalon, with a far larger vocabulary than existing animation-specific datasets; (iii) we adopt a three-stage curriculum training strategy, that enables style transfer, visual context conditioning, and human feedback alignment, respectively. Quantitative experiments and human evaluation have validated the superiority of our proposed model, in terms of image quality, style consistency, content consistency, and visual-language alignment. We will make the code, model, and dataset publicly available to the research community. 5 authors · Jun 1, 2023 1
- Character-Centric Storytelling Sequential vision-to-language or visual storytelling has recently been one of the areas of focus in computer vision and language modeling domains. Though existing models generate narratives that read subjectively well, there could be cases when these models miss out on generating stories that account and address all prospective human and animal characters in the image sequences. Considering this scenario, we propose a model that implicitly learns relationships between provided characters and thereby generates stories with respective characters in scope. We use the VIST dataset for this purpose and report numerous statistics on the dataset. Eventually, we describe the model, explain the experiment and discuss our current status and future work. 2 authors · Sep 17, 2019
- Visual Writing Prompts: Character-Grounded Story Generation with Curated Image Sequences Current work on image-based story generation suffers from the fact that the existing image sequence collections do not have coherent plots behind them. We improve visual story generation by producing a new image-grounded dataset, Visual Writing Prompts (VWP). VWP contains almost 2K selected sequences of movie shots, each including 5-10 images. The image sequences are aligned with a total of 12K stories which were collected via crowdsourcing given the image sequences and a set of grounded characters from the corresponding image sequence. Our new image sequence collection and filtering process has allowed us to obtain stories that are more coherent and have more narrativity compared to previous work. We also propose a character-based story generation model driven by coherence as a strong baseline. Evaluations show that our generated stories are more coherent, visually grounded, and have more narrativity than stories generated with the current state-of-the-art model. 5 authors · Jan 20, 2023
- ContextualStory: Consistent Visual Storytelling with Spatially-Enhanced and Storyline Context Visual storytelling involves generating a sequence of coherent frames from a textual storyline while maintaining consistency in characters and scenes. Existing autoregressive methods, which rely on previous frame-sentence pairs, struggle with high memory usage, slow generation speeds, and limited context integration. To address these issues, we propose ContextualStory, a novel framework designed to generate coherent story frames and extend frames for visual storytelling. ContextualStory utilizes Spatially-Enhanced Temporal Attention to capture spatial and temporal dependencies, handling significant character movements effectively. Additionally, we introduce a Storyline Contextualizer to enrich context in storyline embedding, and a StoryFlow Adapter to measure scene changes between frames for guiding the model. Extensive experiments on PororoSV and FlintstonesSV datasets demonstrate that ContextualStory significantly outperforms existing SOTA methods in both story visualization and continuation. Code is available at https://github.com/sixiaozheng/ContextualStory. 2 authors · Jul 13, 2024
1 We are what we repeatedly do: Inducing and deploying habitual schemas in persona-based responses Many practical applications of dialogue technology require the generation of responses according to a particular developer-specified persona. While a variety of personas can be elicited from recent large language models, the opaqueness and unpredictability of these models make it desirable to be able to specify personas in an explicit form. In previous work, personas have typically been represented as sets of one-off pieces of self-knowledge that are retrieved by the dialogue system for use in generation. However, in realistic human conversations, personas are often revealed through story-like narratives that involve rich habitual knowledge -- knowledge about kinds of events that an agent often participates in (e.g., work activities, hobbies, sporting activities, favorite entertainments, etc.), including typical goals, sub-events, preconditions, and postconditions of those events. We capture such habitual knowledge using an explicit schema representation, and propose an approach to dialogue generation that retrieves relevant schemas to condition a large language model to generate persona-based responses. Furthermore, we demonstrate a method for bootstrapping the creation of such schemas by first generating generic passages from a set of simple facts, and then inducing schemas from the generated passages. 2 authors · Oct 9, 2023
- The Next Chapter: A Study of Large Language Models in Storytelling To enhance the quality of generated stories, recent story generation models have been investigating the utilization of higher-level attributes like plots or commonsense knowledge. The application of prompt-based learning with large language models (LLMs), exemplified by GPT-3, has exhibited remarkable performance in diverse natural language processing (NLP) tasks. This paper conducts a comprehensive investigation, utilizing both automatic and human evaluation, to compare the story generation capacity of LLMs with recent models across three datasets with variations in style, register, and length of stories. The results demonstrate that LLMs generate stories of significantly higher quality compared to other story generation models. Moreover, they exhibit a level of performance that competes with human authors, albeit with the preliminary observation that they tend to replicate real stories in situations involving world knowledge, resembling a form of plagiarism. 3 authors · Jan 23, 2023
8 EIPE-text: Evaluation-Guided Iterative Plan Extraction for Long-Form Narrative Text Generation Plan-and-Write is a common hierarchical approach in long-form narrative text generation, which first creates a plan to guide the narrative writing. Following this approach, several studies rely on simply prompting large language models for planning, which often yields suboptimal results. In this paper, we propose a new framework called Evaluation-guided Iterative Plan Extraction for long-form narrative text generation (EIPE-text), which extracts plans from the corpus of narratives and utilizes the extracted plans to construct a better planner. EIPE-text has three stages: plan extraction, learning, and inference. In the plan extraction stage, it iteratively extracts and improves plans from the narrative corpus and constructs a plan corpus. We propose a question answer (QA) based evaluation mechanism to automatically evaluate the plans and generate detailed plan refinement instructions to guide the iterative improvement. In the learning stage, we build a better planner by fine-tuning with the plan corpus or in-context learning with examples in the plan corpus. Finally, we leverage a hierarchical approach to generate long-form narratives. We evaluate the effectiveness of EIPE-text in the domains of novels and storytelling. Both GPT-4-based evaluations and human evaluations demonstrate that our method can generate more coherent and relevant long-form narratives. Our code will be released in the future. 11 authors · Oct 12, 2023 1
- Metabook: An Automatically Generated Augmented Reality Storybook Interaction System to Improve Children's Engagement in Storytelling Storytelling serves as a crucial avenue for children to acquire knowledge, offering numerous benefits such as enhancing children's sensitivity to various forms of syntax, diction, and rhetoric; recognizing patterns in language and human experience; stimulating creativity; and providing practice in problem-solving, decision-making, and evaluation. However, current storytelling book facing these problems:1.Traditional 3D storybooks lack flexibility in dealing with text changing, as adding a new story requires remaking of the 3D book by artists. 2. Children often have many questions after reading stories, but traditional 3D books are unable to provide answers or explanations for children.3.Children can easily feel bored when reading text, and traditional 3D books still rely on text to tell stories, thus limiting their ability to increase children's enthusiasm for reading. So, we propose the Metabook: an automatically generated interactive 3D storybook. Our main contributions are as follows: First, we propose a story to 3D generation scheme, enabling 3D books to be automatically generated based on stories. Next, we introduce cartoon Metahumans for storytelling, utilizing lip-syncing and eye-tracking technology to enable facial interaction with children, enhancing the fun of reading. Last but not least, we connect GPT-4 to the brain of the metahuman, which provides answers and explanations to the questions children have after reading. 3 authors · May 22, 2024
- VinaBench: Benchmark for Faithful and Consistent Visual Narratives Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives. 9 authors · Mar 26
- Characterizing LLM-Empowered Personalized Story-Reading and Interaction for Children: Insights from Multi-Stakeholder Perspectives Personalized interaction is highly valued by parents in their story-reading activities with children. While AI-empowered story-reading tools have been increasingly used, their abilities to support personalized interaction with children are still limited. Recent advances in large language models (LLMs) show promise in facilitating personalized interactions, but little is known about how to effectively and appropriately use LLMs to enhance children's personalized story-reading experiences. This work explores this question through a design-based study. Drawing on a formative study, we designed and developed StoryMate, an LLM-empowered personalized interactive story-reading tool for children, following an empirical study with children, parents, and education experts. Our participants valued the personalized features in StoryMate, and also highlighted the need to support personalized content, guiding mechanisms, reading context variations, and interactive interfaces. Based on these findings, we propose a series of design recommendations for better using LLMs to empower children's personalized story reading and interaction. 10 authors · Mar 1
- Learning to Reason for Long-Form Story Generation Generating high-quality stories spanning thousands of tokens requires competency across a variety of skills, from tracking plot and character arcs to keeping a consistent and engaging style. Due to the difficulty of sourcing labeled datasets and precise quality measurements, most work using large language models (LLMs) for long-form story generation uses combinations of hand-designed prompting techniques to elicit author-like behavior. This is a manual process that is highly dependent on the specific story-generation task. Motivated by the recent success of applying RL with Verifiable Rewards to domains like math and coding, we propose a general story-generation task (Next-Chapter Prediction) and a reward formulation (Verified Rewards via Completion Likelihood Improvement) that allows us to use an unlabeled book dataset as a learning signal for reasoning. We learn to reason over a story's condensed information and generate a detailed plan for the next chapter. Our reasoning is evaluated via the chapters it helps a story-generator create, and compared against non-trained and supervised finetuning (SFT) baselines. Pairwise human judgments reveal the chapters our learned reasoning produces are preferred across almost all metrics, and the effect is more pronounced in Scifi and Fantasy genres. 2 authors · Mar 28
- EMNS /Imz/ Corpus: An emotive single-speaker dataset for narrative storytelling in games, television and graphic novels The increasing adoption of text-to-speech technologies has led to a growing demand for natural and emotive voices that adapt to a conversation's context and emotional tone. The Emotive Narrative Storytelling (EMNS) corpus is a unique speech dataset created to enhance conversations' expressiveness and emotive quality in interactive narrative-driven systems. The corpus consists of a 2.3-hour recording featuring a female speaker delivering labelled utterances. It encompasses eight acted emotional states, evenly distributed with a variance of 0.68%, along with expressiveness levels and natural language descriptions with word emphasis labels. The evaluation of audio samples from different datasets revealed that the EMNS corpus achieved the highest average scores in accurately conveying emotions and demonstrating expressiveness. It outperformed other datasets in conveying shared emotions and achieved comparable levels of genuineness. A classification task confirmed the accurate representation of intended emotions in the corpus, with participants recognising the recordings as genuine and expressive. Additionally, the availability of the dataset collection tool under the Apache 2.0 License simplifies remote speech data collection for researchers. 3 authors · May 22, 2023
1 Emotion Recognition based on Psychological Components in Guided Narratives for Emotion Regulation Emotion regulation is a crucial element in dealing with emotional events and has positive effects on mental health. This paper aims to provide a more comprehensive understanding of emotional events by introducing a new French corpus of emotional narratives collected using a questionnaire for emotion regulation. We follow the theoretical framework of the Component Process Model which considers emotions as dynamic processes composed of four interrelated components (behavior, feeling, thinking and territory). Each narrative is related to a discrete emotion and is structured based on all emotion components by the writers. We study the interaction of components and their impact on emotion classification with machine learning methods and pre-trained language models. Our results show that each component improves prediction performance, and that the best results are achieved by jointly considering all components. Our results also show the effectiveness of pre-trained language models in predicting discrete emotion from certain components, which reveal differences in how emotion components are expressed. 4 authors · May 15, 2023
1 "Kurosawa": A Script Writer's Assistant Storytelling is the lifeline of the entertainment industry -- movies, TV shows, and stand-up comedies, all need stories. A good and gripping script is the lifeline of storytelling and demands creativity and resource investment. Good scriptwriters are rare to find and often work under severe time pressure. Consequently, entertainment media are actively looking for automation. In this paper, we present an AI-based script-writing workbench called KUROSAWA which addresses the tasks of plot generation and script generation. Plot generation aims to generate a coherent and creative plot (600-800 words) given a prompt (15-40 words). Script generation, on the other hand, generates a scene (200-500 words) in a screenplay format from a brief description (15-40 words). Kurosawa needs data to train. We use a 4-act structure of storytelling to annotate the plot dataset manually. We create a dataset of 1000 manually annotated plots and their corresponding prompts/storylines and a gold-standard dataset of 1000 scenes with four main elements -- scene headings, action lines, dialogues, and character names -- tagged individually. We fine-tune GPT-3 with the above datasets to generate plots and scenes. These plots and scenes are first evaluated and then used by the scriptwriters of a large and famous media platform ErosNow. We release the annotated datasets and the models trained on these datasets as a working benchmark for automatic movie plot and script generation. 3 authors · Aug 6, 2023
8 Collective Critics for Creative Story Generation Generating a long story of several thousand words with narrative coherence using Large Language Models (LLMs) has been a challenging task. Previous research has addressed this challenge by proposing different frameworks that create a story plan and generate a long story based on that plan. However, these frameworks have been mainly focusing on maintaining narrative coherence in stories, often overlooking creativity in story planning and the expressiveness of the stories generated from those plans, which are desirable properties to captivate readers' interest. In this paper, we propose Collective Critics for Creative Story Generation framework (CritiCS), which is composed of plan refining stage (CrPlan) and story generation stage (CrText), to integrate a collective revision mechanism that promotes those properties into long-form story generation process. Specifically, in each stage, a group of LLM critics and one leader collaborate to incrementally refine drafts of plan and story throughout multiple rounds. Extensive human evaluation shows that the CritiCS can significantly enhance story creativity and reader engagement, while also maintaining narrative coherence. Furthermore, the design of the framework allows active participation from human writers in any role within the critique process, enabling interactive human-machine collaboration in story writing. 2 authors · Oct 3, 2024 2
- AI Stories: An Interactive Narrative System for Children AI Stories is a proposed interactive dialogue system, that lets children co-create narrative worlds through conversation. Over the next three years this system will be developed and tested within pediatric wards, where it offers a useful resource between the gap of education and play. Telling and making stories is a fundamental part of language play, and its chatty and nonsensical qualities are important; therefore, the prologued usage an automated system offers is a benefit to children. In this paper I will present the current state of this project, in its more experimental and general guise. Conceptually story-telling through dialogue relates to the preprint interpretation of story, beyond the static and linear medium, where stories were performative, temporal, and social. 1 authors · Nov 9, 2020
- MoPS: Modular Story Premise Synthesis for Open-Ended Automatic Story Generation A story premise succinctly defines a story's main idea, foundation, and trajectory. It serves as the initial trigger in automatic story generation. Existing sources of story premises are limited by a lack of diversity, uneven quality, and high costs that make them difficult to scale. In response, we introduce Modular Story Premise Synthesis (MoPS) which breaks down story premises into modules like background and persona for automated design and generation. MoPS consists of three phases: (1) Precollect a consistent set of candidates for each module to form a nested dictionary. (2) Extract a key path from the nested dictionary as the premise design. (3) Instruct an LLM to integrate the design into a coherent premise sentence. Thorough evaluations demonstrate that our synthesized premises excel in diversity, fascination, completeness, and originality compared to those induced from large language models and captured from public story datasets. Similarly, the extended novels and scripts generated from our premises also exhibit higher quality. In supplementary materials, we provide the MoPS code suite, along with 7.6k generated premises and 1k extended stories. Code: https://github.com/GAIR-NLP/MoPS. 3 authors · Jun 9, 2024 1
26 SEED-Story: Multimodal Long Story Generation with Large Language Model With the remarkable advancements in image generation and open-form text generation, the creation of interleaved image-text content has become an increasingly intriguing field. Multimodal story generation, characterized by producing narrative texts and vivid images in an interleaved manner, has emerged as a valuable and practical task with broad applications. However, this task poses significant challenges, as it necessitates the comprehension of the complex interplay between texts and images, and the ability to generate long sequences of coherent, contextually relevant texts and visuals. In this work, we propose SEED-Story, a novel method that leverages a Multimodal Large Language Model (MLLM) to generate extended multimodal stories. Our model, built upon the powerful comprehension capability of MLLM, predicts text tokens as well as visual tokens, which are subsequently processed with an adapted visual de-tokenizer to produce images with consistent characters and styles. We further propose multimodal attention sink mechanism to enable the generation of stories with up to 25 sequences (only 10 for training) in a highly efficient autoregressive manner. Additionally, we present a large-scale and high-resolution dataset named StoryStream for training our model and quantitatively evaluating the task of multimodal story generation in various aspects. 7 authors · Jul 11, 2024 5
2 Experimental Narratives: A Comparison of Human Crowdsourced Storytelling and AI Storytelling The paper proposes a framework that combines behavioral and computational experiments employing fictional prompts as a novel tool for investigating cultural artifacts and social biases in storytelling both by humans and generative AI. The study analyzes 250 stories authored by crowdworkers in June 2019 and 80 stories generated by GPT-3.5 and GPT-4 in March 2023 by merging methods from narratology and inferential statistics. Both crowdworkers and large language models responded to identical prompts about creating and falling in love with an artificial human. The proposed experimental paradigm allows a direct comparison between human and LLM-generated storytelling. Responses to the Pygmalionesque prompts confirm the pervasive presence of the Pygmalion myth in the collective imaginary of both humans and large language models. All solicited narratives present a scientific or technological pursuit. The analysis reveals that narratives from GPT-3.5 and particularly GPT-4 are more more progressive in terms of gender roles and sexuality than those written by humans. While AI narratives can occasionally provide innovative plot twists, they offer less imaginative scenarios and rhetoric than human-authored texts. The proposed framework argues that fiction can be used as a window into human and AI-based collective imaginary and social dimensions. 1 authors · Oct 19, 2023
2 A Confederacy of Models: a Comprehensive Evaluation of LLMs on Creative Writing We evaluate a range of recent LLMs on English creative writing, a challenging and complex task that requires imagination, coherence, and style. We use a difficult, open-ended scenario chosen to avoid training data reuse: an epic narration of a single combat between Ignatius J. Reilly, the protagonist of the Pulitzer Prize-winning novel A Confederacy of Dunces (1980), and a pterodactyl, a prehistoric flying reptile. We ask several LLMs and humans to write such a story and conduct a human evalution involving various criteria such as fluency, coherence, originality, humor, and style. Our results show that some state-of-the-art commercial LLMs match or slightly outperform our writers in most dimensions; whereas open-source LLMs lag behind. Humans retain an edge in creativity, while humor shows a binary divide between LLMs that can handle it comparably to humans and those that fail at it. We discuss the implications and limitations of our study and suggest directions for future research. 2 authors · Oct 12, 2023
- Small Language Models can Outperform Humans in Short Creative Writing: A Study Comparing SLMs with Humans and LLMs In this paper, we evaluate the creative fiction writing abilities of a fine-tuned small language model (SLM), BART Large, and compare its performance to humans and two large language models (LLMs): GPT-3.5 and GPT-4o. Our evaluation consists of two experiments: (i) a human evaluation where readers assess the stories generated by the SLM compared to human-written stories, and (ii) a qualitative linguistic analysis comparing the textual characteristics of the stories generated by the different models. In the first experiment, we asked 68 participants to rate short stories generated by the models and humans along dimensions such as grammaticality, relevance, creativity, and attractiveness. BART Large outperformed human writers in most aspects, except creativity, with an overall score of 2.11 compared to 1.85 for human-written texts -- a 14% improvement. In the second experiment, the qualitative analysis revealed that, while GPT-4o exhibited near-perfect internal and external coherence, it tended to produce more predictable narratives, with only 3% of its stories seen as novel. In contrast, 15% of BART's stories were considered novel, indicating a higher degree of creativity despite its smaller model size. This study provides both quantitative and qualitative insights into how model size and fine-tuning influence the balance between creativity, fluency, and coherence in creative writing tasks. 3 authors · Sep 17, 2024
- Decomposing the Fundamentals of Creepy Stories Fear is a universal concept; people crave it in urban legends, scary movies, and modern stories. Open questions remain, however, about why these stories are scary and more generally what scares people. In this study, we explore these questions by analyzing tens of thousands of scary stories on forums (known as subreddits) in a social media website, Reddit. We first explore how writing styles have evolved to keep these stories fresh before we analyze the stable core techniques writers use to make stories scary. We find that writers have changed the themes of their stories over years from haunted houses to school-related themes, body horror, and diseases. Yet some features remain stable; words associated with pseudo-human nouns, such as clown or devil are more common in scary stories than baselines. In addition, we collect a range of datasets that annotate sentences containing fear. We use these data to develop a high-accuracy fear detection neural network model, which is used to quantify where people express fear in scary stories. We find that sentences describing fear, and words most often seen in scary stories, spike at particular points in a story, possibly as a way to keep the readers on the edge of their seats until the story's conclusion. These results provide a new understanding of how authors cater to their readers, and how fear may manifest in stories. 4 authors · Nov 10, 2022
- The Lost Melody: Empirical Observations on Text-to-Video Generation From A Storytelling Perspective Text-to-video generation task has witnessed a notable progress, with the generated outcomes reflecting the text prompts with high fidelity and impressive visual qualities. However, current text-to-video generation models are invariably focused on conveying the visual elements of a single scene, and have so far been indifferent to another important potential of the medium, namely a storytelling. In this paper, we examine text-to-video generation from a storytelling perspective, which has been hardly investigated, and make empirical remarks that spotlight the limitations of current text-to-video generation scheme. We also propose an evaluation framework for storytelling aspects of videos, and discuss the potential future directions. 3 authors · May 12, 2024
2 Re3: Generating Longer Stories With Recursive Reprompting and Revision We consider the problem of automatically generating longer stories of over two thousand words. Compared to prior work on shorter stories, long-range plot coherence and relevance are more central challenges here. We propose the Recursive Reprompting and Revision framework (Re3) to address these challenges by (a) prompting a general-purpose language model to construct a structured overarching plan, and (b) generating story passages by repeatedly injecting contextual information from both the plan and current story state into a language model prompt. We then revise by (c) reranking different continuations for plot coherence and premise relevance, and finally (d) editing the best continuation for factual consistency. Compared to similar-length stories generated directly from the same base model, human evaluators judged substantially more of Re3's stories as having a coherent overarching plot (by 14% absolute increase), and relevant to the given initial premise (by 20%). 4 authors · Oct 13, 2022
- Causal Micro-Narratives We present a novel approach to classify causal micro-narratives from text. These narratives are sentence-level explanations of the cause(s) and/or effect(s) of a target subject. The approach requires only a subject-specific ontology of causes and effects, and we demonstrate it with an application to inflation narratives. Using a human-annotated dataset spanning historical and contemporary US news articles for training, we evaluate several large language models (LLMs) on this multi-label classification task. The best-performing model--a fine-tuned Llama 3.1 8B--achieves F1 scores of 0.87 on narrative detection and 0.71 on narrative classification. Comprehensive error analysis reveals challenges arising from linguistic ambiguity and highlights how model errors often mirror human annotator disagreements. This research establishes a framework for extracting causal micro-narratives from real-world data, with wide-ranging applications to social science research. 5 authors · Oct 7, 2024
1 Story Visualization by Online Text Augmentation with Context Memory Story visualization (SV) is a challenging text-to-image generation task for the difficulty of not only rendering visual details from the text descriptions but also encoding a long-term context across multiple sentences. While prior efforts mostly focus on generating a semantically relevant image for each sentence, encoding a context spread across the given paragraph to generate contextually convincing images (e.g., with a correct character or with a proper background of the scene) remains a challenge. To this end, we propose a novel memory architecture for the Bi-directional Transformer framework with an online text augmentation that generates multiple pseudo-descriptions as supplementary supervision during training for better generalization to the language variation at inference. In extensive experiments on the two popular SV benchmarks, i.e., the Pororo-SV and Flintstones-SV, the proposed method significantly outperforms the state of the arts in various metrics including FID, character F1, frame accuracy, BLEU-2/3, and R-precision with similar or less computational complexity. 7 authors · Aug 15, 2023
- Belief in the Machine: Investigating Epistemological Blind Spots of Language Models As language models (LMs) become integral to fields like healthcare, law, and journalism, their ability to differentiate between fact, belief, and knowledge is essential for reliable decision-making. Failure to grasp these distinctions can lead to significant consequences in areas such as medical diagnosis, legal judgments, and dissemination of fake news. Despite this, current literature has largely focused on more complex issues such as theory of mind, overlooking more fundamental epistemic challenges. This study systematically evaluates the epistemic reasoning capabilities of modern LMs, including GPT-4, Claude-3, and Llama-3, using a new dataset, KaBLE, consisting of 13,000 questions across 13 tasks. Our results reveal key limitations. First, while LMs achieve 86% accuracy on factual scenarios, their performance drops significantly with false scenarios, particularly in belief-related tasks. Second, LMs struggle with recognizing and affirming personal beliefs, especially when those beliefs contradict factual data, which raises concerns for applications in healthcare and counseling, where engaging with a person's beliefs is critical. Third, we identify a salient bias in how LMs process first-person versus third-person beliefs, performing better on third-person tasks (80.7%) compared to first-person tasks (54.4%). Fourth, LMs lack a robust understanding of the factive nature of knowledge, namely, that knowledge inherently requires truth. Fifth, LMs rely on linguistic cues for fact-checking and sometimes bypass the deeper reasoning. These findings highlight significant concerns about current LMs' ability to reason about truth, belief, and knowledge while emphasizing the need for advancements in these areas before broad deployment in critical sectors. 7 authors · Oct 28, 2024
13 GRIM: GRaph-based Interactive narrative visualization for gaMes Dialogue-based Role Playing Games (RPGs) require powerful storytelling. The narratives of these may take years to write and typically involve a large creative team. In this work, we demonstrate the potential of large generative text models to assist this process. GRIM, a prototype GRaph-based Interactive narrative visualization system for gaMes, generates a rich narrative graph with branching storylines that match a high-level narrative description and constraints provided by the designer. Game designers can interactively edit the graph by automatically generating new sub-graphs that fit the edits within the original narrative and constraints. We illustrate the use of GRIM in conjunction with GPT-4, generating branching narratives for four well-known stories with different contextual constraints. 7 authors · Nov 15, 2023 1
- EvolvTrip: Enhancing Literary Character Understanding with Temporal Theory-of-Mind Graphs A compelling portrayal of characters is essential to the success of narrative writing. For readers, appreciating a character's traits requires the ability to infer their evolving beliefs, desires, and intentions over the course of a complex storyline, a cognitive skill known as Theory-of-Mind (ToM). Performing ToM reasoning in prolonged narratives requires readers to integrate historical context with current narrative information, a task at which humans excel but Large Language Models (LLMs) often struggle. To systematically evaluate LLMs' ToM reasoning capability in long narratives, we construct LitCharToM, a benchmark of character-centric questions across four ToM dimensions from classic literature. Further, we introduce EvolvTrip, a perspective-aware temporal knowledge graph that tracks psychological development throughout narratives. Our experiments demonstrate that EvolvTrip consistently enhances performance of LLMs across varying scales, even in challenging extended-context scenarios. EvolvTrip proves to be particularly valuable for smaller models, partially bridging the performance gap with larger LLMs and showing great compatibility with lengthy narratives. Our findings highlight the importance of explicit representation of temporal character mental states in narrative comprehension and offer a foundation for more sophisticated character understanding. Our data and code are publicly available at https://github.com/Bernard-Yang/EvolvTrip. 6 authors · Jun 16
- StoryDB: Broad Multi-language Narrative Dataset This paper presents StoryDB - a broad multi-language dataset of narratives. StoryDB is a corpus of texts that includes stories in 42 different languages. Every language includes 500+ stories. Some of the languages include more than 20 000 stories. Every story is indexed across languages and labeled with tags such as a genre or a topic. The corpus shows rich topical and language variation and can serve as a resource for the study of the role of narrative in natural language processing across various languages including low resource ones. We also demonstrate how the dataset could be used to benchmark three modern multilanguage models, namely, mDistillBERT, mBERT, and XLM-RoBERTa. 3 authors · Sep 29, 2021
1 KAHANI: Culturally-Nuanced Visual Storytelling Pipeline for Non-Western Cultures Large Language Models (LLMs) and Text-To-Image (T2I) models have demonstrated the ability to generate compelling text and visual stories. However, their outputs are predominantly aligned with the sensibilities of the Global North, often resulting in an outsider's gaze on other cultures. As a result, non-Western communities have to put extra effort into generating culturally specific stories. To address this challenge, we developed a visual storytelling pipeline called KAHANI that generates culturally grounded visual stories for non-Western cultures. Our pipeline leverages off-the-shelf models GPT-4 Turbo and Stable Diffusion XL (SDXL). By using Chain of Thought (CoT) and T2I prompting techniques, we capture the cultural context from user's prompt and generate vivid descriptions of the characters and scene compositions. To evaluate the effectiveness of KAHANI, we conducted a comparative user study with ChatGPT-4 (with DALL-E3) in which participants from different regions of India compared the cultural relevance of stories generated by the two tools. Results from the qualitative and quantitative analysis performed on the user study showed that KAHANI was able to capture and incorporate more Culturally Specific Items (CSIs) compared to ChatGPT-4. In terms of both its cultural competence and visual story generation quality, our pipeline outperformed ChatGPT-4 in 27 out of the 36 comparisons. 9 authors · Oct 25, 2024
17 AutoStory: Generating Diverse Storytelling Images with Minimal Human Effort Story visualization aims to generate a series of images that match the story described in texts, and it requires the generated images to satisfy high quality, alignment with the text description, and consistency in character identities. Given the complexity of story visualization, existing methods drastically simplify the problem by considering only a few specific characters and scenarios, or requiring the users to provide per-image control conditions such as sketches. However, these simplifications render these methods incompetent for real applications. To this end, we propose an automated story visualization system that can effectively generate diverse, high-quality, and consistent sets of story images, with minimal human interactions. Specifically, we utilize the comprehension and planning capabilities of large language models for layout planning, and then leverage large-scale text-to-image models to generate sophisticated story images based on the layout. We empirically find that sparse control conditions, such as bounding boxes, are suitable for layout planning, while dense control conditions, e.g., sketches and keypoints, are suitable for generating high-quality image content. To obtain the best of both worlds, we devise a dense condition generation module to transform simple bounding box layouts into sketch or keypoint control conditions for final image generation, which not only improves the image quality but also allows easy and intuitive user interactions. In addition, we propose a simple yet effective method to generate multi-view consistent character images, eliminating the reliance on human labor to collect or draw character images. 6 authors · Nov 19, 2023 3
1 SHARE: Shared Memory-Aware Open-Domain Long-Term Dialogue Dataset Constructed from Movie Script Shared memories between two individuals strengthen their bond and are crucial for facilitating their ongoing conversations. This study aims to make long-term dialogue more engaging by leveraging these shared memories. To this end, we introduce a new long-term dialogue dataset named SHARE, constructed from movie scripts, which are a rich source of shared memories among various relationships. Our dialogue dataset contains the summaries of persona information and events of two individuals, as explicitly revealed in their conversation, along with implicitly extractable shared memories. We also introduce EPISODE, a long-term dialogue framework based on SHARE that utilizes shared experiences between individuals. Through experiments using SHARE, we demonstrate that shared memories between two individuals make long-term dialogues more engaging and sustainable, and that EPISODE effectively manages shared memories during dialogue. Our new dataset is publicly available at https://anonymous.4open.science/r/SHARE-AA1E/SHARE.json. 3 authors · Oct 27, 2024
- OpenMEVA: A Benchmark for Evaluating Open-ended Story Generation Metrics Automatic metrics are essential for developing natural language generation (NLG) models, particularly for open-ended language generation tasks such as story generation. However, existing automatic metrics are observed to correlate poorly with human evaluation. The lack of standardized benchmark datasets makes it difficult to fully evaluate the capabilities of a metric and fairly compare different metrics. Therefore, we propose OpenMEVA, a benchmark for evaluating open-ended story generation metrics. OpenMEVA provides a comprehensive test suite to assess the capabilities of metrics, including (a) the correlation with human judgments, (b) the generalization to different model outputs and datasets, (c) the ability to judge story coherence, and (d) the robustness to perturbations. To this end, OpenMEVA includes both manually annotated stories and auto-constructed test examples. We evaluate existing metrics on OpenMEVA and observe that they have poor correlation with human judgments, fail to recognize discourse-level incoherence, and lack inferential knowledge (e.g., causal order between events), the generalization ability and robustness. Our study presents insights for developing NLG models and metrics in further research. 8 authors · May 19, 2021
- NarrativePlay: Interactive Narrative Understanding In this paper, we introduce NarrativePlay, a novel system that allows users to role-play a fictional character and interact with other characters in narratives such as novels in an immersive environment. We leverage Large Language Models (LLMs) to generate human-like responses, guided by personality traits extracted from narratives. The system incorporates auto-generated visual display of narrative settings, character portraits, and character speech, greatly enhancing user experience. Our approach eschews predefined sandboxes, focusing instead on main storyline events extracted from narratives from the perspective of a user-selected character. NarrativePlay has been evaluated on two types of narratives, detective and adventure stories, where users can either explore the world or improve their favorability with the narrative characters through conversations. 7 authors · Oct 2, 2023
- GROOViST: A Metric for Grounding Objects in Visual Storytelling A proper evaluation of stories generated for a sequence of images -- the task commonly referred to as visual storytelling -- must consider multiple aspects, such as coherence, grammatical correctness, and visual grounding. In this work, we focus on evaluating the degree of grounding, that is, the extent to which a story is about the entities shown in the images. We analyze current metrics, both designed for this purpose and for general vision-text alignment. Given their observed shortcomings, we propose a novel evaluation tool, GROOViST, that accounts for cross-modal dependencies, temporal misalignments (the fact that the order in which entities appear in the story and the image sequence may not match), and human intuitions on visual grounding. An additional advantage of GROOViST is its modular design, where the contribution of each component can be assessed and interpreted individually. 3 authors · Oct 26, 2023
- Neural Story Planning Automated plot generation is the challenge of generating a sequence of events that will be perceived by readers as the plot of a coherent story. Traditional symbolic planners plan a story from a goal state and guarantee logical causal plot coherence but rely on a library of hand-crafted actions with their preconditions and effects. This closed world setting limits the length and diversity of what symbolic planners can generate. On the other hand, pre-trained neural language models can generate stories with great diversity, while being generally incapable of ending a story in a specified manner and can have trouble maintaining coherence. In this paper, we present an approach to story plot generation that unifies causal planning with neural language models. We propose to use commonsense knowledge extracted from large language models to recursively expand a story plot in a backward chaining fashion. Specifically, our system infers the preconditions for events in the story and then events that will cause those conditions to become true. We performed automatic evaluation to measure narrative coherence as indicated by the ability to answer questions about whether different events in the story are causally related to other events. Results indicate that our proposed method produces more coherent plotlines than several strong baselines. 4 authors · Dec 16, 2022
- User Story Tutor (UST) to Support Agile Software Developers User Stories record what must be built in projects that use agile practices. User Stories serve both to estimate effort, generally measured in Story Points, and to plan what should be done in a Sprint. Therefore, it is essential to train software engineers on how to create simple, easily readable, and comprehensive User Stories. For that reason, we designed, implemented, applied, and evaluated a web application called User Story Tutor (UST). UST checks the description of a given User Story for readability, and if needed, recommends appropriate practices for improvement. UST also estimates a User Story effort in Story Points using Machine Learning techniques. As such UST may support the continuing education of agile development teams when writing and reviewing User Stories. UST's ease of use was evaluated by 40 agile practitioners according to the Technology Acceptance Model (TAM) and AttrakDiff. The TAM evaluation averages were good in almost all considered variables. Application of the AttrakDiff evaluation framework produced similar good results. Apparently, UST can be used with good reliability. Applying UST to assist in the construction of User Stories is a viable technique that, at the very least, can be used by agile developments to complement and enhance current User Story creation. 5 authors · Jun 23, 2024
- Parameterized Synthetic Text Generation with SimpleStories We present SimpleStories, a large synthetic story dataset in simple language, consisting of 2 million stories each in English and Japanese. Our method employs parametrization of prompts with features at multiple levels of abstraction, allowing for systematic control over story characteristics to ensure broad syntactic and semantic diversity. Building on and addressing limitations in the TinyStories dataset, our approach demonstrates that simplicity and variety can be achieved simultaneously in synthetic text generation at scale. 6 authors · Apr 12
- Storynizor: Consistent Story Generation via Inter-Frame Synchronized and Shuffled ID Injection Recent advances in text-to-image diffusion models have spurred significant interest in continuous story image generation. In this paper, we introduce Storynizor, a model capable of generating coherent stories with strong inter-frame character consistency, effective foreground-background separation, and diverse pose variation. The core innovation of Storynizor lies in its key modules: ID-Synchronizer and ID-Injector. The ID-Synchronizer employs an auto-mask self-attention module and a mask perceptual loss across inter-frame images to improve the consistency of character generation, vividly representing their postures and backgrounds. The ID-Injector utilize a Shuffling Reference Strategy (SRS) to integrate ID features into specific locations, enhancing ID-based consistent character generation. Additionally, to facilitate the training of Storynizor, we have curated a novel dataset called StoryDB comprising 100, 000 images. This dataset contains single and multiple-character sets in diverse environments, layouts, and gestures with detailed descriptions. Experimental results indicate that Storynizor demonstrates superior coherent story generation with high-fidelity character consistency, flexible postures, and vivid backgrounds compared to other character-specific methods. 8 authors · Sep 29, 2024
- VisAgent: Narrative-Preserving Story Visualization Framework Story visualization is the transformation of narrative elements into image sequences. While existing research has primarily focused on visual contextual coherence, the deeper narrative essence of stories often remains overlooked. This limitation hinders the practical application of these approaches, as generated images frequently fail to capture the intended meaning and nuances of the narrative fully. To address these challenges, we propose VisAgent, a training-free multi-agent framework designed to comprehend and visualize pivotal scenes within a given story. By considering story distillation, semantic consistency, and contextual coherence, VisAgent employs an agentic workflow. In this workflow, multiple specialized agents collaborate to: (i) refine layered prompts based on the narrative structure and (ii) seamlessly integrate generated elements, including refined prompts, scene elements, and subject placement, into the final image. The empirically validated effectiveness confirms the framework's suitability for practical story visualization applications. 4 authors · Mar 4
- Identifying Informational Sources in News Articles News articles are driven by the informational sources journalists use in reporting. Modeling when, how and why sources get used together in stories can help us better understand the information we consume and even help journalists with the task of producing it. In this work, we take steps toward this goal by constructing the largest and widest-ranging annotated dataset, to date, of informational sources used in news writing. We show that our dataset can be used to train high-performing models for information detection and source attribution. We further introduce a novel task, source prediction, to study the compositionality of sources in news articles. We show good performance on this task, which we argue is an important proof for narrative science exploring the internal structure of news articles and aiding in planning-based language generation, and an important step towards a source-recommendation system to aid journalists. 4 authors · May 24, 2023
- Narrative Media Framing in Political Discourse Narrative frames are a powerful way of conceptualizing and communicating complex, controversial ideas, however automated frame analysis to date has mostly overlooked this framing device. In this paper, we connect elements of narrativity with fundamental aspects of framing, and present a framework which formalizes and operationalizes such aspects. We annotate and release a data set of news articles in the climate change domain, analyze the dominance of narrative frame components across political leanings, and test LLMs in their ability to predict narrative frames and their components. Finally, we apply our framework in an unsupervised way to elicit components of narrative framing in a second domain, the COVID-19 crisis, where our predictions are congruent with prior theoretical work showing the generalizability of our approach. 2 authors · May 31